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The aim of this study is to compare different robust regression methods in three main 
models of multiple linear regression and weighting multiple linear regression. An 
algorithm for weighting multiple linear regression by standard deviation and variance for 
combining different robust method is given in SAS along with an application. 
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Introduction 

Multiple linear regression (MLR) is a statistical technique for modeling the 

relationship between one continuous dependent variable from two or more 

independent variables. A typical data template is compiled in Table 1. 
 
 
Table 1. Data template for multiple linear regression 

 

i yi xi0 xi1 xi2 .. xip 

1 y1 1 x11 x12 … x1p 

2 y2 1 x21 x22 … x2p 

. . . . . 
 

. 

. . . . . 
 

. 

n yn 1 xn1 xn2 … xnp 
 

Sources: Ahmad et al., 2016a; 2016b 
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It is used when there are two or more independent variables and a single 

dependent variable where the equation below shows the model population 

information: 

 

 0 1 1 2 2 3 3i i i i k ki iy x x x L x              (1) 

 

where 

 
β

0
 is the intercept parameter, and

 β
0
, β

1
, β

2
,…, β

k−1
 are the parameters associated with k – 1 predictor variables. 

 

The dependent variable Y is written as a function of k independent variables, 

x
1
, x

2
, …, x

k
. A random error term is added to equation as to make the model more 

probabilistic rather than deterministic. The value of the coefficient β
i
 determines 

the contribution of the independent variables x
i
, and β

0
 is the y-intercept (Ahmad 

et al., 2016a; 2016b). The coefficients β
0
, β

1
, …, β

k
 are usually unknown because 

they represent population parameters. Below is the data presentation for multiple 

linear regression. A general linear model in matrix form can be defined by the 

following vectors and matrices as: 

 

 

11 12 1, 1 01 1

21 22 2, 1 12 2

1 2 , 1 1

1

1
, ,  and 

1

p

p

n n n p pn n

X X XY

X X XY

X X XY

 

 

 





 

      
      
         
      
      
         

Y X    

 

Robust Regression 

Robust regression is a method used when the distribution of the residual is not 

normally distributed and there are some outliers which affect the model (Susanti 

et al., 2014). It detects the outliers and provides better results (Chen, 2002). A 

common method of robust regression is the M estimate, introduced by Huber 

(1973), which is as efficient as Ordinary Least Square (OLS), and is considered 

the simplest approach. The Least Trimmed Squares (LTS) estimation was 

introduced by Rousseeuw (1984), and is a high breakdown value method. So, too, 

is the S estimation, another high breakdown value method with a higher statistical 
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efficiency than LTS estimation (Rousseeuw & Yohai, 1984). The S estimation is 

used to minimize the dispersion of residuals. The MM estimation, a special type 

of M estimation introduced by Yohai (1987), combines high breakdown value 

estimation and efficient estimation. The M estimation has a higher breakdown 

value and greater statistical efficiency than the S estimation. 

Calculation for linear Regression using SAS 

/* First do a simple linear regression */  

proc reg data = temp1;  

model y = x; 

run; 

 

/* Compute the absolute and squared residuals*/ 

data temp1.resid; 

set temp1.pred; 

absresid=abs(residual); 

sqresid=residual**2; 

 

/* Run a Regression with the absolute residuals and squared residuals */ 

/* to get estimated standard deviation and estimated variance */ 

proc reg data=temp1.resid; 

model absresid=x; 

output out=temp1.s_weights p=s_hat; 

 

model sqresid=x; 

output out=temp1.v_weights p=v_hat; 

 

/* Compute weight using standard deviation */ 

data temp1.s_weights; 

set temp1.s_weights; 

s_weight=1/(s_hat**2); 

label s_weight = "weights using absolute residuals"; 

 

/* Compute weight using variances */ 

data temp1.v_weights; 

set temp1.v_weights; 

v_weight=1/v_hat; 
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label v_weight = "weights using squared residuals"; 

 

/* Run a Weighted Least Square using estimated Standard Deviation */ 

/* and Variances */ 

proc reg data=temp1.s_weights;  

weight s_weight;  

model y = x;  

run; 

 

proc reg data=temp1.v_weights;  

weight v_weight;  

model y = x;  

run; 

 

/* Approach the Estimation Method Procedure for Robust Regression */ 

/* in this case, using the four methods LTS, M, MM and S-estimation */  

proc robustreg data = temp1 method =LTS; 

model y = x; 

run; 

An Illustration of a Medical Case 

A case study of triglycerides will illustrate the different methods for robust 

regression. 
 
 
Table 1. Description of the variables 

 
Variables  Code Description  

Triglycerides Y Triglycerides level of patients (mg/dl) 

Weight  X1 Weight (kg) 

Total Cholesterol X2 Total cholesterol of patients (mg/dl) 

Proconvertin X3 Proconvertin (%) 

Glucose X4 Glucose level of patients (mg/dl) 

HDL-Cholesterol X5 High density lipoprotein cholesterol (mg/dl) 

Hip X6 Hip circumference (cm) 

Insulin X7 Insulin level of patients (IU/ml) 

Lipid  X8 Taking lipid lowering medication (0 = no, 1= yes) 
 

Sources: Ahmad & Shafiq, 2013; Ahmad et al., 2014 
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Algorithm for Weighting Multiple Linear Model Regression by 

different Robust Regression Methods 

Title ‘Alternative Modeling on Weighting Multiple linear regression’; 

Data Medical; 

input  Y  X1  X2 X3  X4  X5  X6  X7  X8; 

Datalines; 

 

168 85.77 209 110 114 37 130.0 17 0 

304 58.98 228 111 153 33 105.5 28 1 

72 33.56 196 79 101 69 88.5 6 0 

119 49.00 281 117 95 38 104.2 10 1 

116 38.55 197 99 110 37 92.0 12 0 

87 44.91 184 131 100 45 100.5 18 0 

136 48.09 170 96 108 37 96.0 13 1 

78 69.43 163 89 111 39 103.0 8 0 

223 47.63 195 177 112 39 95.0 15 0 

200 55.35 218 108 131 31 104.0 33 1 

159 59.66 234 112 174 55 114.0 14 0 

181 68.97 262 152 108 44 114.5 20 1 

134 51.49 178 127 105 51 100.0 21 0 

162 39.69 248 135 92 63 93.0 9 1 

96 56.58 210 122 105 56 103.4 6 0 

117 63.48 252 125 99 70 104.2 10 0 

106 66.70 191 103 101 32 103.3 16 0 

120 74.19 238 135 142 50 113.5 14 1 

119 60.12 169 98 103 33 114.0 13 0 

116 36.60 221 113 88 60 94.3 11 1 

109 56.40 216 128 90 49 107.1 13 0 

105 35.15 157 114 88 35 95.0 12 0 

88 50.13 192 120 100 54 100.0 11 0 

241 56.49 206 137 148 79 113.0 14 1 

175 57.39 164 108 104 42 103.0 15 0 

146 43.00 209 116 93 64 97.0 13 0 

199 48.04 219 104 158 44 97.0 11 0 

85 41.28 171 92 86 64 95.4 5 0 

90 65.79 156 80 98 54 98.5 11 1 

87 56.90 247 128 95 57 106.3 9 0 

103 35.15 257 121 111 69 89.5 13 0 
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121 55.12 138 108 104 36 109.0 13 0 

223 57.17 176 112 121 38 114.0 32 0 

76 49.45 174 121 89 47 101.0 8 0 

151 44.46 213 93 116 45 99.0 10 1 

145 56.94 228 112 99 44 109.0 11 0 

196 44.00 193 107 95 31 96.5 12 0 

113 53.54 210 125 111 45 105.5 19 0 

113 35.83 157 100 92 55 95.0 13 0  

;  

Run; 

 

ods rtf file='result_ex1.rtf' ; 

 

/* This first step is to make the selection of the data that have a 

significant impact on triglyceride levels. The next step is to perform 

the procedure of modeling linear regression model and run the regression 

to get the residuals*/ 

proc reg data= Medical; 

model Y =  X1  X2 X3  X4  X5 X6  X7 X8;  

output out=work.pred r=residual; 

run; 

 

/* Compute the Absolute and Squared Residuals*/ 

data work.resid; 

set work.pred; 

absresid=abs(residual); 

sqresid=residual**2; 

 

/* Run a Regression Compute the Absolute and Squared Residuals to Get 

Estimated Standard Deviation and Variances*/ 

proc reg data=work.resid; 

model absresid=X1  X2 X3  X4  X5  X6  X7  X8; 

output out=work.s_weights p=s_hat; 

 

model sqresid=X1  X2 X3  X4  X5  X6  X7  X8; 

output out=work.v_weights p=v_hat; 

run; 
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/* Compute the Weight Using Estimated Standard Deviation and Variances*/ 

data work.s_weights; 

set work.s_weights; 

s_weight=1/(s_hat**2); 

label s_weight = "weights using absolute residuals"; 

 

data work.v_weights; 

set work.v_weights; 

v_weight=1/v_hat; 

label v_weight = "weights using squared residuals"; 

 

/* Do a Weighted Least Squares Using the Weight from the Estimated 

Standard Deviation*/ 

proc reg data=work.s_weights; 

weight s_weight; 

model Y = X1  X2 X3  X4  X5  X6  X7  X8; 

run; 

 

/* Do a Weighted Least Squares Using the Weight from the Estimated 

Variances*/ 

proc reg data=work.v_weights; 

weight v_weight; 

model Y = X1  X2 X3  X4  X5  X6  X7  X8; 

run;       

 

/* Do Robust Regression, a Four Estimation Method to compare which are 

LTS, M, MM and S-Estimation For Weighted Least Square using estimated 

Standard Deviation*/ 

proc robustreg method=LTS data=work.s_weights; 

weight s_weight; 

model Y = X1  X2 X3  X4  X5  X6  X7  X8 / diagnostics leverage;  

run; 

 

/* Do a Robust Regression, a Four Estimation Method compare which are 

LTS, M, MM and S-Estimation For Weighted Least Square using estimated 

Variances*/ 

proc robustreg method=LTS data=work.v_weights; 

weight v_weight; 
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model Y = X1  X2 X3  X4  X5  X6  X7  X8 / diagnostics leverage;  

run; 

Results 

Compiled in Table 2 are the results from the multiple regression analysis using 

the original data. Compiled in Table 3 are the results for the weighted least square 

by standard deviation and weighted least square by variance. The residual plots do 

not indicate any problem with the model, as can be seen in Figures 1-3. A normal 

distribution appears to fit the sample data fairly well. The plotted points form a 

reasonably straight line. In our case, the residual plots bounce randomly around 

the 0 line (residual vs. predicted value). This supports the reasonable assumption 

that the relationship is linear. 
 
 
Table 2. Parameter Estimates for Original Data 

 

Variables Parameter Estimate Standard Error P value 

Intercept -86.56544 102.93662 0.4070 

x1 -1.08598 0.95288 0.2634 

x2 -0.06448 0.21973 0.7712 

x3 0.61857 0.36615 0.1015 

x4 1.10882 0.33989 0.0028 

x5 -0.52289 0.57119 0.3673 

x6 0.81327 1.38022 0.5601 

x7 2.77339 1.25026 0.0343 

x8 22.40585 14.51449 0.1331 

 
 
Table 3. Parameter Estimates for Weighted Multiple Linear Regression 

 

 
Weighted Least Square MLR (SD) Weighted Least Square MLR (V) 

Variables 
Parameter 

Estimate 
Standard 

Error P value 
Parameter 

Estimate 
Standard 

Error P value 

Intercept -150.25787 90.05385 0.1056 -139.33900 90.60374 0.1353 

x1 -1.30694 0.59423 0.0357 -1.19482 0.68833 0.0936 

x2 -0.01586 0.17670 0.9291 0.05784 0.19730 0.7716 

x3 0.44460 0.35706 0.2227 0.36626 0.44451 0.4169 

x4 0.89106 0.38240 0.0267 1.01359 0.37253 0.0111 

x5 -0.23352 0.44853 0.6064 -0.24328 0.52342 0.6457 

x6 1.74405 1.10677 0.1256 1.35688 1.20057 0.2680 

x7 2.81731 1.29607 0.0377 3.17543 1.31793 0.0228 

x8 16.87506 10.34963 0.1135 15.78743 12.16151 0.2048 
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Figure 1. Fit Diagnostic for y 
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Figure 2. Fit Diagnostic for y-weighted least square using standard deviation 
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Figure 3. Fit Diagnostic for y-weighted least square using variances 

 

 
 

Shown in Table 2 are the variables x4 (p = 0.0028) and x7 (p = 0.0343) were 

statistically significant for the multiple regression analysis. Shown in Table 3 are 

the variables x1 (p = 0.0357), x4 (p = 0.0267) and x7 (p = 0.0377), which were 

statistically significant for weighted least square by standard deviation. The 

weighted least square by variance model shows the variable x4 (p = 0.0111) and x7 

(p = 0.0028). RMSE is the square root of the variance of the residuals. It indicates 

the absolute fit of the model to the data, which are to observe how close the data 

points are to the model predicted values. Lower value of RMSE indicated a better 

fit. The RMSE for weighted least square by variance (1.08) shows a lower value 

compared to the weighted least square standard deviation (1.31) and multiple 

regression (36.4). A higher R-squared value indicated how well the data fit the 

model and also indicates a better model. The model multiple regression analysis 

has R-squared of 0.62, weighted standard deviation multiple regression has R-

squared of 0.67 and weighted variance multiple regression has R-squared of 0.63. 
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Shown in Table 4 is a comparison of the models—multiple linear regression 

(model 1), weighted least square by standard deviation (model 2) and weighted 

least square by variance (model 3)—using the four different robust methods, 

which are M estimation, LTS estimation, S estimation and MM estimation. The 

LTS estimation has high R-squared in three of the models compared to other 

robust methods. The S estimation also has high R-squared compared to MM and 

M estimation. 
 
 
Table 4. Comparison of Model by using different Robust Method 
 

 
Model 1 Model 2 Model 3 

Method Outlier Leverage R2 Outlier Leverage R2 Outlier Leverage R2 

M 0.0000 0.2051 0.4662 0.0769 0.2051 0.5761 0.1622 0.1892 0.5090 

LTS 0.1282 0.2051 0.7289 0.1282 0.2051 0.7289 0.1351 0.1892 0.7032 

S 0.0000 0.2051 0.5230 0.0000 0.2051 0.6079 0.0000 0.1892 0.5232 

MM 0.0000 0.2051 0.4602 0.0000 0.2051 0.5843 0.0000 0.1892 0.5214 

 
 

From Figure 4-6 there is a detection of outlier in observations. They present 

a regression diagnostics plot (a plot of the standardized residuals of robust 

regression LTS versus the robust distance). As indicated in Figure 4 and 5, 

observation 37 is identified as outlier. The observations of 2, 9, 24, and 27 are 

identified as outlier and leverage. Observations 10, 18 and 33 are identified as 

leverage point. In Figure 6, observation 35 is identified as outlier, observations 2, 

8, 23, and 26 are identified as outlier and leverage, and observations 10, 17 and 27 

are identified as leverage. The leverage plots available in SAS software are 

considered useful and effective in detecting multicollinearity, non-linearity, 

significance of the slope, and outliers (Lockwood & Mackinnon, 1998).  
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Figure 4. Outlier and Leverage Diagnostic for Y using LTS (Model 1) 

 

 
 

 
 
Figure 5. Outlier and Leverage Diagnostic for Y using LTS (Model 2) 
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Figure 6. Outlier and Leverage Diagnostic for Y using LTS (Model 3) 

 

 

Conclusion 

SAS code for four different methods of robust regression was considered: M 

estimation, LTS estimation, S estimation, and MM estimation. They provide a 

better understanding of the weighted multiple linear regression and different 

robust method underlying of relative contributions. 
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