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Figure 10.  Interaction between CREBH and TRAF6 takes place at ER membrane. 

Immunofluorescence analysis of Huh7 cells co-transfected with full-length Flag tagged human 

CREBH and Myc tagged TRAF6. (A) CREBH only (B) TRAF6 only (C) CREBH + PDI (ER marker) 

(D) Co-transfection showing CREBH and TRAF6 overlaps in Huh7 cells stained with anti-flag FITC 

(CREBH) and anti-myc ALEXA (TRAF6). Images were analyzed using Zeiss LSM Alpha Imager 

Browser v4.0 software (Zeiss). Magnification: 600X 

 



46 

 

 

Discussion 
 

This chapter demonstrated one of the most important aspects of our hypothesis, the 

interface of innate immunity and metabolism through the interaction between CREBH and 

TRAF6. This provided important insights into the molecular mechanisms underlying CREBH 

cleavage and activation under LPS treatment. 

First, my study indicated that TRAF6 is essential for CREBH cleavage under LPS 

challenge. Co-expression of TRAF6 functional mutants (TRAF6 DC, DN, or Math domain 

deletion) with full-length CREBH significantly decreased CREBH cleavage, compared to co-

expression of wild-type TRAF6 with full-length CREBH (Fig 8B). Our finding also 

demonstrated that TRAF6 interacts with CREBH through its MATH domain of TRAF6 and 

linker domain of CREBH. Note that without the overexpression of TRAF6 in the cell culture 

system, the cells still exhibited CREBH cleavage and activation, which might be contributed 

by endogenous TRAF6 molecules. Additionally, ectopic expression of CREBH and TRAF6 

can induce cell stress that stimulates the CREBH-TRAF6 interaction without the TLR4 

stimulation. It has been reported that MATH domain of TRAF6 is involved in interacting with 

upstream kinases, as well as adaptor molecules, to transmit the signals (106). TLR4 signaling 

needs to be intact, a decrease in interaction between CREBH and TRAF6 was observed in 

Myd88 null mice. Myd88 null mice also exhibited lower levels of CREBH precursor proteins, 

in part due to the role of inflammatory signaling in the up-regulating expression of CREBH. 

Deletion of the E3 ligase RING domain of TRAF6, led to less CREBH cleavage, indicating a 

role of E3 ligase activity of TRAF6 in CREBH cleavage and activation. There are reports 

indicating the role of TRAF6 as an E3 ligase in insulin signaling and inflammatory responses 

(107, 108). The TRAF6 mutation study leads us to think about the potential of ubiquitination 

mechanism being involved in CREBH activation, as the deletion of MATH domain, where the 

E3 ligase activity resides, led to decreased CREBH cleavage (Fig 8B). Additionally, the 
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CREBH mutants exhibited lower levels of interaction between CREBH and TRAF6 due to the 

deletion of the linker region between b-Zip and transmembrane domain. The ΔN mutant 

displayed elevated levels of interaction due to its exposed b-Zip and linker domain of protein 

compared to WT and the ΔC mutant. 

Immunofluorescence microscopic analysis revealed the ER membrane location for the 

interaction of CREBH and TRAF6. My study confirmed that TRAF6 is relocated to the ER 

membrane for the interaction with full-length CREBH. This is consistent with a report 

suggesting that TRAF6 translocate and interacts with target molecules for the post-translational 

modification activities of Akt (107). In summary, this chapter revealed the mechanism and 

location of interaction between TLR4 signaling and CREBH, an important event for CREBH 

cleavage and activation under LPS challenge.  
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CHAPTER 3: Posttranslational ubiquitination of CREBH 

is necessary for CREBH cleavage and activation 

 

Summary 
 

Post-translational modifications (PTMs) can restrict the inflated number of 

transcription factors, expanding the functional repertoire of genetic regulatory elements to 

cover the diverse metabolic requirements (109). Transcription factors are subjected to protein 

turnover and targeted for degradation by the ubiquitin-proteasome system. Increasing 

evidences  pointed towards the close relation between the ubiquitin proteasomal degradation 

system and transcriptional activation (110). Protein sequences are associated with proteolysis 

of some activators overlap with their transcriptional activation domains and that components 

of the proteasome can be recruited to gene promoters through interactions with transcriptional 

regulators. It was demonstrated that ubiquitination can potentially enhance the activity of 

specific transcription factors (109). For example, ranscriptionally active forms of SREBPs are 

degraded by the proteasome in an ubiquitination-dependent manner (111). It has been 

suggested that nuclear SREBP molecules are, at least in part, ubiquitinated and degraded as a 

functional consequence of their transcriptional activity. However, the mechanistic link between 

activation of transcription factors and their degradation remains elusive. 

Protein turnover in the cells is controlled by the rate of protein synthesis and the rate of 

protein degradation. There are two major paths of protein degradation: the first is ubiquitin-

mediated proteasome pathway, and the other one is lysosomal degradation.  Ubiquitin is a 

small, but highly conserved protein consists 76 amino acids. To mark a protein for degradation, 

a ubiquitin tag is ligated to the substrate protein. Ubiquitin tagging is  carried out by the 

sequential action of three enzymes: E1, a ubiquitin-activating enzyme; E2, a ubiquitin-

conjugating enzyme; and E3, a ubiquitin-protein ligase. The ubiquitinated proteins typically 
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contain multiple chains of branched ubiquitin molecules that enable recognition by the 26S 

proteasome, which degradesof the ubiquitinated protein into small peptides (112). 

In this chapter, I investigated the role of ubiquitination modifications, mediated through 

TRAF6, in CREBH cleavage and activation. Using molecular and cellular biology approaches, 

I demonstrated that the interaction between CREBH and TRAF6, as discussed in chapter 2, 

promotes CREBH ubiquitination. Additionally, I also evaluated the potential roles of 

phosphorylation and kinases in CREBH cleavage. 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 

 

 

Materials and Methods 
 

Cells and reagents 

Human endothelial kidney (HEK) 293T cells were maintained in Dulbecco's Modification of 

Eagle's Medium (Thermo Fischer, Rockford,MA, USA) containing 10% fetal calf serum 

(Thermo Fischer, Rockford,MA, USA). Transfection in HEK 293T cells was performed with 

Lipofectamine™ 2000 protocol (Invitrogen, Grand Island, NE, USA). Myc-tagged TRAF6 

expression plasmid and its C70A mutant were as reported (Yang et al., 2009). HA-tagged 

ubiquitin plasmids K33 only (K33O), K48 only (K48O), K63 only (K63O), K33, K48, and 

K63 mutants (K33R, K48R, K63R) were from Dr. Fei Sun, Department of Physiology Wayne 

State University . The resources of antibodies were: Flag, β-actin, and Tubulin from Sigma-

Aldrich (St.Loius, MO, USA); c-Myc and HA, TRAF6 were from Santa Cruz Biotech (CA, 

USA). Huh-7  cells  were   maintained  in  DMEM/High  Glucose  media  containing  100  

units/ml  penicillin,  100 μg/ml streptomycin, and 10%  fetal bovine serum. The cells at about 

60% confluence were infected with adenovirus-expressing full-length CREBH. At 72hr post 

infection, cells were treated with LPS for 4 hr, and harvested for IP-Western blot analysis. 

Okadaic acid was purchased from Sigma-Aldrich, Lys294002 was from Cell Signaling 

technology, and lithium chloride was purcahsed from Fisher Scientific. 

 

Transfection, co-immunoprecipitation and western blotting analysis 

Transient transfection of HEK293T cells as well as immunoprecipitation of cell culture 

lysates were carried out with Flag-tagged M2 beads from Sigma-Aldrich, MO, USA as 

described previously. Western blot analysis  was carried out with anti-HA, anti-CREBH, and  

anti-TRAF6 (Santa Cruz Biotech, CA , USA). 
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Cell fractionation and nuclei isolation for cell culture  

Transfected HEK293T cells  were collected at 80-90% confluence. Isolation of nuclei 

was achieved by using the hypotonic/Nonidet P-40 lysis method (113).  Briefly, cultures were 

rinsed twice with ice-cold PBS and collected with cell scrapers. Cells and were suspended in 

0.5 ml of hypotonic/Nonidet P-40 buffer (10 mM Tris, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 

0.5% Nonidet P-40) and incubated on ice for 5 min. After centrifuging at 500g for 5 min, 

nuclear pellets were washed twice with 0.5 ml of hypotonic/Nonidet P-40 buffer. The 

morphological integrity of isolated nuclei (> 90%) was assessed by DAPI staining under 

immunofluorescence microscopy at 100X. The purity of subcellular fractions was verified by 

immunoblotting with antibodies specific for markers of cytosolic and nuclear fractions. 

Cycloheximide half-life experiment 

Huh7 cells were infected with the adenovirus expressing full-length human CREBH for 

48hr. After 48hr, cells were treated with LPS (1μg/ml) for 4hr. Aftert LPS treatment, the cells 

were rinsed with warm PBS twice followed by treatment with media containing cycloheximide 

(100 μM/ml) purchased from Abcam (MA,USA). Cells were collected at 0, 30, 60, 90, and 120 

min after the cycloheximide treatment. 
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Results 
 

TRAF6 mediates the ubiquitination of CREBH upon LPS stimulation. 

We determined the molecular basis by which TRAF6 regulates CREBH cleavage and 

subsequent activation of CREBH. We recently showed that TRAF6 interacts with an ER 

anchored signal transducer IRE1α in macrophages (104). Interaction between IRE1α and 

TRAF6 induces ubiquitination of IRE1α, thereby allowing the phosphorylation and subsequent 

endonuclease activity of IRE1α.  Since CREBH is an ER anchored stress associated protein 

similar to IRE1α, we hypothesized that the interaction between CREBH and TRAF6 may 

induce CREBH ubiquitination event and subsequently contribute to CREBH cleavage and 

activation. This hypothesis is supported by the truncated mutant studies, where the RING 

domain deletion in TRAF6 decreased the cleaved form of CREBH protein (Fig 8B). Through 

IP-Western blot analysis, we demonstrated that upon LPS treatment CREBH undergoes 

ubiquitination (Fig 11B). This was further confirmed by the observation that CREBH 

undergoes ubiquitination in the livers of mice challenged with LPS (Fig 12A). Furthermore, 

ubiquitination of CREBH in Huh7 cells transiently expressing Flag-tagged CREBH was 

markedly increased in response to LPS treatment. However, in HEK 293T cells, the presence 

of the E3 ligase catalytic-inactive C70A mutant of TRAF6 failed to induce CREBH cleavage 

(Fig 12B). These results indicate that the E3 ligase ubiquitin activity of TRAF6 is required for 

CREBH ubiquitination and subsequent cleavage. 
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Figure 11. LPS treatment induces CREBH ubiquitination  

(A) Western blot analysis showing protein levels of CREBH in Huh7 cells infected with 

adenovirus expressing human full-length CREBH for 72 hr.  Post 72 hr. cells were treated 

with LPS (1μg/ml) for 4hr. (B) CREBH ubiquitination was determined by 

immunoprecipitation using the anti-Flag antibody and western blotting using the anti-Ub 

antibody. Huh7 cells infected with adenovirus were pooled together to analyses CREBH 

ubiquitination. 
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Figure 12.  TRAF6 is an E3 ligase inducing CREBH ubiquitination upon LPS treatment 

(A) Western blot analysis showing CREBH ubiquitination in mouse liver injected with either 

PBS or LPS (2μg/ml) for 18 hr. CREBH ubiquitination was determined by immunoprecipitation 

using the anti-Ub antibody and Western blotting using the anti-CREBH polyclonal antibody. Last 

2 lane represent CREBH immunoprecipitation with  HA antibodies as controls. (B) HEK293T 

cells were co-transfected with CREBH, TRAF6, and TRAF7 C70A expression plasmids. Levels 

of CREBH protein were analyzed by Western blot analysis using CREBH polyclonal antibodies, 

and GAPDH as loading control. 
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TRAF6 promotes K63-linked ubiquitination of CREBH. 

E3 ubiquitin ligases are known to promote ubiquitination of their binding proteins. 

TRAF6 often catalyzes K63-linked polyubiquitin conjugation onto its substrates. To 

characterize TRAF6-mediated ubiquitination of CREBH, we co-expressed CREBH with a 

mutant ubiquitin isoform that carries a single lysine residue at position 63 (K63O) or 48 (K48O) 

or 33 (K33O) in HEK293T cells. K63O and K48O ubiquitin mutants carry a single lysine 

residue, residues 33, 48 and 63, respectively, which allows us to determine the topology of 

polyubiquitin chains. When Ub/K63O mutant is expressed, CREBH ubiquitination was 

detected (Fig 13A). In contrast, when the Ub/K48O mutant was co-transfected, only a low 

levels of CREBH ubiquitination were detected (Fig 13A). Surprisingly, K33O mutant also 

displayed a comparable level of ubiquitination of CREBH. To further delineate the type of 

polyubiquitination type occurring on CREBH, we used different ubiquitination mutant that 

won’t allow a particular type of ubiquitination. To investigate this, we overexpressed K33R, 

K48R and K63R Ub mutants in HEK293T cells along with transient overexpression of 

CREBH. Based on this approach, we demonstrated that K63R mutant failed to mediate CREBH 

ubiquitination while expression of K48R led to a comparable level of CREBH ubiquitination 

(Fig 13A). To solve the conundrum of K33, we observed that expression of K33R led to an 

elevated level of CREBH ubiquitination, compared to expression of K33O mutant (Fig 

13A).  Therefore, the poly-ubiquitin chain conjugated to CREBH protein requires the lysine 

residue 63 (K63), but not the K48, indicating that TRAF6 catalyzes K63-linked, but not K48-

linked polyubiquitination of CREBH. The weak K33-linked ubiquitination might have been 

catalyzed by other endogenous E3 ubiquitin ligases or a time dependent CREBH ubiquitination 

may be involved. 

  



56 

 

 

 

 

  

 

  

A 

Figure 13. CREBH undergoes TRAF6 mediated K63 polyubiquitination upon interaction

A) Western blot analysis of K63-linked ubiquitination of CREBH. HEK 293 T cells were 

co-transfected with Flag-tagged human full-length CREBH, TRAF6, and specific ubiquitin 

expression plasmids, including K33 only (K33O), K63 only (K63O), K48 only (K48O), K33 

mutant (K33R), K48 mutant (K48R), and K63 mutant (K63R). Ubiquitination was 

determined by immunoprecipitation using the anti-Flag antibody and Western blotting using 

the anti-HA antibody. Total lysate was detected for CREBH using polyclonal CREBH 

antibodies. Level of GAPDH was used as loading control.  
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LPS treatment induces TRAF6 mediated K63 ubiquitination that increase the stability of 

CREBH protein. 

K48-linked polyubiquitination usually mediates protein degradation, whereas K63-

linked polyubiquitination regulates the activation and functions of target proteins (112). As 

TRAF6 enhances K63-linked polyubiquitination of CREBH, we tested whether TRAF6-

mediated ubiquitination is involved in CREBH protein stability. As shown in Fig 14A, the 

stability of CREBH under the LPS treatment is enhanced at the early time points, from 30 to 

60 min after the cycloheximide treatment, compared to the PBS treatment. However, at the late 

time points, from 90 to 120 min after the cycloheximide treatment, CREBH protein in the LPS-

stimulated cells was quickly degraded (Fig 14A). Importantly, at the early time window after 

the cycloheximide treatment (0, 30, and 60 min), the levels of cleaved/activated CREBH 

protein in the LPS-treated cells were significantly higher than those in PBS-treated cells (Fig 

14A). These data suggested that LPS treatment may stabilize CREBH precursor, possibly 

through K63-linked ubiquitination, and lead to production of cleaved/activated CREBH at the 

early time points. 

Since TLR stimulation enhances CREBH andTRAF6 interaction, we asked whether 

ubiquitination promotes CREBH stability and subsequent translocation to the nucleus. To 

address that question, we transiently overexpressed CREBH, TRAF6, and different 

ubiquitination mutants in Huh7 cells. Western blot analysis with cellular protein fractionations 

showed that expression of K63O led to the highest levels of translocation of CREBH into the 

nucleus, compared to expression of the other ubiquitin isoforms (Fig 14A). However, 

expression of K48O led to more CREBH localized to the ER and cytosolic fractions than that 

localized to nucleus (Fig 14A). When K63R mutant was expressed, the trend reversed, as more 

CREBH protein was present in the nuclear fraction. Additionally, expression of K33O also led 

to more CREBH protein was present in the nuclear fraction (Fig 14A). Although the role of 
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K33-linked ubiquitination in protein stability is not well defined, it is possible that K33-linked 

ubiquitination, like K63-linked ubiquitination, can stabilize protein, an interesting question to 

be elucidated in the future. Taken together, my studies indicated that K63-linked ubiquitination 

of CREBH, mediated through TRAF6, can stabilize CREBH protein and facilitate the 

translocation of cleaved CREBH into the nucleus, a part of CREBH activation process. 
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Figure 14. LPS treatment enhance the stability of CREBH protein at early time points after

cycloheximide treatment. 

(A) Effect of LPS on CREBH protein stability. Protein stability of CREBH was determined 

by the protein half-life examination after cycloheximide (100μM) was added. Top right 

panel: Huh7 cells infected with Flag-tagged CREBH adenovirus after 72hr treatment with 

LPS for 4hr, cycloheximide was added and the CREBH protein levels were assessed by 

Western blot analysis. Huh7 cells were incubated with cycloheximide for the indicated times 

periods and the cell lysates was harvested for Western blot analysis. Densitometry analysis of 

CREBH precursor protein (B) and cleaved CREBH protein (C) with β-actin as loading 

controls. Densitometry analysis was done with ImageJ software. 
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Figure 15. K63-linked ubiquitination enhances nuclear localization of CREBH  

Western blot analysis of enrichment of CREBH in nuclear and cytosolic/ER fractions isolated 

from HEK293T cells transfected with Flag-tagged human full-length CREBH along with 

different ubiquitin mutant plasmids as indicated in panel (A) and with mutant TRAF6 and 

mutant Ub (B).  CREBH, GAPDH (cytosolic marker), and Lamin B1 (nuclear marker) protein

signals were detected by Western blot analysis using the polyclonal anti-CREBH, anti GAPDH, 

and anti-Lamin-B1 antibody. 
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CREBH cleavage and activation involves the PI3K-AKT-GSK3 axis pathway. 

 

LPS treatment in macrophages triggers activation of PI3K-AKT signaling pathway 

(114). To test whether the PI3K-Akt-GSK3 regulatory axis is involved in CREBH activation,  

we isolated primary hepatocytes from wild-type mice and pretreated them with PI3K inhibitor 

LYS294002 (50μM/ml, 1hr before treatment) and LiCl (30mM/ml,2hr pretreatment). After the 

pre-treatment, the primary hepatocytes were treated with LPS (100ng/ml) for 4hr. Western blot 

analysis showed that the pre-treatment with PI3K inhibitor reduced the levels of cleaved 

CREBH protein, compared to the vehicle pre-treatment, in response to LPS challenge (Fig 

16A). Notably, the pre-treatment with LiCl, the GSK3 inhibitor increased the levels of cleaved 

CREBH (Fig 16A). These results suggest that the PI3K-Akt-GSK3 regulatory axis may be 

involved in CREBH cleavage and activation. 

PI3K and GSK3 are all connected to the Akt-mediated signaling pathway. Our previous 

study showed that insulin signal can activate CREBH in the liver and primary hepatocytes (72). 

Together with my study with PI3K and PP2A inhibitors, all these results suggest that Akt 

pathway may be an upstream regulator of CREBH activation. To further validate this 

hypothesis, I over-expressed wild-type and dominant negative Akt in Huh7 cells. While 

overexpression of wild-type Akt elevated the levels of cleaved CREBH, expression of the 

dominant negative Akt reduced the levels of cleaved CREBH in Huh7 cells (Fig 16B). This 

result confirmed the role of Akt in CREBH cleavage and activation.  
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Figure 16. PI3K- Akt-GSK3 axis pathway is involved in CREBH cleavage and activation. 

(A)Primary hepatocytes isolated from wild-type mice were treated with LPS (100ng/ml) for 

4 hr. along with pretreatment with Lys294 for 30 min and LiCl for 2hr. Western blot analysis 

was performed to detect endogenous CREBH cleavage using a polyclonal anti-CREBH 

antibody with Actin as loading control. (B) Western Blot analysis showing CREBH cleavage 

in Huh7 cells co-transfected with full length human CREBH and Wild type Akt or dominant 

negative Akt. 
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Discussion 
 

In this chapter, I showed that the interact to induce ubiquitination of CREBH under 

inflammatory stress. This confirmed the role of the E3 ligase activity of TRAF6 in CREBH 

activation under TLR4 signaling stimulation.  K63-linked polyubiquitination is associated with 

programing the molecules for downstream signaling (115). This is the first demonstration that 

CREBH undergoes K63 ubiquitination upon TRAF6 interaction. The ubiquitination is due to 

the E3 ligase activity of TRAF6 since TRAF6 C70A mutant failed to show ubiquitination of 

CREBH protein. Expression of the K63O mutant led to CREBH cleavage comparable to wild-

type Ub. In my study, K33- and K63-linked ubiquitination had similar effects on CREBH 

cleavage. This ubiquitination appears to be necessary to increase the stability of the CREBH 

precursor proteins since LPS treatment increases the protein half-life. A soluble factors 

ESCRTO protects the K63-ubiquitinated proteins from proteasomal degradation (116). We 

concluded that  ubiquitination of CREBH primes it for subsequent CREBH cleavage and 

activation process. My study also revealed the involvement of another PTM, Akt-mediated 

phosphorylation, in CREBH cleavage. This modification may be correlated with TRAF6-

mediated ubiquitination process since TRAF6-mediated ubiquitination can enhance 

phosphorylation and membrane recruitment of Akt (107). 

Ubiquitination of CREBH likely facilitates its nuclear transport, although the exact role 

of ubiquitination in CREBH cleavage and activation needs to be investigated further. My 

findings suggest that K63-linked ubiquitination of CREBH is a critical event that regulates 

CREBH cleavage in response to TLR4 activation. However, I also detected low levels of 

CREBH ubiquitination that may be due to basal homoeostatic activity of CREBH. 

Additionally, Akt-mediated phosphorylation of CREBH appeared to be important to CREBH 

cleavage. However, Akt may not directly target on CREBH for its phosphorylation. Instead, 

Akt may be involved in cargo assembly and vesicular transport for CREBH, as transport and 
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activation of SREBP1c, an ER-anchored transcriptional factor similar to CREBH, are mediated 

through COPII vesicles that involve Akt-mediated phosphorylation through Akt (117). The 

similar mechanism involving Akt-mediated phosphorylation might exist in the case of CREBH 

translocation from ER to Golgi under the endotoxin challenge. In short, in this chapter, I 

demonstrated that the posttranslational modifications, namely ubiquitination and 

phosphorylation, are critical for CREBH activation under LPS treatment. I also provided a 

detailed molecular mechanism for TRAF6-mediated ubiquitination of CREBH and its role in 

CREBH cleavage and activation.  
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CHAPTER 4: DETERMINING THE CREBH TARGETS 

UNDER INFLAMMATORY STRESS 
 

 

Summary  

In this chapter, I evaluated the transcriptional targets of CREBH. Specifically, I 

determined inflammatory stress-specific genes targeted by CREBH. CREBH, as a liver-

specific transcription factor, has already been shown to be involved in transcription of acute 

phase response proteins, such as cis-reactive protein (CRP) and serum amyloid component P 

(SAP). Previously, Zhang et al proved that CRBEH is a master regulator of hepatic lipid 

metabolism (87).  Additionally, research in our lab showed that CREBH regulates transcription 

of genes associated with lipid metabolism. Microarray and qRT-PCR studies by Zhang et al 

have shown that deletion of CrebH in the liver decreased the expression of five groups of genes 

encoding functions critical for lipid metabolism 

Phenotypically, deletion of CREBH increases serum TG levels and hepatic TG contents 

(118). In a bacterial sepsis model, CREBH mRNA levels were reduced due to bacterial 

sepsis.Protective treatment with melatonin, seems to restore and elevate the expression of 

CrebH mRNA (119). Hepatitis B virus (HBV) seems to exert its oncogenic effect through 

CREBH. One of the protein Hepatitis B virus protein X (HBx) showed to interact with CREBH 

to induce activation of critical transcription factors like c-Jun and AP1 (120). CREBH is shown 

to be synergistically involved in the oncogenic effect of HBV.  The interaction between 

CREBH and HBx is necessary for proliferation of Hepatocellular carcinoma cells and mouse 

primary hepatocytes. Additionally, Varicella zoster virus infection also modulates CREBH 

expression for its successful infection in host cells. In a microarray study, VZV infection 

upregulates CREBH expression by 64-fold, compare to mock-infected cells. Besides, VZV 
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mediated up-regulation is more than the up-regulation induced by ER stress inducer 

tunicamycin (121). 

CREBH is linked to many upstream receptors for its pathophysiological effect through 

stress-induced CREBH cleavage and CREBH transcriptional activation of target genes. HCV 

exerts its effect on glucose metabolism through the endocannaboid receptor 1. Treatment with 

endocanaboid receptor agonist upregulates CREBH expression which in turn cause up-

regulation of PEPCK and G6Pase expression levels (122). In this chapter, I evaluated the 

inflammatory stress-induced transcriptional regulation through CREBH. I identified the 

specific gene targets of CREBH under LPS treatment and the capacity CREBH in regulating 

transcription of these genes.  
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Material and Methods 

 

Quantitative real-time PCR 

For real-time PCR analysis,  reaction mixtures containing cDNA template, primers and 

SYBR Green PCR Master Mix (Applied Bio systems)were analyd   with 7500 Fast Real-time 

PCR System (Applied Bio systems, Carlsbad, CA). Fold changes of mRNA levels were 

determined after normalization to internal control Rplpo or β-actin mRNA Levels.  The 

sequences of real-time PCR primers used in this study are shown in Appendix B 

 

Luciferase reporter analysis 

For luciferase reporter analysis, we used the Dual-Luciferase Reporter Assay System 

(Promega Inc).  Huh7 cells were co-transfected with the reporter vectors and control reporter 

vector, and the vector expressing full-length CREBH.  Luciferase assay was performed at 24, 

36, 48 hr after transfection/infection. Data graphs were presented as normalization of Firefly, 

luciferase reporter activities to the control Renille luciferase activities.  

 

Chromatin immunoprecipitation (ChIP) Assay 

 

Mouse liver tissues from LPS injected animals were isolated, homogenized in 10ml 

Wheaton tissue grinder, and suspended in  NP-40 lysis buffer  (HEPES 20mM,ND40 0.5%, 

NaCl 10mM, MgCl2 3mM, Na4P2O7 10mM, NaF 1mM, sodium butyrate 10mM, sodium 

vanadate 10mM, DTT 1mM, spermidine 0.5mM, spermine 0.15mM). The nuclear pellets were 

isolated using two-step gradients of 1M and 0.5M sucrose. The morphological integrity 

of isolated nuclear fractions was assessed with DAPI staining. For the crosslinking procedure, 

formaldehyde was added directly to the pellet and the reaction was stopped with 200mM Tris-

HCL. Purified nuclear fractions were first sonicated 10 times for 10s and then subjected to 
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immunoprecipitation with the anti-CREBH antibody-coated recombinant protein G beads 

(Invitrogen, Grand Island, NE, USA). The amount of chromatin used was 3μg/μg antibody.  

Eluted DNA was subjected to quantitative RT-PCR as well as semi-quantitative PCR analysis.  

 

Quantitative Real-time PCR for ChIP 

Real-time PCR was carried out with SYBR-Green-based reagents (Invitrogen, express 

SYBR Green ER) using immunoprecipitated DNA-protein complex on an Applied Biosystems 

7500 Fast protocol. The relative quantities of immunoprecipitated DNA fragments were 

calculated using the comparative CT method. Resulting quantitation was determined after 

normalizing to antibody control. Results were compared to a standard curve generated by serial 

dilutions of input DNA. Data were derived from three independent amplifications. Error bars 

represent standard error of the mean. 

 

Statistics 

Experimental results are shown as mean ± SEM (for variation between animals or 

experiments).   All in vitro experiments  were repeated with biological triplicates at least three 

times independently. Mean values for biochemical data from the experimental groups were 

compared by paired or unpaired, 2-tailed Student’s t-tests. Multiple comparisons were 

compared with ANOVA and proceeded to ad hoc statistical test when necessary.  Statistical   

tests with P < 0.05 were considered significant. 
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Results 
 

CREBH regulates transcription of the genes involved in TG metabolism under the 

endotoxin challenge.  

Previously, we demonstrated that Crebh null mice displayed elevated levels of serum 

and hepatic TG under the atherogenic high-fat diet (72). To understand the genetic basis 

underlying the lipid phenotypes observed with the CrebH null mice, we performed quantitative 

real-time PCR (qRT-PCR)  with total liver mRNA from the CrebH null and wild-type control 

mice fed on normal chow but injected with either vehicle PBS or LPS. Through the qRT-PCR 

analysis, we have identified a group of lipid metabolism-associated genes were upregulated by 

LPS treatment (Fig 17A and 17B). Most of the metabolic genes, such as ApoA-IV, ApoA5, 

ApoC2, and ApoB, we investigated showed changes in expression upon LPS treatment. 

However, expression levels of these genes, except ApoA-IV, were only marginally affected by 

CREBH deletion. In case of Apo A-IV, the mRNA levels under CrebH null condition were 

significantly lower, compared to the wild-type mice (Fig 18A). At the protein level, hepatic 

Apo A-IV levels were elevated in wild type mice injected with LPS. In contrast, levels of Apo 

A-IV in the livers of CrebH null mice were lower than that of wild-type control mice (Fig 18B). 

Moreover, the levels of serum ApoA-IV in the CrebH null mice were significantly lower than 

those in the wild-type control mice (Fig 18C). 

 

 

 

 



70 

 

 

CREBH regulates expression of the genes involved in the pro-inflammatory response to 

endotoxin challenge. 

            Previously, the CREBH transcription factor has been shown to be associated with 

transcription of the genes encoding acute phase response proteins and hepcidin, a gene 

associated with iron metabolism (123). Bearing this in mind, I investigated the role of CREBH 

in regulating expression of the genes involved in acute inflammation under the LPS challenge. 

qRT-PCR analysis with the total RNA from the CrebH null and wild-type control mouse livers 

showed that levels of IL-6 mRNA were significantly decreased in the liver of CrebH null mice, 

compared to that of the control mice, upon LPS challenge (Fig 17C). Moreover, expression of 

the genes encoding the chemokines CCL2 and RANTES were also decreased in the CrebH null 

mice in the presence or absence of LPS challenge (Fig 17C). 

            In the liver, IL-6 mRNA levels can be contributed by different liver cell populations, 

such as Kupffer cells, hepatocytes, and hepatic stellate cells. We tested whether CREBH, a 

hepatocyte-specific transcription factor, directly regulates IL-6 transcription in hepatocytes. In 

order to answer this key question, we evaluated IL-6 mRNA levels in the primary hepatocytes 

isolated from CrebH null and wild-type mice in response to LPS challenge.  As shown in (Fig 

19B), IL-6 mRNA levels were abrogated in CrebH null mice (Fig 19B). This observation is 

consistent with our analysis with whole liver mRNA. Hence, our data suggested that CREBH 

transcription factor has a major role in transcription of IL-6 gene in the liver hepatocytes under 

LPS treatment. 
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Figure 17. CREBH transcription profile under LPS treatment. 

Total RNAs were isolated from liver tissues of the CrebH null and wild-type control mice under 

the normal chow diet after LPS (2μg/gm body weight) injection  and subjected to quantitative 

real-time RT-PCR analysis of expression of the genes involved in apolipoproteins (A), lipid and 

glucose metabolism (B), and inflammation (C). Expression values were normalized to Rplpo or 

β-actin mRNA levels. Fold changes of mRNA levels are shown by comparing to one of the 

control mouse under the normal chow diet. Each bar denotes the mean ± SEM (n=3). * P<0.05; 

** P<0.01 
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Figure 18. LPS injection increases hepatic Apo A-IV levels in liver but not in serum. 

(A) mRNA levels of Apo A-IV gene transcription from primary hepatocytes isolated 

from wild type and CrebH null mice under the normal chow diet treated with LPS 

(100ng//ml).Western blot analysis of wild type and CrebH null mice injected with LPS 

(2μg/gm body weight) for 18hr displaying Apo A-IV protein levels in liver (B) and in 

serum (C) Each bar denotes the mean ± SEM (n=3). * P<0.05; ** P<0.01 
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CREBH binds to the Apo A-IV and IL-6 gene promoters and is involved in transcription 

of these genes. 

To determine whether the transcriptional down-regulation observed for IL-6 and Apo 

A-IV in our qRT PCR studies were direct effects of CREBH binding, we performed ChIP 

experiments to test the potential of CREBH in binding to the promoter regions of the IL-6 and 

Apo A-IV genes. We performed endogenous ChIP analysis on whole liver tissues challenged 

with LPS. The ChIP analysis indicated that CREBH can bind to the promoter regions of the 

genes encoding Apo A-IV (Fig 19A and B). Further, we confirm that under Myd88 null 

condition binding of CREBH was diminished with LPS treatment, thus further confirming that 

TLR4-mediated CREBH activation is necessary for Apo A-IV transcriptional activation (Fig 

19D and 19E). Similarly, treatment with LPS leads to elevated binding of CREBH to the IL-6 

promoter region (Fig 20E) 

Next, we confirmed the transcriptional role of CREBH in gene transcription of Apo A-

IV and IL-6 by gene expression reporter assays Huh7 cells were co-transfected with the vector 

expressing full-length CREBH and the vector expressing Apo A-IV or IL-6 luciferase reporter.  

Expression of CREBH increased transcription of Apo A-IV genes, as indicated by high levels 

of luciferase activity driven by the Apo A-IV gene promoter (Fig 19C). This increase was almost 

8-10 folds, compared to reporter control. Further, I determined the effects of CREBH 

transcription activity on Apo A-IV gene promoter at different time points ranging from 24, 36 

to 48hr. Apparently, CREBH exerted its strongest transcriptional activity in driving the Apo A-

IV promoter at 36 hr post the plasmid transfection (Fig 19C). 

In case of IL-6 reporter assay, we observed the considerable basal level of IL-6 gene 

transcription without CREBH overexpression (Fig 20C-D). The basal level of IL-6 reporter 

activity may be due to the contribution of endogenous NF-κB transcription activity triggered 
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by plasmid transfection and expression. Consistently, overexpression of CREBH and IL-6 

reporter displayed 1.5-2 fold increase in IL6 reporter activity over the endogenous IL-6 reporter 

activity. In order to determine the exact effect of CREBH on IL-6 transcription without any 

contribution from NF-κB, I used IL-6 reporter defective for NF-κB transcription factor binding 

site (Fig 20C). Under NF-κB defective IL-6 reporter overexpression, CREBH overexpression 

displayed a higher level of activity in increasing IL6 reporter activity (Fig 20C-D). This result 

confirmed the direct role of CREBH transcription factor in the IL-6 promoter. Additionally, I 

also tested whether CREBH interacts with NF-kB transcription factor for IL-6 transcription. I 

observed that co-expression of CREBH and P65 subunit of NF-κB led to a reduction in IL-6 

reporter activity, compared to P65 subunit alone (Fig 20C), suggesting that CREBH may 

compete NF-κB in activating IL6 promoter, an interesting question to be evaluated in the 

future.  
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Figure 18. CREBH binds to Apo A-IV promoter under LPS treatment and this 

binding is TLR4 signaling dependent. 

 ChIP analysis of CREBH-binding activity to the promoter regions of the Apo A-

IV. Chromatin isolated from the wild type mouse liver were subjected to 

immuoprecipitation. PCR was performed to identify potential CREBH-binding 

regions in the Apo A-IV promoter. Mock ChIP with control antibody was included 

as a control (HA). The PCR reactions with the genomic DNA isolated from 

sonicated cell lysates were included as positive controls. (A) Semi-quantitative 

ChIP analysis of wild type mouse injected with LPS (2μg/gm body weight) (B) 

quantitative PCR analysis of LPS injected liver tissue C) Luciferase activity of 

CREBH at Apo A-IV gene promoter in Huh7 cells infected with full length human 

CREBH plasmid along with Apo A-IV reporter. (D) ChiP analysis showing 

CREBH binding to Apo A-IV in wild type and Myd88 null mice. (E) Semi-

quantitative analysis of wild type and Myd88 null liver samples. Each bar denotes 

the mean ± SEM (n=3). * P<0.05; ** P<0.01 
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Discussion 
 

 

Figure 19.  CREBH binds to IL-6 promoter under LPS treatment and this binding is 

TLR4 signaling dependent. 
Levels of IL-6 in wild type and CREBH null mice injected with LPS (2μg/gm body weight) in 

serum (A) and mRNA levels of IL-6 in primary hepatocytes(B). ChIP analysis of CREBH-binding 

activity to the promoter regions of the Apo A4. Luciferase activity of CREBH transcription factor 

at IL-6 promoter (D) transcriptional activity of CREBH at IL-6 promoter along with NF-κB 

transcription factor. (C). (E) ChIP analysis of CREBH binding activity to the promoter region of 

IL-6. Chromatin isolated from the wild type mouse liver were subjected to immuoprecipitation . 

PCR was performed to identify potential CREBH-binding regions in the IL-6 gene promoter. Mock 

ChIP with control antibody was included as a negative control (HA). The PCR reactions with the 

genomic DNA isolated from sonicated cell lysates were included as positive controls. Each bar 

denotes the mean ± SEM (n=3). * P<0.05; ** P<0.01 
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Discussion 

 

As a liver-specific transcription factor, CREBH regulates an array of genes associated 

with TG and lipoprotein metabolism (72). The impact of CREBH on apolipoprotein had been 

proved previously (124). To further exploit the regulatory impact of CREBH on apolipoprotein 

metabolism, we have investigated the mechanism through which endotoxins and innate 

immunity regulate Apo A-IV biosynthesis. Hepatic levels of Apo A-IV elevated upon LPS 

injection, and it was abrogated with the loss of CREBH from mouse liver. It has been suggested 

that there are two cis-acting elements on the Apo A-IV promoter bound by CREBH transcription 

factor that controls the transcription of Apo A-IV (124).  Previously it had been described that 

Apo A-IV and Apo A-V are acute phase proteins in mouse HDL (125). The increase in 

apolipoproteins level to inflammation is a well-documented response to inflammatory stimuli. 

There is a prevailing theory that immune cell produced IL-6 can stimulate hepatocytes 

to produce acute phase response proteins. CREBH in hepatocytes was previously reported to 

be involved in acute phase response gene transcriptions (87). Production and secretion of IL-6 

are paramount in injuries. Any damage will elicit immune reaction resulting in IL-6 secretion 

in circulation, which eventually reach the liver and trigger an acute phase response. In case of 

liver injuries, it is thought that the endogenous immune cells in the liver are responsible for IL-

6 production (126). It has been demonstrated that hepatocytes play an important role in IL-6 

production since selective inactivation of NF-κB in hepatocytes caused abrogated production 

of IL-6 (127). Our study has shown for the first time that CREBH transcription factor is 

involved in IL-6 production from hepatocytes. Bioinformatics data points at two potential 

CREBH binding sites at IL-6 gene promoter, exact location of these sites are yet to be 

confirmed  Surprisingly potential binding sites of CREBH overlaps with another transcription 

factor binding site CEBP/β. CEBP/β has been shown to be involved in inflammatory gene 

transcription along with NF-κB. This finding perhaps explains the decrease in IL-6 reporter 
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activity when CREBH co-transfected with the P65 subunit of NF-κB, since NF-κB, factor 

requires CEBP/β for its transcription activity of IL-6. This mechanism can be a potential way 

to control the excessive inflammatory response to incoming endotoxins in the liver. My 

reporter assay with CREBH and IL6 promoter revealed some of the interesting facts about the 

regulation of inflammation by hepatocytes. Since hepatocytes are the first responder in liver 

against exposure to antigens from portal blood flow, they need to maintain low levels of 

inflammatory activity in order maintain the tolerance to those antigens. My study suggested 

that CREBH is involved in basal or low levels of inflammatory activity. Exposure to high levels 

of endotoxins or inflammatory stimuli may lead to CREBH competition with classical 

inflammatory transcription factors like NF-κB, CEBP/β, and AP1, an intriguing question to be 

elucidated in the future.  

Another important observation from my experiments is the differential behavior of 

CREBH on activating its target genes. My study unveiled how CREBH transcription activity 

was modulated based on the types of stress. Under endotoxin-mediated CREBH activation, 

unlike its previously enlisted genes under the atherogenic high-fat diet (AHF), CREBH 

selectively activates transcription of Apo A-IV and IL-6. Notably, under the metabolic stress, 

activation of CREBH has no effect on driving expression of IL-6 (data not shown). My study 

suggested that CREBH has an ability to respond to various stress and control an array of gene 

expression as per the stress requirement. 
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CHAPTER 5: Delineating the animal phenotypes caused by 

CREBH deletion 

 
Summary  
 

IL-6 is considered as pro-inflammatory cytokine and one of the immediate responders 

to inflammation. Recent studies suggested that IL-6 might be involved in dampening the 

immune response through suppressing the production of TNFα and IL-1β (128). A population 

study of obese and insulin resistant individuals pointed at the correlation between increase 

serum levels of IL-6, obesity, and insulin resistance (129). Common polymorphism associated 

with IL-6 includes SNP in the IL-6 gene 174G to C substitution, has been independently 

associated with type-2 diabetes (130). IL-6 not only affects insulin signaling but also exerts its 

effect through manipulating the lipid metabolism in the body. IL-6 transgenic mice have low 

total cholesterol and TG levels (131). Treatment of Hep3B cells with recombinant IL-6 for 

24hr increased levels of the nuclear receptor PPARα while decreased levels of SREBP-1c. IL-

6 can increase the FA oxidation in rat muscles (132), and is targeted on hepatocytes to modulate 

apolipoprotein levels (133).  

Apo A-IV, as discussed in previous chapter, is a component of chylomicrons and HDL. 

The level of Apo A-IV can serve as a surrogate marker of lipid absorption and secretion (134). 

Approximately 25% of Apo A-IV is attached to HDL particles while the rest of is found as a 

free fraction of plasma. Apo A-IV synthesis can be triggered by glucocorticoids as well as 

insulin (135). Functions of Apo A-IV include: 1) activating lecithin: cholesterol 

acyltransferase, 2) modulating the activities lipoprotein lipase, and 3) cholesterol ester transfer 

protein, and 4) facilitating cholesterol removal from peripheral cells. 

Interestingly, recent studies suggested that Apo A-IV inhibits gastric emptying and 

serves as a satiety factor in response to ingestion of dietary fat (136), Two mutations in Apo 

A-IV protein, including Gln360 His and Thr347 Ser associated with lipid and lipoprotein 
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metabolism (137). Given the evidence that Apo A-IV may be involved in the inhibition of food 

intake following consumption of a high-fat meal, we examined the potential effects of these 

Apo A-IV defects on indices of body weight and food consumption.  

Previously, we demonstrated that CrebH null mice displayed reduced body weights, 

increase hepatic steatosis, reduction in abdominal fat, and hypertriglyceridemia under the 

atherogenic high-fat diet (137). Since in the previous chapter I described the roles of CREBH 

in transcriptional regulation of Apo A-IV and IL-6, here I explored the impact of CREBH 

deficiency in hepatic and serum TG, serum cholesterol, and energy consumption under the LPS 

challenge. 
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Material and Methods 
 

Measurement of mouse lipid metabolites 

Liver tissue and blood plasma samples were isolated from the mice under  normal chow 

diet after LPS (2μg/gm body weight) challenge for 18hr. To determine hepatic TG levels, 

approximately 100 mg  liver  tissue was  homogenized  in 500 μl PBS followed by 

centrifugation at 10000g for 5 min. The supernatant was mixed with 500 μl 10% Triton-100 in 

PBS for TG measurement using a commercial kit (Bioassay Systems,CA). Mouse hepatic TG 

levels were determined by normalization of liver tissue mass used for TG measurement.  Mouse   

blood plasma   samples were subjected to quantitative   analyses   of   TG using a commercial 

kit (Bioassay Systems, CA). 

 

Indirect calorimetry 

Each mouse was monitored individually in the computer-controlled OxyScan open 

circuit indirect calorimetry system (AccuScan Instruments, Columbus, OH) (Bishop and 

Walker 2004) with free access to food and water. Oxygen consumption (VO2) and carbon 

dioxide production (VCO2) were measured for 18 hr after PBS or LPS (2mg/kg body weight) 

challenge. Gas analyzers were calibrated to room air drawn through each chamber at a rate of 

0.5 L/minute. 

 

Steady-state measurements of plasma glucose after LPS injection 

Basal plasma glucose levels were measured at the termination of the experiment. 

Blood was sampled from the tail tip using a cut below the vertebrae. Glucose was measured 

by a hand-held glucose meter (One-Touch Ultra; Johnson and Johnson). 
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Body weight measurement and food consumption 

Wild-type and CrebH null mice were subjected to food intake measurement under the 

normal chow diet before LPS injection and 18hr after injection. Body weights were measured 

similarly before and after LPS injection. 
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Results 
 

Under LPS challenge, absence of CREBH causes elevation in serum TG levels. 

Since CREBH have been shown to be involved in manipulating levels of Apo A-IV, I 

tested the effect of CREBH on modulation Apo A-IV under LPS challenge. In order to reveal 

the pathophysiological effect of CREBH on TG levels, we measured hepatic, and serum TG 

levels in LPS-injected mice (Fig 22A). We found a comparable increase in TG levels post LPS 

injections in wild-type and CrebH null mice. We thus inferred that TLR4-CREBH- Apo A-IV 

axis pathway does not affect hepatic TG levels. Interestingly, CrebH null mice displayed 

elevated basal levels of serum TG, which were increased further after LPS injection (Fig 22B).   

 

CREBH plays an important role in endotoxin-mediated cholesterol modification. 

Apo A-IV is a component of chylomicrons as well as HDL cholesterols (138, 139). 

Transportation of TG from the intestine to tissues takes place through chylomicrons. Hence 

chylomicron, being an intestinal cargo transport, cannot be a good indicator for the function of 

CREBH- Apo A-IV regulatory axis. In order to reveal the impact of abrogated production of 

Apo A-IV in the absence of CREBH, we tested the serum cholesterol levels of CrebH null mice 

after LPS challenge. We observed that CrebH null mice had a slight increase in total 

cholesterol, HDL, and LDL upon LPS treatment (Fig 22C), while wild-type mice treated with 

LPS displayed a significant increase in total cholesterol and HDL levels, compared to control 

mice treated with vehicle (Fig 22D). CrebH null mice did not display such elevation upon LPS 

treatment. HDL levels of LPS-injected CrebH null mice were significantly lower than those of 

LPS-injected wild type mice. There was no significant difference in LDL/VLDL levels 

between CrebH null and their corresponding control mice (Fig 22E). 
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Figure 20. LPS mediated HDL cholesterol changes are dependent on TLR4-CREBH 

axis pathway. 

Serum and hepatic lipid profiles of mice challenged with LPS (2μg/gm body weight) for 

18hr (A) Serum TG levels in LPS injected mice (B) Hepatic TG levels in LPS injected 

mice. Serum levels of (C) Total cholesterol (D) HDL (E) LDL/VLDL in LPS injected 

mice. Each bar denotes the mean ± SEM (n=5). * P<0.05; ** P<0.01 
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LPS-challenged CrebH null mice displayed increased oxygen consumption and reduced 

blood glucose levels. 

Since we have observed a change in lipid and cholesterol profile of CrebH null mice 

after LPS challenge, we investigated the physiological processes that may contribute towards 

this phenotype. LPS injected mice displayed loss of body weight post LPS injection while PBS 

injected mice did not lose significant body weight post-treatment (Fig 23C). Even the food 

consumption is consistent with the body weight loss; LPS injected mice consumed less food 

while the PBS injected mice consumed about 2-3 gm more food over 18hr (Fig 23B). 

We also investigated the energy expenditure through indirect colorimetric analysis. The 

oxygen consumption for LPS-injected mice displayed lower energy expenditure compared to 

the PBS-injected mice (Fig 20A). The decrease in oxygen consumption levels in LPS injected 

mice is in part due to the inflammation induced caused by LPS action. Compared to the wild-

type animals, CrebH null mice exhibited relatively higher oxygen consumption. This may 

reflect a feedback regulation of impaired lipid profile in the CrebH null mice. Additionally, we 

measured plasma glucose levels of CrebH null and wild-type control mice upon LPS challenge. 

LPS injected mice CrebH null mice displayed low levels of blood glucose compared to wild-

type mice (Fig 23D).  
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Figure 21. LPS mediated physiological changes are comparable in wild type and CREBH 

null mice. 

Physiological parameter analysis in LPS (2μg/gm body weight) for 18hr injected mice (A) 

Energy expenditure in wild type and CREBU null mice displayed with VO2 levels. Food 

consumption (B) Body weights (C), Blood glucose levels (D) of CrebH null and wild-type 

control mice under the normal chow diet after LPS injection (2μg/gm body weight).  
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Discussion 
 

Lipid metabolism abnormalities are a critical issue in all sepsis patients. Plasma proteins 

like apolipoproteins are markedly modulated during sepsis. HDL is thought to play a protective 

role in sepsis and endotoxemia (140). Elevation in HDL levels is an important response 

mounted by the body to counter the sepsis or endotoxin levels. Elevation in HDL post LPS 

injections confirms the previous findings. Our study in this chapter reveals one of the 

underlying mechanisms explaining the role of the hepatic transcription factor CREBH in a 

protective response to endotoxins. TLR4 mediated activation of CREBH that in turn increases 

transcription of Apo A-IV, a component of HDL cholesterol, is a critical signaling pathway for 

against sepsis. Our study indicates that the loss of CREBH damaged the ability of the animal 

to mount an HDL protective response against LPS. Previously, the release of TNFα increase 

levels of TG and cholesterol in LPS injected mice (141). It had been shown CrebH null mice 

had lower levels of serum cholesterol and TG (72). The increase in TG and cholesterol after 

LPS injection is a well-documented effect known to carry through an unknown mechanism. 

Our study with CrebH null mice have shed light on the possible mechanism of elevation in 

serum TG levels post LPS treatment. The activities of inflammatory cytokines have been 

suggested to be the main cause in inhibiting energy accumulation. Inflammation induces energy 

expenditure and inhibits food intake. Study with the transgenic mouse has confirmed this 

notion (142). Injection of IL-10 shown to reduce the LPS-mediated changes in body weight 

and food consumption (142). Injection of LPS decreases not only glucose production but also 

glucose utilization. Studies showing that acute exposure to LPS inhibits glucose production, 

conflicting reports about the effect of LPS on glucose uptake (143, 144). We found a possible 

mechanism of elevation in HDL cholesterol after endotoxin treatment, which is mediated 

through CREBH in a TLR4-dependent manner. Our study with CrebH null mice showed that 

the null mice have elevated levels of serum TG after endotoxin treatment, which is consistent 
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with a previous study that CrebH null mice being more prone to steatosis under HFD (72). 

Therefore, high-fat diet may induce steatosis by increasing serum and hepatic TG through 

CREBH (145). Additionally, investigation of energy expenditure, food consumption, and body 

weights have revealed the inflammation-related effect on mouse energy metabolism. Study 

with physiological parameters mentioned above help us to confirm the effect of the TLR4-

CREBH-Apo A-IV regulatory axis on cholesterol and TG metabolism. 

Work in this chapter shows the effect of endotoxin on lipid metabolism through 

activation of CREBH. This effect, in presence of low endotoxin levels, could be an important 

response to bacterial infection.  
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CHAPTER 6: Conclusions and Significance 

 
In this study, we conclude that CREBH plays a critical role in connecting innate 

immunity with metabolic signaling during acute endotoxin challenge. This  conclusion is based 

on the following findings: (1) The endotoxin LPS is capable of inducing expression and 

cleavage of CREBH; (2) TRAF6; the E3 ligase under the TLR4 signaling pathway, is capable 

of interacting with full-length CREBH at ER membrane in hepatocytes; (3) CREBH activation 

requires posttranslational modification by TRAF6-medaited ubiquitination; (4) CREBH does 

not contribute to the transcroption of classical UPR or metabolic genes described previously 

but it is required for the APR associated genes by regulating transcription of the ApoA 

IV  and IL-6 genes; (5) CREBH binds to a promoter element in the ApoA IV  and IL-6  gene 

sequence; (6). CREBH upon binding to ApoA IV promoter regulates the levels of HDL and 

triglycerides. Our study sheds light on the intriguing mechanism behind the connection 

between immune signaling and hepatic metabolism in acute endotoxemia. We demonstrate that 

host response against the infection involves a highly sophisticated cross communication 

between innate immune signaling and transcription factor associated with hepatic metabolism. 

Our study confirms the widespread notion that immune signaling has a pronounced effect not 

only on innate immunity but also modulation of hepatic metabolism. Changes in metabolism 

are integral parts of the immune response against endotoxins, even bacterial infections. 

  Our studies also provide insight into the role of the posttranslational 

modification, namely ubiquitination, in CREBH cleavage and activation mechanism.The 

ability of the same protein to function differentially in response to the wide range of cues is 

attributed to post-translational modifications (146). It is known that TRAF6, an E3 ligase in 

the TLR4 signaling pathway, is involved in regulation and activation of downstream target 

molecules through ubiquitination (147). Our study expanded and confirmed the role of TRAF6 



90 

 

 

from being involved in inflammatory responses to be an essential player of metabolic 

signaling. The role of bacterial infection in metabolic disorders, such as atherosclerosis, is well 

studied. Inflammation is known to contribute significantly to the atherosclerotic process and is 

associated with proatherogenic changes in lipoprotein metabolism that was characterized by 

increased VLDL and reduced HDL levels (39).  Males with lower levels of HDL are more 

susceptible to inflammatory stimuli against endotoxin challenge (148). Considering the 

protective role of HDL, administration of recombinant high-density lipoprotein (rHDL) to 

prevent bacterial infection-associated pathogenesis inflammatory effects (149). Indeed, rHDL 

showed increased capacity of anti-inflammatory and anti-oxidant functions in the approaches 

related to prevention and treatment of atherosclerosis (150). 

The CREBH knockout mouse model provided a tool to validate the functional impact 

of LPS-induced, TLR4-mediated CREBH activation in the liver. CrebH null mice had 

abrogated levels of serum HDL, compare to their wild-type controls, upon relatively low-dose 

of LPS challenge. Our studies using the CrebH null mouse revealed that TLR4 mediated 

signaling is required to induce the acute phase response. Further studies to evaluate the 

response to a high dose of endotoxins or breakdown of TLR4-CREBH signaling axis under 

sepsis condition need to be pursued in the future. Alternatively, as we previously showed, 

CrebH null mice displayed hepatic steatosis and hyperlipidemia under the atherogenic high-fat 

(AHF) diet (72). Interestingly, CrebH null mice under the AHF diet produced low levels of 

serum HDL. This observation implied that the metabolic diet may also activate the same 

pathway mediated through TLRs, an intriguing question to be answered in the future.    

  Our studies at the intersection of immunity and metabolism leave out a lot of open 

questions. Although we can delineate the role of ubiquitination in CREBH cleavage and 

activation, investigating why K63-mediated polyubiquitinated CREBH imported more in the 

nucleus is an interesting question. Phosphorylation of CREBH should also be dogged further 
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since TRAF6-mediated ubiquitination is involved in kinase docking and recruitment (107). 

Lastly, usage of CREBH exogenous expression under sepsis or particular bacterial infections 

needs to be tested and validated. This study can potentially lead to a new therapeutic 

approaches, offering benign opportunity to treat the diseases. 

  To summarize, our study revealed a novel crosstalk pathway that involves TLR4 

signaling and CREBH. Low levels of endotoxin induce cleavage and activation of CREBH in 

the liver. Activated CREBH control the expression of the apolipoprotein A IV and the 

inflammatory cytokine IL-6. Targeting the expression of CREBH under disease conditions for 

therapeutic purposes may lead to novel approaches toward alleviating sepsis-related 

complications. 
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Figure 22. Working model for TLR4 mediated cleavage of CREBH and hepatic 

modulation under LPS treatment  

Working model of our hypothesis. LPS upon binding to TLR4 receptor induce activation 

of TL4 receptor signaling pathway. TRAF6 of TLR4 signaling pathway are involved in 

direct cross talk with CREBH for its subsequent activation through K63 ubiquitination. 

PI3K-Akt axis pathway triggered by TLR4 receptors also plays role, but the exact 

mechanism is unexplained. These signaling pathways leads to CREBH translocation and 

cleavage into active form of CREBH. Active CREBH translocates to nucleus inducing 

transcription of IL-6 and Apo A-IV involved in response to LPS stimulation. Apo A-IV 

modulates levels of serum HDL in TLR4-CREBH dependent manner, while TLR4-

CREBH also regulates low levels of IL-6 production from hepatocytes. 
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APPENDIX A 

 

• Mouse Il-6 promoter sequence:  
 

AGCTAGCTAAGATACAATGAGGTCCTTCTTCGATATCTTTATCTTCCATATACCATGAATCAAAGA

AACTTCAACAACATGAGGACTGCAACAGACCTTCAAGCCTCCTTGCATGACCTGGAAATGTTTTGG

GGTGTCCTGGCAGCAGTGGGATCAGCACTAACAGATAAGGGCAACTCTCACAGAGACTAAAGGTC

TTAACTAAGAAGATAGCCAAGAGACCACTGGGGAGAATGCAGAGAATAGGCTTGGACTTGGAAG

CCAAGATTGCTTGACAACAGACAGAAGATATTTCTGTACTTCACCCACTTTACCCACCTGGCAACT

CCTGGAAACAACTGCACAAAATTTGGAGGTGAACAAACCATTAGAAACAACTGGTCCTGACAAGA

CACAGGAAAAACAAGCAATATGCAACATTACTGTCTGTTGTCCAGGTTGGGTGCTGGGGGTGGGA

GAGGGAGTGTGTGTCTTTGTATGATCTGAAAAAACTCAGGTCAGAACATCTGTAGATCCTTACAGA

CATACAAAAGAATCCTAGCCTCTTATTCATGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG

TGTGTGTGTATGTGTGTGTCGTCTGTCATGCGCGCGTGCCTGCGTTTAAATAACATCAGCTTTAGCT

TCTCTTTCTCCTTATAAAACATTGTGAATTTCAGTTTTCTTTCCCATCAAGACATGCTCAAGTGCTG

AGTCACTTTTAAAGAAAAAAAAGAAGAGTGCTCATGCTTCTTAGGGCTAGCCTCAAGGATGACTT

AAGCACACTTTCCCCTTCCTAGTTGTGATTCTTTCGATGCTAAACGACGTCACATTGTGCAATCTTA

ATAAGGTTTCCAATCAGCCCCACCCACTCTGGCCCCACCCCCACCCTCCAACAAAGATTTTTATCA

AATGTGGGATTTTCCCATGAGTCTCAAAATTAGAGAGTTGACTCCTAATAAATATGAGACTGGGGA

TGTCTGTAGCTCATTCTGCTCTGGAGCCCACCAAGAACGATAGTCAATTCCAGAAACCGCTATGAA

GTTCCTCTCTGCAAGTAAGTGAAGGCAGTTCCTTGCCCTCTGGCGGAGCTATTGAGACTGTGAGAG

AGGAGTGTGAGGCAGAGAGCCAGCATTGTGGGTTGGCCAGCAGCCATCAGCTAGCAGCAGGCGCC

CAACTGTGCTATCTGCTCACTTGCCGGTTTTCCCTTTTCTCCACGCAGGAGACTTCCATCCAGTTGC

CTTCTTGGGACTGATGCTGGTGACAACCACGGCCTTCCCTACTTCACAAGTCCGGAGAGGAGACTT

CACAGAGGATACCACTCCCAACAGACCTGTCTATACCACTTCACAAGTCGGAGGCTTAATTACACA

TGTTCTCTGGGAAATCGTGGAAATGAGAAAAGAGGTGGGTAGGCTGTGAAACTGATGAAGACCCA

GTGTGGGCGTCCATTCATTCTCTTTGCTCTTGAATTAGAAATTCTCTGCTGGGATCTAGGGCCCTTA

GGA 

 

 

• Mouse APOA4 promoter sequence: 

GAGCTCGGGGAAGCTCGAGCCCTGTGGGGAGCCATGCAGTGCAGTGGGGCCCAGCAGAGGAGCA

CAGGTATCCAGCTGTCTTCAGTCCCATGAGACAAGCTAATCTGGACACATTTTAAAAAATGGATGG

CAACACAGCAAATCAGACTGGGCACAATCGTGGTCTATTCTAATGGCTGTCATTTCACAAATGCTG

TCTTGTGGATGGCAGTCAATGGGACAGTATGATGGATGCCCTCATCTAGTCCCTGGTGTGGTCCAC

TGAGGCTCCACACTGACCACAGCCTGGCATCTTGCCTGTGGATATCTGCTGCAATTGTATGTGTGG

ACACATGTGGAGTCTCAGTAGGAGACCTCAAAAAACTCACTTTCCACAGCAGTGTCTGTCACCTTC

TGTGGGGGGGGGGGGGGTGGGAAGAGAGAGAGAGGGAGAGAGGGAGAGAGAGAGGGAGAGAG

AGAGAGGAGTCACTCTGCATGGCTCTTGCATATGGCTGAGAACAGTGGGGCAGCAATCAAGCCTT

AGCCAGCCCTGCTCTCTCACTGTTGCCTCTAGCCCACTTGGTGACCCTCTGAGGGAAAGGGTGGCT

CTCCCTCTGCCACTGTCAGGAGAGGATCAGGTTCTCTCCTTCCTTCCTGTGCTGATGCACACAGAA

AATCATTGTCATTAATTTCAGCCCTTACTCTGGGCTAAGCTCCCTGCAGCCATCTCACAAGTACCAC

CTAATTTAATGTAACAAACTACACATTGTTCAAAAGAGAAACTTGAAGCTTCATGATAACTGGACG

GAGGTGAGCCAGCTTGACAGTCATGAGATACAAAGCCCACTATGATTAACTCCTTTGATCCTGGGT

TCTGATCCTCTCCTGACCAAGGGTATCACAGACACCTCAACTGAGGCTCACTGTCTGCTGCAGCCC

TATGCCATCTCTGGGCCTGGTACCATCTCTGTAGCTGATGTTCTGAGACAAAGTTCAGGTTGGTGG

CAGCTGTCAGACTGGTGGCTGTCTCACTGGGGTGGAAAGAGGAGACCTGGACCTTGTTCTCTCAGA

CTGGCACAGACCCAGGGCTGCCAACCGGGCCTCTGGGGCCTCAGTTCTGTTCAGGGACTCCCCTAG

ACTCCCAGGCTCATTCCTCCTGAAGTTTCTGGCTATCCTTCCCAGCCTCTTGGACAGGGTGGAGCCA

ACTCAAGAAGACTGCTTCCCTCTGCTGCCTGTGTGCTGTCAGCTTCCACGTTGTCTTAGGGCCACTA

AAGTCCAAGAGGCCTCCTGGGAGTGTGTCACCTTCCAACGTGGAGTCACACTGGGGAGGAGGCGG

GGAGAGAGGGCTGGAGGGGCTTTAAATGAGTGGCTGGCCTTGCCTGCAGTCAATCTGCACAGGGA

CACAGGTACACCGTTTCTTCTGACTCCGGGAAACATCCAGTGTAGCCGAAACTGTCCCAGCCCAGT

GAGGAGCCCAGGATGTTCCTGAAGGCTGCGGTGCTGACCCTGGCCCTGGTGGCCATCACCGGTGA
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GTAGACACTGCACCTGGGAGGCAGCAAGAAAAGCCAGCTCTAGAACTGGCGGACAGCTCGGGGT

GGCCTTGTATTTGCCCAGCAGCTCATAGGAGAACAGGCCTTTGTTCTCCCTGGCACTTGTGCTCCCT

GGGTTATCCCAGGGATGGGGCAATGGTTTGGGTTATCCAAACTCCAACATTATCCAGCTCAGAGCT

GAGGCAGAGGGGCCAGGAGAGAGATGATCCTCATAAAGTTGCCTTCTGCTCTCTCTCTGCCCAGGC

ACCCGGGCTGAGGTCACTTCGGACCAGGTGGCCAATGTGGTGTGGGATTACTTTACCCAGCTAAGC

AACAATGCCAAGGAGGCTGTAGAACAG 

 

Figure 23 Sequence of mouse il6 and APOA4 gene promoter retrieved using Genomatix 

software. 
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APPENDIX B 

 

ChIP Primer sequence: 

 

 

  

Negative 

control 

primer Forward CATGGATGTATGCTCCCGACT 

  Reverse GGAGCTCAGTCTGTGTCCAG 

Il6  Forward GGAGAGGAGTGTGTGTCTT 

  Reverse GCGCATGACAGACGACACA 

ApoA4 Forward CAGGGTCCAGCCAACTCAAG 

  Reverse CTCCACGTTCGAAGGTGACA 
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Name  Type Sequence  

Fgf21 

Forward GCTGCTGGAGGACGGTTACA 

Reverse CACAGGTCCCCAGGATGTTG 

Apoa4 

Forward AGCTTCCACGTTGTCTTAGGG 

Reverse TGTGACTCCACGTTGGAAGG 

Apob 

Forward CGTCTGGGCTCAAGATGAAGT 

Reverse CTGGACACCGCTGGAACTTT 

Bdh1 

Forward AGATGCGGCTAGTGGCAAAG 

Reverse CAGTTCCTTGACCCCAGCAT 

ApoA5 Forward TCCTCGCAGTGTTCGCAAG 

  Reverse GAAGCTGCCTTTCAGGTTCTC 

Apoc2 Forward CTCTGCTGGGCACGGTGCA  

  Reverse GCCGCCGAGCTTTTGCTGTAC 

ApoA1 Forward AGCTGAACCTGAATCTCCTG 

  Reverse CAGAGAGTCTACGTGTGT 

Pck1 Forward CTCAGCTGCATAACGGTCTG 

  Reverse CTTCAGCTTGCGGATGACAC 

Cpt1a Forward AGAATCTCATTGGCCACCAG 

  Reverse CAG GGTCTCACTCTCCTTGC 

Stat3 Forward  AACGTCAGCGACTCAAACTG 

  Reverse  CCCGTACCTGAAGACCAAGTT 

Saa Forward CGGGACATGGAGCAGAGG 

  Reverse TTGCCACTCCGGCCC 

Sap Forward TGTCTGGGATTGAGATCTTACAACA 

  Reverse CTGCCGCCTTGACCTCTTAC 

Tlr2 Forward CCATTGAGGGTACAGTCGTCG 

  Reverse GGCATTAAGTCTCCGGAATTATC 

Tlr 3 Forward AGCCTTATACCATAAAAG 

  Reverse CAGTTCAGAAAGAACGG 

Tlr 4 Forward GGAAGGACTATGTGATGTGAC 

  Reverse GCTCTTCTAGACCCATGAAATTGG 

Ccl2 Forward CACTCACCTGCTGCTACTCA 

. Reverse GCTTGGTGACAAAAACTACAGC 

Ccl3 Forward CCATATGGAGCTGACACCCC 

  Reverse GTCAGGAAAATGACACCTGGC 

Rplpo Forward AGACAAGGTGGGAGCCAGCGA 

  Reverse GCGGACACCCTCCAGAAAGCG 

Actin Forward  GATCTGGCACCACACCTTCT         

  Reverse GGGGTGTTGAAGGTCTCAAA 

Il6 Forward  CCCAATTTCCAATGCTCTCCT 

  Reverse TGAATTGGATGGTCTTGGTCC 

Tnfα Forward CCA ACG CCC TCC TGG CCA AC 

  Reverse GAG CAC GTA GTC GGG GCA GC 

Quantitative RT-PCR primer sequence: 
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Bacterial endotoxins can induce a variety of physiological changes in the host.  This 

effect is not only restricted to inflammatory changes but also comprises metabolic changes in 

the host body. Lipopolysaccharide (LPS), one of the key components of the bacterial cell walls, 

is capable of triggering host metabolic changes. Hyperlipidemia usually accompanies with high 

endotoxin levels as well as inflammation. Lipid metabolism disorders are one of the common 

hallmarks of a patient with sepsis or high levels of endotoxin through diet. Previously, we have 

identified an endoplasmic reticulum (ER) anchored liver-specific transcription factor CREBH 

(cAMP-responsive element-binding protein, hepatocyte-specific), which is activated by ER 

stress, inflammatory stimuli, and metabolic signals. Proinflammatory cytokines TNFα, IL6, 

and IL1β, bacterial endotoxin lipopolysaccharide, insulin signal, saturated fatty acids, nutrient 

starvation, or atherogenic high-fat (AHF) feeding, can all induce expression and/or activation 

of CREBH in the liver. In this study, we demonstrate that CREBH acts a key player in mounting 

an acute phase response against endotoxemia by modulating apolipoproteins. Endotoxin LPS 

shock in the body induces activation of the TLR4 signaling pathway in mouse liver. Upon 

triggering TLR4 signaling pathway, LPS stimulates cleavage and activation of CREBH 
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transcription factor LPS induces the interaction between CREBH and TNF receptor-associated 

factor 6 (TRAF6), an E3 ubiquitin ligase that plays a key role in mediating TLR signaling. 

While LPS-induced TRAF6-CREBH interaction relies on MyD88, TRAF6 mediates the 

ubiquitination of CREBH to facilitate CREBH activation upon LPS challenge. Functionally, 

CREBH directly activates expression of the gene encoding Apolipoprotein (Apo) A IV and IL6 

under LPS challenge, leading to modulation of high-density lipoprotein (HDL) in animal 

models. In summary, my study suggested that TLR-dependent, LPS-induced CREBH 

activation may represent a host defense response to bacterial endotoxin by modulating 

apolipoproteins. Targeting the expression of CREBH under disease condition may represent a 

novel approach towards alleviating the sepsis-related complications. 
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