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A Comparison of Depth Functions in 
Maximal Depth Classification Rules 
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Data depth has been described as alternative to some parametric approaches in analyzing 
many multivariate data. Many depth functions have emerged over two decades and 
studied in literature. In this study, a nonparametric approach to classification based on 
notions of different data depth functions is considered and some properties of these 

methods are studied. The performance of different depth functions in maximal depth 
classifiers is investigated using simulation and real data with application to agricultural 
industry. 
 
Keywords: classification rules, data depth, error rates, non-parametric approach, 
symmetry 

 

Introduction 

Classification is a practical subject in statistics. It aims at assigning an 

unclassified observation to one of several groups or populations on the basis of 

some measurement. Anderson (1984) described classification problem as a 

problem of statistical decision-making. However, classical multivariate analysis 

has relied heavily on the assumption of normality in data presentation and 

analysis. Among the classification methods that rely heavily on distribution 

assumption are Bayes rule (Welch, 1938), linear discriminant analysis and 

quadratic linear discriminant analysis (Anderson, 1984), and independence rule 

(Dudoit, Fridlyand & Speed, 2002). Research has shown that most of the data 

acquired nowadays do not satisfy normality assumption. Similarly, some 

parametric approaches are prone to the effect of outlying observations. This gives 

nonparametric approach to classification an edge over parametric methods. 

https://doi.org/10.22237/jmasm/1493598120
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Other methods in literature include support vector machine (Vapnik, 1998; 

Cortes & Vapnik, 1995), nearest neighbour rule (Cover & Hart, 1967), 

classification rules based on distance functions (Chan & Hall, 2009; Hall, 

Titterington & Xue, 2009), classifiers based on distribution functions of rank 

outlyingness (Makinde & Chakraborty, 2015). 

Data depth is a way to measure the depth or outlyingness of a given point 

with respect to a multivariate data cloud or its underlying distribution (Liu, Singh 

& Parelius, 1999). It gives rise to a natural centr-outward ordering of the sample 

points in ℝd. This ordering gives rise to new and easy ways to quantify many 

complex multivariate features of the underlying distribution, including location, 

quantiles, scale, skewness and kurtosis. Liu (1990) introduced a notion of 

simplicial depth and corresponding estimators of location, and formulated a 

quality index with simplicial depth, Mahalanobis depth and majority depth. 

Koshevoy & Mosler (1997) introduced a notion of zonoid depth while Fraiman, 

Meloche & García-Escudero (1999) introduced a likelihood type depth function. 

Rousseeuw & Hubert (1999) introduced a notion of regression depth. Liu, Singh 

& Parelius (1999) considered some examples of depth functions and developed 

methodology for their practical applications. 

Classification rule based on data depth is considered in the current study. 

Data depth is formally defined based on Zuo & Serfling (2000a) and examples of 

depth functions are presented. In reality, an important question that arises in 

almost all fields where supervised learning is employed is that which of the depth 

functions should be employed. Classification rules based on the depth functions 

are defined and properties of the classification rules are presented. Evaluation of 

the classification rule, accounting for performance of various depth functions are 

presented based on numerical examples. 

Notions of Statistical Depth Functions 

Definition 1 (Zuo & Serfling, 2000a). Let the mapping D(.;.) ꞉ ℝd × 𝓕 → ℝ be 

bounded and non-negative, and satisfy: 

 

i. D(Ax + b, FAX+b) = D(x, FX) holds for any random vector X ∈ ℝd 

and any d × d nonsingular matrix A, and any d dimensional vector b. 

ii. D(θ,F) = supx∈ℝd D(x,F) holds for any F ∈ 𝓕 having centre θ. 

iii. For any F ∈ 𝓕 having deepest point θ, D(x,F) ≤ D(θ + α(x − θ),F) 

holds for α ∈ [0,1]; and 
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iv. D(x,F) → 0 as ||x||→∞, for each F ∈ 𝓕. 

 

Then D(.,F) is called a statistical depth function. 

From Definition 1, the first property describes invariance of depth function 

under general affine transformation of the data. That is, the depth of any 

observation in ℝd should not depend on the scale of the underlying measurement 

or underlying coordinate system. The second property implies that depth value 

attains its maximum value at the point of symmetry for symmetric distributions. 

The third property implies that the depth value decreases monotonically as vector 

x moves away from its most central point while the fourth property implies that 

the depth value of x vanishes (tend to zero) as Euclidean norm of x approaches 

infinity.  

The depth functions in literature include 

 

1. Mahalanobis Depth (MhD). Mahalanobis (1936); Liu & Singh 

(1993) defined the depth of an observation x with respect to the 

distribution F as 

 

 MhD(x,F) = [1 + O(x,μF,ΣF)]-1 

 

where O(x,μF,ΣF) = (x − μF)' ΣF
−1(x − μF), μF and ΣF are the mean 

vector and dispersion matrix of F respectively. The sample version 

of MhD is obtained by replacing μF and ΣF with their estimates. 

 

2. Zonoid Depth (ZD). Dyckerhoff et al. (1996) defined a zonoid depth 

as 

 

 ZD(x,F) = sup{α ꞉ x ∈ Dα(X1,…,Xn)} 

 

where Dα(X1,…,Xn) = 
1

n

i i i  X , 
1 1n

i i   , λi ≥ 0, and αλi ≤ 1
n

 for all 

i. 

 

3. Half-Space Depth (HD). Tukey (1975) defined half-space depth of a 

point x ∈ ℝd with respect to F as the minimum probability mass 

carried by any closed half-space containing x, Mathematically, 

 

 HD(x,P) = infH [P(H)] 
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where H is a closed halfspace in Rd and x ~ H. 

 

4. Oja Depth (OD). Oja (1983) defined the depth of x ∈ ℝd with 

respect to F as  

 

 OD(F;x) = [1 + O(x,F)]−1 

 

where O(x,F) = EF(Volume(S[x, X1,…,Xd])), S[x, X1,…,Xd] is a 

closed simplex with vertices x and d random observations X1,…,Xd 

from F. 

 

5. Simplicial Depth (SD). Liu (1990) defined simplicial depth of 

x ∈ ℝd with respect to F as  

 

 SD(F;x) = P(x ∈ S[x, X1,…,Xd+1]) 

 

where S[x, X1,…,Xd+1] is a closed simplex formed by (d + 1) 

random observation from F. The sample version of SD(F;x) is 

obtained by replacing F in SD(F;x) by Fn. 

 

6. Projection Depth (PD). Donoho & Gasko (1982) defined the depth 

of x with respect to F as the worst case outlyingness of x with 

respect to one dimensional median in any one-dimensional 

projection.  

 

 PD(F;x) = (1 + O(x,F))−1 

 

where    

 1
, sup ,u

u

Med F

MAD Fu
O F

 




u x
x  Fu is the distribution u'X, 

Med(Fu) is the median of Fu, MAD(Fu) is the median absolute 

deviation of Fu and X ∼ F. The sample version of PD(F;x) is 

obtained by replacing the median and MAD with their sample 

estimates. 

 

7. Likelihood Depth (LD). Fraiman, Meloche & García-Escudero 

(1999) defined the depth of x with respect to F simply as its 

probability density, that is, LD(F;x) = f(x), and the empirical version 
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can be any consistent density estimate at x, for example, the kernel 

density estimate. 

 

8. Spatial Depth (SPD). Serfling (2002) defined spatial depth of any 

observation x with respect to F as 

 

  , 1 FSBD F E
 

     

x X
x

x X
  

 

where X ∼ F. 

 

9. Simplicial volume depth (SVD). Zuo & Serfling (2000a, b) 

expressed SVD of an observation x with respect to F as  

 

  
 

1
2

1

1,...,
, , 1

d

F

F

SVD F E







   
   
    

x, X X
x


  

 

where X1,…,Xd are independent and identically distributed 

observations from F, ∇(x, X1,…,Xd) is the volume of the d-

dimensional simplex formed by x and ΣF is the scatter matrix of the 

distribution F. 

 

10. Majority Depth (MJD). Liu & Singh (1993) defined the depth of x 

with respect to F as the probability that x belongs to the major side 

(i.e. the half-space with the larger probability measure) of a random 

hyperplane passing through the data points in ℝd. 

 

Other depth functions include regression depth (Rousseeuw & Hubert, 

1999). Gao (2003) defined another depth function based on square of spatial 

outlyingness function. Few of these depth functions satisfy all the four properties 

in Definition 1 while others satisfy some of the properties. See Zuo & Serfling 

(2000a; 2000b) for detail. 
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Classification Rule 

The goal of any classification rule is to find a rule or tool that enables us to assign 

an observation x ∈ ℝd to one of the several competing groups (or classes). One 

can define a classification rule based on depth functions. It is easy to observe that 

data depth gives an idea on how outlying an observation x is with respect to the 

distribution F. If x is a central observation, its depth value will be large. On the 

other hand, if x is an extreme observation, its depth value will be small. Thus a 

small depth value may suggest a deviation of x from F. 

Ghosh & Chaudhuri (2005) proposed a classification rule based on simple 

idea of assigning a new observation to any of the J competing classes, for which it 

attains maximal depth value. It is expressed as: 

 

    
1

, arg max ,k j
j J

D F D F
 

x x   (1) 

 

where Fk is the distribution of kth class and 1 ≤ j ≤ J. 

Let us consider two classes for simplicity. Suppose πj has multivariate 

distribution with mean vector μj and covariance matrix Σj, j = 1,2. For 

Σ1 = Σ2 = Σ, the classification rule in (1) can be expressed as  

 

 Assign x to F if    , ,D F D Gx x , and to G if otherwise. (2) 

 

It is straightforward to show that a depth function can be expressed in terms 

of probability density function of the competing distribution. This result is 

presented by a Lemma below: 

 

Lemma 1.   Let Fj be spherically symmetric distributions with density 

functions of the form 

 

      
1
2

j j j jf h
 

  x x x     

 

for some strictly decreasing, continuous, non-negative scalar function h. Then for 

any of the depth functions OD and SPD,  

 

     ,j jf D Fx x   
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for some increasing function ω. 

 

Suppose a random vector X in ℝd is elliptically distributed such that its 

density is of the form f(x)=|Σ|−½ h ((x − θ)' Σ−1 (x − θ)), then D(F,x) can be 

expressed as a function of (x − θ)' Σ−1 (x − θ). This result is presented formally by 

a Lemma below: 

 

Lemma 2.  Let Fj be elliptically symmetric distributions with density 

functions of the form 

 

      
1
2 1

j j j j jf h


 
   

 
x x x      

 

for some strictly decreasing, continuous, non-negative scalar function h. Then for 

any of the depth functions detailed earlier, except OD and SPD, 

 

     , ,j jf D Fx x   

 

where Σj is not a constant multiple of identity matrix for some increasing function 

ω. 

 

The optimal rule, Bayes rule, assigns an observation to the class or 

distribution with highest posterior probability. That is, assign x to jth class class if 

pjfj(x) is the highest, where pj is the prior probability of the jth class.  Based on the 

results of Lemmas 1 and 2, it is straightforward to show that maximum depth 

classifiers are Bayes rules under necessary conditions. 

 

Theorem 1.  Suppose the conditions of Lemmas 1 and 2 hold on all the 

depth functions defined earlier. Then the classifier defined in (1) is Bayes rule if 

competing distributions have equal covariance matrices and prior probabilities. 

 

In practice, a depth function may not be completely known and so need to 

be estimated based on sample and then define the empirical version of the 

classification rule based on the empirical depth function. The empirical depth 

function based on sample is denoted by D(Fn,x). To show the consistency of 

empirical depth functions, it is desirable to establish the almost sure convergence 

of empirical depth functions to its population counterpart. 
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Theorem 2.  Suppose D(Fn,x) is an empirical depth function based on 

X1, X2, …, Xn. Let D(F,x) be a population depth function of any random vector x. 

Then for any x in the support of F,  

 

    sup , , 0, .nD F D F n  
x

x x   

 

The almost sure convergence of half-space depth has been established in 

Donoho & Gasko (1992), simplicial depth in Liu (1990). Liu & Singh (1993) has 

shown almost sure convergence of Mahalanobis depth and majority depth while 

Zuo & Serfling (2000b) proved convergence of projection depth. The almost sure 

convergence of spatial depth follows from Koltchinskii’s (1997) work on the 

convergence of the empirical spatial rank function to its population version. 

Convergence of the empirical classification rule to population version follows 

from Theorem 2.  

Evaluation of Classification methods 

One way of evaluating the performance of a classifier is to compute its associated 

misclassification probability. In a two class classification problem, one can define 

a misclassification probability as 

 

          1 2, , | , , |p P D F D G F p P D F D G G      x x x x x x   

 

The empirical version of the probability of misclassification or error rate, 

denoted by ̂ , can be defined as 

 

 

    

    

1

1

2

1

ˆˆ ˆ , , |

ˆˆ , , |

n

i i

i

m

i i

i

p
I D F D G F

n

p
I D F D G F

m





   

  





x x x

x x x

  

 

Under the conditions of Theorems 1 and 2, it is straightforward to show that 

̂  is a Bayes risk. 
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Simulation Study 

As illustration of the performance of maximum depth classification methods, 

consider the following example. Let populations π1 and π2 be bivariate spherically 

symmetric with centres of symmetry μ1 and μ2, and covariance matrices, Σ1 and 

Σ2, respectively. Assume that the prior probabilities of π1 and π2 are equal. 

Suppose X1, X2, …, Xn is a random sample from π1 and Y1, Y2, …, Ym, a random 

sample from π2. New random vectors Z1, Z2, …, Zm from π1 and 

Zm+1, Zm+2, …, Z2m from π2 are generated and sample sizes n and  m are taken to 

be 100. μ1 and μ2 are chosen to be (0  0)T and (δ  0)T respectively for δ ∈ [−2,2] 

and Σ1 = Σ2 = I2. The simulation size is taken to be 1000. Different depth 

functions are considered for some competing distributions. The distributions are 

bivariate normal distributions and bivariate Laplace distributions. For 

computation of likelihood depth, Gaussian kernel is used with turning parameter 

(=0.3). R Package fda.usc is used for computing projection and likelihood depth. 

R Package depth is used for computing Oja depth, simplicial depth and half-space 

depth while R Package ddalpha is used for computing simplicial volume depth, 

Mahalanobis depth and Zonoid depth. 

Estimates of misclassification probabilities are less in bivariate normally 

distributed samples than bivariate Laplace samples, as shown in Figure 1. It is 

observed from Figures 2 and 3 that maximal depth classification rule based on 

half-space depth outperforms others when the distinction between competing 

distributions is not wide. That is, when μ1 − μ2 → 0. The distinction between 

competing distributions becomes clear as μ1 − μ2 moves away from 0 and the 

performance of various depth functions becomes equivalent. It is noted that exact 

computation of half-space depth and simplicial depth functions is feasible only in 

ℝ3 and ℝ2 respectively. Cuesta-Albertos & Nieto-Reyes (2010) suggested a 

modified version of half-space depth for functional data, as extension of 

multivariate set-up. The performance of empirical likelihood depth based on 

kernel estimator of probability density function depends on the choice of kernel 

function and turning parameter. It is observed that spatial depth and Oja depth are 

not invariant under general affine transformation. Makinde (2017) considered 

various affine invariant versions of spatial rank, a related notion to spatial depth. 

Robustness of spatial rank (a straightforward extension of spatial depth) against 

deviation from notion of elliptical symmetry is demonstrated in Makinde and 

Chakraborty (2015). 

Maximum depth classification rule is compared with some classification 

methods, which include linear discriminant analysis (LDA), k-nearest neighbor 
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rule (kNN) and support vector machine (SVM); using the above setting for δ = 1,2. 

Table 1 below presents performance of classifiers. It is observed from the table 

that maximum depth classifiers based on half-space depth has the best 

per formance among the depth based procedures, linear di scriminant  

analysis, k-nearest neighbor rule and support vector machine. It has the least mean 

error rates when the competing distributions are normal and Laplace. Next to half-

space depth among the depth functions for maximum depth classification rule is 

zonoid depth.  

However, zonoid depth is not robust against outlying observations in the 

data cloud. LDA performs well compared with kNN and SVM.  It is noted that 

linear discriminant analysis is Bayes (optimal) rule when competing distributions 

are multivariate normal. Hence maximum depth classifiers based on half-space 

depth is a better alternative to the known parametric classification methods, e.g. 

LDA. 
 
 

 
 
Figure 1. Comparison of error rates associated with half space depth for normally 

distributed samples and Laplace distributed samples. 
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Figure 2. Comparison of depth functions in classification based on error rates for 

normally distributed samples 

 

 
 

 
 
Figure 3. Comparison of depth functions in classification based on error rates Laplace 

distributed samples. 
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Table 1. Comparison of mean error rates of classifiers when competing distributions 

differ in location. 
 

  
Maximal Depth Classifiers 

   
Distribution δ HD SD OD SPD SVD PD ZD MhD LD LDA kNN SVM 

Biv normal 
1 0.295 0.309 0.318 0.313 0.313 0.319 0.307 0.316 0.334 0.315 0.356 0.316 

2 0.153 0.160 0.165 0.162 0.161 0.167 0.159 0.161 0.167 0.161 0.181 0.167 

Biv Laplace 
1 0.334 0.361 0.383 0.369 0.375 0.373 0.357 0.369 0.413 0.377 0.410 0.381 

2 0.227 0.243 0.250 0.248 0.248 0.253 0.239 0.246 0.287 0.246 0.273 0.257 

 
 
Table 2. Comparison of mean error rates of classifiers when competing distributions 

differ in location and scale. 
 

 
Maximal Depth Classifiers 

   

 
HD SD OD SPD SVD PD ZD MhD LD QDA kNN SVM 

Biv normal 0.382 0.386 0.500 0.387 0.389 0.386 0.389 0.389 0.166 0.142 0.209 0.148 

Biv Laplace 0.410 0.417 0.500 0.418 0.421 0.419 0.421 0.418 0.255 0.214 0.282 0.214 

 
 
Table 3. Comparison of computation time of classifiers for bivariate Laplace distributions. 

 

 
Maximal Depth Classifiers 

   

 
HD SD OD SPD SVD PD ZD MhD LD QDA kNN SVM 

Time (seconds) 0.12 0.12 0.14 0.52 15.84 5.97 0.34 0.32 1.39 0.08 0.05 0.31 

 
 

Only populations which are separated by location are considered so far. 

Table 2 presents a comparison of proportions of misclassification of depth based 

procedures, quadratic discriminant analysis (kNN) and SVM when competing 

populations have different location vectors and covariance matrices. 

Suppose the mean vectors and covariance matrices of π1 and π2 are 

(μ1 = (0  0)T, Σ1 = I2) and (μ2 = (2  0)T, Σ2 = 9I2), respectively. It is well known 

that QDA is an optimal rule when competing populations are normally distributed 

and differ in location and scale. Hence it has a least mean error rate (= 0.142) for 

normal distributions. Maximum depth classifier based on likelihood depth has the 

least mean error rate (= 0.166) among the depth classifiers, which is competitive 

with QDA and SVM (with mean error rate = 0.148). Maximum depth classifier 

based on Oja depth has the worst performance in this case. For bivariate Laplace 

distributions, Maximum depth classifier based on likelihood depth has the least 

mean error rate (= 0.255) among the depth classifiers, which is competitive with 

QDA (with mean error rate = 0.214), SVM (with mean error rate = 0.214) and 

kNN (with mean error rate = 0.282). Mean error rates of other depth classifiers are 

a bit high. 
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Presented in Table 3 is a comparison of computation time in seconds of each 

classifier when competing distributions are bivariate Laplace for one repetition. It 

is shown in Table 3 that QDA and kNN have the least computation time. 

However, computation time of maximum depth classifiers based on half-space 

depth, simplicial depth, Oja depth, zonoid depth and spatial depth are competitive 

with those of parametric classifiers. 

Analysis of Real Data 

A real dataset is also analysed to illustrate the performances of depth functions in 

maximal depth classification methods. Maximal depth classifiers are applied on 

mineral ions variability data. The data was extracted from a project experiment on 

crop science and production at the Institute for Agricultural Research and 

Training (IAR&T) project titled “inter- and intra-maturity group differences in 

physiological quality of maize seeds" (Olasoji, 2014). The data contains 

measurements of mean amount of mineral ions (Na, Ca, K and P) leaked after 24 

hours from soaked maize seeds at different maturity groups (early, intermediate 

and lately). Each observation consists of four attributes, which are mean mineral 

ions (Na, Ca, K and P). Each group consists of 36 observations. A random sample 

of size 30 and a test sample of size 6 are chosen. The experiment is repeated 100 

times; quantile, mean and standard deviation of the proportions of 

misclassification associated with each of the classifiers are computed. 
 
 

 
 
Figure 4. Box plot of proportions of misclassification associated with some classifiers for 

real data example 
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Table 4. Quantiles, means and standard deviations of proportions of misclassification of 

some classifiers for real data example. 
 

 
Maximal Depth Classifiers 

 

 
HD OD SPD SVD PD ZD MhD LD LDA 

Minimum 0.0000 0.0000 0.0000 0.0000 0.2222 0.0000 0.0000 0.0000 0.0000 

25% Quantile 0.0000 0.3541 0.0833 0.0556 0.3333 0.0278 0.0764 0.1111 0.1111 

Mean 0.0069 0.3861 0.2697 0.2364 0.3717 0.0725 0.2683 0.2767 0.2619 

Median 0.0000 0.4167 0.3611 0.3333 0.3611 0.0556 0.3472 0.3611 0.3333 

75% Quantile 0.0000 0.4722 0.3889 0.3611 0.4167 0.1111 0.3889 0.3889 0.3611 

Maximum 0.0556 0.6111 0.4444 0.4444 0.5000 0.2500 0.4167 0.4167 0.4167 

Standard deviation 0.0150 0.1478 0.1575 0.1618 0.0623 0.0600 0.1533 0.1462 0.1472 

 
 

Presented in Figure 4 is a comparison of maximum depth classifiers with 

linear discriminant analysis based on the proportions of misclassification using 

box plot. The figure shows that the maximum depth classifiers based on half-

space depth and zonoid depth has the least proportions of misclassification while 

the maximum depth classifiers based on Oja depth and projection depth has 

highest proportions of misclassification.  

Presented in Table 4 is the quantile, mean and standard deviation of the 

proportions of misclassification associated with each of the competing classifiers. 

Maximum depth classifier based on half-space depth has the least mean 

proportion of misclassification as shown in the table. Use of spatial depth, 

simplicial volume depth, Mahalanobis depth and likelihood depth in maximum 

depth classifiers perform equivalently to LDA, while maximum depth classifiers 

based on half-space depth and zonoid depth outperform LDA. Simplicial depth 

values could not be computed as d = 4 > 2. For computation of half-space depth, 

an approximate algorithm implemented in R Package depth is used.  

Conclusion 

The maximum depth classifiers based on the training samples when any of the 

half-space depth, projection depth, simplicial depth, spatial depth, Oja depth, and 

majority depth is used, do not depend on any distributional assumptions or do not 

require any estimation of model parameters. That gives maximum depth 

classifiers an importance over parametric methods. Maximum depth classifiers are 

easily lent to multiclass cases. We have noted in our real data examples that the 

maximum depth classifiers are quite competitive with similar classifiers, 

especially when any of half-space or zonoid depth is used. 
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