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The probabilistic problem of cross-calibration of two categorical variables is addressed. 
A probabilistic forecast of the categorical variables is obtained based on a sample of 
observed data. This forecast is the output of a genetic algorithm based approach, which 
makes no assumption on the type of relationship between the two variables and applies a 

scoring rule to assess the fitness of the chromosomes. It converges to a good-quality point 
probability forecast of the joint distribution of the two variables. The proposed approach 
is applied both at stationary points in time and across time. Its performance is enhanced 
when additional sampled data is included, and can be designed with different scoring 
rules or made to account for missing data. 
 
Keywords: categorical variables, cross-calibration, genetic algorithms, probability 

forecasting 

 

Introduction 

Estimating the joint probability distribution of two categorical variables, based on 

observed data, is a common yet elusive statistical problem. Depending on the 

nature of the categorical variables and the intricacies that characterize their 

relationship, such an endeavor can be highly technical and computationally 

intensive. In addition, the observed data used to estimate the relationship often 

contains numerous sources of error or bias. Such errors, generally due to operators, 

equipment, or the environment, further complicate the problem; impairing the 

validity of any inference.  

Statistical calibration models the relationship between two variables that 

measure the same characteristic. It saves researchers, industrials and technicians 

valuable time, money and effort by providing a mechanism that gives a more 

accurate measurement to a corrupted reading (Osborne, 1991). Its application is 

https://doi.org/10.22237/jmasm/1493599080
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particularly vital in two cases. The first case emanates when the data consists of 

precise measurements acquired using an invasive, destructive, costly, or time-

consuming technique. In such a situation, there usually exists an alternative 

measurement scheme that is more complaisant but not as reliable. Paired samples 

from the two measurements may be calibrated; thus, providing a mechanism to 

forecast the more reliable method from the less reliable one. The second case 

arises in problems requiring data comparability. It occurs when more than one 

technique gives valid and reliable measurements of a certain characteristic and 

there is a need for cross comparison, over time or across individuals. This cross 

comparison or mapping or translating of one measurement of a specific 

phenomenon to another is known as cross-calibration. 

In both cases, the data may be quantitative or qualitative (categorical). The 

nature of categorical data brings its own set of challenges. The data may be self-

reported or may consist of self-responses/assessments. The challenge herein lies 

in assessing the different ways individuals apply and interpret categorical 

response scales (Salomon et al., 2004; Murray et al., 2002; van Buuren & 

Hopman-Rock, 2001). However, the calibration of such variables requires that the 

mapping process be customized to fit the nature of their relationship. The traits 

that characterize the relationship must be explicitly stated in order to maintain its 

integrity during the translation process. Catering to the requirements of the 

statistical association often means imposing restrictions on the outcomes through 

complex mathematical models and structures. 

Assume that X and Z are categorical random variables that measure the same 

qualitative random phenomenon with r and c possible classes, respectively. Let π 

be the matrix of joint probabilities of X and Z where πij = P(X = i, Z = j) for 

i = 1, …, r and j = 1, …, c. Further assume that π is unknown, but that there exists 

an observed sample of N pairs of qualitative readings on (X, Z) of the single 

characteristic of interest. The N pairs are cross-classified into an r × c contingency 

table n which represents the observed relationship between the categories of the 

two variables X and Z. In the contingency table, the cell frequency nij, i = 1, …, r, 

j = 1, …, c, denotes the number of readings classified simultaneously into 

category i by the qualitative reading on X and into category j by the qualitative 

reading on Z, with 
1 1

r c

iji j
n N

 
  . Let the observed relative frequency 

distribution corresponding to the contingency table n be denoted by p where 

ij

ij

n
p

N
 , i = 1, …, r and j = 1, …, c. 
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The objective is to use the observed relative frequency distribution p to find 

an estimate of the functional translation π between X and Z; explicitly to estimate 

the conditional distributions P(Z | X) and P(X | Z). Since both distributions 

P(Z | X) and P(X | Z) are derived from the joint P(X, Z), it is sufficient to find the 

joint probability function π. The notions behind the science of probability 

forecasting are used to derive an estimate of π. 

DeGroot and Fienberg (1983), Dawid (1982), Schervish et al. (2014) and 

others established guidelines as to what constitutes a good forecasting generating 

system. However, how to construct that system remains an open question. In 

some fields, the forecasting mechanism relies heavily on expert opinion. In others, 

more objective procedures are employed. Herein, our focus is on the development 

of a forecasting generating system. A genetic algorithm (GA) -based method is 

applied, that searches for a (near-)optimal translation between the variables of 

interest. The translation corresponds to a joint distribution in the form of a 

probability forecasting system, from which predictive estimates of one of the two 

variables may be generated for a specific set of values of the other variable. 

A primary advantage of this approach is that it obtains this translation 

without explicitly accounting for constraints that characterize the nature of the 

relationship between the variables. It uses the observed sample data to guide the 

search process. Specifically, the GA fitness construct, which is based on methods 

developed in probability forecasting theory (DeGroot and Fienberg, 1983; 

Lichtenstein et al., 1982; Gneiting and Katzfuss, 2014), ensures that the generated 

forecasts are valid and that they are the best among all forecasts in their class.  

The purpose of this study, therefore, is to provide an overview of 

applications of cross calibration and genetic algorithms, and to propose a genetic 

algorithm. To further improve the reliability of the generated estimates, a quasi-

Markov element is added to the analysis. It extends the method to cross-calibrate 

categorical variables measured longitudinally over time, where the calibration 

forecasts are generated both forward and backward on a time scale. Incorporating 

time broadens the applicability of the methodology. It models the relationship in a 

manner that is closer to the true state of nature, thus enhancing the accuracy of the 

estimates. This is supplemented with an illustrative example using stroke 

rehabilitation data. 
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Background 

Applications of Cross-Calibration 

The importance of cross-calibration emanates not only from the savings it induces, 

but mainly from its wide areas of applicability. Applications for this kind of 

analysis are manifold, making statistical calibration a valuable analytical tool. 

Possible fields of applications are demography, psychology, engineering, and item 

response theory. The following presents many fields requiring cross-calibration. 

In surveys, cross-calibration facilitates the comparison of results from 

different questionnaires and the evaluation of response consistency. In corrosion 

analysis, a fundamental part of engineering, pipes and wires of oil fields are 

subject to corrosion because of harsh weather conditions. Following up the 

progress of corrosion is essential not only to production and transport of oil 

products but most importantly to the safety of the equipment and the personnel. 

Accurate tests for the state of corrosion are often invasive, destructive, and costly. 

The use of statistical calibration provides an efficient cost-effective alternative. 

In the computation of official statistics, indicators are essential in 

monitoring and assessing the performance of a nation’s public policy agenda, 

development, and how far a nation has come along in attaining its goals. Because 

the concepts stated above are intuitively understood, standards for their 

computation and compilation tend to vary widely depending on the country and 

the era. This makes the comparison of indicators either among countries or over 

time within countries exceedingly difficult. In light of today’s United Nations’ 

millennium goals, many nations are eager to show how far they have come 

towards attainment. This is only possible through valid data comparison, which is 

achievable via cross-calibration (Murray et al., 2002). 

Similarly, in medicine, the assessment of a given treatment may be 

conducted differently depending on the researcher’s preference or the time in 

which the study was carried out. The development of a quantitative translation 

between them enables the comparison of clinical trials in particular those 

requiring a longitudinal design over time (van Buuren et al., 2001). 

In psychometrics, evaluating people’s abilities, attitudes, and cognition 

through the process of testing and scoring is essential. Item response theory (IRT) 

is used in psychometrics to develop and refine tests that measure latent traits of 

individuals. The development of reliable techniques to measure traits such as 

intelligence and scholastic aptitude are of primary aim/essence of common exams, 

and tests of certification, such as the GRE and GMAT exams. Calibration is used 
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in IRT to provide a frame of reference to interpret test results, to equate tests, and 

to unify measurement scales both within the test items of a single test and 

between tests. The current practice in many of these applications is limited in 

scope. In some, such as IRT, the analysis requires impractical and unrealistic 

assumptions of independence between the items (categories) under investigation. 

Other applications require complicated models that tailor each aspect of the 

relationship separately and impose assumptions that are at many times invalid. As 

a result, the translations produced by the calibration model may be deficient and 

inaccurate. The proposed method overcomes these pitfalls by applying a 

methodology that makes no assumption on the type of relationship between the 

categorical variables under consideration. 

GA Applications in Statistics 

GAs mimic the role nature plays in refining and improving creation. GAs apply 

selective procreation and survival of the fittest to produce (near-)optimal solutions. 

They start from an arbitrary initial population consisting of a set of K 

chromosomes, where each chromosome k, k = 1, …, K, acts as a representative 

solution to the problem. The population undergoes an iterative process of 

selection, crossover, mutation, and survival of the fittest to form future 

generations; thus, instigating an artificial evolutionary process. The algorithm 

iterates until it satisfies a stopping criterion, which can be a prefixed number of 

iterations without improvement (i.e., convergence of the fitness function), a time 

limit, or a preset number of generations, ng. 

Many fields of science, such as bio-informatics, computer science, genetics, 

operations research, economics, engineering, quality control and mathematics, 

have benefited from GA’s straightforward yet efficient solution strategies. GAs 

identified (near-)optima to numerous practical problems with varying degrees of 

complexity. Sayed et al. (2009) show that GAs and their hybrids can improve the 

predictive performance of regression models. Chen et al. (2015) apply an adaptive 

GA to forecast the holiday daily tourist volume based on seasonal tendency. 

Huang et al. (2014) used GAs to assess the quality of a certain type of salted meat 

based on three quality indices whose values are inferred from a colorimetric 

sensor array. Stojanovic et al. (2013) apply a self-adjusting GA to model the 

behavior of dams. Liu et al. (2013) develop a real-time GA that forecasts water 

quality in river crab aquaculture. Nieto et al. (2013) forecast the presence of 

cyanotoxins in the Trasona water reservoir of Northern Spain via GAs.  
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Örkcü (2013) construct a hybrid GA to choose the minimal subset of 

explanatory variables of a multiple linear regression model. Wibowo and Desa 

(2012) employ GA in conjunction with kernel principal component analysis to 

predict the non-linear relationship between surface roughness resulting from 

milling processes and the milling machine parameters in the presence of multiple 

collinearity. Huang (2012) designs a support vector regression GA for stock 

selection. Ahn et al. (2012) use GAs to forecast the appraisal value of a real estate. 

Aydilek and Arslan (2013) identify missing values in data sets via GAs. 

In the field of scientific calibration, GAs are applied to estimate model 

parameters and generate predictions (Vitkovský et al., 2000). However, the 

application of GAs to statistical calibration in general and to categorical cross-

calibration in particular remains limited. 

Procedure 

Although the observed relative frequency distribution p is a valid statistical point 

estimate of π, the true joint probability function of X and Z, it may, in many 

instances, be biased or corrupted because it is subject to numerous sources of 

errors. To obtain an alternative point estimate of π based on the same observed 

sample frequency distribution p, a GA evolutionary procedure is applied for 

categorical data. Unlike most GAs, the proposed GA design does not require 

encoding the data and maintains the data’s structural integrity throughout the 

execution of the algorithm. 

Chromosome’s Definition and Fitness 

When considering unknown outcomes from categorical variables, a common tacit 

employed is the probability of occurrence in each category. When generated for a 

future event, this probability is a point probability forecast. If the probability of 

occurrence is evaluated for each forecast category, then the sum of the 

probabilities should equal one; constituting a probability forecasting system. 

Given the available information, a probability statement about the unknown 

outcome of a categorical variable can be calculated and its competency evaluated. 

Of the numerous criteria that are available to assess probability forecasts, 

(i.e. validity, refinement, etc.), calibration and scoring rules defined on the 

probabilities and their subsequently observed outcomes are among the more 

prevalent methods (Dawid, 1982; Gneiting & Katzfuss, 2014). A scoring rule is 



GENETIC ALGORITHMS FOR CATEGORICAL DATA 

728 

the squared error function in which scores for all the forecast probabilities are 

aggregated and averaged to evaluate the system’s predictive performance. 

Even though originally developed for subjective probability forecasting in 

the field of meteorology, subjective probability forecasting has a broad 

applicability and a wide range of applications. For instance, it can be applied to 

cross-calibration and incorporated into the proposed GA as follows. For our 

purposes, we regard the GA chromosome k in generation g as an 

expression/propagation of some objective forecasting system ˆ g

k . In this regard, 

the chromosome forecasting performance may be assessed and compared with 

other chromosomes. 

GA, which is sequential in nature, obtains K possible estimates of π at each 

iteration (or generation), g = 1, …, ng. The r × c relative frequency matrix for the 

two categorical variables X and Z, ˆ g

k , for each chromosome k, k = 1, …, K, of 

iteration g is a possible estimate of π. The relative frequency
ˆ

ˆ

g

ijkg

ijk
N


  , represents 

the kth probability forecast of P(X = i, Z = j) at iteration g, where ˆ g

ijk  are 

realizations from the kth proposed joint probability ˆ g

ijk  = P(X = i, Z = j) at 

iteration g of the number of times X = i and Z = j. The sum of all frequencies, 

1 1
ˆ

r c g

ijki j


   , which equals N, is independent of g and k. Thus, the sum of all 

relative frequencies, 
1 1

ˆ
r c g

ijki j


   , always equals 1. 

The fitness of a chromosome depends on the fitness of its genes. It reflects 

how well-calibrated the forecast frequency ˆ g

ijk  is in comparison to pij, the 

observed proportion of times that X = i and Z = j in the observed data. A 

probability forecast is considered well calibrated if ˆ g

ijk  = pij. The larger the 

discrepancy between the observed relative frequency and the forecast probability, 

the less-calibrated the gene. Hence, the chromosome fitness , 1, ,g

kF k K , is 

gauged by the scoring rule  

 

  
2

1 1

1
ˆ

r c
g g

k ijk ij

i j

F p
N


 

  , 

 

which is the sum of the squared differences of the observed and forecast 

frequency. The chromosomes within the population are hitherto evaluated and 

ranked according to this criterion. The fitness function , 1, ,g

kF k K  is a proper 
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scoring rule (Brier, 1950). Therefore, it ensures the sharpness and calibration of 

the probability forecasts of the selected chromosome. 

GA’s Design 

The proposed GA’s design follows. The initial population consists of K randomly 

generated chromosomes. Only the fittest 
2

K
 chromosomes of the population are 

granted procreation or crossover privileges. The other least fit 
2

K
 chromosomes 

are deemed too weak and, therefore, unworthy of mating. 

Crossover combines the genes of two existing chromosomes to generate two 

offspring. First, two chromosomes are selected to become parents, Parent1 and 

Parent2. Second, two integers s1 and s2 are randomly generated from the discrete 

intervals [1, r] and [1, c], respectively. Third, the sub-matrix consisting of the first 

s1 rows and the first s2 columns is cut out of Parent1 and positioned on the same 

location on Parent2, thus producing Child1. This new offspring consists of the 

intersection of the first s1 rows and s2 columns of Parent1 and of all other entries 

of Parent2. Simultaneously, a sub-matrix of the same size and location is removed 

from Parent1 and inserted into Parent2 in the same way, giving rise to a second 

offspring, Child2. This latter has the reverse composition of Child1 with the sub-

matrix of its first s1 rows and s2 columns emanating from Parent2 and the 

remaining entries from Parent1. Figure 1 illustrates the crossover of Parent1 and 

Parent2 to produce two children Child1 and Child2. The chromosomes are 5 × 3 

matrices; i.e., categorical variables X and Z have 5 and 3 classes, respectively. The 

crossover chooses the two integer numbers s1 = 3 and s2 = 2 from the discrete 

uniforms [1,5] and [1,3], respectively. The light grey shaded areas of the parent 

chromosomes combine to form Child1 and the dark grey shaded areas constitute 

Child2. 

To preserve the uniformity and hence the coherence of the new offspring, 

the alleles within Child1 and Child2 must be re-scaled. This requires that the 

relative frequencies in the child add up to 1. This is done by dividing each relative 

frequency by the existing total. The offspring are then merged with the existing 

population of generation g which consists of the 
2

K
 parents that were involved in 

crossover and the 
2
K  childless chromosomes. The merged population has 

2

2

K
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chromosomes: the K chromosomes of generation g and the 2 1
2 2

K K 
 

 
 offspring 

chromosomes. The merged population is then assessed and ranked. 
 
 

 
 
Figure 1. Crossover of two 5 × 3 parent chromosomes with s1 = 3 and s2 = 2 crossover 

points.  

 

 
 

Further evolution of the population is enabled through mutation. For each 

chromosome k, k = 1, …, K in the population of generation g, a random 

probability measure  0,1k   is generated. If αk is greater than α, the probability 

of mutation, the chromosome k is subject to a random swap of two of its alleles as 

follows. Two random integers s1 and s1' (resp., s2 and s2') are randomly chosen 

from the discrete uniform [1, r] (resp. [1, c]). The entries corresponding to 
1 2

ˆ g

s s k   

and 
1 2

ˆ g

s s k
 

 of k are then swapped. Mutation does not require the re-scaling of the 

alleles since the total relative frequency is fixed. The mutant replaces the least fit 

chromosome of the population if the former improves the latter. Once it 

completes the mutation step, GA ranks the population again. 

To maintain the vitality of the population, GA culls the weakest 

chromosomes. Applying the survival of the fittest principle, GA selects the elite 

group consisting of the fittest K chromosomes of the mutated population. This 

group serves as the population of the next generation or iteration g + 1. 
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GA iterates through the above steps (i.e., crossover, mutation, and selection) 

until it satisfies a stopping criterion. Preliminary testing of the algorithm suggests 

that the stopping criterion should be a preset number of iterations ng = 1,000. It 

ensures reasonably well-calibrated forecasts with a negligible fitness value of the 

best chromosome. 

The above GA determines the joint probability distribution of two 

categorical variables X and Z based on an observed sample of paired observation. 

This distribution is used to determine the conditional probabilities of X given Z 

and of Z given X. However, the joint and conditional distributions are valid for a 

stationary point in time. In the following, the GA is extended to account for a time 

component (if applicable). Thus, GA will provide point probability forecasts for 

future or past points in time; allowing for the comparison of results of scientific 

studies undertaken at different points on the time horizon. 

GA Across Time 

For applications that involve time, GA is altered so that it evolves over time in a 

manner similar to a Markov chain. Let t = t1, t2, t3, …, represent sequential points 

in time. At any arbitrary initial point in time tι, the GA is executed as described 

above until a well-calibrated population, t
P , comes to term. To move either 

forward or backward to instant tι, the GA is executed once more using tP

 as the 

initial population. The transition in time is made possible by altering the fitness 

function to  

 

  
2

1 1

1
ˆ

r c
t t t

k ij ij

i j

F p
N

   

 

  . 

 

When applied forward (resp. backward) in time, this procedure sets tι' to tι+1 

(resp. tι−1). Time points do not need to be equally spaced on the time horizon. 

Explained in Figure 2 is the application of GA for transitions, where the present 

time is indicated via a dashed arrow and the future/past via a solid arrow. At the 

present time tι, the initial population is generated randomly and GA is applied. 

The outcome of GA at the present time is then used as the initial population for 

the time tι', regardless of whether tι' = tι+1 or tι−1. 
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Figure 2. Forward and backward transition of GA in time. 

 

A Cross-Calibration Application 

In the assessment of stroke victims, standardized disability measures are 

commonly used. The scales are crucial in understanding the effectiveness of 

stroke treatments; yet, seldom is a patient assessed on more than one scale. A 

translation between two scales allows for the comparison among clinical trials and 

aids the development of alternative treatments. 

Consider two commonly used standardized stroke disability measures, and 

apply GA cross calibration to form a feasible translation between them. The first 

is the Barthel Activity of Daily Living (ADL) Index (BI) attributed to Mahoney 

and Barthel (1965). It is a general measure of ADL, applied to a spectrum of 

medical conditions. The second is the Modified Rankin Outcome Scale (RS) 

(Rankin, 1957). It is a measure of the severity of disability in stroke victims. 

Currently, it is the most widely used measure of disability assessment for stroke 

victims (Saver et al., 2010). Much work has been done to compare the 

effectiveness of the measures and to determine whether the same clinical 

conclusion can be drawn from them (Sulter et al., 1999; Saver et al., 2010; 

Uyttenboogaart et al., 2007). 

The BI defines 10 criteria of basic ADL and assesses the patients’ capability 

to perform each of them. A minimum score of 0 is given if the patient is incapable 

of carrying out the task, and a maximum score is attributed if the patient can 

perform the ADL task independently. Partial scores, presented in increments of 5, 
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are allocated to patients who can perform the tasks, but with varying degrees of 

assistance. The scores of the 10 tasks are compiled to create an aggregate score 

with a maximum of 100. That is, a BI score of 100 indicates that the patient is 

physically independent. 

The RS score assigns patients a discrete score from 0 to 5 depending on 

their degree of reliance on assistance and care. In contrast to the BI measure, a 

maximum RS score of 5 indicates the patient has severe disability and is highly 

dependent on nursing assistance. Whereas, a patient who exhibits no symptom of 

stroke debilitation and is independent is given a score of 0. Table 1 describes the 5 

RS rankings and the 10 ADL criteria assessed by BI and their maximal achievable 

scores. 
 
 
Table 1. The different measurement schemes: their measurement criteria and scores. 

 

a. The BI criteria for ADL 
 

b. The Modified Rankin Scale 

Item Maximum score 
 

Item  Score 

Feeding 10 
 

No symptoms  0 

Transferring  15 
 

No significant disability 1 

Grooming  5 
 

Slight disability  2 

Toileting  10 
 

Moderate disability  3 

Bathing 5 
 

Moderately severe disability 4 

Walking  15 
 

Severe disability  5 

Stairs 10 
   

Dressing 10 
   

Bowel continence 10 
   

Bladder continence 10 
 

    

 
 

The data used in this example was taken from the Kansas City Stroke Study 

(KCSS), a prospective cohort study of 459 individuals designed to characterize 

the patterns of recovery of patients with mild, moderate, and severe stroke. As 

described by Duncan et al. (2000), the 459 individuals with stroke were assessed 

using both the BI and RS instrumentations 14 days after the incidence of stroke. A 

follow-up was performed at 1, 3, and 6 months after stroke. Table 2 summarizes 

the observed data. 

All data was collected from hospitals in the Greater Kansas City area. The 

rating of the stroke patients in the study was performed on both the RS and BI 

scales by either a physical therapist or a study nurse. Despite the fact that the 

same enumerator rated each patient, the data is still subject to numerous sources 

of measurement error. One possible source is the two groups of raters: the study 
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nurses and the physical therapists. There can be differences both between and 

within these two groups on how they perceive and interpret the disability criteria 

measures. Likewise, a stroke patient’s subjective interpretation of daily functions 

can vary widely from patient to patient depending on a wide spectrum of factors 

such as the patient’s level of activity pre and post the advent of stroke. Another 

source of measurement error is how the enumerator perceives the patients’ 

activity and the many interaction effects therein. All of these factors (among 

others) culminate adding noise to the observed sample distorting the true 

distribution of the data. 
 
 
Table 2. Cross tabulation of the ADL scores of the KCSS at 1, 3, and 6 months after the 

onset of a stroke. The columns represent the RS score. The rows are the BI.  
 

Month 1 
      

Month 2 
      

Month 3 
     

BI\RS 0 1 2 3 4 5 
 

BI\RS 0 1 2 3 4 5 
 

BI\RS 0 1 2 3 4 5 

0 0 0 0 0 1 10 
 
0 0 0 0 0 1 7 

 
0 0 0 0 0 0 5 

5 0 0 0 0 0 9 
 
5 0 0 0 0 0 2 

 
5 0 0 0 0 1 2 

10 0 0 0 0 3 1 
 
10 0 0 0 0 0 2 

 
10 0 0 0 0 1 1 

15 0 0 0 0 2 1 
 
15 0 0 0 0 5 0 

 
15 0 0 0 0 3 0 

20 0 0 0 0 5 3 
 
20 0 0 0 0 3 0 

 
20 0 0 0 0 3 2 

25 0 0 0 0 7 1 
 
25 0 0 0 0 7 0 

 
25 0 0 0 0 4 1 

30 0 0 0 0 7 0 
 
30 0 0 0 0 6 0 

 
30 0 0 0 0 4 0 

35 0 0 0 0 8 0 
 
35 0 0 0 0 7 0 

 
35 0 0 0 1 3 0 

40 0 0 0 2 14 0 
 
40 0 0 0 0 3 0 

 
40 0 0 0 0 4 0 

45 0 0 0 0 4 0 
 
45 0 0 0 0 3 0 

 
45 0 0 0 0 2 0 

50 0 0 0 1 8 0 
 
50 0 0 0 1 6 0 

 
50 0 0 0 2 3 0 

55 0 0 0 1 9 0 
 
55 0 0 0 0 5 0 

 
55 0 0 0 3 5 0 

60 0 0 1 5 9 0 
 
60 0 0 0 3 6 1 

 
60 0 0 0 3 4 0 

65 0 0 1 5 3 0 
 
65 0 0 0 4 3 0 

 
65 0 0 1 0 5 0 

70 0 0 1 12 3 0 
 
70 0 0 1 11 8 0 

 
70 0 0 0 6 1 0 

75 0 0 1 19 6 0 
 
75 0 0 0 5 0 0 

 
75 0 0 0 12 2 0 

80 0 0 1 18 3 0 
 
80 0 0 6 12 0 0 

 
80 0 0 0 9 0 0 

85 0 0 4 26 0 0 
 
85 0 2 4 21 0 0 

 
85 0 0 3 18 0 0 

90 1 0 7 24 1 0 
 
90 1 2 9 23 0 0 

 
90 0 3 11 13 0 0 

95 1 4 31 13 0 0 
 
95 1 4 24 20 0 0 

 
95 2 6 35 16 0 0 

100 2 17 62 11 0 0   100 7 44 72 9 0 0   100 11 57 62 11 0 0 

 
 

Parmigiani et al. (2003) proposed a functional translation for the two 

measures using a statistical estimation approach. Although it produces adequate 

results, their approach requires that each characteristic of the relationship be 

modeled separately. GA avoids this. Its calibration accounts for all the 

relationship’s characteristics intrinsically. 
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The objective is to determine the conditional probability distributions 

P(BI|RS) and P(RS|BI) at stationary time points and across time. Since both 

conditional distributions are functions of the joint distribution P(BI,RS), GA 

determines only the latter. The GA is labeled vertical if applied at a stationary 

point in time and horizontal when applied either backward or forward across time. 

Given in Table 3 are the joint distributions of RS and BI assessments at 

month 1. Table 3a is the result of a vertical GA at month 1 whereas Table 3b is 

the result of a backward GA starting at month 6 and moving in time to month 3 

then to month 1. Both representations show good results; the negative correlation 

between the two scales is present, as expected, with higher probabilities attributed 

to the joint distribution of ratings along the counter diagonal in the lower triangle 

of Table 3. 
 
 
Table 3. GA representations of the joint distributions after month 1 of the onset of a 
stroke. a) The joint distribution is independent of the information in months 3 and 6; b) 

The resulting joint distribution at month 1 when the GA is allowed to work backward in 
time from month 6 to month 3 to month 1. 
 

a. Month 1: Random GA 
    

b. Month 1: Time Reversal 
   

BI\RS 0 1 2 3 4 5 
 

BI\RS 0 1 2 3 4 5 

0 0.000 0.000 0.000 0.000 0.006 0.027 
 
0 0.000 0.000 0.000 0.000 0.000 0.020 

5 0.000 0.000 0.000 0.000 0.000 0.025 
 
5 0.000 0.000 0.000 0.000 0.000 0.011 

10 0.000 0.000 0.000 0.000 0.008 0.006 
 
10 0.000 0.000 0.000 0.000 0.000 0.011 

15 0.000 0.000 0.000 0.000 0.006 0.006 
 
15 0.000 0.000 0.000 0.000 0.014 0.000 

20 0.000 0.000 0.000 0.000 0.013 0.008 
 
20 0.000 0.000 0.000 0.000 0.011 0.000 

25 0.000 0.000 0.000 0.000 0.020 0.006 
 
25 0.000 0.000 0.000 0.000 0.019 0.000 

30 0.000 0.000 0.000 0.000 0.019 0.000 
 
30 0.000 0.000 0.000 0.000 0.017 0.000 

35 0.000 0.000 0.000 0.000 0.024 0.000 
 
35 0.000 0.000 0.000 0.000 0.020 0.000 

40 0.000 0.000 0.000 0.006 0.049 0.000 
 
40 0.000 0.000 0.000 0.000 0.010 0.000 

45 0.000 0.000 0.000 0.000 0.012 0.000 
 
45 0.000 0.000 0.000 0.000 0.011 0.000 

50 0.000 0.000 0.000 0.006 0.023 0.000 
 
50 0.000 0.000 0.000 0.010 0.020 0.000 

55 0.000 0.000 0.000 0.006 0.026 0.000 
 
55 0.000 0.000 0.000 0.000 0.014 0.000 

60 0.000 0.000 0.006 0.013 0.024 0.000 
 
60 0.000 0.000 0.000 0.011 0.021 0.000 

65 0.000 0.000 0.006 0.013 0.008 0.000 
 
65 0.000 0.000 0.000 0.012 0.010 0.000 

70 0.000 0.000 0.006 0.032 0.008 0.000 
 
70 0.000 0.000 0.011 0.031 0.022 0.000 

75 0.000 0.000 0.006 0.051 0.018 0.000 
 
75 0.000 0.000 0.000 0.014 0.000 0.000 

80 0.000 0.000 0.006 0.049 0.008 0.000 
 
80 0.000 0.000 0.019 0.043 0.000 0.000 

85 0.000 0.000 0.011 0.067 0.000 0.000 
 
85 0.000 0.011 0.011 0.063 0.000 0.000 

90 0.006 0.000 0.020 0.078 0.007 0.000 
 
90 0.010 0.011 0.023 0.064 0.000 0.000 

95 0.006 0.011 0.067 0.049 0.000 0.000 
 
95 0.011 0.011 0.071 0.064 0.000 0.000 

100 0.006 0.018 0.067 0.033 0.000 0.000   100 0.021 0.133 0.094 0.024 0.000 0.000 

 
 

Similarly good results are reported for month 3, as depicted in Table 4, 

which gives its joint distribution. These results were achieved by applying the GA 
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forward (Table 4a), backward (Table 4b), and vertically (Table 4c); thus, allowing 

for the comparison of the three probability forecasts at month 3. All three GA 

approaches perform well, but the retrospective GA provides the best results. This 

conclusion is based on the smallest value of the fitness function and on how well 

the joint distribution exhibits the nature of the relationship between RS and BI. 
 
 
Table 4. GA representations of the joint distributions at month 3 after stroke onset. a) The 

joint distribution resulting from the GA going back in time from month 6 to month 3;         
b) The GA results independent of the information in months 3 and 6; c) The results of the 

GA moving forward in time from month 1 to month 3. 
 
a. Time Reversal 

 
b. Random GA 

BI\RS 0 1 2 3 4 5 
 

BI\RS 0 1 2 3 4 5 

0 0.000 0.000 0.000 0.000 0.000 0.020 
 

0 0.000 0.000 0.000 0.000 0.008 0.019 

5 0.000 0.000 0.000 0.000 0.000 0.008 
 

5 0.000 0.000 0.000 0.000 0.000 0.008 

10 0.000 0.000 0.000 0.000 0.000 0.008 
 

10 0.000 0.000 0.000 0.000 0.000 0.007 

15 0.000 0.000 0.000 0.000 0.012 0.000 
 

15 0.000 0.000 0.000 0.000 0.014 0.000 

20 0.000 0.000 0.000 0.000 0.008 0.000 
 

20 0.000 0.000 0.000 0.000 0.008 0.000 

25 0.000 0.000 0.000 0.000 0.020 0.000 
 

25 0.000 0.000 0.000 0.000 0.019 0.000 

30 0.000 0.000 0.000 0.000 0.020 0.000 
 

30 0.000 0.000 0.000 0.000 0.017 0.000 

35 0.000 0.000 0.000 0.000 0.023 0.000 
 

35 0.000 0.000 0.000 0.000 0.022 0.000 

40 0.000 0.000 0.000 0.000 0.010 0.000 
 

40 0.000 0.000 0.000 0.000 0.008 0.000 

45 0.000 0.000 0.000 0.000 0.008 0.000 
 

45 0.000 0.000 0.000 0.000 0.009 0.000 

50 0.000 0.000 0.000 0.008 0.020 0.000 
 

50 0.000 0.000 0.000 0.000 0.017 0.000 

55 0.000 0.000 0.000 0.000 0.020 0.000 
 

55 0.000 0.000 0.000 0.000 0.014 0.000 

60 0.000 0.000 0.000 0.010 0.023 0.000 
 

60 0.000 0.000 0.000 0.008 0.017 0.000 

65 0.000 0.000 0.000 0.011 0.008 0.000 
 

65 0.000 0.000 0.000 0.010 0.008 0.000 

70 0.000 0.000 0.000 0.031 0.021 0.000 
 

70 0.000 0.000 0.007 0.038 0.028 0.000 

75 0.000 0.000 0.000 0.020 0.000 0.000 
 

75 0.000 0.000 0.000 0.014 0.000 0.000 

80 0.000 0.000 0.020 0.038 0.000 0.000 
 

80 0.000 0.000 0.017 0.038 0.000 0.000 

85 0.000 0.010 0.011 0.061 0.000 0.000 
 

85 0.000 0.007 0.011 0.059 0.000 0.000 

90 0.000 0.011 0.025 0.064 0.000 0.000 
 

90 0.008 0.008 0.040 0.064 0.000 0.000 

95 0.000 0.009 0.084 0.068 0.000 0.000 
 

95 0.000 0.011 0.093 0.055 0.000 0.000 

100 0.020 0.124 0.118 0.027 0.000 0.000   100 0.011 0.122 0.128 0.027 0.000 0.000 

               c. Forward in Time 

        BI\RS 0 1 2 3 4 5 

 

BI\RS 0 1 2 3 4 5 

0 0.000 0.000 0.000 0.000 0.006 0.022 

 

55 0.000 0.000 0.000 0.000 0.020 0.000 

5 0.000 0.000 0.000 0.000 0.000 0.007 

 

60 0.000 0.000 0.000 0.017 0.020 0.007 

10 0.000 0.000 0.000 0.000 0.000 0.007 

 

65 0.000 0.000 0.000 0.011 0.009 0.000 

15 0.000 0.000 0.000 0.000 0.025 0.000 

 

70 0.000 0.000 0.007 0.033 0.023 0.000 

20 0.000 0.000 0.000 0.000 0.008 0.000 

 

75 0.000 0.000 0.000 0.022 0.000 0.000 

25 0.000 0.000 0.000 0.000 0.020 0.000 

 

80 0.000 0.000 0.017 0.050 0.000 0.000 

30 0.000 0.000 0.000 0.000 0.019 0.000 

 

85 0.000 0.010 0.011 0.064 0.000 0.000 

35 0.000 0.000 0.000 0.000 0.020 0.000 

 

90 0.008 0.007 0.025 0.079 0.000 0.000 

40 0.000 0.000 0.000 0.000 0.007 0.000 

 

95 0.000 0.017 0.074 0.063 0.000 0.000 

45 0.000 0.000 0.000 0.000 0.009 0.000 

 

100 0.025 0.045 0.118 0.042 0.000 0.000 

50 0.000 0.000 0.000 0.006 0.021 0.000                 

 
 

Table 5 provides the joint distribution of RS and BI for month 6. Obtained 

in Table 5a is this joint distribution using the past information in month 1; a 

vertical GA is then applied for month 3 first then for month 6. Applied in Table 

5b is a horizontal GA at month 6, using none of the data observed during months 

1 and 6. Again, although both techniques show good results, the forward GA 
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produces slightly better results as it uses additional sample information for its 

forecast. 
 
Table 5. GA representations of the joint distributions at month 6 after stroke onset.  a. 

The resulting joint distribution at month 6 when the GA is allowed to move forward in time 
from month 1 to month 3 to month 6.  b. The joint distribution independent of the 
information in months 1 and 3. 
 

a. Month 6: Time Dependent 
    

b. Month 6: Random GA 
   

BI\RS 0 1 2 3 4 5 

 
BI\RS 0 1 2 3 4 5 

0 0.000 0.000 0.000 0.000 0.006 0.027 

 
0 0.000 0.000 0.000 0.000 0.000 0.020 

5 0.000 0.000 0.000 0.000 0.000 0.025 

 
5 0.000 0.000 0.000 0.000 0.000 0.011 

10 0.000 0.000 0.000 0.000 0.008 0.006 

 
10 0.000 0.000 0.000 0.000 0.000 0.011 

15 0.000 0.000 0.000 0.000 0.006 0.006 

 
15 0.000 0.000 0.000 0.000 0.014 0.000 

20 0.000 0.000 0.000 0.000 0.013 0.008 

 
20 0.000 0.000 0.000 0.000 0.011 0.000 

25 0.000 0.000 0.000 0.000 0.020 0.006 

 
25 0.000 0.000 0.000 0.000 0.019 0.000 

30 0.000 0.000 0.000 0.000 0.019 0.000 

 
30 0.000 0.000 0.000 0.000 0.017 0.000 

35 0.000 0.000 0.000 0.000 0.024 0.000 

 
35 0.000 0.000 0.000 0.000 0.020 0.000 

40 0.000 0.000 0.000 0.006 0.049 0.000 

 
40 0.000 0.000 0.000 0.000 0.010 0.000 

45 0.000 0.000 0.000 0.000 0.012 0.000 

 
45 0.000 0.000 0.000 0.000 0.011 0.000 

50 0.000 0.000 0.000 0.006 0.023 0.000 

 
50 0.000 0.000 0.000 0.010 0.020 0.000 

55 0.000 0.000 0.000 0.006 0.026 0.000 

 
55 0.000 0.000 0.000 0.000 0.014 0.000 

60 0.000 0.000 0.006 0.013 0.024 0.000 

 
60 0.000 0.000 0.000 0.011 0.021 0.000 

65 0.000 0.000 0.006 0.013 0.008 0.000 

 
65 0.000 0.000 0.000 0.012 0.010 0.000 

70 0.000 0.000 0.006 0.032 0.008 0.000 

 
70 0.000 0.000 0.011 0.031 0.022 0.000 

75 0.000 0.000 0.006 0.051 0.018 0.000 

 
75 0.000 0.000 0.000 0.014 0.000 0.000 

80 0.000 0.000 0.006 0.049 0.008 0.000 

 
80 0.000 0.000 0.019 0.043 0.000 0.000 

85 0.000 0.000 0.011 0.067 0.000 0.000 

 
85 0.000 0.011 0.011 0.063 0.000 0.000 

90 0.006 0.000 0.020 0.078 0.007 0.000 

 
90 0.010 0.011 0.023 0.064 0.000 0.000 

95 0.006 0.011 0.067 0.049 0.000 0.000 

 
95 0.011 0.011 0.071 0.064 0.000 0.000 

100 0.006 0.018 0.067 0.033 0.000 0.000   100 0.021 0.133 0.094 0.024 0.000 0.000 

 
 

In all executions of GA for this example, the fitness function converges 

quickly. Despite its small magnitude, the fitness function never converges to zero. 

This only reiterates the fact that the observed sample data used for the assessment 

of the chromosomes’ fitness contains some noise, the sources of which were 

enumerated earlier. Figure 3 demonstrates how the fitness function decreases with 

the population evolution at a stationary point in time.  
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Figure 3. Convergence of the fitness function as the number of generations increases for 

a vertical GA applied at the stationary point 3 months after stroke onset. 

 

 
 

In summary, GA performs well. The population converges quickly. In each 

generation, the chromosomes of the population display the negative correlations 

and properties that characterize the nature of the relationship between RS and BI. 

The time dependent GA performs better than the vertical GA because of the 

additional observed information being used. In particular, it is evident from the 

joint distribution of the first two time periods that a backward transition in time 

produces results that are more compliant with the expected nature of the 

relationship between the RS and BI measures. 

Conclusion 

Estimating the joint distribution of two categorical variables based on an observed 

sample data that contains some bias is an important topic and a cross-calibration 

problem. Because of its theoretical complexity and its widespread applications in 

several fields ranging from engineering to medicine to meteorology to population 

statistics. It is, herein, approximately solved using a non-traditional statistical 

method: genetic algorithm. Unlike other existing statistical methods, the adopted 

genetic algorithm does not make any assumption on the type or strength of the 

relationship between the categorical variables. It uses the observed sample to 

gauge the chromosomes of the successive populations. It converges rapidly to a 

good estimate of the true joint distribution. When applied over a time horizon, the 

genetic algorithm further enhances its estimates as it uses more observed data. 

When applied to the data collected for the Kansas City Stroke Study, it obtains 

logical point probability forecasts that concord with the true state of nature. 
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The proposed genetic algorithm based cross calibration approach can be 

tested with more sophisticated scoring rules or different fitness functions. 

Similarly, it can be applied to overcome missing data; in particular in clinical 

studies where subjects may move to different cities, die, or simply decide to stop 

participating in the study, and also in engineering set ups where the more reliable 

measurement methods are destructive or expensive.  
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