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Traditionally, quality control methodology is based on the assumption that serially-
generated data are independent and normally distributed. On the basis of these 
assumptions the operating characteristic (OC) function of the control chart is derived 
after setting the control limits. But in practice, many of the basic industrial variables do 

not satisfy both the assumptions and hence one may doubt the validity of the inferences 
drawn from the control charts. In this paper the power of the control chart for the mean is 
examined when both the assumptions of independence and normality are not tenable. The 
OC function is calculated and compared with the normal population. 
 
Keywords: Control chart, correlation, Edgeworth Series, standardized cumulants 

 

Introduction 

The quality control techniques currently used in industry are aimed at the 

detection of changes in the production process that result in quality defects. 

Quality control charts are currently the most widely-adopted control technique. 

Traditionally, quality control methodology is based on the assumption that 

serially-generated data are independent and normally distributed. Under these 

conditions, appropriate control limits for X̅ can be worked out from the tables 

available in standard textbooks on statistical quality control. But in practice, many 

of the basic industrial processes do not satisfy both the assumptions and hence 

one may doubt the validity of the inference drawn from the control charts. 

Alwan (1992) studied the effect of auto-correlation on control chart 

performance. Maragah and Woodall (1992) studied the effect of auto-correlation 

on the retrospective X-chart. Alwan and Roberts (1995) conducted investigations 

of control charts when the assumptions of normality, independence, or both are 

violated. Dar and Singh (2015) studied the effect of correlation on the power of 

https://doi.org/10.22237/jmasm/1493598300
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the X̅ chart. The purpose of this study is to consider the power of the control chart 

and the effect of correlation on Type-I error and the OC function, and also to 

consider relaxing the assumption of normality and considering the production 

process to follow a non-normal distribution represented by the first four terms of 

an Edgeworth series. 

Effect of Correlation on OC Function for Normal Case 

Suppose that the observations x1, x2,…, xn have a multivariate normal distribution 

with E(xi) = μ, V(xi) = σ2 and ρ is the common correlation coefficient between any 

xi and xj, i ≠ j. Then 
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where 

 

  2 1 1T n        (2) 

 

The power of the control chart is judged by its OC function. The control 

chart for the mean is set up by drawing the central line at the process average θ 

and the control limits at 
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where σ is the process standard deviation and n is the sample size. The OC 

function gives the probability that the control chart indicates the value θ as the 

process average, when it is actually not θ, but 
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where T2 is as defined in equation (2). 

The OC function is derived by integrating the distribution of the mean with 

θʹ as the process average between the limits of the control chart. 

For the normal population under correlated data, 
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The distribution of the sample mean is given by 
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The OC function is obtained after replacing θ in (4) by θʹ and integrating it 

between the limits of the control chart as 
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Making the transformation 
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and y – γ = t sequentially, the above integral simplifies to 
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The error of Type I gives the probability of searching for assignable causes when 

in fact there are no such causes. It is given by 
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After integrating above as in the case of the OC function we will get 
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The Effect of Non-Normally Correlated Data on OC 
Function 

For non-normal populations represented by the first four terms of an Edgeworth 

series, 
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where 3 1   and  4 2 3    are the standardized third and fourth cumulants, 

respectively. 

The distribution of the sample mean for correlated data can be derived, by 

following Gayen (1952), as 
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The OC function is obtained after replacing θ in equation (11) by θʹ and 

integrating it between the limits of the control chart, i.e. between  k n  . 

Integrating in the similar way as for the normal case, we get 
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where LN is given by equation (7). The other two terms of the OC function are 

given by 
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The Type-I error for the non-normal population works out to be 
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where α as defined by equation (9) is the Type-I error when the population is 

normal and dependent, and 
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is the correction for non-normality and dependencies in Type-I error. 
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Table 1. Value of Type-I error for normally and correlated data 

 

 
K = 2 

 
K = 3 

n ρ = 0.0 ρ = 0.2 ρ = 0.5 ρ = 0.8   ρ = 0.0 ρ = 0.2 ρ = 0.5 ρ = 0.8 

5 0.04550 0.13603 0.24821 0.32911 
 

0.00269 0.02534 0.08326 0.14323 

10 0.04550 0.23200 0.39377 0.48491 
 

0.00270 0.07300 0.20083 0.29480 

15 0.04550 0.30490 0.47950 0.56692   0.00270 0.12381 0.28884 0.39040 

 
 
Table 2. Value of OC function for normally and correlated data 

 

  
K = 2 

 
K = 3 

n γ ρ = 0.0 ρ = 0.2 ρ = 0.5 ρ = 0.8   ρ = 0.0 ρ = 0.2 ρ = 0.5 ρ = 0.8 

5 -2 0.9932 0.3050 0.1981 0.1514 
 

0.8413 0.5932 0.3942 0.2956 

 
-1 0.9997 0.6818 0.5458 0.4663 

 
0.9772 0.8911 0.7647 0.6717 

 
0 0.9999 0.8639 0.7517 0.6708 

 
0.9973 0.9746 0.9167 0.8567 

 
1 0.9997 0.6818 0.5458 0.4663 

 
0.9772 0.8911 0.7647 0.6717 

 
2 0.9932 0.3050 0.1981 0.1514 

 
0.8413 0.5932 0.3942 0.2956 

           
10 -2 0.5000 0.2098 0.1235 0.0930 

 
0.8413 0.4179 0.2350 0.1693 

 
-1 0.8400 0.5633 0.4095 0.3368 

 
0.9772 0.7835 0.5986 0.4987 

 
0 0.9545 0.7680 0.6062 0.5151 

 
0.9973 0.9270 0.7992 0.7052 

 
1 0.8400 0.5633 0.4095 0.3368 

 
0.9772 0.7835 0.5986 0.4987 

 
2 0.5000 0.2098 0.1235 0.0930 

 
0.8413 0.4179 0.2350 0.1693 

           
15 -2 0.5000 0.1638 0.0946 0.0717 

 
0.8413 0.3222 0.1727 0.1248 

 
-1 0.8400 0.4890 0.3409 0.2766 

 
0.9772 0.6995 0.5045 0.4124 

 
0 0.9545 0.6951 0.5205 0.4331 

 
0.9973 0.8762 0.7112 0.6096 

 
1 0.8400 0.4890 0.3409 0.2766 

 
0.9772 0.6995 0.5045 0.4124 

  2 0.5000 0.1638 0.0946 0.0717   0.8413 0.3222 0.1727 0.1248 

Results and Conclusion 

For normal populations with correlation coefficient ρ = 0, 0.2, 0.5, and 0.8, the 

values of Type-I error have been computed and given in Table 1 for k = 2, 3 and 

n = 5, 10, 15. Table 1 clearly indicates that the effect of correlation on Type-I 

error is quite substantial as the error increases with the increase in ρ. For example, 

for n = 5, k = 2, and ρ = 0, 0.2, 0.5, and 0.8, the corresponding values of Type-I 

error are 0.04550, 0.13605, 0.24821, and 0.32911. Though the effect goes on 

decreasing with increasing k, it still affects the value of Type-I error quite largely. 

For non-normal populations we have a similar result (Table 3) as the error goes on 

increasing with an increase in the value of ρ, λ3, and λ4. From Table 2, it is evident 

that the value of the OC are affected seriously as the correlation between the 

observations increases. For example, for ρ = 0, k = 2, n = 5, and γ = ±1, the value 
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of the OC is 0.9997, while for ρ = 0.2, 0.5, 0.8, k = 2, and n = 5, the value reduces 

to 0.6818, 0.5458, 0.4663. For other values of n = 10, 15, we have a similar 

results. The values of the OC for non-normal populations with k = 2, n = 5 and for 

different values of ρ = 0, 0.2, 0.5, 0.8 are given in Table 4. For ρ = 0 and 

(λ3, λ4) = (0, 0) we get tabulated values of Singh, Sankle, and Ahmad (2012), 

which are shown in Table 4. The effect of correlation on the OC function remains 

more or less of the same magnitude when we move from normal to non-normal 

populations. As is evident from the Table 4, for ρ = 0, λ3 = 0, λ4 = 0, and γ = ±1, 

the value of the OC function is 0.8400 while for ρ = 0.5, λ3 = 0.5, λ4 = 0.5, and 

γ = ±1, the corresponding value of the OC function is reduced to 0.3725. On 

changing λ3 (skewness), λ4 (kurtosis), or both at the same time, the value of the 

OC is affected. Therefore, it may be inferred that the violation in the assumptions 

of independence and normality have a serious effect on the control chart 

performance and it is advisable to take into account the dependence and non-

normality of the parent population while designing control charts. 
 
 
Table 3. Values of the Type-I error for non-normally correlated data 

 

   
K = 2 

 
K = 3 

ρ n λ3 λ4=0.0 λ4=0.5 λ4=1.0 λ4=2.0   λ4=0.0 λ4=0.2 λ4=0.5 λ4=0.8 

0.0 5 0.0 0.0455 0.0464 0.0473 0.0491 
 

0.0027 0.0034 0.0040 0.0054 

  
0.5 0.0442 0.0451 0.0459 0.0477 

 
0.0028 0.0035 0.0041 0.0055 

 
10 0.0 0.0455 0.0459 0.0464 0.0473 

 
0.0027 0.0030 0.0034 0.0040 

  
0.5 0.0448 0.0453 0.0457 0.0466 

 
0.0028 0.0031 0.0034 0.0041 

 
15 0.0 0.0455 0.0458 0.0461 0.0467 

 
0.0027 0.0029 0.0031 0.0036 

  
0.5 0.0451 0.0454 0.0456 0.0462 

 
0.0027 0.0030 0.0032 0.0036 

   
         0.2 5 0.0 0.1360 0.1338 0.1315 0.1269 

 
0.0253 0.0275 0.0297 0.0341 

  
0.5 0.1349 0.1326 0.1303 0.1258 

 
0.0235 0.0257 0.0279 0.0323 

 
10 0.0 0.2320 0.2277 0.2234 0.2149 

 
0.0730 0.0734 0.0737 0.0744 

  
0.5 0.2332 0.2290 0.2247 0.2161 

 
0.0711 0.0715 0.0718 0.0725 

 
15 0.0 0.3049 0.2999 0.2950 0.2850 

 
0.1238 0.1226 0.1213 0.1188 

  
0.5 0.3073 0.3023 0.2973 0.2874 

 
0.1228 0.1215 0.1203 0.1178 

   
         0.5 5 0.0 0.2482 0.2384 0.2285 0.2088 

 
0.0833 0.0833 0.0833 0.0833 

  
0.5 0.2516 0.2418 0.2319 0.2122 

 
0.0794 0.0794 0.0794 0.0794 

 
10 0.0 0.3938 0.3814 0.3691 0.3445 

 
0.2008 0.1938 0.1867 0.1727 

  
0.5 0.4012 0.3889 0.3766 0.3519 

 
0.2020 0.1949 0.1879 0.1738 

 
15 0.0 0.4795 0.4673 0.4551 0.4307 

 
0.2888 0.2788 0.2687 0.2487 

  
0.5 0.4878 0.4756 0.4634 0.4390 

 
0.2933 0.2833 0.2732 0.2531 
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Table 3, continued. 

 

   
K = 2 

 
K = 3 

ρ n λ3 λ4=0.0 λ4=0.5 λ4=1.0 λ4=2.0   λ4=0.0 λ4=0.2 λ4=0.5 λ4=0.8 

0.8 5 0.0 0.3291 0.3118 0.2944 0.2598 
 

0.1432 0.1372 0.1312 0.1192 

  
0.5 0.3381 0.3208 0.3034 0.2688 

 
0.1411 0.1351 0.1291 0.1171 

 
10 0.0 0.4849 0.4662 0.4474 0.4099 

 
0.2948 0.2791 0.2634 0.2320 

  
0.5 0.4978 0.4790 0.4603 0.4228 

 
0.3020 0.2863 0.2706 0.2392 

 
15 0.0 0.5669 0.5494 0.5318 0.4967 

 
0.3904 0.3722 0.3541 0.3177 

    0.5 0.5799 0.5623 0.5447 0.5096   0.4013 0.3832 0.3650 0.3286 

 
 
Table 4. Values of OC function for non-normally correlated data 

 

  

(λ3, λ4) 

ρ γ (0.0,0.0) (0.0,0.5) (0.0,1.0) (0.0,2.0) (0.5,0.0) (0.5,0.5) (0.5,1.0) (0.5,2.0) 

0.0 -2 0.5000 0.5000 0.4999 0.4999 0.4850 0.4850 0.4849 0.4849 

 
-1 0.8400 0.8408 0.8417 0.8434 0.8396 0.8413 0.8430 0.8464 

 
0 0.9545 0.9540 0.9536 0.9527 0.9545 0.9536 0.9527 0.9509 

 
1 0.8400 0.8408 0.8417 0.8434 0.8404 0.8420 0.8437 0.8471 

 
2 0.5000 0.5000 0.4999 0.4999 0.5150 0.5149 0.5149 0.5148 

  
        0.2 -2 0.2098 0.2063 0.2028 0.1957 0.2022 0.1986 0.1951 0.1881 

 
-1 0.5633 0.5638 0.5643 0.5653 0.5633 0.5430 0.5435 0.5445 

 
0 0.7680 0.7723 0.7766 0.7851 0.7680 0.7723 0.7766 0.7851 

 
1 0.5633 0.5638 0.5643 0.5653 0.5633 0.5846 0.5851 0.5861 

 
2 0.2098 0.2063 0.2028 0.1957 0.1229 0.2139 0.2104 0.2033 

  
        0.5 -2 0.1235 0.1178 0.1120 0.1006 0.1229 0.1172 0.1115 0.1000 

 
-1 0.4095 0.4069 0.4042 0.3990 0.3752 0.3725 0.3699 0.3646 

 
0 0.6062 0.6186 0.6309 0.6555 0.6062 0.6186 0.6309 0.6555 

 
1 0.4095 0.4069 0.4042 0.3990 0.4439 0.4413 0.4386 0.4333 

 
2 0.1235 0.1178 0.1120 0.1006 0.1241 0.1183 0.1126 0.1012 

          0.8 -2 0.0930 0.0860 0.0790 0.0649 0.0968 0.0898 0.0828 0.0687 

 
-1 0.3368 0.3314 0.3260 0.3152 0.3314 0.3314 0.3260 0.3152 

 
0 0.5151 0.5338 0.5526 0.5901 0.5338 0.5338 0.5526 0.5901 

 
1 0.3368 0.3314 0.3260 0.3152 0.3314 0.3314 0.3260 0.3152 

  2 0.0930 0.0860 0.0790 0.0649 0.0860 0.0860 0.0790 0.0649 
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