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The quadratic form of non-central normal variables is presented based on a sum of 
weighted independent non-central chi-square variables. This presentation provides 
moments of quadratic form. The maximum entropy method is used to estimate the density 
function because distribution moments of quadratic forms are known. A Euclidean distance 
is proposed to select an appropriate maximum entropy density function. In order to 
compare with other methods some numerical examples were evaluated. Also, for 
discrimination between two groups by the Euclidean distances, we obtained a stochastic 

representation for the linear discriminant function using the quadratic form. The maximum 
entropy estimation was an acceptable method to approximate the distribution of quadratic 
forms in normal variables. 
 
Keywords: Quadratic forms, maximum entropy density estimation, non-central chi-
square distribution, linear discriminant analysis 

 

Introduction 

The distribution of quadratic forms in normal vectors or sums of weighted 

independent non-central chi-square variables are considered in some of applied 

statistical problems (Mathai & Provost, 1992). Researchers have introduced 

different methods to approximate the distribution of a weighted sum of chi-square 

variables. Distribution approximation based on moments is a simple method with 

suitable accuracy. This method is also used frequently for approximate distribution 

of the quadratic form. For the distribution of non-negative quadratic forms in non-

central normal variables, Patnaik’s two moments (Patnaik, 1949) and Pearson’s 

https://doi.org/10.22237/jmasm/1509495540
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three moments (Pearson, 1959) central chi-square approximation are the simplest 

methods that are used in abundance. Recently, Liu, Tang and Zhang (2009) 

proposed a non-central chi-square approximation with the unknown degrees of 

freedom and non-centrality parameter determined by the first four cumulants of the 

quadratic forms. These methods are accurate for the approximate upper tail of 

definite (non-negative) quadratic forms and, in the case of indefinite quadratic 

forms, are not suitable. In the case of indefinite forms, the indefinite quadratic form 

can be written as the difference of two independent definite quadratic forms. In this 

case, the density function of a positive definite quadratic form can be approximated 

according to polynomial gamma or generalized gamma density functions 

(Mohsenipour & Provost, 2011). In light of this method the density function of the 

indefinite quadratic form can be approximated by the distribution of the difference 

of two polynomial gammas. In gamma-polynomial density approximation, we can 

use more than four moments to approximate the distribution of quadratic forms. 

The maximum entropy density estimation is a flexible method to assign 

values of probability distributions based on limited information such as moments. 

In general, more limited information such as the percentiles of distribution are 

recommended. The maximum entropy approach, proposed by Jaynes (1957), is a 

flexible and powerful tool for density estimation. It was proposed for solving 

problems with little information about distribution. The maximum entropy method 

is a suitable tool to estimate properly all special distributions such as normal, 

exponential, Cauchy, etc. Expressed in Jaynes’ language, all known special 

distributions represent an unbiased probability distribution when some information 

is not available (Zong, 2006). In this study, the maximum entropy method will be 

used to approximate indefinite quadratic forms distributions because the moments 

of weighted sums of non-central chi-square variable are known. As a result, this 

information can be used to maximize Shanon’s entropy. Also, a new approach 

based on the distance between distributions is proposed to select the number of 

constraints and compared with the conventional method. 

Stochastic Representation of Quadratic Forms 

Recall some definitions and basic properties of indefinite quadratic forms in non-

central normal variables: Let X = (X1,…, Xd)' be a multivariate normal random 

vector X ~ Nd(μ, Σ) with mean vector μ and positive definite covariance matrix Σ. 

The quadratic form in the random variable X associated with a d × d real symmetric 

matrix A is defined by 
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 Q  X AX   (1) 

 

Because (1) is a nonlinear combination of correlated univariate normal random 

variables, it is hard to obtain any approximation directly from it. Instead, we can 

derive a stochastic representation for quadratic forms in terms of some simpler 

distribution, i.e. 

 

  2 2

1

1

=
n

i i

i

Q   


   (2) 

 

where the  2 2

1 i   are independent non-central chi-square random variables with 

one degree of freedom and non-centrality parameters 2

i . The weights λ1 ≥… ≥ λd 

are obtained by the spectral decomposition theorem, i.e. 

 

 
1 1
2 2 = Σ AΣ HΛH   

 

where Λ is a diagonal matrix for which the diagonal elements λ1,…, λd are the 

eigenvalues of matrix 
1 1
2 2Σ AΣ , 

1
2Σ  denotes the symmetric square root of matrix Σ, 

and H is an orthogonal matrix. The non-centrality parameters 2

i  are obtained by 

taking the square elements of the vector 

 

  
1
2

1= , , =d 
 γ H Σ μ   

 

According to this stochastic representation, obtain the cumulant generating function 

of Q by 

 

    
 

2

1 1

1
C = log 1 2

2 1 2

d d
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i i i

t
t t
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 
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The formula for the rth cumulant of the quadratic form is 

 

    1 2

1

= 2 1 ! 1
d

r r

r i i

i

r r  



    (3) 
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The moments of the quadratic form can be obtained from its cumulants by means 

of the recursive relationship obtained by Smith (1995). According to this formula, 

the rth moment of the quadratic form is given by 

 

 
1

1

0

=
r

r

r j r j

j

c  






    (4) 

 

where  E j

j X   and    1 1 ! ! 1 !r

jc r j r j      are the jth non-central moment 

and the combination j of r – 1, respectively. 

An Application 

The linear discriminant function is used when the d-dimensional observation 

y = (y1,…, yd)' in two independent populations Π1 and Π2 has multivariate normal 

densities Nd(μ1, Σ) and Nd(μ2, Σ). We use the notation P(i | j) to denote the 

probability of misclassification of an observation y into group i when, in fact, it 

belongs to the group j, where i, j = 1, 2. For simplicity, suppose that the prior 

probabilities are taken to be equal, i.e. p1 = p2 = 1/2. By the Bayes optimal 

classification rule, the linear discriminant function is defined as 

 

    1

1 2 1 2

1
=

2
W      

 
μ μ Σ y μ μ   (5) 

 

Future observations y are assigned into the group Π1 when W ≥ 0. In the case of 

W < 0, this observation is assigned into the group Π2. The total probability of 

misclassification (TMP) is given by 

 

 

    

    

1
TPM P 2 |1 P 1| 2

2

1
P 0 P 0

2
W W

 

   

  

 

Because the W distribution is univariate normal, the TPM is obtained as (Johnson 

& Wichern, 2007, p. 297) 
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1

TPM = =
2 2 2 2

W

         
           
      

  (6) 

 

where Φ(.) is the cumulative probability function of the standard normal 

distribution and Δ is the Mahalanobis distance between the two mean vectors μ1 

and μ2, i.e. 

 

      2 1

1 2 1 2 1 2,    μ μ μ μ Σ μ μ   (7) 

 

Clearly, the Bayes classification rule is equivalent to classification between the two 

groups by the minimum Mahalanobis distance. In this case, the discrimination 

variable W can be obtained if we equate the squared Mahalanobis distance between 

group means and observation y, i.e. Δ2(y, μ1) = Δ2(y, μ2). 

The squared Euclidean distances between means of the two groups is defined 

by 

 

      2

1 2 1 2 1 2,   μ μ μ μ μ μ   (8) 

 

The minimum Euclidean distance of observation y from the group means, i.e. 

δ2(y, μ1) = δ2(y, μ2), can be used for discrimination. In this case the discriminant 

variable is given by 

 

    1 2 1 2

1
=

2
W

     
 

μ μ y μ μ   (9) 

 

The TPM of W' is given by 

 

 
2 2 2

1 1 1

1
TPM = =

2 2 2 2
W

  


        
                 

  (10) 

 

where the notation 2

1  is defined in equation (7) by replacing Σ-1 with Σ (for more 

details see Appendix A). 

In practice, the parameters μ1, μ2, and Σ are unknown. Estimate these 

parameters by means of independent random “training samples”. Suppose we have 

N1 observations 
   

1

1 1

1 , Ny y  drawn from Π1 and N2 observations 
   

2

2 2

1 , Ny y  drawn 
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from Π2, where N1, N2 > d. We estimate μ1, μ2 by the unbiased sample means y̅1 

and y̅2, respectively, and estimate Σ by the pooled sample covariance matrix Sp. 

Then the discriminant functions (5) and (9) can be modified as Ŵ , and Ŵ   yields 

a “plug-in” discriminant functions. The sample distribution of Ŵ  has been studied 

by several authors (Atakan, 2009). 

The stochastic representations for the exact distribution of Ŵ  in terms of 

elements of two independent 2 × 2 central and non-central Wishart matrices has 

been studied by Bowker (1961). Similarly, we can obtain stochastic representations 

for the plug-in discriminant function Ŵ   in terms of a sum of weighted independent 

non-central chi-square random variables where the weights are paired with different 

sign (see Appendix B). 

Density Estimation Based on Moments 

Maximum Entropy Density Estimation 

Let X be a continuous variable with probability density function f(x). Then 

Shanon’s entropy is defined by 

 

      H = f log fq q q dq



   (11) 

 

where 

 

  f 1q dq



   

 

A maximum entropy density function can be obtained by maximizing the Shanon’s 

entropy subject to known moment constraints, i.e. 

 

  = f , = 0,1, ,j

j q q dq j k



    (12) 

 

where k is the number of known moments. So, to get the maximum entropy density, 

we have a non-linear system of equations. The solution of this system is a maximum 

entropy density function that can be obtained by a variational principle used for f(q) 

according to the Lagrange method (Singh, 2013). The maximum entropy density is 

an exponential function is given by 
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    0 1f̂ | = exp k

kx k q q        (13) 

 

where θ1, θ2,…, θk are determined so that (13) is a proper density function and 

satisfies all the k + 1 moment constraints. With the use of Lagrange’s method to 

solve the non-linear equation system, k + 1 Lagrage parameters are obtained by 

solving k + 1 non-linear equations which maximum entropy density function (13) 

substituting into equation (12), i.e. 

 

    ˆg = f | = , = 0,1, ,j

j jq q k dq j k 



   (14) 

 

The solution of equation (14) can be obtained through numerical methods such as 

the Newton-Raphson algorithm and dual approach (Golan, Judge, & Miller, 1996). 

In this paper, the Newton-Raphson’s algorithm is used for obtaining the Lagrange 

vector θ = (θ0,…, θk)'. Let θ0 be the initial vector, which may have elements that 

are zero. The first step is to compute the first order Taylor expansion of gj(θ) around 

the initial trial θ0; we have 

 

 
1 0 1= θ θ G v   (15) 

 

where the elements of vector v are given by 

 

  0= g , = 0,1, ,j j jv j k  θ   

 

and the elements gij of the Hessian matrix G are 

 

  ˆ= = f | , , = 0,1, ,i j

ij jig g x q k dq i j k




   

 

Because the Hessian matrix is positive definite in each iteration of the algorithm, 

equation (15) has a unique solution for θ1. In each iteration, the current estimation 

replaces θ0 and the non-linear equations will be solved again. The iterative 

algorithm stops when the Euclidean norm of the difference between the current and 

previous parameter values is less than a small value, for example 1 0 510 θ θ . 

The determination of the number of constraints is important to the selection 

of the optimal density. If the number of constraints are taken to be over-large or 

over-small, then the accuracy of the estimated density function will be lost (Zong, 
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2006). Theoretically, among calculated densities, the function with the lowest 

entropy is selected. It should be mentioned, for a variable that is known information 

such as its moments, lower entropy indicates less uncertainty to the probability 

distribution of the variable. However, an increase in the number of constraints leads 

to a decrease of entropy (Singh, 2013), i.e. 

 

    
2 1 2 1H H , >k kq q k k   

 

The Kullback-Leibler and information discrimination are other criteria that can be 

used to select a maximum entropy density function (Soofi, Ebrahimi, & Habibullah, 

1995). The stochastic representation of the quadratic form in equation (2) can be 

performed by a Monte Carlo simulation to estimate percentiles of the distribution. 

Therefore, to determine the constraints k, the density is chosen in such a way that 

its percentiles have the minimum distance to the empirical percentiles obtained by 

Monte Carlo simulations. In other words, for α = 0.01, 0.02,…, 0.99, the percentiles 

tα of the empirical distribution function are calculated by Monte Carlo simulations. 

Percentiles of distribution for the known constraints k are calculated by 

 

    
1

ˆF = f |
t

k
q

t q k dq


    (16) 

 

where  f̂ |q k  is estimated by the density function (13). In this study, the lowest 

integral bound is determined by the minimum observation in the Monte Carlo 

simulation. Therefore, the number of constraints k is chosen so that the following 

Euclidean distance has the minimum value: 

 

    ˆ = min F G , =1,2,kk t t k   (17) 

 

where G(t) is the empirical distribution. 

In summary, to approximate the distribution of quadratic forms by maximum 

entropy estimation, the following algorithm can be utilized to approximate the 

density function: 

 

Step 1. Using the right-hand side of equation (2), we can perform a Monte 

Carlo simulation with 106 iterations. 

Step 2. The theoretical moments are obtained by equation (3). 

Step 3. The maximum entropy density function is obtained by (13). 



REKABDAR & CHINIPARDAZ 

367 

Step 4. The number of constraints k̂  will be estimated by equation (17). 

Step 5. Cumulative probability (16) of the point t is calculated using 

numerical integration. 

Modified Pearson’s Approximation 

When the quadratic form is indefinite some weights can be negative and, by 

equation (4), the third cumulant κ3 will have a negative value. The skewness 

coefficient, i.e. 3 2

1 3 2=   , is negative. Therefore, it is unsuitable to use gamma 

and chi-square distributions to approximate the distribution of indefinite quadratic 

forms directly. In this case, the proposed methods by Houshmand (1993) are 

remarkable. However, such positive distributions may be modified to approximate 

the distribution of indefinite quadratic forms. For example, in modified Pearson’s 

tree moments, we write 2;Q b a  , where the symbol (;) means “is approximately 

distributed as”. Equate the first three cumulants on both sides and determine a, b, 

and ν, respectively. If we define 

 

  2

1
= 1

d r

r j jj
c r 


   

 

then  2

2 3 1a c c c   , b = c3 / c2, and the degrees of freedom is estimated as 

3 2 2

2 3 1= = 8c c  . Since the degrees of freedom ν can be fractional, for 

computational purposes we use a gamma distribution with shape and scale 

parameters ν / 2 and |b|. As a result, the tail probability is given by (Houshmand, 

1993) 

 

  
 

 

P if 0
P

1 < if 0

Y t a b
Q t

P Y a t b

  
  

  
  (18) 

 

where  2 2| | iY b   . 

Numerical Examples 

Two artificial examples are provided to illustrate the usefulness of the maximum 

entropy density estimation method. For the well-known Egyptian skull data (Manly, 

1994), the estimation methods of misclassification probabilities were compared. It 
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is further noted that Mathematica software was used to write program codes for 

numerical calculation. The package is available from the authors upon request. 

Model Selection 

In this example, a quadratic form is demonstrated as a weighted sum of non-central 

chi-square variables. The criteria (11) and (17) are compared to obtain the most 

appropriate probability density of the maximum entropy. Suppose in equation (1) 

the variable X has the multivariate normal distribution with mean μ = (7, 12, -3), 

covariance 

 

 

2 1 1

= 1 6 1

1 1 2

 
 

 
  

Σ   

 

and matrix of quadratic form given by 

 

 

2 5 1

= 5 1 1

1 1 6

  
 

 
  

A   

 

The weights of the non-central chi-square variables are λ1 = 28.3786, λ2 = 9.4582, 

and λ3 = -5.8833. The non-centrality parameters of the non-central chi-square 

variables are 2

1 0.161495  , 2

2 28.5401  , and 2

3 144.965  . In Table 1, 

different models are given to obtain of the maximum entropy density function. The 

Shanon’s entropy decreased with an increasing number of constraints. Minimal 

change is between 4 to 9 constraints. From the table, k = 12 minimizes H, meaning 

that the best density is given by 12 constraints. The distance D is minimized by 9 

constraints (D = 0.00265). Clearly, by obtained information about H and D, the 

constraints k = 9 provides the suitable maximum entropy density function. 

An Exact Density of Quadratic Form 

Imhof (1961) obtained the exact distribution of the indefinite quadratic form where 

the weights of the central chi-square variables are paired and, in each pair, the 

weights are equal. In this particular case, suppose that the eigenvalues are 

λ1 = λ2 = 16, λ3 = λ4 = 7, λ5 = λ6 = 3, λ7 = λ8 = 1, λ9 = λ10 = -2, λ11 = λ12 = -6, 
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λ13 = λ14 = -14, λ15 = λ16 = -32, and λ17 = λ18 = -70. The stochastic representation of 

the indefinite quadratic form is given by 

 

 2 2 2 2 2 2 2 2 2

1 2 2 2 2 2 2 2 2 2=16 7 3 2 6 14 32 70Q                   

 
 
Table 1. Model selection values for number of constraints k; Shanon’s entropy H; and 

proposed method D 
 

k H D  k H D 

1 7.49458 1.91482  7 6.61249 0.00283 

2 6.61282 0.01816  8 6.61248 0.00294 

3 6.61276 0.01754  9 6.61248 0.00265 

4 6.61249 0.00424  10 6.61245 0.0036 

5 6.61249 0.00281  11 6.61243 0.00458 

6 6.61249 0.00277  12 6.61198 0.01108 

 
 

 

 
 
Figure 1. Exact density (solid line) and approximated methods (dotted): maximum 

entropy (ME) and Pearson’s method (P) 
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Considering the absolute value of weights there is a definite quadratic form 

Q2. The best maximum entropy density function of Q1 is obtained by the constraints 

k = 10, where the estimated criteria are H = 6.35872 and D = 0.029954. The 

discrepancy criterion D are estimated to be 0.109882 and 0.110786 for the modified 

Pearson’s methods. The definite quadratic form Q2 has minimum Shanon’s entropy 

at k = 11, while the minimum value of the discrepancy criterion is 0.020173 for 

k = 10. The discrepancies are estimated for the Pearson’s methods to be 0.006198 

and 0.088602. Figure 1 displays the exact density functions of the quadratic forms 

Q1 and Q2 alongside the three methods of approximation. For the indefinite 

quadratic form Q1, the density approximated the maximum entropy method is quite 

accurate given the skewness of the exact density. The maximum entropy density is 

more accurate than the Pearson’s method. In the definite form, the Pearson’s 

method for upper tail is a suitable approximation. 

Egyptian Skulls Data 

The Egyptian skull data consists of four measurements: maximal breadth (X1), 

basibregmatic height (X2), basialveolar length (X3), and nasal height (X4), which 

were measured on skulls of ancient Egyptian males from five different time periods 

(4000 BC, 3300 BC, 1850 BC, 200 BC, 150 AD). Also, each time period consists 

of 30 observations. This data can be found in many books on applied multivariate 

statistical methods, e.g. Manly (1994). In this study, the observations are 

categorized into two groups: BC and AD. To determine whether or not the 

underlying assumption of normality of the groups is satisfied, Mardia’s multivariate 

skewness statistic (Mardia, 1974) applied to test the hypothesis that each training 

sample is drawn from a multivariate normal population. By this statistic, the two 

groups BC and AD are normal at the 5% level. The test failed to reject the null 

hypothesis in either case. The smallest p-value for the Mardia’s skewness statistic 

for either Π1 or Π2 was p = 0.181. The homogeneity of covariance matrices is 

evaluated with Box’s M test, which was not significant at the 5% level (M = 11.015, 

p = 0.403). Therefore, the assumption of homogeneity of covariance matrices was 

satisfied. Hotelling’s T2 statistic is used to test for differences between means of 

two groups. The equality of means is rejected at the 1% level (T2 = 23.4985, 

p = 0.00025). Therefore, the three assumptions of the linear discriminant analysis 

are satisfied. 

Summarized in Table 2 are the misclassification probabilities of the Egyptian 

skull data. The apparent error rate (APER) is defined as the fraction of observations 

in the training sample that are classified by the plug-in discriminant function. APER  
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Table 2. Estimated misclassification probabilities for Egyptian skull data 

 

Method P(AD | BC) P(BC | AD) TPM 

APER of Ŵ  0.291667 0.400000 0.345833 

APER of ˆ W  0.275000 0.366667 0.320833 

Normal   0.312231 

Monte-Carlo simulation of ˆ W  0.317874 0.317848 0.317861 

ME 0.317860 0.318204 0.318032 

 
 

does not depend on the distribution of the groups and that can be calculated for any 

classification procedure. Unfortunately, APER tends to underestimate the actual 

error rate and the problem does not disappear unless the sample sizes N1 and N2 are 

very large (Jhonson & Wichern, 2007, p. 598 ff.). From the Table 2, we see that the 

estimates of P(AD | BC), P(BC | AD), and TPM obtained by the APER of the 

discriminant function Ŵ  are 0.275, 0.366667 and 0.320833, respectively. These 

estimates are less than the corresponding estimates obtained by Ŵ . 

The sample variance and squared Euclidean distance were estimated to be 

1
ˆ 0.989498   and 

2ˆ 29.1546  , respectively. Estimate the misclassification 

probability of the plug-in discriminant function Ŵ  by normal approximation, 

TPM = 0.312231. The stochastic representation of Ŵ , if y ∈ Π1, is given by 

 

 
       

       

2 2 2 2

1 1 1 1 1

2 2 2 2

1 1 1 1

Ŵ = 3.224 12.079 2.426 1.4498 1.952 0.4005 0.954 0.327

0.954 0.218 1.952 0.266 2.426 0.965 3.224 8.036

   

   

   

   
  

 

and, if y ∈ Π2, then 

 

       

       

2 2 2 2

1 1 1 1 1

2 2 2 2

1 1 1 1

Ŵ = 3.224 8.036 2.426 1.4498 1.952 0.266 0.954 0.218

0.954 0.327 1.952 0.4005 2.426 0.965 3.224 12.079

   

   

   

   
  

 

since 1 2
ˆ ˆW W   , we have P(AD | BC) = P(BC | AD). Estimate the TPM by 

performing 106 iterations of a Monte Carlo simulation of the stochastic 

representation 1Ŵ . From Table 2, note the estimate of TPM through Monte Carlo 

simulations is 0.317861. The maximum entropy method approximated the best 

density for 1Ŵ  and 2Ŵ  with k = 9. As can be seen from the table, the estimation of 
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misclassification probabilities obtained by maximum entropy method and Monte 

Carlo simulation are close to each other. 

Conclusion 

Determining the exact distribution of the indefinite quadratic form in normal 

variables is complicated, and its distribution remains an area of investigation. 

Fortunately, higher order moments of the quadratic form can be computed, and then 

the approximate distribution based on the moments approach. The maximum 

entropy density approximation method can be an alternative method to approximate 

the distribution. Despite its versatility, the maximum entropy density has not been 

widely used in empirical studies. One possible reason is that there is generally no 

analytical solution for the maximum entropy density problem and numerical 

estimation, such as the Newton-Raphson’s algorithm, must be used. However, new 

computer systems are provided and computational speed has increased significantly. 

We proposed a criterion for selecting the number of constraints by the discrepancy 

between the approximated maximum entropy density and the empirical distribution 

of the stochastic representation of the quadratic form. This criterion can be used to 

select the maximum entropy density when it has minimum value. The results of the 

examples reveal that the approximated density of indefinite quadratic forms via 

maximum entropy are suitable. 
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Appendix A: TPM of W' 

Let y be from the population Π1. The variable x = (μ1 – μ2)'y has univariate normal 

distribution with mean μ1 = (μ1 – μ2)' μ1 and variance 2 2

1   , where 2

1  is the 

squared Mahalanobis distance in (7) by substituting Σ for Σ-1. In this case, 

 

 

       

     1 2 1 2 1 2 1
1

1

2

1

2

1

1
P 2 |1 = W < 0 = P <

2

1

2= P <
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2= P <

=
2

P x
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z









    
 

       
 

 
 

 
 
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 

 

 
  

 

1 2 1 2
μ μ μ μ

μ μ μ μ μ μ μ

  (A1) 

 

where δ2 is the squared Euclidean distance in (8). Similarly, 

 

 

   

2

1

2

1

2

1

P 1| 2 = P W 0

1

2= P

= 1
2

=
2

z






 

 
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 

 
 

 

 
  
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  (A2) 

 

substituting equations (A1) and (A2) in (5), 
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2

W

1

TPM =
2




 
  

 
  

 

In the linear discriminant analysis μ1 ≠ μ2, then δ2 > 0. The TPM of W' is 

decreasing in Δ1 if δ2 is fixed. Therefore it follows that TPMW' is tending to zero if 

Δ1 → 0. 

Appendix B: Stochastic Representations of ˆ W  

The discriminant function Ŵ  can be written as a quadratic form Ŵ  x Ax , 

where   1
1 2 1 22

,   x y y y y y  and 

 

 

1

2
=

1

2

d

d

 
 
 
 
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0 I

A

I 0

  

 

If the vector y is from the population Πj, i.e. y ∈ Πj, j = 1, 2, then the vector x is 

distributed as N2d(ηj, Ω) with means   1
1 1 2 1 22

,  η μ μ μ μ  and 

  1
2 1 2 1 22

,   η μ μ μ μ  and covariance matrix 

 

 

1 2

1 2

1 2 1 2

1 2

=
4

4

N N

N N

N N N N

N N

  
  
  
   
  
   

Σ 0

Ω

0 Σ

  

 

Therefore, apply the results of the quadratic form stochastic representation to 

estimate the TPM of W'. The eigenvalues of 
1 1
2 2Ω AΩ  are equal with the 

eigenvalues of matrix 
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1 2

1 2

1 2 1 2

1 2

2
=

4

8

N N

N N

N N N N

N N

  
  

  
   
  
   

0 Σ

Ω

Σ 0

   (B1) 

 

If λ1 ≥ λ2 ≥…≥ λd > 0 are the eigenvalues of Σ, then the characteristic equation of 

(B1), by applying equation (A.2.3.j) in Mardia, Kent, and Bibby (1979), has the 

eigenvalues 

 

 
  1 2 1 2 1 2

1 2

4

4

j N N N N N N

N N

   
   

 

where j = 1, 2,…, d. 
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