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The Poisson distribution is applied as an appropriate standard model to analyze count data. 

Because this distribution is known as a discrete distribution, representation of accurate 

confidence intervals for its distribution mean is extremely difficult. Approximate 

confidence intervals were presented for the Poisson distribution mean. The purpose of this 

study is to simultaneously compare several confidence intervals presented, according to 

the average coverage probability and accurate confidence coefficient and the average 

confidence interval length criteria. 

 

Keywords: Poisson distribution, confidence interval, average coverage probability, 

confidence coefficient, confidence interval length 

 

Introduction 

Generally, there are several cases that are confronted with counting an event 

occurring in fixed interval of time and/or space. For example, the number of 

telephone calls linked to a call center per hour, the number of customers referred to 

a shopping center per day, the number of traffic accidents per hour in a city, the 

number of fish in a particular part of the Pacific Ocean and the number of births per 

month in a country, etc. In these cases, the Poisson distribution will be an 

appropriate and standard model to analyze count data.  

It is remarkable to create a confidence interval for the Poisson distribution 

mean. Suppose that X has a Poisson distribution with λ mean. As this distribution 

is known as a discrete distribution, representation of accurate confidence intervals 

for its distribution mean is extremely difficult. So far, several approximate 

confidence intervals have been presented for the Poisson distribution mean. For 
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example see Crow and Gardner (1959), Kabaila and Byrne (2001), Kabaila and 

Lloyd (1997),  Schwertman and Martinez (1994), Guan (2011), Khamkong (2012), 

Ross (2003) and Sahai and Khurshid (1993). In this paper, the confidence intervals 

proposed by Schwertman and Martinez (1994), Guan (2011) and Khamkong (2012) 

is considered for λ parameter and by simulating the methodology proposed by 

Wang (2009), the average coverage probability and confidence coefficient is 

computed accurately. Moreover, the confidence intervals lengths are determined 

and finally a comparison is drawn between these intervals. 

Accurate Computation Method of Average Coverage 
Probability and Confidence Coefficient 

Assume X is a one-dimensional discrete random variable with probability density 

function fθ(x), where θ is unknown parameter and x ∈ S = {0, 1, …, n}. Moreover, 

Ω = (l, u) is considered as parameter space of θ. If a confidence interval for 

parameter θ is shown as (L(X), U(X)), its coverage probability is equal to 

Pθ (θ ∈ (L(X), U(X))) which means the value of probability that this random interval 

contain the actual value of θ. The confidence coefficient of this interval is equal to 

the infimum of coverage probabilities deployed in the parameter space, which is 

obtained as following representation: 

 

 confidence coefficient = inf
qÎW
P

q
q Î L X( ),U X( )( )( )  

 

If η(θ) is a prior density function on Ω, then the average coverage probability of 

(L(X),U(X)) interval under the prior density function η(θ) is defined as: 

 

 P
q

q Î L X( ),U X( )( )( )h q( )dq
Wò   

 

In continuous distributions the coverage probability function may be the same 

for all points of the parameter space, but in discrete distributions, the coverage 

probability function is varied by changing the truth values of unknown parameters 

in the parameter space. Calculating the accurate confidence coefficient and average 

coverage probability in these distributions is too difficult. The exact method of 

calculating these two criteria for confidence intervals that have certain conditions 

in discrete distributions that satisfy the condition of Assumption 1 is proposed by 

Wang (2009), who considered some distributions for which Assumption 1 is valid.  
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Assumption 1.  If the probability density function of the desired distribution 

is declared as fθ(x), then f
q
x( )

x=h
1

h
2å   will be a unimodal, descending or ascending 

function in terms of θ (for each h1, h2 that 0 ≤ h1 ≤ h2 ≤ n). 

 

Definition 2.   According to Casella and Berger (2002), a family of pdfs or 

pmfs {g(t|θ) : θ ϵ Θ} for a univariate random variable T with real-valued parameter 

θ has a monotone likelihood ratio (MLR) if, for every θ2 > θ1, g(t|θ2) / g(t|θ1) is a 

monotone (nonincreasing or nondecreasing) function of t on {t: g(t|θ1) > 0 or 

g(t|θ2) > 0}. Note that c/0 is defined as ∞ if 0 < c. 

 

Note 3.  The exponential families that have MLR property in x can satisfy 

the conditions of Assumption 1. 

 

Note 3 shows the method presented here can be used for exponential families 

including Poisson distribution. To calculate the confidence coefficient and average 

coverage probability, the confidence interval must satisfy various conditions and 

requirements. The requirements will be stated on several assumptions and then the 

approaches applied for calculating confidence coefficient and the average coverage 

probability is detailed with no proofs. 

 

Assumption 4.  Assume for confidence interval (L(X),U(X)): 

 

1. If X1 < X2 , then L(X1) < L(X2), U(X1) < U(X2) which means L(x) and 

U(x) are two increasing functions respect to x.  

2. L(0) ≤ l ≤ U(0), L(n) ≤ u ≤ U(n) 

 

Assumption 5.  Assume for confidence interval (L(X),U(X)): 

 

1. For X1 > 0, X2 < n, If X1 < X2, then L(X1) < L(X2), U(X1) < U(X2) 

2. L(0) = U(0) = l, L(n) = U(n) = u 

 

Assumption 6.  Assume for confidence interval (L(X),U(X)): 

 

For each point θ that are included in parameter space, there exist one x0 in 

sampling space so that θ ∈ (L(x0), U(x0)) and Pθ (X = x0) > 0 are satisfied.  
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Before representation of the main results, demarcations are defined as 

follows:  

 

For a confidence interval (L(X),U(X)), there exist 2(n + 1) end points 

corresponds to X = 0, 1, ..., n that are shown as follows: 

 

L(0), L(1), …, L(n), U(0), U(1), … , U(n) 

 

Assume a set of selected end points between l and u which is g points. These 

points are increasingly sequenced and they are named v1, …, vg. Applying this 

defined set the parameter space can be divided into (g + 1) sub intervals. Ωo is 

considered as the subset of internal points of Ω and then we can define the following 

set: 

 

 W = w |w= l,w= u,w= L X( ),w=U X( ),X = 0,1,...,n,wÎWo{ }   (1) 

 

which means W is a type of set that contains the lower and upper limits of parameter 

space and end points (belonged to Ωo) of confidence intervals.  

 

Theorem 7. Assume fθ(x) can satisfy the condition of Assumption 1. The 

confidence coefficient for confidence interval (L(X),U(X)) for θ that is valid on the 

condition of Assumption 6 and satisfy one of the Assumptions 4 or 5, equals 

minimum coverage probability for points belong to W.  

 

Theorem 8.  Consider a discrete random variable X with fθ(x) as a mass 

probability function that can satisfy the condition of Assumption 1, Moreover, 

considering a confidence interval (L(X),U(X)) for θ that is valid on the condition of 

Assumption 6 and satisfy one of Assumptions 4 or 5 and from 2(n + 1) end points 

corresponds to this distance, g points belong to Ωo set. These g points v1, …, vg. can 

divide the parameter space to (g + 1) sub intervals. The first sub interval is (l,v1), 

hence the lower limit of first sub interval is equaled to lower limit of parameter 

space (l). The lower limits of other sub intervals, is either a lower end point or upper 

end point of confidence intervals. For all θ belonging to the first sub interval, when 

the confidence interval satisfies the Assumptions 4 or 5, the coverage probability 

function equals f
q
i( )

i=0

L-1 l( )
å  or f

q
i( )

i=1

L-1 l( )
å , respectively. For all θ belonging to 

the other sub intervals, (these intervals are considered as (vi, v(i+1)), where vg+1 = u) 

bear one of the following conditions: 
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1. If the lower limit of sub interval (vi) is a lower end point of confidence 

intervals, then the coverage probability function for θ belong to the 

sub interval equals f
q
i( )

i=w
1
x( )

x-1

å . 

2. If the lower limit of sub interval (vi) is an upper end point of 

confidence intervals, then the coverage probability function for θ 

belong to the sub interval equals f
q
i( )

i=x+1

w
2
x( )

å  , where: 

 

 w
1
x( ) = max U -1 L x( )( )é

ë
ù
û
+1,0( )  and w

2
x( ) = min L-1 U x( )( )é

ë
ù
û
,n( )  (2) 

 

Accurate Calculation of Confidence Coefficient  

Step 1: It must be evaluated whether or not the confidence interval is 

satisfied in the Assumption 6. If this assumption is not valid, confidence coefficient 

will be equal to zero. If the Assumption 6 is valid, we must ensure that either of the 

assumptions 4 or 5 is satisfied, otherwise, the next step should not be evaluated.  

Step 2: The end points of confidence intervals corresponds to 

X = 0, 1, ..., n which are included in the parameter space are considered.  

Step 3: The coverage probabilities corresponds to the points obtained 

in the second step and the lower and upper limits of parameter space are determined. 

The minimum of these coverage probabilities are equal to accurate confidence 

coefficient.  

 

Calculation of Average Coverage Probability Considering the Prior 

Density Function η(θ) 

Step 1: It must be evaluated the confidence interval satisfies the 

conditions of the Assumptions 4 or 5.  

Step 2: If the conditions of the Assumptions 4 or 5 are met and there 

exist g end points belonging to Ωo, these points are sequenced increasingly and they 

are named as v1, …, vg. 
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Step 3: By using the Theorem 8 the coverage probability for g + 1 sub 

intervals of parameter space is determined. The coverage probability for each sub 

interval (vi, v(i+1)); i = 1, ..., g  is shown by ei and also the coverage probability for 

interval (l,v1) is shown by e0. 

Step 4: The accurate value of average coverage probability by 

considering the prior density function η(θ) is obtained as follows: 

 

   

 

Note 9.  If the parameter space is limited, the above approaches for 

calculating confidence coefficient and average coverage probability are still 

applicable. In order to calculate the confidence coefficient in the second step, the 

end points deployed in the limited space are considered, then the minimum of 

coverage probabilities corresponds to these points in the second step and the lower 

and upper limits in the limited space is determined and also in order to calculate the 

average coverage probability, the limits of restricted parameter space are 

considered as limits of parameter space. 

Introducing Some of the Confidence Intervals Defined for 
Mean of Poisson Distribution 

Assume Zα as the upper cutoff point of standard normal distribution, so by this 

definition we have the following considerations. 

Wald Confidence Interval 

Use the center limit theorem to calculate the 1 – α Wald interval for parameter λ as 

the following representation: 

 

 X ± Za
2

X   (3) 

 

This confidence interval is proposed in Schwertman and Martinez (1994) and 

also the condition of Assumptions 4 and 6 are met (to see, the lower and upper 

bounds of the confidence interval must be derived with respect to x). Therefore, 

calculate accurate confidence coefficient and average coverage probability. 

Because the normal approximation is used to Poisson distribution (the 
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approximation of discrete random variable to continuous type) for calculating Wald 

interval, it is recommended to use continuous correction. 

Improved Wald Interval with Continuous Correction 

The 1 – α Wald confidence interval for parameter λ by utilizing continuous 

correction equals: 

 

 X ± Za
2

X + 0.5   (4) 

 

This confidence interval given in Khamkong (2012) also meets the conditions 

of Assumptions 4 and 6 (to see, the lower and upper bounds of the confidence 

interval must be derived with respect to x). 

SC Confidence Interval (Score Interval) 

The 1 – α SC confidence interval for parameter λ equals:  

 

 X +
Za

2

2

2
± Za

2

X +
Za

2

2

4
  (5) 

 

This confidence interval given in Guan (2011) also meets the conditions of 

Assumptions 4 and 6. 

MSC Confidence Interval (Moved Score Confidence Interval) 

The 1 – α MSC confidence interval for parameter λ equals:  

 

 X + 0.46Za
2

2 ± Za
2

X +
Za

2

2

4
  (6) 

 

This confidence interval given in Guan (2011) also satisfies the conditions of 

Assumptions 4 and 6. 

FNCC Confidence Interval (Wald CC) 

The 1 – α FNCC confidence interval for parameter λ equals:  
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 X - 0.5+ Z
1-a

2

X - 0.5, X + 0.5+ Za
2

X + 0.5( )   (7) 

 

This confidence interval given in Schwertman and Martinez (1994) also 

meets the conditions of Assumptions 4 and 6. 

Comparison between Confidence Intervals for the Mean of 
Poisson Distribution 

Now, confidence intervals introduced for the mean of Poisson distribution are 

compared considering confidence coefficients, average coverage probability and 

average length criteria. It is known that the parameter space for λ equals (0,+∞) 

interval. But, it must be noted that in particular applications according to 

information given about sampling data, the parameter space may have upper and 

lower limits. As mentioned in Note 9, the confidence coefficients and the average 

coverage probability for limited parameter space can be calculated. Consider 

several limited parameter spaces and compare optimality of intervals in each. 

Shown in Table 1 is the average coverage probability for confidence intervals by 

considering (0,5) as parameter space and gamma prior density function with 

parameters α and β for different values of α and β. 
 
 
Table 1. The average coverage probability of 0.95 confidence intervals by considering 
(0,5) as parameter space and gamma prior density function for different values of α,β 
parameters. 
 

(α,β) Wald 
Improved 

Wald 
SC MSC FNCC 

(3,2) 0.8641425 0.9143622 0.9571222 0.9645696 0.9449194 

(2,2) 0.8072475 0.9133294 0.9566735 0.9668320 0.9504911 

(2,3) 0.8297575 0.9140922 0.9567840 0.9658480 0.9482634 

(1,1) 0.5627519 0.9105985 0.9494315 0.9745308 0.9450845 

(1,2) 0.6598992 0.9119293 0.9525660 0.9715013 0.9489584 

(2,0.25) 0.3971195 0.8985933 0.9446330 0.9753967 0.9285543 

(3,0.25) 0.4913916 0.9315413 0.9499122 0.9722384 0.9643795 

 
 

According to the Table 1, when the parameter space is (0,5), the average 

coverage probability of Wald intervals, improved Wald, FNCC, SC, MSC have 

minimum and maximum values, respectively. Hence, by considering the average 

coverage probability criterion, the optimal intervals are sequenced as MSC, SC, 
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FNCC, improved Wald and Wald. The confidence coefficients of Wald intervals, 

improved Wald, FNCC, SC, MSC are valued as 0, 0.7493219, 0.9728728, 0.838182 

and 0.924353, respectively. Hence, by considering the confidence coefficients 

criterion, the optimal intervals are sequenced as FNCC, MSC, SC, improved Wald 

and Wald. 

Shown in Table 2 is the average coverage probability for confidence intervals 

by considering (0,10) as parameter space and gamma prior density function with 

parameters α and β for different values of α and β. 
 
 
Table 2. The average coverage probability of 0.95 confidence intervals by considering 
(0,10) as parameter space and gamma prior density function for different values of α,β 
parameters. 
 

(α,β) Wald 
Improved 

Wald 
SC MSC FNCC 

(3,2) 0.8888037 0.9204003 0.9552390 0.9604853 0.9473020 

(2,2) 0.8347166 0.9165118 0.9558278 0.9641060 0.9503650 

(2,3) 0.8652953 0.9194707 0.9552924 0.9617933 0.9489643 

(1,1) 0.5650555 0.9106648 0.9494641 0.9744146 0.9451272 

(1,2) 0.6790454 0.9128737 0.9526446 0.9703599 0.9490552 

(2,0.25) 0.3971196 0.8985933 0.9446330 0.9753967 0.9285543 

(3,0.25) 0.4913918 0.9315413 0.9499122 0.9722384 0.9643795 

 
 

According to the Table 2, when the parameter space is (0,10), the average 

coverage probability of Wald intervals, improved Wald, FNCC, SC, MSC have 

minimum and maximum values, respectively. Hence, by considering the average 

coverage probability criterion, the optimal intervals are sequenced as MSC, SC, 

FNCC, improved Wald and Wald. The confidence coefficients of Wald intervals, 

improved Wald, FNCC, SC, MSC are valued as 0, 0.7493219, 0.8475551, 0.838182 

and 0.9343535, respectively. Hence, by considering the confidence coefficients 

criterion, the optimal intervals are sequenced as MSC, FNCC, SC, improved Wald 

and Wald. 

Shown in Table 3 is the average coverage probability for confidence intervals 

by considering (0,15) as parameter space and gamma prior density function with 

parameters α and β for different values of α and β. 

According to the Table 3, when the parameter space is (0,15),  the average 

coverage probability of Wald intervals, improved Wald, FNCC, SC, MSC have 

minimum and maximum values, respectively. Hence, by considering the average 

coverage probability criterion, the optimal intervals are sequenced as MSC, SC, 
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FNCC, improved Wald and Wald. The confidence coefficients of Wald intervals, 

improved Wald, FNCC, SC, MSC are valued as 0, 0.7493219, 0.8475551, 0.838182 

and 0.9343535, respectively. Hence, by considering the confidence coefficients 

criterion, the optimal intervals are sequenced as MSC, FNCC, SC, improved Wald 

and Wald. 
 
 
Table 3. The average coverage probability of 0.95 confidence intervals by considering 
(0,15) as parameter space and gamma prior density function for different values of α,β 
parameters. 
 

(α,β) Wald 
Improved 

Wald 
SC MSC FNCC 

(3,2) 0.8933807 0.9222194 0.9548630 0.9596592 0.9476260 

(2,2) 0.8381964 0.9172590 0.9556815 0.9636963 0.9503577 

(2,3) 0.8732198 0.9216328 0.9548621 0.9607176 0.9491470 

(1,1) 0.5650720 0.9106660 0.9494642 0.9744146 0.9451274 

(1,2) 0.6806082 0.9130242 0.9526394 0.9702502 0.9490608 

(2,0.25) 0.3971196 0.8985933 0.9446330 0.9753967 0.9285543 

(3,0.25) 0.4913918 0.9315413 0.9499122 0.9722374 0.9643795 

 
 

Shown in Table 4 is the average coverage probability for confidence intervals 

by considering (0,20) as parameter space and gamma prior density function with 

parameters α and β for different values of α and β. 
 
 
Table 4. The average coverage probability of 0.95 confidence intervals by considering 
(0,20) as parameter space and gamma prior density function for different values of α,β 
parameters. 
 

(α,β) Wald 
Improved 

Wald 
SC MSC FNCC 

(3,2) 0.8941198 0.9225174 0.9548003 0.9595360 0.9477236 

(2,2) 0.8386047 0.9173505 0.9556630 0.9636500 0.9503699 

(2,3) 0.8751611 0.9221872 0.9547505 0.9604636 0.9492689 

(1,1) 0.5650721 0.9106660 0.9494642 0.9744136 0.9451274 

(1,2) 0.6807374 0.9130373 0.9526387 0.9702413 0.9490630 

(2,0.25) 0.3971196 0.8985933 0.9446330 0.9753967 0.9285543 

(3,0.25) 0.4913918 0.9315413 0.9499122 0.9722384 0.9643795 

 
 

According to Table 4, when the parameter space is (0,20), the average 

coverage probability of Wald intervals, improved Wald, FNCC, SC, MSC have 

minimum and maximum values, respectively. Hence, by considering the average 
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coverage probability criterion, the optimal intervals are sequenced as MSC, SC, 

FNCC, improved Wald and Wald. The confidence coefficients of Wald intervals, 

improved Wald, FNCC, SC, MSC are valued as 0, 0.7493219, 0.8475551, 0.838182 

and 0.9343535, respectively. Hence, by considering the confidence coefficients 

criterion, the optimal intervals are sequenced as MSC, FNCC, SC, improved Wald 

and Wald. 

Then average length of confidence intervals is calculated for 

x = 0, 1, 2, …, 10. The average length of confidence intervals of Wald interval, 

improved Wald, SC, MSC and FNCC are valued as 8.006877, 8.686906, 9.151103, 

9.151103, and 8.892629, respectively. Hence, by considering the average length 

criterion, the optimal intervals are sequenced as Wald, improved Wald, FNCC, SC, 

and MSC. 

Conclusion 

In general, with respect to the previous section: 

• by considering the average coverage probability criterion, the optimal 

intervals are sequenced as MSC, SC, FNCC, improved Wald and 

Wald.  

• by considering the confidence coefficients criterion, the optimal 

intervals are sequenced as MSC, FNCC, SC, improved Wald and 

Wald. 

• by considering the average length of confidence intervals criterion, the 

optimal intervals are sequenced as Wald, improved Wald, FNCC, SC, 

and MSC. 

Because there are no significant differences between the lengths of intervals 

for large values of X, the comparison can be evaluated regarding to average 

coverage probability or confidence coefficient. So, between these confidence 

intervals the MSC confidence interval is optimal. 
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