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Prediction of Percent Change in Linear 
Regression by Correlated Variables 

Stan Lipovetsky 
GfK North America 
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Multiple linear regression can be applied for predicting an individual value of dependent 
variable y by the given values of independent variables x. But it is not immediately clear 
how to estimate percent change in y due to changes in predictors, especially when those 
are correlated. This work considers several approaches to this problem, including its 

formulation via predictors adjusted by their correlation structure. Ordinary least squares 
regression is used, together with Shapley value regression and another model based on 
solving some system of differential equations. Numerical estimations performed for a real 
marketing research data demonstrate meaningful results. The considered techniques can be 
very useful in practical estimations of the percent change of dependent variable by the 
change in predictors. 
 

Keywords: Multiple regression, percent change in outcome, predictors percent change, 
correlated structure, OLS, Shapley value regression, differential equations 

 

Introduction 

Ordinary least squares (OLS) multiple linear regression is one of the main tools of 

statistical modeling widely used for estimation the dependent variable (DV) value 

by the values of independent variables (IVs), or predictors. In applied studies, often 

the need is to estimate not a DV value itself but a percent change in the outcome 

due to percent changes in IVs. Several problems should be solved in such 

estimations, beginning from finding a good criterion for evaluation of the percent 

change in the outcome. The mean values of DV and IVs satisfy a linear regression 

model with intercept, and this relation is employed for measuring percentage 

change in the output due to changes in the input variables. 

Also, the predictors are only called independent in contrast to the dependent 

variable, but IVs in a sampled data are always correlated and not statistically 

https://doi.org/10.22237/jmasm/1509495480
mailto:stan.lipovetsky@gfk.com


PREDICTION OF PERCENT LIFT IN LINEAR REGRESSION 

348 

independent. So the correlation structure should be accounted in finding the IVs’ 

values for adequate prediction by regression. And there is a problem of 

multicollinearity among IVs which produces regressions with inflated values of 

coefficients, yields their signs opposite to the signs of the pair correlations, makes 

theoretically important variables to get small coefficients, causes a reduction in 

statistical power, and leads to wider confidence intervals for the coefficients so they 

could be incorrectly identified as being insignificant (Grapentine, 1997; Mason & 

Perreault, 1991). For instance, in marketing research, it is often known in advance 

that the influence of each IV on the DV of customer satisfaction should be positive, 

and it is supported by the pair correlations. But in the OLS regression many 

coefficients can occur to be negative, so for predicting a change in the output should 

we increase or decrease a presumably beneficial variable which, however, has a 

negative coefficient in the model? 

To overcome deficiencies of multicollinearity and produce meaningful 

regression parameters, various modifications of OLS have been developed. Among 

those are: ridge regressions (Hoerl & Kennard, 1970; Lipovetsky, 2010), Shapley 

value regression (SVR) based on cooperative game theory used for finding 

predictors’ importance and adjusting the regression coefficients (Shapley, 1953; 

Roth, 1988; Lipovetsky & Conklin, 2001), nonlinear parameterization of linear 

regression coefficients by multinomial shares, using elasticity criterion for building 

regression coefficients by data gradients, Gibson-Johnson and Johnson indices of 

predictor importance, and other techniques (for more detail and references within: 

Gibson, 1962; R. Johnson, 1966; J. Johnson, 2000; Lipovetsky, 2013; Lipovetsky 

& Conklin, 2014). Those techniques produce very similar models so we can employ 

one of them, SVR, as the model with interpretable coefficients. 

Several approaches to the problem of estimating a percent change in the DV 

due to the percent changes in the IVs are considered here. OLS and SVR are used 

as the models for predicting change in the outcome for a given set of the predictors’ 

values. These values are adjusted due to the structure of correlations among the 

predictors. For this aim, the mutual regressions of each predictor by all the other 

predictors are used. In another approach, a system of linear differential equations is 

considered as well. 

Change Estimation by Multiple Regression 

Consider several main relations of the OLS regression that will be needed further. 

A multiple linear regression can be presented as a model: 
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0 1 1

ˆ
i i n in i i iy a a x a x y          (1) 

 

where xij and yi are ith observations (i = 1,…, N – number of observations) by each 

jth IV (j = 1,…, n – number of variables) and by the DV, aj are the coefficients of 

regression, a0 is its intercept, ˆ
iy  denotes theoretical linear aggregate of the 

predictors, and εi are the deviations from the theoretical relationship. Least squares 

(LS) objective for finding coefficients consists in minimization of the total of 

squared deviations: 

 

    
2 22 2

0 1 1

1 1 1

ˆ
N N N

i i i i i n in

i i i

S y y y a a x a x
  

            (2) 

 

Derivatives ∂S2 / ∂aj = 0 yield the normal system of equations for finding 

parameters of the model. Such a derivative by a0 equaled zero produces the 

expression: 

 

 
0 1 1 n ny a a x a x      (3) 

 

where a bar above variables denotes their mean values. This relation is used to 

calculate the intercept when other coefficients of regression are found in the 

solution of the normal system which can be expressed in the matrix form as follows:  

 

 
1

xx xy

a C c   (4) 

 

where a denotes the vector of coefficients a1,…, an of regression, Cxx and 1

xx


C  are 

the n-by-n covariance matrix between xs and its inverse matrix, respectively, and 

cxy is the nth order vector of covariance between xs and y. The results (3)-(4) present 

the OLS regression parameters. 

Suppose the mean level of each driver jx  in the model can be increased by 

different portions fj (100fj percent), so the absolute change (denoted by d) and new 

values (denoted by prime) can be written as follows: 

 

  , 1j j j j j j j jdx x f x x dx x f       (5) 
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Multiplying the parameters (4) by the vector of new values x  and adding the 

intercept, we find a predicted DV value by the regression model. Subtracting (3) 

from it yields the similar relation for the changes in mean levels: 

 

 
1 1 n ndy a dx a dx     (6) 

 

Dividing both sides of (6) by the mean level of y, and dividing each change in xj by 

the corresponding mean value, we transform (6) to the following relation 

 

 1 1 1
1 1 1

1

n n n
n n n

n

x dx xx dx xdy
a a a f a f

y y x y x y y

       
            
       

  (7) 

 

which presents the relative (%) change in the DV outcome via % changes fj in the 

IVs (5) and regression coefficients modified to the form ajx̅j / y̅. 

Instead of OLS regressions (4) it is possible to use Shapley value regression 

(Lipovetsky & Conklin, 2001). Coefficients of SVR have a more adequate meaning 

(similar to elasticity but in absolute changes) as a change in the output due to the 

unit change in each predictor holding other predictors constant. The modified 

coefficients in (7) also have a clear interpretation if considered via the SVR 

parameters. 

Adjusting Independent Variables by Correlation Structure 

Suppose the percentage changes fj for xs are given so they can be used in (5) for 

finding the new values jx . However, these values for prediction should be adjusted 

due to the correlations among the predictors given in the matrix Cxx. A convenient 

way to such an adjustment is as follows: The diagonal elements of inverted 

correlation matrix 1

xx


C  used in (4) (called variance inflation factors, VIF) equal the 

reciprocal values of the residual sums of squares in the regressions of each variable 

xj by the rest of IVs, 

 

    1 2

.VIF 1 1j xx jjj
R  C   (8) 

 

where 
2

.jR  are the coefficients of multiple determination in the models of each xj by 

the other xs. These models in the so-called Yule’s notations are: 
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 0 1. 1 2. 2 , 1. 1 , 1. .j j j j j j j j j j jn nx a a x a x a x a x a x            (9) 

 

where ajk. denotes a parameter of jth regression by kth variable among all n – 1 other 

xs (Kendall & Stuart, 1973; Lipovetsky & Conklin, 2004). The non-diagonal 

elements in any jth row of 1

xx


C  divided by the diagonal element in the same row and 

taken with opposite signs coincide with coefficients of regression xj by all other xs 

(9) that can be presented as the following matrix A: 

 

  

12. 13. 1 .

1 21. 23. 2 .1 1

1. 2. 3.

1

1
diag

1

n

n

xx xx

n n n

a a a

a a a

a a a


 

   
 
    
 
 
   

A C C   (10) 

 

The product Ax̅ of the matrix (10) and the vector of mean values x̅ of all predictors 

coincides with the vector of intercepts a0 for the mutual regressions (9): 

 

  0 1. 1 2. 2 , 1. 1 , 1. .j j j j j j j j j j jn na x a x a x a x a x a x            (11) 

 

Multiplying (10) by the vector of the new values x  (with elements jx  (5)) and 

subtracting the vector of intercepts (11) yields the difference of these values x  and 

their predictions pred
x  by the models (9) of mutual correlation structure 

 

 pred
    Ax Ax x x  

 

From this equation, the vector of predictions adjusted by the correlation structure 

is presented as follows: 

 

  pred
   x I A x Ax   (12) 

 

where I is the nth order identity matrix. Then vector of updated relative changes 

equals 

 

  pred 1  f x x   (13) 
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and can be used in (7) for estimating the relative change in the DV. 

System of Differential Equations for Adjusting Independent 
Variables 

Another way of performing predictor mutual adjustment consists in modeling with 

a system of equations defining change in each predictor as an aggregate of the 

values of all the predictors: 

 

 

1
10 11 1 12 2 1

2
20 21 1 22 2 2

0 1 1 2 2

n n

n n

n
n n n nn n

dx
b b x b x b x

dz

dx
b b x b x b x

dz

dx
b b x b x b x

dz


    


     



     


  (14) 

 

Each predictor derivative on the left-hand side of (14) is presented as a linear model 

by all the variables on the right-hand side. The derivatives are taken by some 

variable z identifying a general direction in which all predictors vary. For instance, 

if observations are gathered in time, it can serve as this profiling variable; price can 

be another example. Otherwise, if there is no evident variable which can be used 

for trending other variables by it, the principal component analysis (PCA) approach 

can be applied to the predictors: 

 

 
xx C α α   (15) 

 

where μ and α are the eigenvalues and eigenvectors of the covariance matrix Cxx 

(15). Scores by the first component α1 with maximum variance μ1 can be taken as 

the variable z defining direction of the main variability of all the xs combined: 

 

 1z Xα   (16) 

 

Then in practical terms, construct a smoothed nonlinear trend of each x by the new 

variable z (for instance, using the “loess” function available in the R software), 

order all the observation points by ascending values of z, and find the derivatives 

on the left-hand side of (14) as change in each two subsequent values of each 
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predictor xj by increment in z values. In the next step, find coefficients in each 

equation in (14) separately as a linear regression. Having all the coefficients bjk in 

(14), consider simultaneously solving of this system of linear differential equations. 

Similar systems of homogeneous (without intercepts) equations are used in 

statistics for description of discrete state and continuous time Markov models 

presented as Chapman-Kolmogorov differential equations describing stochastic 

processes. As it is well known (e.g., Bellman, 1960; Pennisi, 1972), the solution of 

a homogeneous linear system of differential equations with constant coefficients 

can be presented as follows: 

 

     diag exp jx z P z c   (17) 

 

where c is a vector of constants, and λj are the eigenvalues and P is the 

corresponding matrix of columns pj of eigenvectors obtained in solving the 

problem: 

 

 Bp p   (18) 

 

The eigenproblem (18) is considered for the matrix B of the coefficients bjk (without 

intercepts bj0) at the right-hand side of (14). For the value z = 0 (corresponding to 

the mean of PCA scores) the solution (17) reduces to the vector of initial conditions 

x(0) = Pc, so we obtain the vector of the constants c = P-1x(0). Using it in (17), the 

general solution of a homogeneous system of differential equations can be 

represented as 

 

       1diag exp 0j
x z P z P x   (19) 

 

The expression Pdiag(exp(λjz))P-1x(0) in (19) is known as matrix exponent. Each 

component of the vector x(z) is a linear combination of the exponents exp(λjz) 

which behave in accordance with the specific values of λj in the eigenproblem (18). 

For a real matrix B the eigenvalues (18) are real numbers or conjugated pairs of 

complex numbers, which correspond to exponents and to oscillating sine and cosine 

parts of functions. There also can be polynomial items corresponded to equal 

eigenvalues, although in practical numerical evaluations such cases are rare. The 

eigenvectors p corresponded to the complex eigenvalues are also complex, but the 

total expression (19) yields real values. 
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When a homogeneous system of equations is solved in (19), the system (14) 

with intercepts can be solved as well. Besides exponents, a solution of a 

nonhomogeneous system can contain additional polynomial by z items (see the 

handbook by Kamke (1959), an example eq. 8.10). Taking exponents with already-

known parameters λj with a polynomial part as a theoretical model of each predictor 

dependence on the aggregate z, we construct the regressions xj(z). For a set of given 

values x  for predictors (5), we find the corresponding values of PCA scores z (16) 

and use them in the models xj(z) to adjust predictors by their mutual structure: 

 

    ,pred 1j j j
  x x z x x α   (20) 

 

The adjusted values (20) are used in estimation of the vector of updated relative 

changes (13) and then in (7) for finding the relative change in the DV. 

Numerical Example 

For a numerical example, a data set of 242 respondents from a real marketing 

research project on customer satisfaction with a service center is considered (this 

data was used in Lipovetsky and Conklin (2001) for SVR modeling). The variables 

are measured in a Likert 7-point scale and they are: y – overall satisfaction of clients 

with the company; x1 – customer satisfaction with service representatives; x2 – 

service representatives are courteous; x3 – they provide all the needed information; 

x4 – they give quick response; x5 – they show care with customer problems; x6 – 

they are accurate in the answers; x7 – they take all the necessary actions. 
 
 
Table 1. Correlations and regressions 
 

Variable Mean cor(y, x) Coefficients OLS SVR 

y 5.8554 1.0000 a0 1.5584 1.1359 

x1 6.3223 0.5432 a1 0.2831 0.1305 

x2 6.5909 0.4503 a2 -0.0292 0.1013 

x3 6.2727 0.5451 a3 0.1792 0.1126 

x4 6.4339 0.4335 a4 -0.0508 0.0955 

x5 6.1777 0.5110 a5 0.0506 0.0892 

x6 6.3843 0.5462 a6 0.2226 0.1292 

x7 6.2562 0.5045 a7 0.0270 0.0849 

      R2 0.3560 0.3447 
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Table 2. Correlations among the predictors 

 

 x1 x2 x3 x4 x5 x6 x7 

x1 1.0000 0.7485 0.6981 0.5891 0.8274 0.7058 0.8023 

x2 0.7485 1.0000 0.6277 0.5275 0.7283 0.6853 0.6587 

x3 0.6981 0.6277 1.0000 0.7691 0.7156 0.8952 0.7600 

x4 0.5891 0.5275 0.7691 1.0000 0.6225 0.7592 0.5912 

x5 0.8274 0.7283 0.7156 0.6225 1.0000 0.7161 0.7527 

x6 0.7058 0.6853 0.8952 0.7592 0.7161 1.0000 0.6915 

x7 0.8023 0.6587 0.7600 0.5912 0.7527 0.6915 1.0000 

 
 
Table 3. Change in DV by the given and adjusted changes in predictors, in % 

 
  Adjusted increase calculated by 

Variable Given increase OLS SVR Diff 

x1 5.000 5.509 4.219 6.045 

x2 4.000 3.195 2.788 4.142 

x3 2.000 2.181 4.281 0.517 

x4 3.000 1.614 2.450 5.716 

x5 10.000 4.802 3.980 0.570 

x6 1.000 2.799 3.971 5.068 

x7 4.000 5.046 4.720 8.373 

ypred OLS 2.505 2.989  2.993 

ypred SVR 3.161   3.047 3.513 

 
 

Presented in Table 1 are mean values of the variables, the pair correlations of 

y with xs, and coefficients of OLS and SVR models with their coefficients of 

multiple determination R2. The DV is correlated with all IVs rather evenly, so each 

variable could be useful in customer satisfaction impact. In the OLS model some 

predictor parameters are very close to zero and two of them are negative, but in 

SVR all parameters are more evenly distributed and all positive. In contrast to OLS, 

the SVR results are meaningful by all individual coefficients of regression. Judging 

by the mean values, it could be possible to change the overall satisfaction by 

improving the predictors. 

Correlations between the predictors are shown in Table 2, and they are rather 

high, so the structure of correlated changes should be taken into account in 

prediction. 

Suppose managers elaborate an improvement program that can result in 

increasing the mean values in each of the seven predictors by 5, 4, 2, 3, 10, 1, and 

4 percent, respectively. The natural question is – what percent of change can be 

reached for the overall satisfaction by taking these measures? Table 3 in the first 
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numerical column presents these given predictors’ increase, and the corresponding 

results ypred of the DV change estimated as 2.51% and 3.16% by the OLS and SVR 

models, respectively, are in the two bottom lines. 

Shown in the last three columns in Table 3 are the predictor changes adjusted 

by the correlation structure using OLS, SVR, and differential equations (denoted 

Diff in the table). With the predictor increments found in OLS and SVR adjustment 

by correlation structure, the change in DV equals 2.99% and 3.05%, respectively. 

Using predictors from the last column of Diff adjustment, we can estimate by both 

OLS and SVR the yield in DV as 2.99% and 3.51%, respectively. In general, the 

adjustment increase the output prediction ypred, especially in Diff estimations. To 

accept a more conservative expectation of the yield among all those adjusted by 

correlation structure, we can take the SVR prediction ypred of 3.05%. The mean 

increase is then 5.8554(1 + 0.0305) = 6.034, which is already above the next level 

of the seven-point Likert scale of overall satisfaction of clients with company. 

Summary 

A problem of estimation of a percent change in the dependent outcome variable due 

to changes in predictors, especially when those are correlated, was considered. 

Several questions were studied, including formulation of the problem via relation 

between mean values of all variables, and adjustment of predictors by their 

correlation structure in the ordinary least squares regression, Shapley value 

regression, and a model based on solving a system of differential equations. 

Numerical estimations performed for a real marketing research data set demonstrate 

meaningful results. Future research can include estimation of the percent change of 

the outcome due to changes in only a subset of predictors which can be reset almost 

precisely to some new values (control variables) whereas others cannot be 

manipulated; however, these would change anyway as a result of their natural 

correlations with control variables. Lift in the binary outcome and measures 

improvement in some utility due to selecting observations based on predicted 

performance (e.g. percent of top performers as predicted by logistic regression) 

versus a percent change by random selection can be studied as well. In the context 

of linear regression it is also possible to select, say, the 10% of units with the highest 

predicted outcome and compare with that 10% of units selected at random, then 

select the top 20% vs. another randomly selected 20%, etc, which would allow 

constructing a lift curve. The considered approach can be very useful in practical 

applications required estimation of the percent change of dependent variable by the 
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change in predictors in various problems of applied statistical modeling and 

prediction. 
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