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Parameter Estimation In Weighted 
Rayleigh Distribution 

M. Ajami 
Vali-e-Asr University of Rafsanjan 

Rafsanjan, Iran 

S. M. A. Jahanshahi 
University of Sistan and Baluchestan 

Zahedan, Iran 

 

 
 

 

 
A weighted model based on the Rayleigh distribution is proposed and the statistical and 

reliability properties of this model are presented. Some non-Bayesian and Bayesian 
methods are used to estimate the β parameter of proposed model. The Bayes estimators 
are obtained under the symmetric (squared error) and the asymmetric (linear exponential) 
loss functions using non-informative and reciprocal gamma priors. The performance of 
the estimators is assessed on the basis of their biases and relative risks under the two 
above-mentioned loss functions. A simulation study is constructed to evaluate the ability 
of considered estimation methods. The suitability of the proposed model for a real data is 

shown by using the Kolmogorov-Smirnov goodness-of-fit test. 
 
Keywords: Bayesian estimators, estimation methods, goodness-of-fit, loss function, 
reliability, weighted model 

 

Introduction 

The Rayleigh distribution has been used in many areas of research, such as 

reliability, life-testing and survival analysis. Modeling the lifetime of random 

phenomena has been another area of study for which the Rayleigh distribution has 

been significantly used. Being first introduced by Rayleigh (1880), this statistical 

model was originally derived in connection with a problem in acoustics. More 

details on the Rayleigh distribution can be found in Johnson et al. (1994) and 

references therein. 

The Rayleigh distribution has the following probability density function 

(pdf) and the cumulative distribution function (cdf), respectively,  
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Weighted distributions are employed mainly in research associated with 

reliability, bio-medicine, meta-analysis, econometrics, survival analysis, renewal 

processes, physics, ecology and branching processes which are found in Patil and 

Rao (1978), Gupta and Kirmani (1990), Gupta and Keating (1985), Oluyede 

(1999), Patil and Ord (1976) and Zelen and Feinleib (1969). A weighted form of 

Rayleigh distribution has been published by Reshi et al. (2014). They introduced a 

new class of Size-biased Generalized Rayleigh distribution and also investigated 

the various structural and characterizing properties of that model. In addition, they 

studied the Bayes estimator of the parameter of the Rayleigh distribution under 

the Jeffrey’s and the extended Jeffrey’s priors assuming two different loss 

functions. They compared four estimation methods by using mean square error 

through simulation study with varying sample sizes. In fact, weighted 

distributions arise in practice when observations from a sample are recorded with 

unequal probabilities 

Suppose X is a non-negative random variable with its unbiased pdf f(x,β), β 

is a parameter, then g distribution is weighted version of f and is defined as  
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where the weight function w(x,α) is a non-negative function and 0 < E(w(X,α)) is 

a normalizing constant which is E(w(X,α)) = ∫w(x,α)f(x,β)dx. Furthermore, α is a 

parameter which may or may not depend on β and E(w(X,α)) = 1/Eg(1/w(X,α)) is 

the harmonic mean of w(x,α) with the pdf g(.). 

When w(x,α) = xα, α = 0, the distribution is referred to as weighted 

distributions of order α. 
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For α = 1 or 2, the pdf (1) are referred to as length-biased (size-biased) and 

area-biased distributions, respectively. 

A weighted Rayleigh (WR) distribution is proposed based on (1) and all 

calculations are done based upon this model, but in the sections of numerical 

simulations and application to real data a length-biased Rayleigh (LBR) 

distribution is used without loss of generality. Because determinig the value of α 

depends on the sampling method so it is not necessary to estimate α in practice, 

therefore the focus on estimating the β parameter. 

Weighted Rayleigh distribution 

In the following, the WR(α,β) distribution is introduced and then, some properties 

including the rth moment, the corresponding CDF and hazard rate function are 

calculated. 

 

Definition 1.   A nonnegative random variable X is said to have the 

WR(α,β) distribution provided that the variable’s density function is given by  
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Remark 1.    Suppose that X follows WR(α,β) and let U = X2/2β, 

then U follows Γ(α/2+1,1) distribution. 

 

Remark 2.    The WR(α,β) distribution belongs to the exponential 

family. Therefore, T = Σ
n
i=1X 

2
i is a sufficient complete statistic. 

 

The rth moments are useful for inference and model fitting. A result that 

allows us to compute the moments of the WR(α,β) distribution is given in the 

following lemma. 

 

Lemma 1.    If X be a random variable with density function (2), 

then the rth moment is given by  
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where r is a positive integer. 

 

Proof.    According to (2) 
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let x2/2β = u2, then we have 
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Lemma 1 concludes  
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The corresponding CDF of the WR(α,β) distribution is as follows: 
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where   1 1

0
,

z
aa z t e dt     denotes the lower incomplete gamma function. 

In addition, the survival and the hazard rate functions of the WR(α,β) 

distribution are  

 

  
   

 2

/2 2

1
/2

1 1
/ 2 1, / 2 ,

/ 2 1 / 2 1

t

x
G x t e dt x


  

 


  

     

 

and  

 

  
 

21 /2

/2 /2 1 2

1

,
2 / 2 1, / 2

xx e
h x

x

 

    

 





  

 

respectively, where   1 1

1 , a

z
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    denotes upper incomplete gamma 

function. 

In special cases, if α = 1, corresponding length-biased distribution is  
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and if α = 2 corresponding area-biased distribution is  
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Plots of length-biased and area-biased (ABR) distributions for some 

parameter values are displayed in Figure 1. Some possible shapes of the LBR and 

ABR hazard rate functions are displayed in Figure 2 
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Figure 1. The LBR(β) (left panel) and ABR(β) (right panel) density functions for some 

parameter values. 

 

 
 

 
 
Figure 2. The LBR(β) (left panel) and ABR(β) (right panel) hazard rate functions for some 

parameter values. 

 

 

Parameter estimation 

In this section, the method of moments, the maximum likelihood method, 

uniformly minimum variance unbiased method, maximum goodness-of-fit method 

and some Bayesian methods are used to estimate the β parameter of the model. 
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Method of moments estimator 

Hereafter, let X1, …, Xn be a random sample from the WR(α,β) distribution. The 

method of moments estimator (MME) is  
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Maximum likelihood estimator 

The likelihood function can be written as  
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One can easily calculate maximum likelihood estimator (MLE) of β by 

taking natural logarithm and derivative relative to β as 
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2
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To study asymptotic normality of ˆ
MLE , calculate the Fisher information 

I(β) as 
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So according to theorem 18 of Ferguson (1996) 
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Therefore, an 100(1 – α)% approximate confidence interval of β can be obtained 

as 
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where Zα/2 is the α/2th percentile point of the standard normal distribution. 

Uniformly minimum variance unbiased estimator 

Based upon Lemma 1,  
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which is a function of the sufficient and complete statistic T that is unbiased for β. 

Thus based on Lehman-Scheffe theorem we have 
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Maximum goodness-of-fit estimators 

Maximum goodness-of-fit estimators (otherwise known as minimum 

distance estimators) of the parameters of the CDF can be calculated by 

minimizing any distance of the empirical distribution function (EDF) statistics 

regarding to the unknown parameters. As other research has shown there is no 

unique EDF statistic which can be considered the most efficient for all situations 

(Alizadeh and Arghami, 2011). Kolmogorov-Smirnov, Cramer-von Mises and 

Anderson-Darling statistics seem to be momentous in situations are  
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where p(x(i)) = G(x(i)) – G(x(i) – 1) is the probability under H
0
 and considering that 

Gn(.) is EDF for G(.). 

Bayes estimators of β 

Considering β as a random variable, two different priors, namely Jeffreys 

and reciprocal gamma are considered for β. Taking into account the priors, two 

different loss functions are used for the WR(α,β) model, the first one is the 

squared error loss (SEL) function and the second one is linear exponential 

(LINEX) loss function. 

 

Bayes estimator based on Jeffreys’ prior 

 

Based on (3) the Jeffreys’ prior is  
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which follows reciprocal gamma distribution as  
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The Bayesian estimator of β under the SEL function is  
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where the SEL function is  
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In the following, Bayesian estimator is calculated under the LINEX loss 

function. This loss function was proposed by Varian (1975) and Zellner (1986). 

The LINEX loss function for scale parameter β is given by  
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represent the direction and degree of asymmetry respectively (see Soliman, 2000, 

and Sanku, 2012). Under LINEX loss function (5) and using the posterior (4), the 

posterior mean of loss function, L(Δ), is 
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one can easily obtain ̂  which minimizes the posterior expectation of the loss 

function (5), denoted by ˆ
LJ  as 
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Bayes estimator based on reciprocal gamma prior 

Suppose β follows reciprocal gamma distribution as prior distribution which is 
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Then, the posterior density satisfies 
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so the Bayesian estimator of β under the SEL function is 
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where c = n(α + 2) + 2σ − 2. 

In special case, if we suppose σ = 1, b = 0 then Bayesian estimator of β is  

 

 
ˆ ,

2
SERG

T

n






 

 

which is equal to MLE. 

In addition, Bayesian estimator of β under the LINEX loss function is  
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  ˆ 2 ,LRG d T b     

 

where 
 

1 exp
/ 2 1 1

2

a

n
d

a

 

 
  

    . 

The risk efficiency of ̂SEJ
 regarding to ̂LJ

 under LINEX and 

squared errors loss function based on Jeffreys’ prior 

If random variable X follows the distribution function (2), so X2 obeys 

Γ((α/2+1),2β) then T : Γ(n(α/2+1),2β) as 

 

  
 

 
  

 
1

/2 1 1 2

/2 1

1
, 0.

2 / 2 1

n

T n
h t t e

n

 


 

 


 


 

 
  

 

Because the risk functions of estimators ˆ
SEJ  and ˆ

LJ  are important, 

calculate these risk functions which are denoted by  ˆ
L LJR  ,  ˆ

L SEJR  , 

 ˆ
S LJR  , and  ˆ

S SEJR   where the subject L denotes risk relative LINEX loss 

function and the subject S denotes risk relative to SEL. 

 

Lemma 2.   Let X : WR(α,β), then risk function of ˆ
SEJ  under 

LINEX loss function with respect to the Jeffreys’ prior is  

 

  
 

 
 

 

/2 1

/ 2 1ˆ 1 1.
/ 2 1 1 / 2 1 1

n

a

L SEJ

ana
R e a

n n






 

 


  

          
  

 

Proof.    By definition, 
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  (6) 

 

It is easy to verify 
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Substituting (I)-(II) into (6), the result desired follows. 

∎ 

 

Corollary 1.   Based on Lemma 2, one can conclude that  
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Lemma 3.   Let X : WR(α,β), then the risk function of ˆ
LJ  under 

SEL function with respect to the Jeffreys’ prior is 
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Proof.    By definition,  
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 Substituting (I)-(II) into (7), the proof is completed. 

∎ 

 

Corollary 2.   In the same procedure of Lemma 3 the  ˆ
S SEJR   

under the SEL is  
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Definition 2.   The risk efficiency of 2̂  regarding to 1̂  under L 

loss function is defined as 
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The risk efficiency of ̂SERG
 regarding to ̂LRG

 under LINEX and SEL 

functions based on reciprocal gamma’s prior  

In the following, the risk functions of estimators ˆ
SERG  and ˆ

LRG  are calculated. 

Therefore, they are denoted by  ˆ
L LRGR  ,  ˆ

L SERGR  ,  ˆ
S LRGR  , and  ˆ

S SERGR  . 

 

Corollary 3.   Let X : WR(α,β), then the risk function of ˆ
SERG  

under the LINEX and the SEL functions and reciprocal gamma prior are  
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Corollary 4.   Similar to Corollary 3 under the LINEX and the 

SEL functions and reciprocal gamma prior we have  
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Numerical simulations 

In the following, some experimental results are presented to investigate the 

effectiveness of the different estimation methods which have been so far 

performed. Bias and MSE for non-Bayesian estimators are mostly compared for 

different estimation methods. In this study, different sample sizes of n = 10, 20 

(small), 30, 40 (moderate), 50 (large) and 100 (very large) are considered. In 

Table 1, the average estimates of β based on 10,000 replications are presented for 

different estimation methods in which the MSEs are noted in the parentheses. 

As can be seen in Table 1, among simple estimators the MLE and UMVUE 

have the smallest values of bias and MSE for various values of sample size so 

MLE and UMVUE are the best estimation methods in terms of bias and MSE. In 

addition, the other two good methods of estimation in priority of order are MME 

and CVM. 
 
 
Table 1. Bias and MSE values of simple estimators for β parameter 

 

n MLE MME UMVUE KS CVM AD 

10 
-0.002550 0.014100 -0.002550 0.024430 0.023930 0.030840 

(0.000007) (0.000995) (0.000007) (0.000601) (0.000572) (0.000952) 

20 
-0.002770 0.006340 -0.002770 0.012050 0.011170 0.014600 

(0.000006) (0.000040) (0.000006) (0.000145) (0.000125) (0.000213) 

30 
-0.000260 0.005690 -0.000260 0.009430 0.009170 0.011480 

(0.000003) (0.000032) (0.000003) (0.000088) (0.000084) (0.000131) 

40 
-0.001070 0.003430 -0.001070 0.006660 0.005620 0.007670 

(0.000002) (0.000012) (0.000002) (0.000044) (0.000031) (0.000058) 

50 
-0.003730 -0.000380 -0.003730 0.001920 0.001050 0.002810 

(0.000001) (0.000000) (0.000001) (0.000000) (0.000000) (0.000000) 

100 
0.000550 0.002840 0.000550 0.003610 0.003110 0.004190 

(0.000000) (0.000000) (0.000000) (0.000001) (0.000001) (0.000001) 

 
 

Bias values and risk functions are computed to compare considered 

Bayesian estimators. A comparison of this type is needed to check whether an 

estimator is inadmissible under some loss function. Therefore, if it is so, the 

estimator would not be used for the losses specified by that loss function. For this 

purpose, the risks of the estimators and the efficiency of them are computed. In 

each case, a = 1, a = −1, b = 2 and σ = 2 are taken without loss of generality.  

Because comparing different loss functions is not reasonable, compare the 

results in similar loss function, but in different priors. According to results 

compiled in Tables 2, 3, 5 and 6, all the four considered Bayesian estimators 
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based on reciprocal gamma prior have small values of bias. Further, the ˆ
SERG  

estimator has smaller bias than ˆ
LRG  estimator for a = 1 while ˆ

LRG  estimator has 

smaller bias than ˆ
SERG  estimator for a = −1. 

According to Tables 2, 3, 5 and 6, among the four considered Bayesian risks 

based SEL the  ˆ
S LRGR   has the smallest values of risk for various values of 

sample size. 

Also among the four considered Bayesian risks based LINEX, the  ˆ
L LJR   

has the smallest values of risk for various values of sample size. 
 
 
Table 2. Bias and risk values of Bayesian estimators for β parameter and a = 1 

 

n  ̂
SEJ

bias    ̂
LJ

bias   ̂
SEJsR   ̂

LJsR   ̂
SEJLR   ̂

LJLR  

10 0.072 -0.090 0.100 0.056 0.047 0.031 

20 0.035 -0.047 0.041 0.031 0.020 0.016 

30 0.024 -0.031 0.025 0.021 0.012 0.011 

40 0.016 -0.025 0.018 0.016 0.009 0.008 

50 0.011 -0.022 0.014 0.013 0.007 0.007 

100 0.005 -0.011 0.007 0.007 0.003 0.003 

 
 
Table 3. Bias and risk values of Bayesian estimators for β parameter and a = −1 

 

n  ̂
SEJ

bias   ̂
LJ

bias   ̂
SEJsR   ̂

LJsR   ̂
SEJLR   ̂

LJLR  

10 0.065 -0.039 0.099 0.071 0.037 0.032 

20 0.034 -0.017 0.041 0.035 0.018 0.016 

30 0.022 -0.011 0.025 0.023 0.012 0.011 

40 0.018 -0.007 0.018 0.017 0.009 0.008 

50 0.013 -0.007 0.014 0.014 0.007 0.007 

100 0.007 -0.003 0.007 0.007 0.003 0.003 

 
 
Table 4. Relative risk values of Bayesian estimators for β parameter 

 

n 10 20 30 40 50 100 

   ˆ ˆ
LJ SEJs a=1

RE  ,  1.524 1.233 1.149 1.110 1.087 1.043 

   ˆ ˆ 
LJ SEJL a=1

RE ,  1.788 1.338 1.214 1.157 1.124 1.060 

   ˆ ˆ
LJ SEJs a=-1

RE  ,  1.164 1.078 1.051 1.038 1.031 1.015 

   ˆ ˆ 
LJ SEJL a=-1

RE ,  1.382 1.174 1.112 1.083 1.066 1.032 
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Table 5. Bias and risk values of Bayesian estimators for β parameter and a =  

 

n  ̂
SERG

bias

 
 ̂

LRG
bias   ̂

SERGsR   ̂
LRGsR   ̂

SERGLR   ̂
LRGLR  

10 0.061 -0.083 0.073 0.045 0.504 2.317 

20 0.031 -0.046 0.035 0.027 0.501 2.487 

30 0.022 -0.031 0.023 0.019 0.500 2.556 

40 0.015 -0.025 0.017 0.015 0.500 2.593 

50 0.011 -0.021 0.014 0.012 0.500 2.617 

100 0.007 -0.009 0.007 0.006 0.500 2.666 

 
 
Table 6. Bias and risk values of Bayesian estimators for β parameter and a = −1 

 

n  ̂
SERG

bias

 
 ̂

LRG
bias   ̂

SERGsR   ̂
LRGsR   ̂

SERGLR   ̂
LRGLR  

10 0.060 -0.031 0.073 0.050 4.916 0.474 

20 0.034 -0.014 0.035 0.029 5.365 0.425 

30 0.022 -0.011 0.023 0.020 5.531 0.407 

40 0.015 -0.009 0.017 0.015 5.616 0.397 

50 0.014 -0.006 0.014 0.013 5.670 0.392 

100 0.007 -0.003 0.007 0.006 5.778 0.380 

 
 
Table 7. Relative risk values of Bayesian estimators for β parameter 

 
n 10 20 30 40 50 100 

   ˆ ˆ
LRG SERGs a=1

RE  ,  1.743 1.331 1.211 1.156 1.123 1.060 

   ˆ ˆ 
LRG SERGL a=1

RE ,  0.218 0.201 0.196 0.193 0.192 0.188 

   ˆ ˆ
LRG SERGs a=-1

RE  ,  1.511 1.241 1.157 1.117 1.093 1.046 

   ˆ ˆ 
LRG SERGL a=-1

RE ,  10.372 12.625 13.593 14.131 14.474 15.205 

 

Application to real data 

Here, in order to display the usage of proposed model in real data, it is needed to 

analyze two sets of the seven from the afore presented data in paper by Bennett 

and Filliben (2000). Reportedly, they have notified minority electron mobility for 

p-type Ga1-xAlxAs with seven different values of mole fraction. To do so, two 

data sets are employed relating to the mole fractions of 0.25 and 0.30. The data 

values are as followed: 
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Data Set 1 (belongs to mole fraction 0.25): 3.051, 2.779, 2.604, 2.371, 2.214, 

2.045, 1.715, 1.525, 1.296, 1.154, 1.016, 0.7948, 0.7007, 0.6292, 0.6175, 0.6449, 

0.8881, 1.115, 1.397, 1.506, 1.528. 

Data Set 2 (belongs to mole fraction 0.30): 2.658, 2.434, 2.288, 2.092, 1.959, 

1.814, 1.530, 1.366, 1.165, 1.041, 0.9198, 0.7241, 0.6403, 0.576, 0.5647, 0.5873, 

0.8013, 1.002, 1.250, 1.347, 1.368. 

To evaluate the fitting quality of the Rayleigh and LBR distributions, the 

Kolmogorov-Smirnov (K-S) tests and AIC and BIC’s criterions are used. The 

information about comparing both models are given in Table 8. Since probability 

values of the LBR model are greater than corresponding values of the Rayleigh 

model and the AIC and BIC criterions of the LBR model are less than 

corresponding values of the Rayleigh model. Although the values of considered 

statistics are not significantly different but we it can be infered that the LBR 

distribution fits better than the Rayleigh distribution in both considered data. 

The MLEs of β are 0.9322 and 0.7309 and the 95 percent confidence 

intervals of β based on MLEs as suggested above under heading Parameter 

Estimation, can be obtained as (0.6067,1.2577) and (0.4757,0.9861) respectively. 
 
 
Table 8. Comparing related statistics for Rayleigh and LBR 

 
Data Model D p.value AIC BIC 

1 Rayleigh 0.1411 0.7458 46.0090 47.0540 

1 LBR 0.1275 0.8427 45.9160 46.9610 

2 Rayleigh 0.1354 0.7883 40.3870 41.4320 

2 LBR 0.1311 0.8180 39.7820 40.8260 

 

Conclusion 

Different estimation procedures were studied for estimating the unknown scale 

parameter of the WR(α,β) distribution being the maximum likelihood estimator, 

the method of moment estimator, uniformly minimum variance unbiased 

estimator, maximum goodness-of-fit estimators and the Bayes estimators. Since it 

is not possible to compare different methods theoretically, some simulations were 

used for comparison of different estimators with respect to biases, mean squared 

errors and risks. 

All the four considered Bayesian estimators based on reciprocal gamma 

prior have small values of bias. In addition, the ˆ
SERG  estimator has smaller bias 
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than ˆ
LRG  estimator for a = 1 but ˆ

LRG  estimator has smaller bias than ˆ
SERG  

estimator for a = −1. 

Among the four considered Bayesian risks based SEL the  ˆ
S LRGR   has the 

smallest values of risk and based LINEX, the  ˆ
L LJR   has the smallest values of 

risk for various values of sample size. Thus from a Bayesian perspective we 

suggest using ˆ
LRG  estimator based on SEL and using ˆ

LJ  based on LINEX loss 

function. 

The performance of the MLE and UMVUE is also quite satisfactory and in 

overall non-Bayesian estimators are better than Bayesian estimators, thereby 

employing of the MLE and UMVUE estimators can be recommend for all 

practical purposes. 
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