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Graphical Log-Linear Models: Fundamental 
Concepts and Applications 

Niharika Gauraha 
Indian Statistical Institute, Bangalore Center 

Bangalore, India 

 

 
A comprehensive study of graphical log-linear models for contingency tables is presented. 
High-dimensional contingency tables arise in many areas. Analysis of contingency tables 
involving several factors or categorical variables is very hard. To determine interactions 
among various factors, graphical and decomposable log-linear models are preferred. 

Connections between the conditional independence in probability and graphs are 
explored, followed with illustrations to describe how graphical log-linear model are 
useful to interpret the conditional independences between factors. The problem of 
estimation and model selection in decomposable models is discussed. 
 
Keywords: Graphical log-linear models, contingency tables, decomposable models, 
hierarchical log-linear models 

 

Introduction 

The aim in the current study is to provide insight into graphical log-linear models 

(LLMs) by providing a concise explanation of the underlying mathematics and 

statistics, by pointing out relationships to conditional independence in probability 

and graphs, and providing pointers to available software and important references. 

LLMs are the most widely used models for analyzing cross-classified categorical 

data (Christensen, 1997). LLM supports various ranges of models based on non-

interaction assumptions. For fairly large-dimensional tables, the analysis becomes 

difficult; as the number of factors increases the number of interaction terms grows 

exponentially. Graphical LLMs are a way of representing relationships among the 

factors of a contingency table using a graph. The graphical LLMs have two great 

advantages: from the graph structure, it is easy to read off the conditional 

independence relations; and graph-based algorithms usually provide efficient 

computational algorithms for parameter estimation and model selection. 

https://doi.org/10.22237/jmasm/1493598000
mailto:niharika.gauraha@gmail.com
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The decomposable LLMs are a restricted class of GLLMs which are based 

on chordal graphs. There are several reasons for using decomposable models over 

an ordinary GLLM. Firstly, the maximum likelihood estimates can be found 

explicitly. Secondly, closed-form expressions exist for the test statistics. Another 

advantage is that it has triangulated graph-based efficient inference algorithms. 

Thus decomposable models are mostly used for analysis of high-dimensional 

tables. 

Graph Theory and Markov Networks 

Graph Theory 

Necessary concepts of graph theory that will be used are discussed. See West 

(2000) for further details on graph theory. A graph G is a pair G = (V, E), where 

V is a set of vertices and E is a set of edges. A graph is said to be an undirected 

graph when E is a set of unordered pairs of vertices. Consider only a simple graph 

that has neither loops nor multiple edges. 

 

Definition 1 (Boundary): Let G = (V, E) be an undirected graph. The 

neighbors or boundary of a subset A of vertices is a subset C of vertices such that 

all nodes in C are not in A but are adjacent to some vertex in A. 

 

     bd A V A A : , Eu v u v    ∣   

 

Definition 2 (Maximal Clique): A clique of a graph G is a subset C of 

vertices such that all vertices in C are mutually adjacent. A clique is said to be 

maximal if no vertex can be added to C without violating the clique property. 

 

Definition 3 (Chordal (Triangulated) Graphs): In graph theory, a chord of a 

cycle C is defined as an edge which is not in the edge set of C but joins two 

vertices from the vertex set C. A graph is said to be a chordal graph if every cycle 

of length four or more has a chord. 

 

Definition 4 (Isomorphic Graphs): Two graphs are said to be isomorphic if they 

have same number of vertices, same number of edges, and they are connected in 

the same way. 



NIHARIKA GAURAHA 

547 

Conditional Independence 

The concept of conditional independence in probability theory is very important 

and it is the basis for the graphical models. It is defined as follows: 

 

Definition 5 (Conditional Independence): Let X, Y, and Z be random variables 

with a joint distribution P. The random variables X and Y are said to be 

conditionally independent given the random variable Z if and only if the following 

holds: 

 

 
     

   

P , | P | P |

P | P |

X Y Z X Z Y Z

X YZ X Z




  

 

Dawid’s (1979) notation, X ⫫ Y | Z, is also used. Conditional independence 

has a vast literature in the field of probability and statistics; see also Pearl and Paz 

(1987). 

Markov Networks and Markov Properties 

Markov network graphs, Markov networks, and different Markov properties for 

the Markov Networks are now defined. 

 

Definition 6 (Markov Network Graphs): A Markov network graph is an 

undirected graph G = (V, E) where V = {X1,…, Xn} represents random variables 

of a multivariate distribution. 

 

Definition 7 (Markov Networks): A Markov network M is a pair M = (G, Ψ). 

Where G is a Markov network graph and Ψ = {ψ1,…, ψm} is a set of non-negative 

functions for each maximal clique Ci ∈ G ∀i = 1,…, m, and the joint probability 

density function (pdf) can be decomposed into factors as 

 

    
1

P
m

a

a C

x x
Z 

    

 

where Z is a normalizing constant. 
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Definition 8 (Pairwise Markov Property (P)): A probability distribution P 

satisfies the pairwise Markov property for a given undirected graph G if, for every 

pair of non-adjacent vertices X and Y, X is independent of Y given the rest. 

 

 X ⫫ Y | (V \ X, Y)  

 

Definition 9 (Local Markov Property (L)): A probability distribution P satisfies 

the local Markov property for a given undirected graph G if every variable X is 

conditionally independent of its non-neighbors in the graph, given its neighbors. 

 

 X ⫫ (V \ (X ∪ bd(X))) | bd(X) 

 

Definition 10 (Global Markov Property (G)): A probability distribution P is 

said to be global Markov with respect to an undirected graph G if and only if, for 

any disjoint subsets of nodes A, B, and C such that C separates A and B on the 

graph, the distribution satisfies the following: 

 

 A ⫫ B | C 

 

Note the above three Markov properties are not equivalent to each other. 

The local Markov property is stronger than the pairwise one, while weaker than 

the global one. More precisely, 

 

Proposition 1:  For any probability measure the following holds: 

 

      G L P    

 

See Lauritzen (1996), for proof of Proposition 1. Refer to Lauritzen (1996) and 

Edwards (2000) for further details on graphical models, and to Darroch, Lauritzen, 

and Speed (1980) for details on Markov fields for LLMs. 

Notations and Assumptions 

The notations and the assumptions are now discussed. Consider three-dimensional 

tables for notational simplicity; this is also a true representative of k-dimensions 

and thus can be easily extended to any higher dimensions by increasing the 



NIHARIKA GAURAHA 

549 

number of subscripts. See Christensen (1977) and Bishop, Fienberg, and Holland 

(1989). 

Consider a three-dimensional table with factors X, Y, and Z. Numeric 

{1, 2, 3} and alphabetic {X, Y, Z} symbols are used interchangeably to represent 

the factors of a contingency table. Suppose the factors X, Y, and Z have I, J, and K 

levels, respectively. Then we have an I × J × K contingency table. 

The following notations are defined for each elementary cell (i, j, k) for 

i = 1,…, I, j = 1,…, J, and k = 1,…, K: 

 

nijk = the observed counts in the cell (i, j, k) 

mijk = the expected counts in the cell (i, j, k) 

ˆ
ijkm  = the Maximum Likelihood Estimate (MLE) of mijk 

pijk = the probability of a count falling in cell (i, j, k) 

ˆ
ijkp  = the MLE of pijk 

 

The following notations are used for sums of elementary cell counts, where “.” 

represents summation over that factor. For example, 

 

 

..

.

... total number of observations

i ijk

jk

i k ijk

j

n n

n n

N n





 



   

 

Similarly, the marginal totals of probabilities and the expected counts are denoted 

by p.jk, and m.jk, etc. 

Denote by C the tables of sums obtained by summing over one or more 

factors, e.g. C12 represents tables of counts nij.. Subscripted u-term notation is 

used for main effects and interactions. For example, uij is used for two-factor 

interactions ∀i = 1,…, I and ∀j = 1,…, J. We may interchangeably use u12(ij) and 

uij; the latter is obtained by simply dropping the second set of subscript. Thus 

 

  12 12
1, , , 1, ,

ij
u u i I j J      

 

Assume that the observed cell counts are strictly positive for all models we 

consider throughout this article. 
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Overview of Contingency Tables 

A contingency table is a table of counts that summarizes the relationship between 

factors. In a multivariate qualitative data set where each individual is described by 

a set of attributes, all individual with same attributes are counted; this count is 

entered into a cell of a corresponding contingency table (see Bishop, Fienberg, & 

Holland, 1989). The term contingency was introduced by Pearson (1904). There is 

an extensive body of literature on contingency tables; see A. H. Andersen (1974), 

Bartlett (1935), and Goodman (1969). 

 

Example 1: Table 1 provides an example of a three-dimensional contingency 

table taken from example 3.2.1 of Christensen (1997). 

Types of Contingency Tables 

Based on the underlying assumption of sampling distributions, contingency tables 

are divided into three main categories as follows: 

 

The Poisson Model In this model, it is assumed that cell counts are independent 

and Poisson-distributed. The total number of counts and the marginal counts are 

random variables. For three-dimensional tables with counts as random variables, 

the joint probability density function (pdf) can be written as 

 

   
e

f
!

ijk ijkn m

ijk

ijk

i j k ijk

m
n

m



   (1) 

 

The Multinomial Model In this model, it is assumed that the total number of 

subjects N is fixed. With this constraint imposed on independent Poisson 

distributions, the cell counts yield a multinomial distribution. For proof we refer 

to Fisher (1922). The pdf for this model is given as 
 
 
Table 1. Personality type table 

 

  

Diastolic Blood Pressure 

Personality Type Cholesterol Normal High 

A Normal 716 79 

 
High 207 25 

B Normal 819 67 

  High 186 22 
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!

f
! 

ijkn

ijk

ijk

i j kijki j k

mN
n

n N

 
  

 


 
  (2) 

 

The Product-Multinomial Model In this model, it is assumed that one set of 

marginal counts is fixed and the corresponding table of sums follow a product-

multinomial distribution. For example, consider a three-dimensional table with 

total counts for the first factor, n.jk, fixed. The pdf is given as 

 

    . !
f

!

ijkn

jk ijk

ijk

j k iijk ijki

n m
n

n n

  
       

 


  (3) 

Introduction to Log-Linear Models 

As discussed previously, the distribution of cell probabilities belong to 

exponential family (Poisson, multinomial, and product-multinomial). Construct a 

linear model in the log scale of the expected cell count. A LLM for a three-factor 

table is defined as 

 

                1 2 3 12 13 23 123
log  ijk i j k ij ik jk ijk

m u u u u u u u u          (4) 

 

with the following identifiability constraints: 

 

 

     

   

   

   

     

1 2 3

12 12

12 12

12 12

123 123 123

0

0

0

0

0

i j k
i j k

ij ij
i j

ik ik
j k

jk jk
j k

ijk ijk ijk
i j k

u u u

u u

u u

u u

u u u

  

 

 

 

  

  

 

 

 

  

  

 

The above model is called saturated or unrestricted because it contains all possible 

one-way, two-way, and three-way effects. In general, if no interaction terms are 

set to zero, it is called the saturated model. 
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The number of terms in a LLM model depends on the dimensions or number 

of factors and the interdependencies between the factors; it does not depend on 

the number of cells (see Birch, 1963 for more details). The model given by 

equation (4) applies to all three kinds of contingency tables with three factors (as 

discussed in the previous section), but there may be differences in the 

interpretations of the interaction terms (see Kreiner, 1998; Lang, 1996b). There is 

a wide body of literature on LLMs, see for instance Agresti (2002), Christensen 

(1997), Zelterman (2006), and Knoke and Burke (1980). 

Log-Linear Models as Generalized Linear Models 

Recall the generalized linear model (GLM). It consists of a linear predictor and a 

link function. The link function determines the relationship between the mean and 

the linear predictor. Here, we show that the LLMs are special instances of GLMs 

for Poisson-distributed data; see Nelder and Wedderburn (1972) for details. 

Consider a 2 × 2 Poisson model with two factors, say X and Y, and suppose 

cell counts nij are response variables such that nij ~ Poisson(mij) and the factors X 

and Y are explanatory variables. Define a link function g as g(mij) = log(mij). The 

linear predictor is defined as X'β, where X is the design matrix and β is the vector 

of unknown parameters. For this model, X and β are defined as 

 

 

 

 

 

 

1

2

1

2

11

12

21

22

1 1 0 1 0 1 0 0 0

1 1 0 0 1 0 1 0 0
,

1 0 1 1 0 0 0 1 0

1 0 1 0 1 0 0 0 1



















 
 
 
 
  
  
      
  
  
 
 
 
 
 

X β   

 

The model can be expressed as follows: 

 

    log ij i i j ij
m x        β   
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Rename the parameters as 

 

   1 2 12log ijm u u u u      

 

The above model is the same as the LLM defined for two-factor tables, where u is 

the overall mean, u1 and u2 are the main effects, and u12 is the interaction effect. 

LLMs can be fit as generalized linear models by using software packages 

available for GLMs, e.g. the glm() function in the stats R package. 

Classes of Log-Linear Models 

Comprehensive Log-Linear Models 

The class of comprehensive LLMs is defined as follows: 

 

Definition 11 (Comprehensive Log-Linear Models): A log-linear model is 

said to be comprehensive if it contains the main effects of all the factors. 

For example, a comprehensive LLM for the three-factor contingency tables 

must include all the main effects u1, u2, and u3, along with other interaction effects, 

if any (see Zelterman, 2006). 

Hierarchical Log-Linear Models 

The class of hierarchical LLMs is defined as follows: 

 

Definition 12 (Hierarchical Log-Linear Models): A LLM is said to be 

hierarchical if it contains all the lower-order terms which can be derived from the 

variables contained in a higher-order term. 

For example, if a model for three-dimension table includes u12, then u1 and 

u2 must be present. Conversely, if u2 = 0, then we must have u12 = u23 = u123 = 0. 

The hierarchical models may be represented by giving only the terms of highest 

order, also known as a generating class, because all the lower-order terms are 

implicit. The generating class is defined as follows: 

 

Definition 13 (Generating class): The highest-order terms in hierarchical 

LLMs are called a generating class because they generate all of the lower-order 

terms in the model. 
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Example 2: A LLM with generating classes C = {[123], [34]} corresponds to 

the following log-linear model: 

 

log(mhijk) = u + u1 + u2 + u3 + u4 + u12 + u23 + u13 + u123 + u34 

Members of generating class [123] = {[1], [2], [3], [12], [23], [13], [123]} 

Members of generating class [34] = {[3], [4], [34]} 

 

All models considered in the remaining sections of this article are hierarchical and 

comprehensive LLMs unless stated otherwise. 

Graphical Log-Linear Models 

Consider a class of LLMs that can be represented by graphs, called graphical log-

linear models (GLLMs). 

 

Definition 14 (Graphical Log-Linear Models): A LLM is said to be 

graphical if it contains all the lower-order terms which can be derived from 

variables contained in a higher-order term, the model also contains the higher 

order interaction. 

For example, if a model includes u12, u23, and u31, then it also contains the 

term u123. In GLLMs, the vertices correspond to the factors and the edges 

correspond to the two-factor interactions. But the factors (vertices) and the two-

factor interactions (edges) alone do not specify the graphical models. As 

mentioned previously, factorization of the probability distribution with respect to 

a graph must satisfy the Markov properties. For such a graph that respects the 

Markov properties with respect to a probability distribution, there is a one-to-one 

correspondence between GLLMs and graphs. It follows that every GLLM 

determines a graph and every graph determines a GLLM, as is illustrated by the 

following examples: 

 

Example 3: Consider the model [123] [134]. The two-factor terms generated by 

[123] are [12], [13], and [23]. Similarly, the two-factor terms generated by [134] 

are [13], [14], and [34]. The corresponding graph is as given in Figure 1. 

Conversely, read the LLM directly from the corresponding graph. Consider 

a graph as given in Figure 2; the edges are [12], [23], [13], and [34]. Because the 

generating class for the terms [12], [23], and [13] is the term [123], we must 

include [123] in the model. Hence, the corresponding GLLM is [123] [34]. 
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Figure 1. Graphical model of [123] [134] 

 

 
 

 
 
Figure 2. Graphical model of [123] [34] 

 

 

Generating classes of GLLMs are in a one-to-one correspondence with the 

maximal cliques of the corresponding graph. Not all hierarchical LLMs have 

graphical representation. For example, the model [12] [13] [23] is hierarchical but 

it is not graphical because it does not contain the higher order term [123]. 

 

Decomposable Models Consider the class of decomposable models, which 

is a subclass of the GLLMs. 

 

Definition 15 (Decomposable Log-Linear Models):  A LLM model is 

decomposable if it is both graphical and chordal. 

The main advantage of this model over other models is that it has closed 

form Maximum Likelihood Estimates (MLEs). For example, consider a 

decomposable model as given by Figure 1. The only conditional independence 

implied by the graph is that, given the factors 1 and 3, factors 2 and 4 are 

independent. The MLEs for the expected cell counts are factorized in a closed 

form in the terms of sufficient statistics as 

 

 
. .

. .

ˆ hij h jk

ijkl

h j

n n
m

n
   

 

The derivation of MLE expressions, like the one above, is discussed in detail in a 

later section. For all the possible non-isomorphic graphical and decomposable 

models for the four-factor contingency tables, see Table 18 in the Appendix. 

A few important articles concerned with the decomposable models are 

Goodman (1970, 1971b), Haberman (1974), Lauritzen, Speed, and Vijayan (1984), 

Meeden, Geyer, Lang, and Funo (1998) and Dahinden, Kalisch, and Bühlmann 

(2010). 



GRAPHICAL LOG-LINEAR MODELS 

556 

Statistical Properties of the Log-Linear Models 

Consider statistical properties of the hierarchical LLMs, like the existence of 

sufficient statistics, uniqueness of the MLE, and model testing. 

The Sufficient Statistics for LLMs 

The sufficient statistics exist for the hierarchical LLMs and are very easy to 

obtain. Consider the saturated model with simple multinomial sampling 

distribution for the three-factor contingency tables. The log-likelihood function of 

the multinomial is obtained from the pdf given by equation (1) as follows: 

 

      
!

log f log log logijk ijk ijk

i j kijki j k

N
n n m N N

n

 
   
 
 


 

  (5) 

 

Or, equivalently, 

 

      log f logijk ijk ijk

i j k

n n m C    (6) 

 

where C represents the constant terms. Substituting the value for log(mijk) as given 

by equation (4), 

 

      1 2 3 12 13 23 123log f ijk ijk

i j k

n n u u u u u u u u C           

 

The above expression can be also written as 

 

 
   1 .. 2 . . 3 ..   12 . 13 .

23 .   123

f expijk i j k ij i k

i j k i j i k

jk ijk

j k i j k

n Nu u n u n u n u n u n

u n u n C

 
      

 

  

    

 
  

 

Because the multinomial distribution belongs to exponential family sufficient 

statistic exists, see E. B. Andersen (1970). From the above expression it is 

apparent that, for the three-factor saturated model, the full table itself is the 

sufficient statistic since the lower-order terms are redundant and it will be 
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subsumed in the full table. The marginal sub-tables which correspond to the set of 

generating classes are the sufficient statistics for the log-linear models (see Birch, 

1963). 

 

Example 4: Consider a four-factor table with the following generating classes: 

 

       1 2, 123 , 34C C    

 

Then C1(n) = [nijk.] is a three-dimensional marginal sub-table and C2(n) = [n..kl] is 

a two-dimensional marginal sub-table. These two marginal sub-tables are the 

sufficient statistics for this model. For more details and proofs on the sufficient 

statistics for hierarchical LLMs, see Haberman (1973). 

Maximum Likelihood Estimates for the LLMs 

A unique set of MLEs for every cell count can be obtained from the sufficient 

statistics alone; see Birch (1963) for the proof. The Birch criteria are: 

 

1. The marginal sub-tables obtained by summing over the factors not present 

in the max-cliques are the sufficient statistics for the corresponding 

expected cell counts. e.g., for the model [123] [34], C1(n) = [nijk.] and 

C2(n) = [n..kl] are sufficient statistics for mijk. and m..kl, respectively. 

2. All the sufficient statistics must be the same as the corresponding marginal 

sub-tables of their estimate means. 

 

    ˆ
i iC m C n   

 

for all i from 1 to the number of generating classes. e.g., for the model 

[123] [34], the estimated cell counts are 

 

 
. .

.. ..

ˆ

ˆ

ijk ijk

kl kl

m n

m n




  

 

Finally, the MLE of the expected cell counts for the model [123] [34] is 

expressed as follows: 
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. ..

.. .

ˆ ijk kl

ijkl

k

n n
m

n
   

 

The closed form expressions for the MLEs will be derived below in terms of 

sufficient statistics for three-factor contingency tables. 

The reason for choosing MLE for computing the expected cell counts is its 

consistency and efficiency in large samples. There is extensive research on the 

MLEs of LLMs; see for example Glonek, Darroch, and Speed (1988), A. H. 

Andersen (1974), Haberman (1974), Meeden, Geyer, Lang, and Funo (1998), 

Birch (1963), Fienberg and Rinaldo (2007), Lang (1996a), Lang, McDonald, and 

Smith (1999), and Darroch (1962). 

Testing Models 

The assessment of a model’s fit is very important as it describes how well it fits 

the data. Consider the following test statistics: 

Pearson’s χ2 Statistic 

This is defined as 

 

 
 

2

2 i i

i i

O E

E



   

 

where the Oi denote the observed cell counts and the Ei the expected cell counts. 

The Deviance Goodness-of-Fit Test Statistics 

Test a model against the saturated model using the deviance goodness-of-fit test, 

which is defined as follows: 

 

 2 2 log i
i

i i

E
G O

O
     

 

Under the null hypotheses, the deviance is also distributed as χ2 with the 

appropriate degrees of freedom. 

Significance of a test statistic is assessed by its p-value. Statistical 

significance is attained when the p-value is less than a predetermined minimum 
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level of significance, say α. The significance level α is often set at 0.05 or 0.01 

(see Bishop, Fienberg, & Holland, 1989). Here the level α is set at 0.05. 

In Table 2, the degrees of freedom of all the possible models for three-factor 

tables are listed. For more information about the model testing refer to Davis 

(1968), Kreiner (1987), and Landis, Heyman, and Koch (1978). 

Analysis of Three-Factor Contingency Tables 

Consider the different interaction models for three-factor tables and the 

mathematical formulation for the MLE of the expected counts (when it is 

possible) for each model. 
 
 
Table 2. Degrees of freedom 

 

Model DF 

[1][2][3] IJK − I − J − K + 2 

[12][3] (IJ − 1)(K − 1) 

[13][2] (IK − 1)(J − 1) 

[23][1] (JK− 1)(I − 1) 

[12][13] I(J − 1)(K − 1) 

[12][23] J(I − 1)(K − 1) 

[13][23] K(I − 1)(J − 1) 

[12][13][23] (I − 1)(J − 1)(K − 1) 

[123] 0 

 
 

Complete Independence Model 

This is the simplest model where all the factors are mutually independent and 

u12 = u13 = u23 = u123 = 0. The following different equivalent notations can be used 

to represent this model: 

 

 X ⫫ Y | Z 

   1 2 3log ijkm u u u u      (7) 

 C = {[1], [2], [3]}  

 

This model can be represented graphically as given in Figure 3. 

Substitute the value of log(mijk), as given in the equation (4) to the log-

likelihood kernel as given by the Equation (6) and ignoring the constant term: 



GRAPHICAL LOG-LINEAR MODELS 

560 

 

     

 1 2 3

log f logijk ijk ijk

ijk

ijk

ijk

n n m

n u u u u



   




  

 

After simplification, obtain 
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From the above expression, obtain the sufficient statistics for this models as 

marginal sub-tables: C1 = {ni..}, C2 = {n.j.}, and C3 = {n..k}, which are estimates of 

mi.., m.j., and m..k, respectively. 

From equation (7), by summing over jk, ik, ij, and ijk, we obtain mi.., m.j., m..k, 

and m... as 
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From the above equations, get the expression for mijk as 
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Applying Birch's result, the estimates of mijk are 
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Figure 3. The complete independence model 

 

 
 
Table 3. Personality type, cholesterol, and DBP marginal sub-tables of Table 1 

 

Personality Type   
 

Cholesterol   
 

Diastolic Blood Pressure   

A 1027 
 

Normal 1681 
 

Normal 1928 

B 1094 
 

High 440 
 

High 193 

 
 
Table 4. Table of estimated cell counts for Example 4 

 

  

Diastolic Blood Pressure 

Personality Type Cholesterol Normal High 

A Normal 739.90 74.07 

 
High 193.70 19.39 

B Normal 788.20 78.90 

  High 206.30 20.65 

 
 

Example 4: Consider the contingency table as given in Table 1. Under the 

complete independence assumption, the sufficient statistics are the marginal sub-

tables given in Table 3. The table of fitted values, under the complete 

independence assumption, is given in Table 4. The G2 statistic for the model is 

8.723 (df: 4, p-value: 0.068), hence we conclude that the data supports the 

complete independence model. For details on the Chi-Squared test of 

independence, refer to Goodman (1971b). 
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Joint Independence Model 

Under this model, two factors are jointly independent of the third factor. There are 

three versions of this model depending on which factor is unrelated to the other 

two. These three models are (XY) ⫫ Z, (XZ) ⫫ Y, and (YZ) ⫫ X. Consider only 

(XY) ⫫ Z in detail as the others are comparable. Equivalent different notations are 

 

 
 

    

1 2 3 12

12 ,

l g

3

o ijkm u u u u u

C

   




  (8) 

 

This model can also be represented graphically, as given in Figure 4. 
 
 

 
 
Figure 4. The joint independence model. 

 

The sufficient statistics for this model are the marginal sub-tables C1 = {nij.} 

and C2 = {n..k}, which are the estimates of mij. and m..k. From equation (8), obtain 
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From the above equations, derive the closed form expression for mijk as 
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and, applying Birch’s criteria, 
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. .

...

.ˆ ij k

ijk

n n
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If the previous model of the complete independence X ⫫ Y ⫫ Z fits a data set, then 

the model, (XY) ⫫ Z will also fit. But the smallest model will be preferred. 

 

Example 5: Consider the contingency table displayed in Table 5 to discuss this 

model. The sufficient statistics are given in Table 6. Under the assumptions of this 

model, the table of the expected cell counts is given in Table 7. The G2 statistic 

for this model is 5.560 (df: 5, p-value: 0.351), hence we conclude that the data 

supports the joint independence model. 
 
 
Table 5. Classroom behaviour table (Everitt, 1977) 

 

  
Risk 

Classroom Behaviour Adversity of School Not at Risk At Risk 

Nondeviant Low 16 7 

 
Medium 15 34 

 
High 5 3 

Deviant Low 1 1 

 
Medium 3 8 

 
High 1 3 

 
 
Table 6. Adversity*risk and classroom behaviour marginal sub-tables of Table 5 

 

 
Risk 

   Adversity Not at Risk  At Risk  
 

Classroom Behaviour Total 

Low  17 8 
 

Nondeviant 80 

Medium  18 42 
 

Deviant 17 

High  6 6 
    

 
Table 7. Table of estimated cell counts for Example 5 

 

  
Risk 

Classroom Behaviour Adversity of School Not at Risk At Risk 

Nondeviant Low 14.020 6.597 

 
Medium 14.845 34.639 

 
High 4.948 4.948 

Deviant Low 2.979 1.402 

 
Medium 3.154 7.360 

 
High 1.051 1.051 



GRAPHICAL LOG-LINEAR MODELS 

564 

Conditional Independence Model 

Under this model, two factors are conditionally independent given the third factor. 

There are three version for this model as well, these are X ⫫ Y | Z, X ⫫ Z | Y, and 

Y ⫫ Z | X. Consider only X ⫫ Y | Z in detail, as derivation for the others is similar. 

This model can be equivalently represented as 

 

 
 

    

1 2 3 13 23log

13 , 23

ijkm u u u u u u

C

     


  (9) 

 

The graph for this model is given in Figure 5. 
 
 

 
 
Figure 5. The conditional independence model 

 

 
 

The sufficient statistics for this model are the marginal sub-tables C13 = ni.k 

and C23 = n.jk, which are estimates of mi.k and m.jk. From equation (9): 
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From the above three equations, obtain the closed form expression for mijk as 
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As before, applying Birch's criteria derive the expected counts for each cell as 
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Example 6: Consider Table 8, infant’s survival data taken from Bishop (1969). 

Assuming pre-natal care and survival are independent given a clinic, the sufficient 

statistics are given in Table 9. The G2 statistic for this model is 0.082 (df: 2, 

p-value: 0.959), hence we conclude that the data supports the conditional 

independence model. 
 
 
Table 8. Infant survival table 

 

  
Infant’s Survival 

Clinic Pre-natal care Died Survived 

A Less 3 176 

 
More 4 293 

B Less 17 197 

 
More 2 23 

 
 
Table 9. Survival*clinic, clinic*pre-natal care, and clinic marginal sub-tables of Table 8 

 

 
Infant’s Survival 

  
Pre-natal Care 

 
Clinic Total 

Clinic Died Survived 
 

Clinic Less More 
 

A 476 

A 7 469 
 

A 179 297 
 

B 239 

B 19 220 
 

B 214 25 
    

 
Table 10. Table of estimated cell counts for Example 6 
 

  
Infant’s Survival 

Clinic Pre-natal care Died Survived 

A Less 2.632 176.367 

 
More 4.367 292.632 

B Less 17.012 196.987 

 
More 1.987 23.012 

Uniform Association Model 

This model is also known as the no three-factor interaction model, where u123 = 0. 

For this model the log-linear notation is [12] [13] [23], but there is no graphical 

representation for this model. Unlike the previous models, there are no closed-
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form estimates for the expected cell counts/probabilities under this model. The 

MLEs can be computed by iterative procedures such as Iterative Proportional 

Fitting (IPF) and the Newton-Raphson method. 

 

Example 7: Consider Table 11, auto accident data taken from Fienberg (1970). 

None of the models discussed in previous sections fit the data. Use the IPF 

algorithm to obtain the table of estimated counts as given in the Table 12. The G2 

statistic for this model is 0.043 (df: 1, p-value: 0.835), hence we conclude the data 

supports the marginal association model. For more information on IPF, refer to 

Deming and Stephan (1940) and Fienberg (1970). The IPF procedure 

implemented in the R package cat was used, available at cran.r-project.org. 
 
 
Table 11. Auto accident data table 

 

  
Injury 

Accident Type Driver Ejected Not Severe Severe 

Collision No 350 150 

 
Yes 26 23 

RollOver No 60 112 

 
Yes 19 80 

 
Table 12. Table of estimated cell counts for Example 7 

 

  
Injury 

Accident Type Driver Ejected Not Severe Severe 

Collision No 350.48858 149.51130 

 
Yes 25.51142 23.48870 

RollOver No 59.51104 112.48921 

 
Yes 19.48896 79.51079 

 
 

 
 
Figure 6. The saturated model 
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Saturated Model 

For this model, the log-linear notation is [123]. In this case there is no 

independence relationship between the three factors. The expected cell counts are 

the same as the observed cell frequencies, e.g. ˆ
ijk ijkm n . Graphical representation 

for the saturated model is given in Figure 6. 

 

Example 8: Consider Table 13, a partial table which is based on clinical trial 

data from Koch, Amara, Atkinson, and Stanish (1983). None of the models fit the 

data; we leave this for the reader to verify. 
 
 
Table 13. Results of a clinical trial for the effectiveness of an analgesic drug 
 

  
Response 

Status Treatment Poor Moderate Excellent 

1 Active 3 20 5 

 
Placebo 11 4 8 

2 Active 3 14 12 

 
Placebo 6 13 5 

Model Selection for Decomposable Models 

Model selection is now discussed for the decomposable models only, as a non-

decomposable graphical model can be reduced to a decomposable one by adding a 

minimal number of edges to the graph. For details on minimum triangulation, 

refer to Rose, Tarjan, and Lueker (1970) and Heggernes (2006). 

Though decomposable models are a restricted family of GLLMs, selecting 

an optimal model from the class of decomposable graphical models is known to 

be an intractable problem. Most of all existing model selection algorithms are 

based on forward selection, backward elimination, or a combination of the both. 

There is a vast literature available for model selection and inference on graphical 

models, e.g. see Wainwright and Jordan (2008), Dahinden, Kalisch, and 

Bühlmann (2010), Goodman (1971a), Ravikumar, Wainwright, and Lafferty 

(2010), and Allen and Liu (2012). 

The Wermuth's procedure starts with the saturated model, a single clique 

that includes all the two-factor effects as given in Figure 7. The vertices a, b, c, d, 

e, and f correspond to the factors Attendance, Sex, School, Agree, Subject, and 

Plans, respectively. 
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Consider the backward model selection procedure for a real data set called 

women and mathematics (WAM), used in Fowlkes, Freeny, and Landwehr (1988). 

Wermuth's (1976) backward elimination algorithm is used. The data are shown in 

the Table 14. 

Graphical models are completely specified by their two-factor interactions. 

By the hierarchical principle, if a two-factor term is set to zero, then any higher-

order term that contain that particular two-factor term will also be set to zero. 
 
 
Table 14. The women and mathematics data table 
 

  
School Suburban School 

  
Sex Female 

 
Male 

Plan Preference Attend Not 
 

Attend Not 

College Maths-Sciences Agree 37 27 
 

51 48 

  
Disagree 16 11 

 
10 19 

 
Liberal arts Agree 16 15 

 
7 6 

  
Disagree 12 24 

 
13 7 

Job Maths-Sciences Agree 10 8 
 

12 15 

  
Disagree 9 4 

 
8 9 

 
Liberal arts Agree 7 10 

 
7 3 

  
 

Disagree 8 4 
 

6 4 

 

  
School Urban School 

  
Sex Female 

 
Male 

Plan Preference Attend Not   Attend Not 

College Maths-Sciences Agree 51 55 
 

109 86 

  
Disagree 24 28 

 
21 25 

 
Liberal arts Agree 32 34 

 
30 31 

  
Disagree 55 39 

 
26 19 

Job Maths-Sciences Agree 2 1 
 

9 5 

  
Disagree 8 9 

 
4 5 

 
Liberal arts Agree 5 2 

 
1 3 

  
 

Disagree 10 9 
 

3 6 

 
 

In the next step, all the  6
2

 two-factor interactions are considered for 

elimination. Fix a backward elimination cut off level, α = 0.05. Among the two-

factor interactions, the terms having the largest p-value are considered for 

elimination, but only if the p-value exceeds α. From the Table 15, choose the edge 

(bf) for deletion, and the resulting graphical model is [abcde] [acdef]. 

In the next step, consider the cliques [abcde] and [acdef]. The edges ac, ad, 

ae, cd, ce, and de are common to both the cliques; they are not considered for 
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elimination because elimination of such edges may result in a non-decomposable 

model. The candidate edges for deletion are ab, bc, bd, be, af, cf, df, and ef. Let us 

examine the p-values for these edges as in the Table 16. 

Delete the edge (af); the resulting graphical model is [abcde] [cdef]. 

Similarly, in the next step, the edge (ad) gets deleted and the resulting graphical 

model becomes [abce] [bcde] [cdef] as given in Figure 8. 
 
 

 
 
Figure 7. The saturated model for WAM 

 

 
 
Figure 8. The fitted model for WAM 

 

 
 
Table 15. WAM: [abcde] 

 

Edge Clique d.f. G2 p-value 

ab [acdef] [bcdef] 16 18.585 0.29078 

ac [acdef] [bcdef] 16 20.689 0.19080 

ad [acdef] [bcdef] 16 14.172 0.58588 

ae [acdef] [bcdef] 16 18.781 0.28017 

af [abcde] [bcdef] 16 11.951 0.74734 

bc [acdef] [abdef] 16 26.739 0.04447 

bd [acdef] [abcef] 16 34.733 0.00432 

be [acdef] [abcdf] 16 56.570 0.00000 

bf [acdef] [abcde] 16 11.673 0.76616 

cd [abcef] [abdef] 16 29.439 0.02114 

ce [abcdf] [abdef] 16 26.052 0.05329 

cf [abcde] [abdef] 16 81.657 0.00000 

de [abcdf] [abcef] 16 78.248 0.00000 

df [abcef] [abcde] 16 46.221 0.00009 

ef [abcde] [abcde] 16 17.728 0.34005 
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Table 16. WAM: [abcde] [acdef] 

 

Edge Clique d.f. G2 p-value 

ab [bcde] [acdef] 8 12.456 0.13198 

bc [acde] [acdef] 8 18.097 0.02051 

bd [acde] [acdef] 8 27.358 0.00061 

be [acde] [acdef] 8 49.723 0.00000 

af [abcde] [cdef] 8 5.822 0.66711 

cf [abcde] [adef] 8 73.014 0.00000 

df [abcde] [acef] 8 38.845 0.00001 

ef [abcde] [acdf] 8 10.881 0.20852 

 
 
Table 17. WAM: [abce] [bcde] [cdef] 
 

Edge Clique d.f. G2 p-value 

ab [ace] [bce] [bcde] [cdef] 4 10.606 0.03137 

ac [bce] [ace] [bcde] [cdef] 4 10.432 0.03374 

ae [bce] [abc] [bcde] [cdef] 4 10.426 0.03383 

bd [abce] [cde] [bce] [cdef] 4 25.507 0.00004 

cf [abce] [bcde] [def] [i] 4 67.832 0.00000 

 
 

In the next step, candidate edges for deletion are [ab], [ac], [ae], [bd], and 

[cf]. None of the p-values are greater than α = 0.05 as given in Table 17. So, stop 

with the model [abce] [bcde] [cdef]. 

Computational Details 

All the experimental results were carried out using R 3.1.3. For fitting LLMs, 

there are several function in R, for example glm() and loglin() in the stats library 

and loglm() in the MASS library. For model selection, dmod() and backward() 

functions implemented in the package gRim were used. All the packages used are 

available at http://CRAN.R-project.org/. 

Conclusion 

The fundamental mathematical and statistical theory of GLLM and its 

applications were discussed, restricted to the complete table to make the 

discussion simple, because the tables having zero entries require special treatment. 

See Christensen (1997) for analysis of contingency tables with zero cell counts. 

http://cran.r-project.org/
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The limitations and open problems in the use of GLLM for recursive relationships 

can be further explored. 
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Appendix A: Graphical Log-Linear Models for Four-Way 
Tables 

Table 18. Graphical log-linear models for four-way tables 
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Table 18, continued. 

 
Model Graph Closed-Form Estimate 
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