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Standard approaches for analyzing the difference in two means, where partially 
overlapping samples are present, are less than desirable. Here are introduced two test 
statistics, making reference to the t-distribution. It is shown that these test statistics are 
Type I error robust, and more powerful than standard tests. 
 
Keywords: partially overlapping samples, test for equality of means, corrected z-test, 

partially correlated data, partially matched pairs 

 

Introduction 

Hypothesis tests for the comparison of two population means, μ1 and μ2, with two 

samples of either independent observations or paired observations are well 

established. When the assumptions of the test are met, the independent samples   

t-test is the most powerful test for comparing means between two independent 

samples (Sawilowsky and Blair, 1992). Similarly, when the assumptions of the 

test are met, the paired samples t-test is the most powerful test for the comparison 

of means between two dependent samples (Zimmerman, 1997). If a paired design 
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can avoid extraneous systematic bias, then paired designs are generally 

considered to be advantageous when contrasted with independent designs. 

There are scenarios where, in a paired design, some observations may be 

missing. In the literature, this scenario is referred to as paired samples that are 

either “incomplete” (Ekbohm, 1976) or with “missing observations” (Bhoj, 1978). 

There are designs that do not have completely balanced pairings. Occasions where 

there may be two samples with both paired observations and independent 

observations include: 

 

i) Two groups with some common element between both groups. For 

example, in education when comparing the average exam marks for 

two optional subjects, where some students take one of the two 

subjects and some students take both. 

 

ii) Observations taken at two points in time, where the population 

membership changes over time but retains some common members. 

For example, an annual survey of employee satisfaction may include 

new employees that were unable to respond at time point one, 

employees that left after time point one, and employees that 

remained in employment throughout. 

 

iii) When some natural pairing occurs. For example, in a survey taken 

comparing views of males and females, there will be some matched 

pairs (couples) and some independent individuals (single). 

 

The examples given above can be seen as part of the wider missing data 

framework. There is much literature on methods for dealing with missing data and 

the proposals in this paper do not detract from extensive research into the area. 

The simulations and discussion in this paper are done in the context of data 

missing completely at random (MCAR). 

Two samples that include both paired and independent observations is 

referred to using varied terminology in the literature. The example scenarios 

outlined can be referred to as “partially paired data” (Samawi and Vogel, 2011). 

However, this terminology has connotations suggesting that the pairs themselves 

are not directly matched. Derrick et al. (2015) suggest that appropriate 

terminology for the scenarios outlined gives reference to “partially overlapping 

samples.” For work that has previously been done on a comparison of means 

when partially overlapping samples are present, “the partially overlapping 
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samples framework… has been treated poorly in the literature” (Martínez-

Camblor, Corral, and María de la Hera, 2012, p.77). In this paper, the term 

partially overlapping samples will be used to refer to scenarios where there are 

two samples with both paired and independent observations.  

When partially overlapping samples exist, the goal remains to test the null 

hypothesis H0 : μ1 = μ2. Standard approaches when faced with such a situation, are 

to perform the paired samples t-test, discarding the unpaired data, or alternatively 

perform the independent samples t-test, discarding the paired data (Looney and 

Jones, 2003). These approaches are wasteful and can result in a loss of power. 

The bias created with these approaches may be of concern. Other solutions 

proposed in a similar context are to perform the independent samples t-test on all 

observations ignoring the fact that there may be some pairs, or alternatively 

randomly pairing unpaired observations and performing the paired samples t-test 

(Bedeian and Feild, 2002). These methods distort Type I error rates (Zumbo, 

2002) and fail to adequately reflect the design. This emphasizes the need for 

research into a statistically valid approach. A method of analysis that takes into 

account any pairing but does not lose the unpaired information would be 

beneficial.  

One analytical approach is to separately perform both the paired samples t-

test on the paired observations and the independent samples t-test on the 

independent observations. The results are then combined using Fisher’s (1925) 

Chi-square method, or Stouffer’s (Stouffer, et al., 1949) weighted z-test. These 

methods have issues with respect to the interpretation of the results. Other 

procedures weighting the paired and independent samples t-tests, for the partially 

overlapping samples scenario, have been proposed by Bhoj, (1978), Kim et al. 

(2005), Martínez-Camblor, Corral, and María de la Hera (2012), and Samawi and 

Vogel (2011).  

Looney and Jones (2003) proposed a statistic making reference to the              

z-distribution that uses all of the available data, without a complex weighting 

structure. Their corrected z-statistic is simple to compute and it directly tests the 

hypothesis H0 : μ1 = μ2. They suggest that their test statistic is generally Type I 

error robust across the scenarios that they simulated. However, they only consider 

normally distributed data with a common variance of 1 and a total sample size of 

50 observations. Therefore their simulation results are relatively limited, 

simulations across a wider range of parameters would help provide stronger 

conclusions. Mehrotra (2004) indicates that the solution provided by Looney and 

Jones (2003) may not be Type I error robust for small sample sizes.  
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Early literature for the partially overlapping samples framework focused on 

maximum likelihood estimates, when data are missing by accident rather than by 

design. Lin (1973) use maximum likelihood estimates for the specific case where 

data is missing from one of the two groups. Lin (1973) uses assumptions such as 

the variance ratio is known. Lin and Strivers (1974) apply maximum likelihood 

solutions to the more general case, but find that no single solution is applicable.  

For normally distributed data, Ekbohm (1976) compared Lin and Strivers 

(1974) tests with similar proposals based on maximum likelihood estimators. 

Ekbohm (1976) found that maximum likelihood solutions do not always maintain 

Bradley’s liberal Type I error robustness criteria. The results suggest that the 

maximum likelihood approaches are of little added value compared to standard 

methods. Furthermore the proposals by Ekbohm (1976) are complex 

mathematical procedures and are unlikely to be considered as a first choice 

solution in a practical environment.  

A solution available in most standard software is to perform a mixed model 

using all of the available data. In a mixed model, effects are assessed using 

Restricted Maximum Likelihood estimators (REML). Mehrotra (2004) indicates 

that for positive correlation, REML is Type I error robust and more powerful 

approach than that proposed by Looney and Jones (2003).  

For small sample sizes, an intuitive solution to the comparison of means 

with partially overlapping samples, would be a test statistic derived using 

concepts similar to that of Zumbo (2002) so that all available data are used 

making reference to the t-distribution.  

Here, two test statistics are proposed. The proposed solution for equal 

variances acts as a linear interpolation between the paired samples t-test and the 

independent samples t-test. The consensus in the literature is that Welch’s test is 

more Type I error robust than the independent samples t-test, particularly with 

unequal variances and unequal samples sizes (Derrick, Toher and White, 2016; 

Fay and Proschan, 2010; Zimmerman and Zumbo, 2009). The proposed solution 

for unequal variances is a test that acts as a linear interpolation between the paired 

samples t-test and Welch’s test.  

Standard tests and the proposal by Looney and Jones (2003) are given below. 

This is followed by the definition of the presently proposed test statistics. A 

worked example using each of these test statistics and REML is provided. The 

Type I error rate and power for the test statistics and REML is then explored 

using simulation, for partially overlapping samples simulated from a Normal 

distribution. 
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Notation 

Notation used in the definition of the test statistics is given in Table 1. 
 
 
Table 1. Notation used in this paper. 

 

an  = number of observations exclusive to Sample 1 

bn  = number of observations exclusive to Sample 2 

cn  = number of pairs 

n1  = total number of observations in Sample 1 (i.e. n1 = na + nc) 

n2  = total number of observations in Sample 2 (i.e. n2 = nb + nc) 

X1
 = mean of all observations in Sample 1 

X2
 = mean of all observations in Sample 2 

aX  = mean of the independent observations in Sample 1 

bX  = mean of the independent observations in Sample 2 

cX1
 = mean of the paired observations in Sample 1 

cX2
 = mean of the paired observations in Sample 2 

S2

1
 = variance of all observations in Sample 1 

S2

2
 = variance of all observations in Sample 2 

aS2
 = variance of the independent observations in Sample 1 

bS2
 = variance of the independent observations in Sample 2 

cS2

1  = variance of the paired observations in Sample 1 

cS2

2  = variance of the paired observations in Sample 2 

S12  = covariance between the paired observations 

r  = Pearson’s correlation coefficient for the paired observations 

 

 
 

All variances above are calculated using Bessel’s correction, i.e. the sample 

variance with ni − 1 degrees of freedom (see Kenney and Keeping, 1951, p.161). 
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As standard notation, random variables are shown in upper case, and derived 

sample values are shown are in lower case.  

Definition of Existing Test Statistics 

Standard approaches for comparing two means making reference to the t-

distribution are given below. These definitions follow the structural form given by 

Fradette et al. (2003), adapted to the context of partially overlapping samples. 

To perform the paired samples t-test, the independent observations are 

discarded so that 

 

 1 2
1

2 2

1 2 1 22

c c

c c c c

c c c

X X
T

S S S S
r

n n n




 
   

 

  

 

The statistic T1 is referenced against the t-distribution with v1 = nc − 1 

degrees of freedom. 

To perform the independent samples t-test, the paired observations are 

discarded so that 
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The statistic T2 is referenced against the t-distribution with v2 = na + nb − 2 

degrees of freedom.  

To perform Welch’s test, the paired observations are discarded so that 

 

 3
2 2

a b

a b

a b

X X
T

S S

n n






  

 

The statistic T3 is referenced against the t-distribution with degrees of 

freedom approximated by  
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For large sample sizes, the test statistic for partially overlapping samples 

proposed by Looney and Jones (2003) is  

 

 
 

  

1 2
corrected

2 2
121 2

2 c

a c b c a c b c

X X
Z

n SS S

n n n n n n n n




 
   

  

 

The statistic Zcorrected is referenced against the standard Normal distribution. 

In the extremes of na = nb = 0, or nc = 0, Zcorrected defaults to the paired samples     

z-statistic and the independent samples z-statistic respectively. 

Definition of Proposed Test Statistics 

Two new t-statistics are proposed; Tnew1, assuming equal variances, and Tnew2, 

when equal variances cannot be assumed. The test statistics are constructed as the 

difference between two means taking into account the covariance structure. The 

numerator is the difference between the means of the two samples and the 

denominator is a measure of the standard error of this difference. Thus the test 

statistics proposed here are directly testing the hypothesis H0 : μ1 = μ2. 

The test statistic Tnew1 is derived so that in the extremes of na = nb = 0, or 

nc = 0, Tnew1 defaults to T1 or T2 respectively, thus  

 

 1 2
new1

1 2 1 2

1 1
2 c

p

X X
T

n
S r

n n n n




 
   

 

 where 
   

   

2 2

1 1 2 2

1 2

1 1

1 1
p

n S n S
S

n n

  


  
 

 

The test statistic Tnew1 is referenced against the t-distribution with degrees of 

freedom derived by linear interpolation between v1 and v2 so that 
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    new1

1
1 .

2

a b c
c a b

a b c

n n n
v n n n

n n n

   
    

  
 

 

In the extremes, when na = nb = 0, vnew1 defaults to v1; or when nc = 0, vnew1 

defaults to v2. 

Given the superior Type I error robustness of Welch’s test when variances 

are not equal, a test statistic is derived making reference to Welch’s approximate 

degrees of freedom. This test statistic makes use of the sample variances, 2

1S  and 

2

2S . The test statistic Tnew2 is derived so that in the extremes of na = nb = 0, or 

nc = 0, Tnew2 defaults to T1 or T3 respectively, thus 

 

 1 2
new2

2 2

1 21 2

1 2 1 2

2 c

X X
T

S S nS S
r

n n n n




 
   

 

  

 

The test statistic Tnew2 is referenced against the t-distribution with degrees of 

freedom derived as a linear interpolation between v1 and v3 so that 

 

    new2

1
1

2

c
c a b

a b c

n
v n n n

n n n

  
    

  
 

where 

   

2
2 2

1 2

1 2

2 2
2 2

1 2
1 2

1 2

/ 1 / 1

S S

n n

S S
n n

n n



 
 

 
   

     
   

 

 

In the extremes, when na = nb = 0, vnew2 defaults to v1; or when nc = 0, vnew2 

defaults to v3. 

Note that the proposed statistics, Tnew1 and Tnew2, use all available 

observations in the respective variance calculations. The statistic Zcorrected only 

uses the paired observations in the calculation of covariance. 
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Worked Example 

An applied example is given to demonstrate the calculation of each of the test 

statistics defined. In education, for credit towards an undergraduate Statistics 

course, students may take optional modules in either Mathematical Statistics, or 

Operational Research, or both. The program leader is interested whether the exam 

marks for the two optional modules differ. The exam marks attained for a single 

semester are given in Table 2. 
 
 
Table 2. Exam marks for students studying on an undergraduate Statistics course. 

 
Student 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Mathematical Statistics 73 82 74 59 49 - 42 71 - 39 - - - - 59 85 

Operational Research 72 - 89 78 64 83 42 76 79 89 67 82 85 92 63 - 

 
 

As per standard notion, the derived sample values are given in lower case. In 

the calculation of the test statistics, 1x  = 63.300, 2x  = 75.786, 2

1s  = 263.789, 
2

2s  = 179.874, na = 2, nb = 6, nc = 8, n1 = 10, n2 = 14, v1 = 7, v2 = 6, v3 = 6, 

γ = 17.095, vnew1 = 12, vnew2 = 10.365, r = 0.366, s12 = 78.679. 

For the REML analysis, a mixed model is performed with “Module” as a 

repeated measures fixed effect and “Student” as a random effect. Table 3 gives 

the calculated test statistics, degrees of freedom and corresponding p-values. 
 
 
Table 3. Test statistic values and resulting p-values (two-sided test). 

 

 
T1 T2 T3 Zcorrected REML Tnew1 Tnew2 

estimate of mean difference -13.375 2.167 2.167 -12.486 -12.517 -12.486 -12.486 

t-value -2.283 0.350 0.582 -2.271 -2.520 -2.370 -2.276 

degrees of freedom 7.000 6.000 6.000 
 

11.765 12.000 10.365 

p-value 0.056 0.739 0.579 0.023 0.027 0.035 0.045 

 
 

With the exception of REML, the estimates of the mean difference are 

simply the difference in the means of the two samples, based on the observations 

used in the calculation. It can quickly be seen that the conclusions differ 

depending on the test used. It is of note that only the tests using all of the 

available data result in the rejection of the null hypothesis at αnominal = 0.05. Also 

note that the results of the paired samples t-test and the independent samples t-test 

have sample effects in different directions. This is only one specific example 
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given for illustrative purposes, investigation is required into the power of the test 

statistics over a wide range of scenarios. Conclusions based on the proposed tests 

cannot be made without a thorough investigation into their Type I error robustness.  

Simulation Design 

Under normality, Monte-Carlo methods are used to investigate the Type I error 

robustness of the defined test statistics and REML. Power should only be used to 

compare tests when their Type I error rates are equal (Zimmerman and Zumbo, 

1993). Monte-Carlo methods are used to explore the power for the tests that are 

Type I error robust under normality. 

Unbalanced designs are frequent in psychology (Sawilowsky and Hillman, 

1992), thus a comprehensive range of values for na, nb and nc are simulated. These 

values offer an extension to the work done by Looney and Jones (2003). Given 

the identification of separate test statistics for equal and unequal variances, 

multiple population variance parameters { 2 2

1 2,  } are considered. Correlation has 

an impact on Type I error and power for the paired samples t-test (Fradette et al., 

2003), hence a range of correlations {ρ} between two normal populations are 

considered. Correlated normal variates are obtained as per Kenney and Keeping 

(1951). A total of 10,000 replicates of each of the scenarios in Table 4 are 

performed in a factorial design. 

All simulations are performed in R version 3.1.2. For the mixed model 

approach utilizing REML, the R package lme4 is used. Corresponding p-values 

are calculated using the R package lmerTest, which uses the Satterthwaite 

approximation adopted by SAS (Goodnight, 1976). 

For each set of 10,000 p-values, the proportion of times the null hypothesis 

is rejected, for a two sided test with αnominal = 0.05 is calculated.  
 
 
Table 4. Summary of simulation parameters 

 

Parameter Values 

μ1 0 

μ2 0 (under H0); 0.5 (under H1) 

σ1
2 1, 2, 4, 8 

σ2
2 1, 2, 4, 8 

na 5, 10, 30, 50, 100, 500 

nb 5, 10, 30, 50, 100, 500 

nc 5, 10, 30, 50, 100, 500 

ρ -0.75, -0.50, -0.25, 0.00, 0.25, 0.50, 0.75 
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Type I Error Robustness 

For each of the test statistics, Type I error robustness is assessed against Bradley’s 

(1978) liberal criteria. This criteria is widely used in many studies analyzing the 

validity of t-tests and their adaptions. Bradley’s (1978) liberal criteria states that 

the Type I error rate α should be within αnominal ± 0.5 αnominal. For αnominal = 0.05, 

Bradley’s liberal interval is [0.025, 0.075]. 

Type I error robustness is firstly assessed under the condition of equal 

variances. Under the null hypothesis, 10,000 replicates are obtained for the 

4 × 6 × 6 × 6 × 7 = 6,048 scenarios where 2 2

1 2  . Figure 1 shows the Type I 

error rates for each of the test statistics under equal variances for normally 

distributed data. 
 
 

 
 
Figure 1. Type I error rates where σ1

2 = σ2
2, reference lines show Bradley’s (1978) liberal 

criteria. 

 

 
 

Figure 1 indicates that when variances are equal, the statistics T1, T2, T3, 

Tnew1 and Tnew2 remain within Bradley’s liberal Type I error robustness criteria 

throughout the entire simulation design. The statistic Zcorrected is not Type I error 

robust, thus confirming the smaller simulation findings of Mehrotra (2004). 

Figure 1 also shows that REML is not Type I error robust throughout the entire 
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simulation design. A review of our results shows that for REML the scenarios that 

are outside the range of liberal Type I error robustness are predominantly those 

that have negative correlation, and some where zero correlation is specified. 

Given that negative correlation is rare in a practical environment, the REML 

procedure is not necessarily unjustified. 

Type I error robustness is assessed under the condition of unequal variances. 

Under the null hypothesis, 10,000 replicates were obtained for the 

4 × 3 × 6 × 6 × 6 × 7 = 18,144 scenarios where 2 2

1 2  . For assessment against 

Bradley’s (1978) liberal criteria, Figure 2 shows the Type I error rates for unequal 

variances for normally distributed data. 
 
 

 
 
Figure 2. Type I error rates when σ1

2 ≠ σ2
2, reference lines show Bradley’s (1978) liberal 

criteria. 

 

 
 

Figure 2 illustrates that that the statistics defined using a pooled standard 

deviation, T2 and Tnew1, do not provide Type I error robust solutions when equal 

variances cannot be assumed. The statistics T1, T3 and Tnew2 retain their Type I 

error robustness under unequal variances throughout all conditions simulated. 

The statistic Zcorrected maintains similar Type I error rates under equal and 

unequal variances. The statistic Zcorrected was designed to be used only in the case 
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of equal variances. For unequal variances, we observe that the statistic Zcorrected 

results in an unacceptable amount of false positives when ρ ≤ 0.25 or 

max{na, nb, nc} − min{na, nb, nc} is large. In addition, the statistic Zcorrected is 

conservative when ρ is large and positive. The largest observed deviations from 

Type I error robustness for REML are when ρ ≤ 0 or 

max{na, nb, nc} − min{na, nb, nc} is large. Further insight to the Type I error rates 

for REML can be seen in Figure 3 showing observed p-values against expected p-

values from a uniform distribution. 
 
 

 
 
Figure 3. P-P plots for simulated p-values using REML procedure. Selected parameter 

combinations (na, nb, nc, σ1
2, σ2

2, ρ) are as follows; A = (5,5,5,1,1,-0.75), 
B = (5,10,5,8,1,0), C = (5,10,5,8,1,0.5), D = (10,5,5,8,1,0.5). 

 

 
 

If the null hypothesis is true, for any given set of parameters the p-values 

should be uniformly distributed. Figure 3 gives indicative parameter combinations 

where the p-values are not uniformly distributed when applying a mixed model 

assessed using REML. It can be seen that REML is not Type I error robust when 

the correlation is negative. In addition, caution should be exercised if using 

REML when the larger variance is associated with the smaller sample size. 
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REML maintains Type I error robustness for positive correlation and equal 

variances or when the larger sample size is associated with the larger variance.  

Power of Type I Error Robust Tests under Equal Variances 

The test statistics that do not fail to maintain Bradley’s Type I error liberal 

robustness criteria are assessed under H1. REML is included in the comparisons 

for ρ ≥ 0. The power of the test statistics are assessed where σ1
2 = σ2

2 = 1, 

followed by an assessment of the power of the test statistics where σ1
2 > 1 and 

σ2
2 = 1. 

Table 5 shows the power of T1, T2, T3, Tnew1, Tnew2 and REML, averaged 

over all sample size combinations where σ1
2 = σ2

2 = 1. 
 
 
Table 5. Power of Type I error robust test statistics σ1

2 = σ2
2 = 1, α = 0.05, μ2 − μ1 = 0.5. 

 

  ρ T1 T2 T3 Tnew1 Tnew2 REML 

na = nb 

0.75 0.785 0.567 0.565 0.887 0.886 0.922 

0.50 0.687 0.567 0.565 0.865 0.864 0.880 

0.25 0.614 0.567 0.565 0.842 0.841 0.851 

0 0.558 0.567 0.565 0.818 0.818 0.829 

<0 0.481 0.567 0.565 0.778 0.778 - 

na ≠ nb 

0.75 0.784 0.455 0.433 0.855 0.847 0.907 

0.5 0.687 0.455 0.433 0.84 0.832 0.861 

0.25 0.615 0.455 0.433 0.823 0.816 0.832 

0 0.559 0.455 0.433 0.806 0.799 0.816 

<0 0.482 0.455 0.433 0.774 0.766 - 

 
 

Table 5 shows that REML and the test statistics proposed in this paper, Tnew1 

and Tnew2, are more powerful than standard approaches, T1, T2 and T3, when 

variances are equal. Consistent with the paired samples t-test, T1, the power of 

Tnew1 and Tnew2 is relatively lower when there is zero or negative correlation 

between the two populations. Similar to contrasts of the independent samples t-

test, T2, with Welch’s test, T3, for equal variances but unequal sample sizes, Tnew1 

is marginally more powerful than Tnew2, but not to any practical extent. For each 

of the tests statistics making use of paired data, as the correlation between the 

paired samples increases, the power increases. 

As the correlation between the paired samples increases, the power 

advantage of the proposed test statistics relative to the paired samples t-test 

becomes smaller. Therefore the proposed statistics Tnew1 and Tnew2 may be 

especially useful when the correlation between the two populations is small. 
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To show the relative increase in power for varying sample sizes, Figure 4 

shows the power for selected test statistics for small-medium sample sizes, 

averaged across the simulation design for equal variances. 
 
 

 
 
Figure 4. Power for Type I error robust test statistics, averaged across all values of ρ 

where σ1
2 = σ2

2 and μ2 − μ1 = 0.5. The sample sizes (na, nb, nc) are as follows: 
A = (10,10,10), B = (10,30,10), C = (10,10,30), D = (10,30,30),  E = (30,30,30). 

 

 
 

From Figure 4 it can be seen that for small-medium sample sizes, the power 

of the proposed test statistics Tnew1 and Tnew2 is superior to standard test statistics.  

Power of Type I Error Robust Rests under Unequal 
Variances 

For the Type I error robust test statistics under unequal variances, Table 6 

describes the power of T1, T3, Tnew2 and REML, averaged over the simulation 

design where μ2 − μ1 = 0.5. Table 6 shows that Tnew2 has superior power properties 

to both T1 and T3 when variances are not equal. In common with the performance 

of Welch’s test for independent samples, T3, the power of Tnew2 is higher when the 

larger variance is associated with the larger sample size. In common with the 

performance of the paired samples t-test, T1, the power of Tnew2 is relatively lower 

when there is zero or negative correlation between the two populations.  
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Table 6. Power of Type I error robust test statistics where σ1

2 > 1, σ2
2 = 1, α = 0.05, 

μ2 − μ1 = 0.5. Within this table, na > nb represents the larger variance associated with the 
larger sample size, and na < nb represents the larger variance associated with the smaller 
sample size. 
 

  ρ T1 T3 Tnew2 REML 

na = nb 

0.75 0.555 0.393 0.692 0.645 

0.50 0.481 0.393 0.665 0.588 

0.25 0.429 0.393 0.640 0.545 

0 0.391 0.393 0.619 0.515 

<0 0.341 0.393 0.582 - 

na > nb 

0.75 0.555 0.351 0.715 0.589 

0.50 0.481 0.351 0.688 0.508 

0.25 0.429 0.351 0.665 0.459 

0 0.391 0.351 0.642 0.422 

<0 0.341 0.351 0.604 - 

na < nb 

0.75 0.555 0.213 0.559 0.693 

0.50 0.481 0.213 0.539 0.649 

0.25 0.429 0.213 0.522 0.62 

0 0.391 0.213 0.507 0.603 

<0 0.341 0.213 0.480 - 

 
 

The apparent power gain for REML when the larger variance is associated 

with the larger sample size, can be explained by the pattern in the Type I error 

rates. REML follows a similar pattern to the independent samples t-test, which is 

liberal when the larger variance is associated with the larger sample size, thus 

giving the perception of higher power.   

To show the relative increase in power for varying sample sizes, Figure 5 

shows the power for selected test statistics for small-medium sample sizes, 

averaged across the simulation design for unequal variances. 
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Figure 5. Power for Type I error robust test statistics σ1

2 > σ2
2 and μ2 − μ1 = 0.5. The 

sample sizes (na, nb, nc) are as follows: A = (10,10,10), B1 = (10,30,10), B2 = (30,10,10), 
C = (10,10,30), D1 = (10,30,30), D2 = (30,10,30),  E = (30,30,30). 

 

 
 

Figure 5 shows a relative power advantage when the larger variance is 

associated with the larger sample size, as per B2 and D2. A comparison of Figure 4 

and Figure 5 shows that for small-medium sample sizes, power is adversely 

affected for all test statistics when variances are not equal.  

Discussion 

The statistic Tnew2 is Type I error robust across all conditions simulated under 

normality. The greater power observed for Tnew1, compared to Tnew2, under equal 

variances, is likely to be of negligible consequence in a practical environment. 

This is in line with empirical evidence for the performance of Welch’s test, when 

only independent samples are present, which leads to many observers 

recommending the routine use of Welch’s test under normality (e.g. Ruxton, 

2006).   

The Type I error rates and power of Tnew2 follow the properties of its 

counterparts, T1 and T3. Thus Tnew2 can be seen as a trade-off between the paired 

samples t-test and Welch’s test, with the advantage of increased power across all 

conditions, due to using all available data.  
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The partially overlapping samples scenarios identified in this paper could be 

considered as part of the missing data framework and all simulations have been 

performed under the assumption of MCAR.  

The statistics proposed in this paper form less computationally intensive 

competitors to REML. The REML procedure does not directly calculate the 

difference between the two sample means, in a practical environment this makes 

its results hard to interpret. The statistics proposed in this paper also lend 

themselves far more easily to the development of non-parametric tests.  

Conclusion 

A commonly occurring scenario when comparing two means is a combination of 

paired observations and independent observations in both samples, this scenario is 

referred to as partially overlapping samples. Standard procedures for analyzing 

partially overlapping samples involve discarding observations and performing 

either the paired samples t-test, or the independent samples t-test, or Welch’s test. 

These approaches are less than desirable. In this paper, two new test statistics 

making reference to the t-distribution are introduced and explored under a 

comprehensive set of parameters, for normally distributed data. Under equal 

variances, Tnew1 and Tnew2 are Type I error robust. In addition they are more 

powerful than standard Type I error robust approaches considered in this paper.  

When variances are equal, there is a slight power advantage of using Tnew1 over 

Tnew2, particularly when sample sizes are not equal. Under unequal variances, 

Tnew2 is the most powerful Type I error robust statistic considered in this paper. 

We recommend that when faced with a research problem involving partially 

overlapping samples and MCAR can be reasonably assumed, the statistic Tnew1 

could be used when it is known that variances are equal. Otherwise under the 

same conditions when equal variances cannot be assumed the statistic Tnew2 could 

be used.  

A mixed model procedure using REML is not fully Type I error robust. In 

those scenarios in which this procedure is Type I error robust, the power is similar 

to that of Tnew1 and Tnew2. 

The proposed test statistics for partially overlapping samples provide a real 

alternative method for analysis for normally distributed data, which could also be 

used for the formation of confidence intervals for the true difference in two means.  
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