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Variable importance measures based on discriminant analysis and multivariate analysis of 
variance are useful for identifying variables that discriminate between two groups in 
multivariate group designs. Variable importance measures are developed based on trimmed 
and Winsorized estimators for describing group differences in multivariate non-normal 

populations. 
 
Keywords: Variable importance, discriminant analysis, multivariate analysis of 
variance, trimmed estimators, assumption violations 

 

Introduction 

In educational and behavioral research studies where two groups (e.g., treatment 

versus control) are compared on a battery of outcome variables, testing for 

significant differences between the groups and identifying the relative importance 

of the variables that may discriminate between groups may be of interest. For 

example, Shih (2012) examined how Taiwanese junior high school students’ 

perfectionistic tendencies and achievement goals were related to their academic 

burnout versus work engagement. The differences between indicators of burnout 

versus engagement among students with different subtypes of perfectionism was 

also investigated. The contributions of perfectionistic tendencies to academic 

burnout and engagement were found to be far greater than those of achievement 

goals. 

Bogler (2002) also investigated differences between teachers with a high level 

of job satisfaction and those with low job satisfaction on occupational, leadership, 

and demographic characteristics. Teachers’ perception of their occupation and their 

principal’s transformational style were the most important characteristics that 

https://doi.org/10.22237/jmasm/1509494760
mailto:ttsajobi@ucalgary.ca
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discriminated between the two types of teachers. There are several reasons why it 

may be interesting to identifying the outcomes on which group differences exist. 

There may be limited research knowledge about which outcome(s) will be 

responsive to treatment, or little consensus about which outcome(s) is (are) relevant 

for behavioral or educational intervention. The intervention might be intended to 

have a multi-faceted effect, necessitating a research question that focuses on more 

than one outcome. 

Measures to identify the relative importance of outcomes that discriminate 

between two independent groups were developed based on descriptive discriminant 

analysis (DDA) and multivariate analysis of variance (MANOVA). They quantify 

the relative importance of a variable (or outcome) based on its contribution to 

grouping effects and discriminant function scores (Huberty & Wisenbaker, 1992; 

Thomas, 1997). DDA measures of variable importance identify one or more linear 

combinations of the variables that maximize group separation; they are based on 

functions of the discriminant function coefficients and include standardized 

discriminant function coefficients, discriminant ratio coefficients, and total 

discriminant ratio coefficients (Huberty & Wisenbaker, 1992; Thomas, 1992). The 

F-to-remove statistic, a stepwise procedure based on MANOVA, has also been 

recommended as a variable importance measure; it quantifies the importance of a 

variable based on its unique contribution to group separation beyond that 

contributed by the remaining study variables (Huberty, 1984; Huberty & 

Wisenbaker, 1992). Applications of these measures have appeared in several 

disciplines including behavioral psychology (Sperling, Schilling, Glosser, Tracy, 

& Asadi-Pooya, 2008), criminology (Eastman & Bunch, 2009), development of 

questionnaires (Richardson, 2007), and educational research (Holder, 2007; 

Curenton, McWey, & Bolen, 2009). 

However, DDA and MANOVA rest on the assumption of multivariate 

normality and covariance homogeneity, two assumptions which may not always be 

satisfied in practice. Normality of the outcome variables may not be a tenable 

assumption in behavioral or educational research investigations, which frequently 

exhibit multi-modal, skewed, or heavy-tailed distributions (Cressie & Whitford, 

1986; Micceri, 1989). As well, the treatment group may exhibit greater variability 

than the control group (Blair & Sawilowsky, 1993; Troendle, Blair, Rumsey, & 

Moke, 1997). Previous research has shown that measures of variable importance 

may result in incorrect rank ordering of a set of correlated variables when applied 

to non-normal data with heterogeneous covariances (McLachlan, 1992). Thus, 

departures from the assumption of multivariate normality may have serious 
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consequences for investigators interested in identifying the outcomes that explains 

the differences between two or more groups. 

Linear discriminant analysis procedures that are robust (i.e., insensitive) to 

departures from the assumption of multivariate normality have been proposed 

(Todorov, Neykov, & Neytchev, 1994) by replacing the conventional least-squares 

estimators of means and covariances with robust estimators, such as M-estimators 

(Croux & Dehon, 2001), minimum covariance determinant (MCD) estimators 

(Hubert & Van Driessen, 2004; Rousseeuw, 1984), minimum volume ellipsoid 

(MVE) estimators (Rousseeuw, 1984), and trimmed estimators (Ahmed & 

Lachenbruch, 1977; Gnanadesikan & Kettenring, 1972; Srivastava & Mudholkar, 

2001). However, their emphasis has been primarily on prediction and not on 

describing the variables that contribute to group separation in non-normal data. 

There has been limited investigation of robust variable importance measures for 

evaluating the relative importance of variables in multivariate non-normal data. 

Robust measures of variable importance are developed here in which 

conventional least squares (LS) estimates of the means and covariances are replaced 

by trimmed means and Winsorized covariance parameters based on coordinatewise 

trimming (CT) of the multivariate data. Trimmed means and Winsorized 

covariances possess good theoretical properties for heavy-tailed and skewed 

distributions, are computationally efficient, and straightforward to implement 

(Wilcox, 1994; Srivastava & Mudholkar, 2001). The sensitivity of the robust 

variable importance measures to departures from derivational assumptions and 

other data-analytic characteristics are investigated using Monte Carlo techniques. 

Relative Importance Measures based on Descriptive 
Discriminant Analysis 

Consider the two-group problem, although all of the procedures can be generalized 

to multi-group designs. Let yij be the p × 1 vector of observed measurements for 

the ith study participant (i = 1,..., nj) in the jth group (j = 1,…, J). Initially, assume 

yij ~ Np(μj, Σj), where μj and Σj are the population mean and covariance for the jth 

group and are estimated by ˆ
jμ  and ˆ

jΣ , respectively. For the linear DA procedure, 

the discriminant function coefficient vector is estimated by 

 

  1

1 2
ˆˆ ˆ ˆ a Σ μ μ   (1) 

 

where 
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The number of uncorrelated discriminant functions that separates G groups is equal 

to min(J – 1, p). 

In DDA, variable importance measures based on discriminant function 

coefficients can be used to rank variables according to their contributions to group 

separation (Huberty & Wisenbaker, 1992). The computation and implementation 

of these measures have been described in detail elsewhere (Sajobi, Lix, Clara, et al., 

2012), and are only briefly reviewed here. 

The standardized discriminant function coefficient (SDFC) is one commonly 

adopted variable importance measure. It quantifies the importance of a variable by 

taking into account the presence of other variables in the study. The SDFC for the 

kth variable, denoted by ˆ
ka , is 

 

 ˆ ˆ
k k ka a s    (3) 

 

where ˆ
ka  and sk are the corresponding estimated kth discriminant function 

coefficient and standard deviation, respectively. By placing a constraint on the 

discriminant function coefficients such that Tˆ ˆ 1Ea S a , where T is the transpose 

operator, ˆ
E

S Σ , and the coefficients range in value from -1 to +1. SDFCs can be 

positive or negative and the absolute magnitude determines relative importance. 

Although there have been arguments in favor of using SDFCs to measure variable 

importance (Rencher, 2002), they are known to be sensitive to variable correlations 

(Rencher, 2002). 

Discriminant ratio coefficients (DRCs) are sometimes recommended instead 

of SDFCs (Thomas, 1992; Thomas & Zumbo, 1996). DRCs measure the 

importance of a variable as a proportion of the group differences explained by the 

variable. The kth DRC is given by 

 

 
k k kq a f   (4) 

 

where fk is the kth structure coefficient, the correlation between the kth outcome 

variable and the discriminant function. DRCs generally range in value from zero to 

one, with larger values indicating greater importance. However, they can have 
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negative values; a large negative value may be indicative of collinearity or 

suppression (Thomas & Zumbo, 1996). In MANOVA, suppression occurs when a 

variable makes little or no direct contribution to group separation on its own but 

contributes indirectly through another variable. 

The F-to-remove statistic (Huberty & Wisenbaker, 1992) is obtained by 

conducting p MANOVA tests, each time removing one variable from the analysis. 

For the kth domain, the statistic is 

 

 
 

  
    

2

2

2

1 2 3

ˆ

ˆ

k kk

k

k kk

k a s
F

z z k a s



  

  (5) 

 

where k2 = (n1 + n2 – 2 – q), k3 = (n1 + n2)(n1 + n2) / n1n2, ˆ
ka  is the discriminant 

function coefficient for the kth domain, 
1z  and 

2z  are the group means for the 

discriminant function score corresponding to â , and s(kk) is the positive square root 

of the kth diagonal element of the inverse of E, the error sums of square and cross 

product matrix. F-to-remove statistics have a lower bound of zero, but no upper 

bound. Variable importance is assessed by the magnitude of F-to-remove-statistic, 

with the most important domain yielding the largest statistic. 

The total discriminant ratio coefficient (TDRC) for the kth variable is 
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where 

 

   
2

T

1 1

jn

ij j ij j

j i 

  E y y y y   (7) 

 

is the error sum of squares and cross product matrix, STkk is the (k, k)th element of 

ST, ST = T / (N – 1), T = H + E, 
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is the hypothesis sum of squares and cross product matrix, and T is the transpose 

operator. Like DRCs, the TDRCs can range in value from zero to one, with a larger 

value indicating greater relative importance. 

Robust Estimation 

In CT of multivariate data, each outcome variable is independently trimmed by 

removing a pre-specified proportion of the data at both of tails of the variable’s 

distribution. Let 
     1 2

j
jm jm n jm

y y y    denote the order statistics of the jth 

group for the mth (m = 1,…, p) outcome variable (Srivastava & Mudholkar, 2001). 

Define bj = [δnj], where δ represents the proportion of the observations to be 

trimmed, or censored, from each tail of the distribution and [x] denotes the integer 

less than or equal to x. When symmetric trimming is adopted, so that the same 

number of observations are removed from each tail of the distribution, the effective 

sample size for the jth group is fj = nj – 2bj. The trimmed mean for the jth group on 

the kth outcome variable is 

 

  
1

1 j j

j

n b

tjk i jk
i bj

y y
f



 

    (9) 

 

Define zijk as 
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Then 

 

 
1

1 jn

wjk ijk

ij

y z
n 

    (10) 

 

is the jth group Winsorized mean for the kth outcome variable. The Winsorized sum 

of squared deviations for the kth and lth outcome variable in the jth group is 
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1

jn

j ijk jk ijl jl

i

ss z z z z


     (11) 

 

and Sjw = (ssjk) is the estimated Winsorized sum of squares and cross product matrix. 

Given that CT estimators are derived by independently trimming each outcome 

variable (Wilcox, 1994; Maronna, Martin, & Yohai, 2006), they share similar 

robustness properties to univariate trimmed estimators.  Robust variable importance 

measures are derived by replacing the least squares means and covariances by 

trimmed means and Winsorized covariances of the data. 

Simulation Study 

A Monte Carlo study was used to evaluate the performance of measures of relative 

importance in rank ordering a set of correlated variables under a variety of data 

analytic conditions. Measures of relative importance investigated include (a) SDFC, 

(b) DRC, (c) FTR, and (d) TDRC. These were developed based on least squares 

and CT means and Winsorized covariances. All variable importance measures were 

investigated for the case of two independent groups. 

The conditions investigated were (a) number of outcome variables, (b) total 

sample size and equality/in equality of group sizes, (c) magnitude and pattern of 

variable correlation, (d) mean configuration, and (e) shape of the population 

distribution. The number of outcome variables was set at p = 4, 6, and 8. Similarly 

investigated numbers of outcome variables ranging from 4 to 10 were previously 

considered (LeBreton, Polyhart, & Ladd, 2004). Total sample sizes of N = 60, 90, 

140, and 200 were investigated. Although previous simulation studies for relative 

importance measures have primarily focused on equal group sizes (Finch & Laking, 

2008), unequal group sizes have also been shown to influence the size of 

discriminant function coefficients (Barön, 1991; He & Fung, 2000), and may 

influence the consistency of the measures in accurately rank ordering the variables. 

Therefore, both equal and unequal group size conditions were investigated. For 

n = 60, the group sizes were (n1, n2) = (30, 30) and (n1, n2) = (24, 36). For n = 90, 

they were (n1, n2) = (45, 45) and (n1, n2) = (36, 52). For n = 140, the group sizes 

were (n1, n2) = (70, 70) and (n1, n2) = (56, 84). For n = 2000, the group sizes were 

(n1, n2) = (100, 100) and (n1, n2) = (80, 120). These group sizes were chosen based 

on previous research to represent small to large degrees of group size imbalance 

(Barön, 1991; Sajobi, Lix, Laverty, & Li, 2011). 
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Previous investigations have shown that variable importance measures are 

sensitive to the magnitude of correlation among the outcome variables (Huberty & 

Wisenbaker, 1992; Thomas & Zumbo, 1996). Therefore, investigated here are 

different correlation structures and sizes of correlations: (a) Q1: an independent 

correlation structure with ρ = 0.0, (b) Q2: compound symmetric structure with 

ρ = 0.3, (c) Q3: compound symmetric structure with ρ = 0.6, (d) Q4: unstructured 

with average correlation among the off-diagonal elements of 0.3, and (e) Q5: 

unstructured with average correlation among the off-diagonal elements of 0.6. 

Previous research studies have investigated variable correlations ranging between 

0.1 and 0.8 (Tonidandel, LeBreton, & Johnson, 2009). 

The measures of relative importance were investigated when the data were 

both multivariate normal and non-normal. For the former, in which skewness (γ1) 

and kurtosis (γ2) values were equal to γ1 = 0 and γ2 = 0, respectively, pseudo-

random observation vectors Xij from a multivariate normal distribution with mean 

vector μj and covariance matrix Σj were generated using the RANNOR function in 

SAS (SAS Institute, 2008). A vector of p standard normal deviates, Rij, was 

transformed to a vector of multivariate observations via Xij = μj + LRij. The 

Cholesky decomposition was used to obtain L, an upper triangular matrix of 

dimension m satisfying the equality LTL = Σj. The measures were also considered 

when the data were sampled from populations with multivariate skewed and heavy-

tailed distributions. 

For non-normal distributions, two skewed distributions and two heavy-tailed 

distributions were investigated. In the former, a moderately skewed non-normal 

distribution with γ1 = 1.8 and γ2 = 5.9 (SK-I) and a largely skewed non-normal 

distribution with γ1 = 13.2 and γ2 = 42892.9 (SK-II) were investigated. Two heavy-

tailed non-normal distributions were also considered; the first is a moderately 

heavy-tailed distribution with γ1 = 0 and γ2 = 33 (HT-I), while the second 

distribution is a heavy-tailed non-normal distribution similar to a heavy-tailed 

Cauchy distribution for which γ1 and γ2 are undefined (HT-II). Field and Genton 

(2006) described a flexible family of multivariate non-normal distributions 

obtained by modifying their quantiles. The variables g and h, which control the 

magnitude of γ1 and γ2, are used to transform a standard normal random variate Rijk 

via 

 

 
 

2
exp 1

exp
2

ijk

ijk ijk

gR h
Y R

g

   
      

  (12) 
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Table 1. Values of μ1 selected for the Monte Carlo study 

 

# Variables Mean Pattern Mean Vector D2 

4 I (2.5,2,1.5,1) 13.50 
 II (1,0.75,0.5,0.25) 1.88 
 III (1.5,1,0.5,2) 7.50 
 IV (0.75,0.5,0.25,1) 1.88 

6 I (3.5,3,2.5,2,1.5,1) 34.75 
 II (1.25,1,0.75,0.5,0.5,0.25) 3.69 
 III (2,1.5,1,0.5,2.5,3) 22.75 
 IV (1,0.75,0.5,0.25,1.25,1.5) 5.69 

8 I (4.5,4,3.5,3,2.5,2,1.5,1) 71.00 
 II (2.5,2.25,2,1.75,1.5,1.25,1,0.75,0.5) 17.50 
 III (2.5,2,1.5,1,0.5,3,3.5,4) 51.00 

  IV (1.25,1,0.75,0.5,0.25,1.5,1.75, 2) 12.75 

 
 

when g = 0, this equation reduces to 

 

 2exp
2

ijk ijk ijk

h
Y R R

 
  
 

  (13) 

 

The g and h parameters provide a convenient approach to generate data from a wide 

range of multivariate non-normal distributions. When g = h = 0, the distribution is 

multivariate normal. The parameter h determines the heaviness of the tails of a 

distribution, while the parameter g controls the magnitude of skewness of the 

distribution. 

Four configurations of the variable means were selected for group 1 (Table 

1). Configurations I and II had a linearly decreasing mean trend across the variables 

for group 1, while configuration III and IV had a quadratic mean trend across the 

variables for group 1. In all cases, the mean vector for group 2 was the null vector. 

For robust variable importance measures, a 20% symmetric trimming rule was 

adopted as recommended by Wilcox (1994). All combinations of conditions were 

investigated for each procedure and each method of estimation, resulting in a total 

of 1200 combinations of simulation conditions with 10,000 replications for each 

combination. The Monte Carlo study was conducted using SAS/IML version 9.2 

(SAS Institute, 2008). 

To evaluate the ranking accuracy of each variable importance measure, the 

estimated rank ordering of variables in the data was compared to the population 

variable rankings, which were derived from the rank ordering the variables based 

on the magnitude differences in the population group means. Other methods for 
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generating the population variable ranking are described in the Appendix. Three 

indices were used to compare the ranking accuracy of these measures: (a) any-

variable correct ranking (ACR) percentage, (b) average all-variable correct ranking 

(ALLCR) percentage, and (c) average per-variable correct ranking (PCR) 

percentage. The average ACR rate is the percent of simulations in which at least 

one variable in the sample was ranked the same as the corresponding variable in 

the population. The average ALLCR is the percentage of simulations in which all 

variable in the sample was ranked the same as the population rank ordering of the 

variables. The average PCR percentage is the overall average percentage of 

simulations in which a variable in the sample had the same rank as the variable in 

the population. 

Results 

Described in Table 2 are the average ACR percentages for variable importance 

measures based on least squares and CT estimators by the type of distribution and 

mean configuration. For normally distributed data, the ACR percentage values for 

all importance measures increased as the magnitude of group separation increased. 

However, under large departures from a multivariate normal distribution, the 

magnitude of change in ACR percentage values were substantial for variable 

importance measures based on least squares estimation as the magnitude of group 

separation increased. 

For example when the data for group 1 were sampled from a population with 

a linear decreasing mean configuration (configuration I), the average ACR 

percentage values for DRCs based on least squares estimation under mean 

configuration I and II were 99.1% and 96.1%, respectively. When the data were 

sampled from a skewed distribution (SK-II), the average ACR percentage values 

for DRCs based on least squares estimation under mean configuration I and II were 

88.5% and 77.9%, respectively. The magnitude of change in ACR percentage 

values for the robust variable importance measures decreased as the amount of 

group separation increased. However, it was not substantially different irrespective 

of the population distribution. For example, the average ACR percentage values for 

the robust FTR under mean configurations III and IV were 97.15% and 95.22%, 

respectively when the data were sampled from normal distribution. 
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Table 2. Average percentage of any-variable correct ranking (ACR) for variable importance measures by population distribution 

and mean configuration 
 

  Least Squares Estimators  Robust Estimators 

Distribution Mean Configuration SDFC DRC FTR TDRC   SDFC DRC FTR TDRC 

Normal I 89.81 99.08 95.62 97.18  93.98 97.80 93.22 98.52 
 II 85.45 96.10 91.11 89.32  89.99 95.18 89.44 94.00 
 III 87.75 98.55 91.44 95.29  88.58 97.15 90.78 95.71 
 IV 84.47 96.70 87.49 88.61  85.31 95.22 87.26 89.99 

HT-I I 89.15 97.29 91.68 92.88  94.69 97.70 94.88 98.37 
 II 83.01 91.35 86.20 84.95  90.16 94.06 90.38 92.34 
 III 83.14 96.62 86.72 89.85  80.14 95.76 82.67 91.07 
 IV 81.22 92.52 83.27 83.79  78.97 92.08 80.32 85.18 

SK-I I 91.07 97.94 93.40 95.49  94.29 97.53 94.26 98.19 
 II 84.99 93.79 88.68 87.72  90.02 94.50 90.17 93.00 
 III 84.34 97.81 88.23 91.20  83.70 96.94 86.49 93.02 
 IV 82.22 94.38 84.84 85.68  81.47 93.49 83.05 87.14 

HT-II I 86.28 94.19 88.58 90.99  95.04 97.58 95.46 98.12 
 II 79.45 87.26 82.43 80.24  89.84 93.57 90.54 91.36 
 III 81.34 94.32 83.80 86.34  76.00 94.74 77.09 88.14 
 IV 78.11 87.67 79.46 79.38  74.80 88.87 75.57 81.89 

SK-II I 80.99 88.50 83.56 83.00  95.51 97.59 96.05 97.88 
 II 72.92 77.91 75.32 70.43  89.57 92.45 90.42 89.31 
 III 78.50 87.95 79.44 79.02  70.04 91.05 68.96 82.92 

  IV 74.17 79.54 74.82 72.85   71.63 85.52 71.36 78.88 
 

Note: See Table 1 for a description of mean configurations. SDFC = standardized discriminant function coefficient; DRC = discriminant ratio coefficient; 
FTR = F-to-remove statistic; TDRC = total discriminant ratio coefficient; HT-I = heavy-tailed distribution with γ1 = 0 and γ2 = 33; HT-II = a heavy-tailed distribution 

with γ1 = ∞ and γ2 = ∞; SK-I = skewed distribution with γ1 = 1.8 and γ2 = 5.9; SK-II = skewed distribution with γ1 = 13.2 and γ2 = 42892.9 
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Table 3. Average percentage of all-variable correct ranking (ALLCR) by population 

distribution and correlation structure 
 

 Mean 
Configuration 

Least Squares Estimators  Robust Estimators 

Distribution SDFC DRC FTR TDRC   SDFC DRC FTR TDRC 

Normal Independent 26.69 34.93 26.85 37.92  24.46 29.75 24.60 37.87 

 CS(0.3) 14.14 35.81 13.94 17.27  15.50 30.94 15.29 21.21 

 CS(0.6) 1.59 38.24 1.52 2.44  2.66 32.77 2.57 5.21 

 UN(0.3) 9.69 24.84 9.27 12.80  11.02 24.46 10.76 16.53 

 UN(0.6) 2.26 7.03 3.84 5.61  4.98 8.80 6.05 14.01 

HT-II Independent 14.74 16.38 14.76 20.65  23.78 27.53 23.86 33.41 

 CS(0.3) 10.02 18.24 9.99 12.04  11.61 28.05 11.56 15.62 

 CS(0.6) 2.91 23.09 2.86 3.34  3.23 27.38 3.18 4.91 

 UN(0.3) 9.40 16.52 9.20 11.01  11.27 19.77 11.13 14.99 

 UN(0.6) 3.78 6.46 4.91 5.71  5.10 6.18 5.45 10.38 

SK-II Independent 8.28 8.81 8.33 10.14  22.17 25.48 22.26 30.07 

 CS(0.3) 6.04 9.59 6.11 6.61  9.13 23.58 9.10 11.75 

 CS(0.6) 3.06 12.31 3.25 3.13  3.37 21.20 3.38 4.51 

 UN(0.3) 6.38 9.48 6.39 6.72  10.75 15.50 10.80 13.12 

  UN(0.6) 3.30 4.63 3.93 3.61   4.56 4.75 4.54 8.40 

 

Note: See Table 1 for a description of mean configurations. SDFC = standardized discriminant function 
coefficient; DRC = discriminant ratio coefficient; FTR = F-to-remove statistic; TDRC = total discriminant ratio 

coefficient; HT-II = a heavy-tailed distribution with γ1 = ∞ and γ2 = ∞; SK-II = skewed distribution with γ1 = 13.2 
and γ2 = 42892.9; CS(ρ) = compound symmetric correlation structure with ρ = 0.3; UN(ρ) = unstructured 

correlation with average off-diagonal correlation of ρ 

 
 

Compiled in Table 3 are the results for average ALLCR percentage values 

when the data were sampled from multivariate normal and non-normal distributions 

for independent, compound symmetric, and unstructured correlations. The average 

ALLCR percentage values for SDFC, TDRC, and FTR decreased as the magnitude 

of correlation among the variables increased, regardless of the population 

distributions, number of variables, or method of estimation. In contrast, the change 

in ALLCR percentage values for the DRCs based on least squares and robust 

estimators as the magnitude of correlation increased varied across correlation 

structures. For example, when the data were sampled from a population with 

compound symmetric correlation structure, the average ACR values for DRCs 

based on least squares estimators increased but there was negligible change in the 

average values of DRC based on robust estimators, as the magnitude of correlation 

increased from 0.0 to 0.6, when the data were sampled from a normal distribution. 

However, when the data were sampled from a population with an unstructured 

variable correlation, the decrease in average ALLCR values were more than 10%. 

Moreover, the magnitude of change in average ALLCR percentage values for the 

variable importance measures varied across population distribution and correlation 
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structure. The average ALLCR percentage values for each variable importance 

measure were largest when the data were sampled from a multivariate normal 

distribution but smallest under a multivariate skewed distribution, as the magnitude 

of correlation increased. For example, when the data were sampled from a normally 

distributed population, the average ALLCR percentage values for the FTR measure 

based on the least-squares method under independent and unstructured variable 

correlations (i.e. UN[0.6]) were 26.9% and 3.8%, respectively. However, under a 

SK-II distribution, average ALLCR percentage values were 8.3% and 3.9% when 

the data were sample from a population with independent and unstructured variable 

correlations, respectively. 

Moreover, when the data were sampled from a multivariate normal 

distribution, differences between the average ALLCR percentage values for 

variable importance measures based on least squares estimators and those based on 

robust estimators were not more than 6%, except for the TDRC measure. However, 

when the data were sampled from non-normal distributions, the robust variable 

importance measures resulted in substantially higher average ALLCR percentage 

values than the variable importance measures based on least squares estimators.  

For instance, when the data were sampled from a normal distribution with an 

independent correlation structure, the average ALLCR values for DRC based on 

least squares and robust estimators were 34.9% and 289.8%, respectively. But when 

the data were sampled from a population with a multivariate heavy-tailed non-

normal distribution (HT-II), the corresponding average PCR values were 16.4% 

and 27.5%, respectively. 

Depicted in Figure 1 are the average PCR for all the investigated measures by 

method of estimation, and total sample size. The analyses reveal the average PCR 

values for each variable importance measure were smallest when N = 50 and largest 

when N = 200, regardless of the population distribution and the method of 

estimation. The average PCR value for each variable importance measure increased 

as N increased, regardless of the method of estimation. Specifically, the DRC was 

most sensitive to changes in sample size when the data were sampled from a 

multivariate normal distribution. For example, for DRC based on least squares 

estimators and robust estimators, the change in average ACR percentage values 

were 20.6% and 22.70%, respectively, as N increased from 50 to 200. For other 

variable importance measures, the increase in average PCR percentage values were 

not more than 15% as N increased from 50 to 200. When the data were sampled 

from a highly skewed non-normal distribution, the average PCR values increased 

as N increased from 50 to 200, but the magnitude of change were not as large as 

under multivariate normal distribution. For example, as N increased from 50 to 200, 
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the change in average PCR values for the TDRC based on least squares estimators 

were 9.7% and 4.9% when the data were sampled from a multivariate normal and 

highly skewed distributions, respectively. For example, the change in average ACR 

values for the FTR measure based on robust and least squares estimators as n 

increased from 50 to 200 were 8.9% and 7.2%, respectively, when the data were 

sampled from a heavy-tailed distribution (Figure 1). 

The average PCR values for all the variable importance measures increased 

as p increased from 4 to 8 (Figure 2). There were negligible differences among the 

average PCR values of SDFC, DRC, and FTR procedures based on least squares 

and robust estimators when the data were sampled from a normal distribution. But 

the robust variable importance measures resulted in higher PCR values than 

measures based on least-squares estimators as p increased from 4 to 8, when the 

data were sampled from a highly skewed or heavy-tailed non-normal distribution. 
 
 

 
 
Figure 1. Average percentage of per-variable correct ranking (ACR) for variable 

importance measures by population distribution and total sample size 
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Figure 2. Average percentage of per-variable correct ranking (PCR) for variable 

importance measures by population distribution and number of variables 

 

Conclusion 

Robust measures of relative importance were developed based on trimmed means 

and Winsorized covariances for non-normal two-group multivariate data. The 

performance of these measures were investigated in a variety of data analytic 

conditions including multivariate non-normality, number of variables, sample size, 

magnitude of correlation, and mean configuration. Our findings suggest that 

variable importance measures based on coordinatewise trimmed means and 

Winsorized covariance estimators result in higher percentages of correct variable 

ranking than least-squares measures under moderate to strong departures from 

multivariate normality. Robust DRCs, which achieved the highest proportion of 

correctly ranked variables, were the least sensitive to group separation, variable 

correlation, and sample size, regardless of the distribution of the data. 

One criticism of trimmed estimators is that they may not perform well when 

sample size is small and the data are normally distributed (Wilcox, 1994). This 

study results suggest robust measures of relative importance performed equally 

well as measures based on least squares estimators under small sample size 
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conditions and when data are normally distributed. Hence, they can be adopted for 

rank ordering the variables regardless of the shape of the population distribution. 

The ability of a variable importance measure to correctly rank order a set of 

correlated variables in a simulation study may depend on the method for generating 

the population rank order of the variables. Although the variable importance 

measures described in this study may not be equally sensitive to choice of methods 

for generating population variable rankings (See Tables A1 and A2), one finding 

that is consistent across these methods is that the robust variable importance 

measures developed in this study resulted in higher correct ranking percentage 

values than variable importance measures based on least squares estimators 

regardless of the population ranking method. 

Although previous research investigations have shown that variable 

importance measures based on DDA and MANOVA are sensitive to non-normal 

data (Sajobi, Dansu, & Lix, 2013), adopting these measures for evaluating the 

relative importance of variables in non-normal data is likely to lead to incorrect 

conclusions about the study variables. Based on the findings, it is recommended 

robust variable importance measures should be adopted for rank ordering variables 

in studies that are likely to be characterized by non-normal data distributions. 

The limitations of this study should be noted. The simulation study focused 

on conditions in which group covariances were homogeneous. This may not be a 

reasonable assumption in all clinical studies; the treatment group may exhibit 

greater variability than the control group (Blair & Sawilowsky, 1993). The DRC is 

the only measure among the investigated measures that is designed to detect the 

presence of suppression effects among the variables (Thomas & Zumbo, 1996). 

Although, the presence of suppression effects among the variables can reduce the 

percentage of correctly rank variables, previous studies have suggested the 

exclusion of the suppressor variable from the relative importance analysis since it 

makes little direct contribution to group discrimination (Thomas, Hughes, & 

Zumbo, 1998; Ochieng & Zumbo, 2001). However, the exclusion of collinear or 

suppressor effects may also reduce statistical power and can affect the rank ordering 

of the study variables. In our simulation study, we ignored the presence of the 

suppression among the variables by ranking all the variables according to the signed 

DRC values. We must also reiterate that other importance measures are also may 

not always be robust to suppression effects among the variables. Moreover, the 

robust procedures described in this study are sensitive to strong variable 

correlations. This might be attributed to the coordinate-wise approach for trimming 

multivariate data. An alternative trimmed estimator is the maximum trimmed 

likelihood estimators (MTLE), which trims the log-likelihood function of the 
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multivariate data (Bednarski & Clarke, 1993). Future investigations might examine 

the development of variable importance measures based on MTLE for describing 

group separation in multivariate data. 

Another criticism of variable importance measures is that the absolute 

importance of a set of correlated outcome variables is derived based on estimates 

of variable importance indices obtained from sample data and do not account for 

sampling variations around these estimates. There are currently limited 

recommendations to guide researchers about contextual relevance/meaning of the 

rank ordering of outcome variables from. Rules of thumb and descriptive analyses 

of relative importance are being used. For example, Dalgleish (1994) suggested that 

variables with structure coefficients above 0.4 should be considered as important. 

But this approach fails to account for sampling error in the observed data. More 

formal parametric methods that assess the statistical significance of the estimated 

variable importance index have been proposed (Rao, 1970; Huberty & Wisenbaker, 

1992). 

Although the variable importance measures developed in this study are robust 

to non-normal data, other variable importance measures that do not assume 

multivariate normality have been developed based on logistic regression model. 

This includes relative weights (Azen & Traxel, 2009; Tonidandel & LeBreton, 

2010), dominance analysis (Azen & Budescu, 2003), standardized logistic 

regression coefficients, and Pratt’s index for logistic regression (Thomas, Zumbo, 

Zhu, & Dutta, 2008). The relative weights are derived from an orthogonal 

transformation of the predictor variables, whereas the dominance analysis method 

relies on regression model’s pseudo coefficient of determination (i.e., model R2) to 

evaluate variable importance. Although some of these measures (e.g., rescaled 

relative weights) may perform better under some conditions (e.g., strong variable 

correlations), there has not been a comparison of the performance of these logistic 

regression-based variable importance measures under a broad range of data analytic 

conditions. 

There are additional considerations for conducting relative importance 

analysis. The conclusion that one outcome variable is more important than another 

outcome variable depends on the set of variables under investigation. Hence, 

changing the mix of variables included in a study could change a researcher’s 

conclusions about variable importance. The choice of study variables and the 

grouping variables are assumed to have been determined a priori. However, 

conclusions about a variable’s importance as estimated from a sample may not be 

generalizable to other populations because it does not account for sampling 

variability in the data. An internal or external validation of the ranks should also be 
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considered, in order to assess the generalizability of the results. For example, a 

split-sample validation or resampling based methods such as bootstrap may be 

adopted to examine statistical significance of a variable’s importance. 

In conclusion, robust measures for describing the relative importance of 

investigated set of correlated variables for group discrimination in normal and non-

normal data were developed. Measures of relative importance have a number of 

applications (Baek et al., 2008; Johnson & LeBreton, 2004). They can be used to 

build a parsimonious statistical model for use in further research or to choose a 

subset of variables on which to focus in clinical investigations. 
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Appendix 

Although this simulation study defined the rank ordering of variables based on the 

differences amongst population means, there are other methods for defining the 

population rank ordering, including the population discriminant function 

coefficients and the population Mahalanobis distance (M-distance). In the former, 

the rank ordering of variables is based on the population discriminant function 

coefficients derived from the population covariance matrix and group means. 

Consider two population groups (A and B) measured on p outcome variables, where 

μ1 and μ2 denote the p × 1 vector of means for the population groups A and group 

B, respectively. 

Population Discriminant Function Coefficients 

The population vector of discriminant function coefficients is 

 

  1

1 2

 α Σ μ μ   

 

where Σ is the p × p pooled covariance matrix for both population groups. The 

population variable ranking is derived by rank ordering the variables based on the 

magnitude of the elements of α. 

Population M-Distance 

Given the population means and pooled covariance matrix, Σ, the M-distance for 

the two populations is 

 

    
T1

1 2 1 2

  Δ μ μ Σ μ μ   

 

where T is the transpose operator. The contribution of the kth (k = 1,…, m) variable 

to the group differences can be estimated as 

 

 k k  Δ Δ   

 

Where Δ-k is value of Δ when the kth variable is excluded from the analyses. A 

variable’s importance in the population can be derived by ranking according to the 
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magnitude of each variable’s Δk. We present some summary results from both 

approaches (See Table A1 and A2). 
 
 
Table A1. Average percentage per-variable correct ranking (PCR) of variable importance 

measures by population distribution and correlation structure 
 

 Mean 

Configuration 

Least Squares Estimators  Robust Estimators 

Distribution SDFC DRC FTR TDRC   SDFC DRC FTR TDRC 

Normal Independent 55.36 63.76 55.59 66.34  53.36 59.28 53.56 66.48 

 CS(0.3) 51.80 43.52 51.70 54.61  47.75 40.65 47.61 49.01 

 CS(0.6) 55.10 25.06 56.19 46.28  48.10 24.94 48.68 39.04 

 UN(0.3) 54.27 39.14 51.13 52.79  47.08 36.16 44.94 46.54 

 UN(0.6) 73.72 21.39 40.57 47.97  33.88 16.56 26.02 30.49 

HT-II Independent 42.59 45.31 42.60 49.54  52.10 56.46 52.23 61.59 

 CS(0.3) 39.33 37.74 39.57 42.34  46.24 41.68 46.44 50.48 

 CS(0.6) 42.61 28.01 44.07 43.12  45.01 28.53 45.32 43.48 

 UN(0.3) 42.84 36.38 41.62 44.23  48.36 39.35 47.79 49.15 

 UN(0.6) 56.08 22.02 41.24 50.35  37.11 20.38 32.83 34.66 

SK-II Independent 33.70 34.80 33.78 36.85  51.06 54.98 51.17 59.12 

 CS(0.3) 31.14 32.14 31.51 31.72  42.70 40.48 42.97 47.31 

 CS(0.6) 32.98 27.47 34.55 32.97  41.14 29.09 41.43 41.64 

 UN(0.3) 33.43 32.19 33.11 33.44  45.43 39.61 45.62 47.24 

  UN(0.6) 44.59 22.84 35.79 39.63   36.27 22.36 33.61 34.54 

 

Note: See Table 1 for a description of mean configurations. SDFC = standardized discriminant function 
coefficient; DRC = discriminant ratio coefficient; FTR = F-to-remove statistic; TDRC = total discriminant ratio 

coefficient; HT-II = A heavy-tailed distribution with γ1 = ∞ and γ2 = ∞; SK-II = Skewed distribution with γ1 = 13.2 
and γ2 = 42892.9; CS(ρ) = Compound Symmetric correlation structure with ρ = 0.3; UN(ρ) = Unstructured 

correlation with average off-diagonal correlation of ρ 
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Appendix II: Results Based on Population Variable Ranking 
Derived from Population Mahalanobis Distance 

Table A2. Average percentage any-variable correct ranking (PCR) of variable importance 

measures by population distribution and correlation structure 
 

 Mean 
Configuration 

Least Squares Estimators  Robust Estimators 

Distribution SDFC DRC FTR TDRC   SDFC DRC FTR TDRC 

Normal Independent 95.81 97.63 95.90 97.77  95.14 96.78 95.22 97.69 

 CS(0.3) 95.01 93.65 94.89 96.35  92.97 91.18 92.85 94.52 

 CS(0.6) 96.73 92.73 97.14 97.58  94.67 88.85 95.15 95.34 

 UN(0.3) 95.95 90.56 95.86 97.14  93.51 89.15 92.60 95.10 

 UN(0.6) 99.16 74.43 99.09 98.92  93.21 88.96 90.74 96.50 

HT-II Independent 87.58 89.02 87.59 90.45  92.08 93.60 92.17 94.54 

 CS(0.3) 86.08 84.14 86.39 87.93  90.44 86.97 90.55 92.47 

 CS(0.6) 89.65 82.57 90.95 90.96  92.71 86.53 93.62 94.41 

 UN(0.3) 88.07 81.54 87.78 89.74  91.87 80.03 91.75 93.40 

 UN(0.6) 94.66 73.33 94.34 93.67  87.86 83.87 87.97 93.82 

SK-II Independent 81.14 81.93 81.18 83.15  92.19 93.65 92.28 94.55 

 CS(0.3) 78.58 78.79 79.23 78.50  88.63 84.30 88.83 90.96 

 CS(0.6) 80.57 76.97 82.72 80.63  90.46 84.34 91.56 92.46 

 UN(0.3) 81.24 77.14 81.24 81.22  90.55 76.69 90.54 92.21 

  UN(0.6) 88.13 72.38 88.15 85.09   84.01 81.82 85.17 90.45 
 

Note: See Table 1 for a description of mean configurations. SDFC = standardized discriminant function 
coefficient; DRC = discriminant ratio coefficient; FTR = F-to-remove statistic; TDRC = total discriminant ratio 

coefficient; HT-II = A heavy-tailed distribution with γ1 = ∞ and γ2 = ∞; SK-II = Skewed distribution with γ1 = 13.2 
and γ2 = 42892.9; CS(ρ) = Compound Symmetric correlation structure with ρ = 0.3; UN(ρ) = Unstructured 
correlation with average off-diagonal correlation of ρ 
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