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The log logistic model with doubly interval censored data is examined. Three methods of 

constructing confidence interval estimates for the parameter of the model were compared 
and discussed. The results of the coverage probability study indicated that the Wald 
outperformed the likelihood ratio and jackknife inferential procedures. 
 
Keywords: doubly interval censored, jackknife, likelihood ratio, log logistic, Wald 

 

Introduction 

Doubly interval censored (DIC) data is a type of interval censored (IC) data, 

which often arises in disease progression studies where the survival time of 

interest is the elapsed time between two related events that are possibly IC (De 

Gruttola & Lagakos, 1989; Sun, 2004). Let A and B denote the times of the 

occurrences of the two events with A ≤ B and the survival time, Y = B − A. The 

observations in Y are DIC when A and B are observed in an interval form 

A  (AL ,AR] and B   (BL , BR] respectively with AL ≤ AR and BL ≤ BR.  

A well-known example of DIC data in real life can be seen in acquired 

immune deficiency syndrome (AIDS) cohort studies where the A and B represent 

the human immunodeficiency virus (HIV) infection and AIDS diagnosis time 

respectively, and Y is the AIDS incubation time. The HIV infection time is often 

determined through periodic blood tests for which it is only known to occur 

between the last negative test and the first positive test and therefore observations 

are commonly interval censored. Also, observations on the diagnosis of AIDS 

could be either right censored (RC) or IC due to, for example, the end of the study 

https://doi.org/10.22237/jmasm/1509496320
mailto:yuefangloh@yahoo.com
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and the periodic follow up nature of the study design, thus yielding DIC data on Y 

(De Gruttola & Lagakos, 1989; Kim, et al., 1993). 

Statistical analysis of DIC data was first discussed by De Gruttola & 

Lagakos (1989) via nonparametric approach to obtain the maximum likelihood 

estimator of the joint distribution of HIV infection time and AIDS incubation time 

without truncated data. Since then, many researchers extend the statistical analysis 

of DIC data, especially in the context of AIDS, to include truncation effect and 

covariates information in nonparametric and semiparametric approaches. Authors 

who have contributed include Bacchetti (1990); Bacchetti & Jewell (1991); Kim, 

et al. (1993); Jewell (1994); Jewell et al. (1994); Gómez & Lagakos (1994); Sun 

(1995, 1997); Tu (1995); Gómez & Calle (1999); Goggins, et al. (1999); Sun, et al. 

(1999); Fang & Sun (2001); Pan (2001); and Lim, et al. (2002). The Bayesian 

approach has gained some attention in analysis of DIC data in recent years for 

severe acute respiratory syndrome (SARS) disease incubation time (McBryde, et 

al., 2006) and time to caries development in children (Komárek, et al., 2005; 

Komárek & Lesaffre, 2006, 2008; Jara, et al., 2010). 

Brookmeyer & Goedart (1989) proposed a two-stage parametric regression 

model for jointly estimating the effects of covariates on risk of HIV infection as 

well as risk of progression to AIDS disease once infected. They assumed the HIV 

infection time, A, follows the piecewise exponential distribution and the onset of 

AIDS disease, B, follows the Weibull distribution. The likelihood function was 

presented and maximum likelihood estimates (MLEs) were obtained via Newton 

Raphson iterative procedure. They considered special cases of DIC data where A 

could be only IC and B could be only RC or observed exactly (OE). The proposed 

model was later adapted by Darby, et al. (1990) and fitted to data on the 

development of AIDS in hemophiliacs in the United Kingdom who are 

seropositive for HIV. 

Reich, et al. (2009) studied two procedures for estimating the incubation 

time distribution. The first procedure defined the likelihood function with DIC 

data scheme and obtained the MLEs parametrically. They proposed the following 

likelihood function and obtained the MLE of parameter γ affecting Y, while 

parameter λ affecting A is assumed to be known, 
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The variables δDCi
 , δICi

 , and δOEi
 serve as indicators to identify whether the ith 

subject is DIC, IC or OE. The second procedure involves a data reduction 

technique to reduce the DIC data to IC data and obtain the MLEs parametrically. 

They assumed A follows the uniform distribution and Y follows the log normal 

distribution. 

Kiani & Arasan (2012) proposed a parametric model for analyzing DIC data 

by assuming that both A and Y follow the exponential distribution. Following 

Kiani & Arasan, proposed here is a parametric model that could be used to 

analyze DIC data. It is assumed that the first event time A is uniformly distributed 

and the survival time Y follows a special case of the log logistic distribution with 

γ = 1. We assume independent censoring for both A and Y (Oller, et al., 2004) and 

independence between A and Y, which are classical assumptions for the treatment 

of DIC survival times. All simulation studies were performed using the R 

programming language (R Core Team, 2015). 

The Model 

Let the survival time of interest Y be a non-negative continuous random variable 

with density function fY(y) whereas fA(a) and fB(b) denote the density function of 

the times to the occurrences of the first event A and second event B respectively. 

Following Reich, et al. (2009), the distribution of b could be obtained if a is given 

and fY(y) is known. Thus, 

 

 
  
f

B|A
b | a( ) = f

Y
b- a | a( ). (2) 

 

Thus, the joint density function of A and B would be,  

 

 
  
f

A,B
a,b( ) = f

B|A
b | a( ) f

A
a( ) = f

Y
b- a | a( ) f

A
a( ) = f

Y
b- a( ) f

A
a( )  (3) 

 

where Y = B – A and A is assumed to be independent of Y. Therefore, the 

likelihood for a DIC data is as follows, 

 

      , ,
R R R R

L L L L

a b a b

A B Y A
a b a b

L f a b dbda f b a f a dbda       (4) 

 

The distributional assumptions on both A and Y allow us to construct the 

likelihood function of all data. Here, we assume A ~ U(uL, uR) and Y follows the 
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log logistic distribution with scale parameter −∞ < λ < ∞ and known shape 

parameter γ = 1. The density function of A is given by 
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and the survival function is  
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Similarly, the density and survival function of Y are given respectively as 

follows: 

 

 

  

f
Y

y( ) =
el

1+ el y( )
2

,  (7) 

 

 

  

S
Y

y( ) =
1

1+ el y
. (8) 

 

DIC data include IC and RC lifetime data as special cases (Kalbfleisch & 

Prentice, 2002; Sun, 1998), therefore a comprehensive likelihood function 

containing all contributions with respect to each type of data need to be defined. 

For the ith subject, in cases where both A and B are IC, Y is DIC and the likelihood 

contribution is 
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In cases where A is IC and B is RC, the likelihood contribution is 
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In cases where either A or B is OE while the other is IC, Y becomes IC and 

the interval (yLi
 , yRi

 ] is equal to (bi − aRi
 , bi − aRi

 ] when A is IC and 

(bLi
  − ai, bRi

  − ai] when B is IC. The likelihood contribution is 
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In cases where A is OE and B is RC, Y becomes RC and yDi
 = bLi

 − a
i
 , the 

likelihood contribution is 
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In cases where both A and B are OE, Y becomes OE and yi = bi − ai, the 

likelihood contribution is 
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The censoring indicators for the ith subject are defined as follows, 

 

 
 
d
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 = 1 if Y is DIC, 0 otherwise; 

 
 
d

IR
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 = 1 if A is IC and B is RC, 0 otherwise; 

 
 
d
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 = 1 if Y is IC, 0 otherwise; (14) 

 
 
d
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 = 1 if Y is RC, 0 otherwise; 

 
 
d

OE
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 = 1 if Y is OE, 0 otherwise; 
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where δOEi
 = 1 – (δDCi

 + δIRi
 + δICi

 + δRCi
). Following that, the likelihood function 

for the full sample can be written as  
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and the log likelihood function is 
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Let 
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The first and second partial derivatives of the log likelihood function are 

given as follows, 
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The observed information matrix 
  
i l̂( )  which can be obtained from the 

second partial derivatives of the log likelihood function evaluated at  l̂  provides 

us with the estimate of the variance, 

 

   (20) 

 

The MLE of the parameter in this paper is obtained by solving the likelihood 

function using Newton Raphson iterative procedure, which was implemented 

using maxLik package (Henningson & Toomet, 2011) in the R programming 

language. 

Simulation Study 

A simulation study using N = 1000 samples, each with sample sizes n = 30, 50, 

100, 150, 200, 250 and 300 was conducted to examine how well the estimation 

procedure works for the model. The A ~ U(0,16) and Y is assumed to follow the 

log logistic distribution (special case, γ = 1) with parameter λ. The value of −4.3 

was chosen as the true parameter value of λ to simulate the survival times that 

mimic those seen in lung cancer data (Prentice, 1973). 

DIC data mostly arise in epidemiology studies with periodic follow-ups of 

subjects. It is common for a subject to miss some scheduled follow up 

appointments. Therefore, each subject will have two sequences of time, potential 

inspection times and actual inspection times. Assuming all subject with the same 

sequence of potential inspection PT = (pt1, pt2, …, ptg), two study period, 48 and 
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60 months is considered and the follow ups are scheduled to be conducted on 

monthly basis, therefore g = 48 and 60. The subject will turn up for inspection at 

each of the ptj with attendance probability q where 0 ≤ q ≤ 1 and j = 1,  2,  …, g. 

Therefore, each subject will have their own sequence of actual inspection times 

ATi = (ati1, ati2, …, atihi
) where 0 ≤ hi ≤ g which is simulated from the Bernoulli 

distribution with attendance probabilities q = 1, 0.8 and 0.6. It is assumed that all 

subjects were inspected from the beginning of the study and therefore ati1 = pt1 

and have been event free at time origin, y = 0.  

For each subject in a sample, two random numbers u1i and u2i are generated 

from U(0,1) to produce ai and yi where  

 

 
  
a

i
= u

R
- u

R
- u

L( )u1i
,  (21) 

 

and 

 

 

  

y
i
= e-l 1

u
2i

-1
æ

è
ç

ö

ø
÷ .  (22) 

 

Then bi is calculated from yi + ai. Following that, the intervals (aLi 
, aRi

] and 

(bLi 
, bRi

] are obtained for ai and bi respectively. The aLi
 will be the largest element 

of ATi which is less than ai, and aRi
 will be the smallest element of ATi which is 

greater than ai. Similarly, the bLi
 will be the largest element of ATi which is less 

than bi, and bRi
 will be the smallest element of ATi which is greater than bi. If 

bi > atihi 
, then B is RC with (bLi 

, bRi
] = (atihi 

,∞). 

In order to randomly select some subjects that are OE on A or B, two time-

windows are defined. The time-window for OE on A is 

[G1i, G2i] = [aLi
 + (aRi

 − aLi
)u3i – ε, aLi

 + (aRi
 – aLi

)u3i + ε], and for OE on B is 

[G3i, G4i] = [bLi
 + (bRi

 − bLi
)u4i – ε, bLi

 + (bRi
 – bLi

)u4i + ε] where ε = 0.25 and u3i 

and u4i are random numbers generated from U(0,1). In cases where ai and bi fall in 

the same interval, these observations are discarded and two new values of ai and yi 

are generated to calculate bi. This simulation procedure may yield five possible 

types of data where 0 < aLi
 < aRi

 ≤ bLi
 < bRi

 < ∞, 

 

1. aLi
 < ai ≤ aRi

 and bLi
 < bi ≤ aRi

 then Y is DIC; 

2. aLi
 < ai ≤ aRi

 and bLi
  < bi < ∞ then A is IC, B is RC; 
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3a. aLi
 < ai ≤ aRi

 and G3i ≤ bi ≤ G4i then Y is IC; 

3b. G1i ≤ ai ≤ G2i and bLi
 < bi ≤ bRi

 then Y is IC; 

4. G1i ≤ ai ≤ G2i and bLi
 < bi < ∞ then Y is RC; 

5. G1i ≤ ai ≤ G2i and G3i ≤ bi ≤ G4i then Y is OE. 

 

In Table 1, the proportion of different types of data in each setting indicated.  
 
 
Table 1. Average percentage of different types of data for the model at 60 and 48 months 
study periods. 
 

 
Study period = 60 

 
Study period = 48 

Attendance probability 1 0.8 0.6 
 

1 0.8 0.6 

Y is DIC (%) 12.78 16.64 20.80   10.80 13.91 17.36 

A is IC, B is RC (%) 33.43 38.34 43.53 
 

36.80 42.36 48.26 
Y is IC (%) 20.02 18.56 16.00 

 
17.01 15.68 13.40 

Y is RC (%) 26.02 21.33 16.59 
 

28.75 23.63 18.38 

Y is OE (%) 7.75 5.13 3.08   6.65 4.42 2.60 

 

Simulation results 

The simulation study was conducted to examine the bias, standard error (SE) and 

root mean square error (RMSE) of the estimate at different study periods, 

attendance probabilities and sample sizes.  

From Table 1, more DIC data were generated at 60 months study period as 

compared to 48 months study period. This is due to the fact that chances of 

observing the event of interest either exactly or in an interval are higher for longer 

study period. Forty-eight months study period produced more B that is RC. 

Higher attendance probability produces more uncensored data and shorter width 

of interval for IC data. 

Given in Table 2 are the bias, SE and RMSE of  l̂  at various sample sizes, n 

attendance probabilities, q and study periods, g. The values of bias, SE and RMSE 

for  l̂  decrease with an increase in n, q and g. The trend indicates that smaller 

censoring proportion in data, smaller sample, and shorter study period yield 

estimates that are less efficient and rather inaccurate. 
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Table 2. Bias, SE and RMSE of  l̂  for the model at 60 and 48 months study period 

 

  
Study period = 60 

 
Study period = 48 

q n Bias SE RMSE 
 

Bias SE RMSE 

1 

30 -0.0642 0.3633 0.3689   -0.0426 0.3921 0.3944 

50 -0.0543 0.2783 0.2836 
 

-0.0384 0.3000 0.3024 

100 -0.0349 0.1992 0.2022 

 

-0.0393 0.2129 0.2165 

150 -0.0297 0.1655 0.1682 

 

-0.0355 0.1694 0.1731 

200 -0.0286 0.1400 0.1429 
 

-0.0280 0.1413 0.1441 

250 -0.0289 0.1248 0.1281 

 

-0.0289 0.1293 0.1325 

300 -0.0234 0.1121 0.1145 
 

-0.0288 0.1189 0.1223 

0.8 

30 -0.0703 0.3589 0.3657 
 

-0.0746 0.3880 0.3951 

50 -0.0587 0.2793 0.2854 

 

-0.0542 0.2898 0.2948 

100 -0.0426 0.1918 0.1964 

 

-0.0520 0.2165 0.2227 

150 -0.0351 0.1588 0.1626 
 

-0.0459 0.1720 0.1780 

200 -0.0461 0.1338 0.1415 

 

-0.0431 0.1399 0.1464 

250 -0.0387 0.1179 0.1241 

 

-0.0415 0.1254 0.1321 

300 -0.0354 0.1120 0.1175 
 

-0.0473 0.1167 0.1259 

0.6 

30 -0.0641 0.3595 0.3652 
 

-0.0975 0.3945 0.4063 

50 -0.0607 0.2747 0.2813 

 

-0.0780 0.2970 0.3070 

100 -0.0614 0.1961 0.2055 
 

-0.0770 0.2057 0.2196 

150 -0.0635 0.1594 0.1715 

 

-0.0689 0.1724 0.1856 

200 -0.0634 0.1347 0.1488 

 

-0.0708 0.1488 0.1648 

250 -0.0623 0.1223 0.1372 
 

-0.0663 0.1273 0.1435 

300 -0.0562 0.1105 0.1240   -0.0663 0.1155 0.1332 

 

Confidence interval estimation 

The performance of three CI estimates when applied to the parameter of the 

proposed model is compared. The first method is based on the asymptotic 

normality of the MLE or Wald, followed by likelihood ratio and finally the 

jackknife CI estimate (see Arasan & Lunn, 2009).  

Wald confidence interval estimates 

Let  l̂  be the MLE of parameter λ. Cox & Hinkley (1974) showed under mild 

regularity conditions,  l̂  is asymptotically normally distributed with mean λ and 

variance I(λ)−1 where I(λ) is the Fisher information matrix evaluated at λ. The 

matrix I(λ) can be estimated by the observed information matrix evaluated at the 

MLE, i( l̂ ). The estimate of var( l̂ ) can be obtained from the inverse of i( l̂ ). If 
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z1−α⁄2 is the 1 – α/2 quantile of the standard normal distribution, then the 

100(1 − α)% confidence interval for λ could be expressed as 

 

   (23) 

 

Likelihood ratio confidence interval estimates 

For a parameter of interest, λ, the likelihood ratio statistic for testing H0: λ = λ0 

versus Hl: λ ≠ λ0 is given as 

 

     0
ˆ2 ,      (24) 

 

where  ℓ  denote the log likelihood function, λ0 maximizes  ℓ (λ0) under H0 or 

restricted model and  l̂  is the MLE of λ. For large sample sizes, ψ is 

approximately χ2
(1,1−α)

. A 100(1 − α)% CI of λ is constructed by finding two values 

of  l̂  where we fail to reject H0 at α significance level which satisfy 

 ℓ (λ0) =  ℓ ( l̂ ) − ½ χ2
(1,1−α)

 with 
  
l̂

L
< l̂  and ˆ ˆ

R  . 

Jackknife confidence interval estimates 

The jackknife is a resampling technique where each subsample removes one 

observation from the original sample (Efron & Tibshirani, 1993). For a sample 

y = (y1, y2, …, yn), the ith jackknife sample will be y(i) = (y1, y2, …, yi−1, yi+1, …, yn) 

for i = 1, 2, …, n. Let  l̂  be the MLE for parameter λ, then 
  
l̂

( i)
 will be the MLE 

of  l̂  obtained from the ith jackknife sample. The jackknife estimate of the 

parameter λ and jackknife estimate of standard error is then calculated by using  

 

     ˆ ˆ ˆ ˆ1 ,jack n   


     (25) 

 

   (26) 
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where 
 

 

1

ˆ
ˆ .

n
i

i n







  

If t(1−α/2, n–1) is the 1 – α/2 quantile of the student’s t distribution at n – 1 

degrees of freedom, then the 100(1 – α)% jackknife confidence interval for λ 

could be expressed as 

 

  (27) 

Coverage probability study 

A coverage probability study was conducted using N = 1500 samples, each with 

sample sizes, n = 30, 50, 100, 150, 200, 250 and 300 to compare the performance 

of the CI estimates at different sample sizes, attendance probabilities and study 

periods. Other assumptions of the coverage probability study are similar to what 

was discussed in the simulation study. 

The coverage probability error of a CI is the probability that the interval 

does not contains the true value of the parameter and should preferably be equal 

or close to the nominal error probability, α. Two nominal error probabilities were 

chosen as 0.05 and 0.1. The left and right error probabilities were estimated and 

the total error probability was calculated. Following Arasan & Lunn (2009) and 

Kiani & Arasan (2013), the estimated left (right) error probability was obtained 

by summing up the numbers for the left (right) endpoint which was more (less) 

than the true parameter value divided by the total number of samples, N. The 

estimated total error probability was calculated by summing up the number of 

times in which an interval did not contain the true parameter value divided by N. 

The estimated error probabilities for Wald, likelihood ratio and jackknife 

intervals are given in Equations (28), (29) and (30) respectively as follows, 

 

  (28) 

 

 
  

  

2

1,

2

1,

ˆleft #  and /1500,

ˆright #  and /1500,





   

   

  

  
 (29) 
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  (30) 

 

Following Doganaksoy & Schmee (1993), the interval is called 

anticonservative if the total error probability is more than α + 2.58se( â ). If the 

total error probability is less than α − 2.58se(  â ), the interval is called 

conservative. The interval is called symmetric when the larger of the left or right 

error probability is less than 1.5 times the smaller one.  

The overall performances of these CI estimates methods was evaluated 

based on the total numbers of anticonservative (C−), conservative (C) and 

asymmetrical (S−) intervals. Also, the behavior of the methods at different 

nominal error probabilities, sample sizes, study periods and attendance 

probabilities are of interest. 

Coverage probability results 

Summarized in Table 3 are the results obtained from the coverage probability 

study. Given in Tables 4 and 5 are the estimated error probabilities in detail. 

Figures 1 and 2 provide a graphical view of the estimated left and right error 

probabilities.  

From Tables 4 and 5, the estimated total error probabilities of all CI 

estimates methods are close to the nominal error probabilities, however, most of 

the intervals produced are highly asymmetric, regardless of the nominal level, 

study period, attendance probability and sample size. Both Wald and likelihood 

ratio methods did not produce any conservative interval, however, the jackknife 

method produced some conservative intervals when sample sizes were small, 

n ≤ 50. The likelihood ratio method produced more anticonservative intervals than 

the Wald and jackknife methods. All CI estimates methods perform poorly when 

q = 0.6. The numbers of anticonservative, conservative and asymmetrical 

intervals produced by all CI estimates methods are smaller at higher level of α. 

Also, all CI estimates methods perform slightly better at g = 48.  

Overall, the Wald method is better than likelihood ratio and jackknife 

methods in constructing confidence interval for the parameter of the proposed 

model as it produced the least number of anticonservative and asymmetrical 

intervals in addition to not producing any conservative interval.  From Figures 1 

and 2, we can observe that all CI estimate methods work very well when q = 1 
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regardless of the nominal levels and study periods. However, they start to perform 

poorly when q < 1 especially at q = 0.6 by deviating far from the nominal error 

probability as n increases. 
 
 
Table 3. Summary of the performance of Wald, likelihood ratio and jackknife methods 

(C− = anticonservative; C = conservative; S− = asymmetrical) 
 

  
Wald 

 
LR 

 
Jackknife 

 
q C− C S− 

 
C− C S− 

 
C− C S− 

α = 0.05, 
g = 60 

1.0 0 0 5   1 0 7   0 1 6 

0.8 0 0 6 
 

0 0 7 
 

0 2 6 

0.6 2 0 6 
 

4 0 7 
 

3 1 6 

α = 0.05, 
g = 48 

1.0 0 0 5 
 

1 0 6 
 

0 1 5 

0.8 0 0 6 
 

0 0 7 
 

0 2 5 

0.6 3 0 7 
 

3 0 7 
 

2 2 6 

α = 0.1, 
g = 60 

1.0 0 0 5 
 

0 0 5 
 

0 1 6 
0.8 0 0 6 

 
0 0 7 

 
0 1 6 

0.6 1 0 7 
 

3 0 7 
 

2 1 5 

α = 0.1, 
g = 48 

1.0 0 0 5 
 

0 0 5 
 

0 1 5 

0.8 0 0 5 
 

0 0 7 
 

0 2 5 

0.6 3 0 7   3 0 7   3 0 7 
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Table 4. Estimated error probabilities of Wald, likelihood ratio and jackknife methods for 

the model when α = 0.05 (C− = anticonservative; C = conservative) 
 

   
Wald 

 
Likelihood Ratio 

 
Jackknife 

 
n 

 
Left 
Error 

Right 
Error 

Total 
Error  

Left 
Error 

Right 
Error 

Total 
Error  

Left 
Error 

Right 
Error 

Total 
Error 

q = 1, 
g = 60 

30   0.0193 0.0220 0.0413   0.0167 0.0300 0.0467   0.0187 0.0053 0.0240C 

50 

 

0.0247 0.0333 0.0580 

 

0.0227 0.0427 0.0653C- 0.0253 0.0200 0.0453 

100 

 

0.0167 0.0307 0.0473 

 

0.0153 0.0360 0.0513 

 

0.0173 0.0267 0.0440 

150 

 

0.0180 0.0353 0.0533 

 

0.0167 0.0393 0.0560 

 

0.0193 0.0313 0.0507 

200 

 

0.0167 0.0360 0.0527 

 

0.0160 0.0380 0.0540 

 

0.0193 0.0353 0.0547 

250 

 

0.0160 0.0340 0.0500 

 

0.0153 0.0353 0.0507 

 

0.0173 0.0333 0.0507 

300 
 

0.0133 0.0313 0.0447 
 

0.0127 0.0320 0.0447 
 

0.0140 0.0280 0.0420 

q = 0.8, 

g = 60 

30 

 

0.0167 0.0227 0.0393 

 

0.0153 0.0307 0.0460 

 

0.0173 0.0080 0.0253C 

50 

 

0.0147 0.0360 0.0507 

 

0.0133 0.0433 0.0567 

 

0.0133 0.0213 0.0347C 

100 

 

0.0127 0.0287 0.0413 

 

0.0113 0.0327 0.0440 

 

0.0167 0.0253 0.0420 

150 

 

0.0160 0.0287 0.0447 

 

0.0153 0.0340 0.0493 

 

0.0180 0.0253 0.0433 

200 

 

0.0127 0.0367 0.0493 

 

0.0120 0.0413 0.0533 

 

0.0107 0.0380 0.0487 

250 

 

0.0127 0.0300 0.0427 

 

0.0120 0.0333 0.0453 

 

0.0120 0.0293 0.0413 

300 
 

0.0060 0.0467 0.0527 
 

0.0060 0.0487 0.0547 
 

0.0067 0.0440 0.0507 

q = 0.6, 

g = 60 

30 

 

0.0180 0.0193 0.0373 

 

0.0153 0.0333 0.0487 

 

0.0193 0.0093 0.0287C 

50 

 

0.0160 0.0253 0.0413 

 

0.0160 0.0313 0.0473 

 

0.0200 0.0160 0.0360 

100 

 

0.0160 0.0440 0.0600 

 

0.0147 0.0507 0.0653C- 0.0160 0.0387 0.0547 

150 

 

0.0113 0.0460 0.0573 

 

0.0100 0.0493 0.0593 

 

0.0133 0.0447 0.0580 

200 

 

0.0080 0.0560 0.0640 

 

0.0073 0.0607 0.0680C- 0.0087 0.0527 0.0613C- 

250 

 

0.0073 0.0660 0.0733C- 0.0067 0.0700 0.0767C- 0.0067 0.0627 0.0693C- 

300 
 

0.0060 0.0593 0.0653C- 0.0060 0.0653 0.0713C- 0.0067 0.0593 0.0660C- 

q = 1, 

g = 48 

30 

 

0.0253 0.0180 0.0433 

 

0.0213 0.0293 0.0507 

 

0.0207 0.0007 0.0213C 

50 
 

0.0240 0.0287 0.0527 

 

0.0193 0.0340 0.0533 

 

0.0227 0.0167 0.0393 

100 
 

0.0247 0.0380 0.0627 

 

0.0233 0.0420 0.0653C- 0.0260 0.0280 0.0540 

150 
 

0.0133 0.0347 0.0480 

 

0.0133 0.0373 0.0507 

 

0.0147 0.0333 0.0480 

200 
 

0.0140 0.0300 0.0440 

 

0.0127 0.0333 0.0460 

 

0.0153 0.0267 0.0420 

250 
 

0.0147 0.0413 0.0560 

 

0.0140 0.0433 0.0573 

 

0.0153 0.0360 0.0513 

300 
 

0.0120 0.0373 0.0493 
 

0.0107 0.0420 0.0527 
 

0.0127 0.0373 0.0500 

q = 0.8, 

g = 48 

30 

 

0.0207 0.0160 0.0367 

 

0.0193 0.0300 0.0493 

 

0.0200 0.0007 0.0207C 

50 
 

0.0133 0.0287 0.0420 

 

0.0113 0.0340 0.0453 

 

0.0147 0.0153 0.0300C 

100 
 

0.0207 0.0367 0.0573 

 

0.0187 0.0433 0.0620 

 

0.0227 0.0287 0.0513 

150 
 

0.0140 0.0387 0.0527 

 

0.0127 0.0453 0.0580 

 

0.0173 0.0373 0.0547 

200 
 

0.0067 0.0360 0.0427 

 

0.0047 0.0393 0.0440 

 

0.0120 0.0327 0.0447 

250 
 

0.0100 0.0407 0.0507 

 

0.0100 0.0440 0.0540 

 

0.0107 0.0367 0.0473 

300 
 

0.0100 0.0440 0.0540 
 

0.0100 0.0473 0.0573 
 

0.0107 0.0433 0.0540 

q = 0.6, 

g = 48 

30 

 

0.0120 0.0267 0.0387 

 

0.0120 0.0460 0.0580 

 

0.0173 0.0013 0.0187C 

50 
 

0.0120 0.0347 0.0467 

 

0.0093 0.0460 0.0553 

 

0.0147 0.0160 0.0307C 

100 
 

0.0147 0.0367 0.0513 

 

0.0120 0.0433 0.0553 

 

0.0180 0.0307 0.0487 

150 
 

0.0087 0.0493 0.0580 

 

0.0073 0.0560 0.0633 

 

0.0107 0.0447 0.0553 

200 
 

0.0073 0.0593 0.0667C- 0.0060 0.0640 0.0700C- 0.0073 0.0547 0.0620 

250 
 

0.0067 0.0633 0.0700C- 0.0060 0.0687 0.0747C- 0.0067 0.0620 0.0687C- 

300   0.0080 0.0660 0.0740C- 0.0080 0.0740 0.0820C- 0.0087 0.0673 0.0760C- 
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Table 5. Estimated error probabilities of Wald, likelihood ratio and jackknife methods for 

the model when α = 0.1 (C− = anticonservative; C = conservative) 
 

   
Wald 

 
Likelihood Ratio 

 
Jackknife 

 
n 

 
Left 
Error 

Right 
Error 

Total 
Error  

Left 
Error 

Right 
Error 

Total 
Error  

Left 
Error 

Right 
Error 

Total 
Error 

q = 1, 

g = 60 

30   0.0427 0.0493 0.0920   0.0400 0.0593 0.0993   0.0473 0.0280 0.0753C 

50 

 

0.0433 0.0567 0.1000 

 

0.0427 0.0640 0.1067 

 

0.0507 0.0493 0.1000 

100 

 

0.0333 0.0653 0.0987 

 

0.0327 0.0700 0.1027 

 

0.0373 0.0580 0.0953 

150 

 

0.0327 0.0667 0.0993 

 

0.0320 0.0687 0.1007 

 

0.0353 0.0647 0.1000 

200 

 

0.0387 0.0707 0.1093 

 

0.0360 0.0720 0.1080 

 

0.0427 0.0653 0.1080 

250 

 

0.0333 0.0640 0.0973 

 

0.0327 0.0687 0.1013 

 

0.0347 0.0633 0.0980 

300 
 

0.0327 0.0727 0.1053 
 

0.0313 0.0760 0.1073 
 

0.0353 0.0693 0.1047 

q = 0.8, 

g = 60 

30 

 

0.0407 0.0500 0.0907 

 

0.0387 0.0587 0.0973 

 

0.0413 0.0267 0.0680C 

50 

 

0.0347 0.0613 0.0960 

 

0.0287 0.0680 0.0967 

 

0.0440 0.0547 0.0987 

100 

 

0.0307 0.0633 0.0940 

 

0.0293 0.0693 0.0987 

 

0.0353 0.0560 0.0913 

150 

 

0.0253 0.0680 0.0933 

 

0.0240 0.0727 0.0967 

 

0.0287 0.0633 0.0920 

200 

 

0.0273 0.0793 0.1067 

 

0.0253 0.0827 0.1080 

 

0.0293 0.0740 0.1033 

250 

 

0.0240 0.0707 0.0947 

 

0.0233 0.0753 0.0987 

 

0.0280 0.0687 0.0967 

300 
 

0.0220 0.0833 0.1053 
 

0.0220 0.0880 0.1100 
 

0.0233 0.0833 0.1067 

q = 0.6, 

g = 60 

30 

 

0.0360 0.0540 0.0900 

 

0.0347 0.0660 0.1007 

 

0.0353 0.0287 0.0640C 

50 

 

0.0353 0.0613 0.0967 

 

0.0347 0.0660 0.1007 

 

0.0413 0.0440 0.0853 

100 

 

0.0273 0.0787 0.1060 

 

0.0267 0.0873 0.1140 

 

0.0327 0.0733 0.1060 

150 

 

0.0247 0.0867 0.1113 

 

0.0240 0.0920 0.1160 

 

0.0267 0.0807 0.1073 

200 

 

0.0187 0.1033 0.1220 

 

0.0173 0.1067 0.1240C- 

 

0.0193 0.1020 0.1213C- 

250 

 

0.0133 0.1053 0.1187 

 

0.0120 0.1080 0.1200C- 

 

0.0133 0.1033 0.1167 

300 
 

0.0133 0.1133 0.1267C- 
 

0.0127 0.1227 0.1353C- 
 

0.0167 0.1167 0.1333C- 

q = 1, 

g = 48 

30 

 

0.0433 0.0440 0.0873 

 

0.0393 0.0553 0.0947 

 

0.0427 0.0160 0.0587C 

50 
 

0.0453 0.0507 0.0960 

 

0.0440 0.0560 0.1000 

 

0.0500 0.0360 0.0860 

100 
 

0.0413 0.0740 0.1153 

 

0.0380 0.0807 0.1187 

 

0.0433 0.0607 0.1040 

150 
 

0.0313 0.0700 0.1013 

 

0.0313 0.0753 0.1067 

 

0.0340 0.0600 0.0940 

200 
 

0.0293 0.0600 0.0893 

 

0.0267 0.0647 0.0913 

 

0.0307 0.0567 0.0873 

250 
 

0.0320 0.0767 0.1087 

 

0.0300 0.0827 0.1127 

 

0.0353 0.0653 0.1007 

300 
 

0.0273 0.0707 0.0980 
 

0.0267 0.0693 0.0960 
 

0.0287 0.0680 0.0967 

q = 0.8, 

g = 48 

30 

 

0.0413 0.0467 0.0880 

 

0.0387 0.0613 0.1000 

 

0.0433 0.0127 0.0560C 

50 
 

0.0360 0.0513 0.0873 

 

0.0320 0.0640 0.0960 

 

0.0380 0.0347 0.0727C 

100 
 

0.0373 0.0653 0.1027 

 

0.0367 0.0740 0.1107 

 

0.0407 0.0560 0.0967 

150 
 

0.0280 0.0740 0.1020 

 

0.0273 0.0827 0.1100 

 

0.0313 0.0680 0.0993 

200 
 

0.0247 0.0780 0.1027 

 

0.0220 0.0873 0.1093 

 

0.0253 0.0687 0.0940 

250 
 

0.0227 0.0767 0.0993 

 

0.0213 0.0807 0.1020 

 

0.0240 0.0753 0.0993 

300 
 

0.0227 0.0840 0.1067 
 

0.0220 0.0873 0.1093 
 

0.0260 0.0807 0.1067 

q = 0.6, 

g = 48 

30 

 

0.0293 0.0640 0.0933 

 

0.0267 0.0753 0.1020 

 

0.0353 0.0307 0.0660C 

50 
 

0.0253 0.0673 0.0927 

 

0.0233 0.0787 0.1020 

 

0.0293 0.0513 0.0807 

100 
 

0.0307 0.0827 0.1133 

 

0.0273 0.0880 0.1153 

 

0.0327 0.0653 0.0980 

150 
 

0.0207 0.0913 0.1120 

 

0.0193 0.0987 0.1180 

 

0.0207 0.0833 0.1040 

200 
 

0.0207 0.1093 0.1300C- 

 

0.0180 0.1153 0.1333C- 

 

0.0267 0.1047 0.1313C- 

250 
 

0.0173 0.1127 0.1300C- 

 

0.0160 0.1227 0.1387C- 

 

0.0187 0.1087 0.1273C- 

300   0.0153 0.1220 0.1373C-   0.0147 0.1273 0.1420C-   0.0153 0.1167 0.1320C- 
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Figure 1. Estimated error probabilities of interval estimates methods when g = 60 
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Figure 2. Estimated error probabilities of interval estimates methods when g = 48 
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Conclusion 

The estimation procedure worked well for the log logistic distribution with doubly 

interval censored data where values of bias, standard error and root mean square 

error are all reasonably low. The Wald confidence interval estimates performed 

better than the likelihood ratio and jackknife confidence interval when dealing 

with doubly interval censored data. The jackknife method required more 

computational effort than the other two. The finite-difference gradient and 

Hessian which are included in the maxLik package in R programming language 

could not be applied as the derivatives become unreliable due to the complexity of 

the model. 
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