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The analysis of robust parameter design is discussed via a model incorporating mean-
variance relationship which, when ignored as in the classical regression approach, can be 
problematic. The model is also capable of alleviating the difficulties of the regression 
approach in the search of the minimum variance occurring region. 
 
Keywords: Graphical log-linear models, contingency tables, decomposable models, 
hierarchical log-linear models 

 

Introduction 

As part of their efforts in quality improvement, manufacturers strive to design 

products that are capable of functioning optimally under a wide range of 

environmental conditions. Instead of using more expensive parts or components, a 

more cost-effective means is to look for settings of design factors that would 

achieve this quality robustness. Specifically, this involves finding design settings 

that would minimize variance while being on target. In this regard, robust 

parameter designs have been widely used in the industry to determine the optimal 

settings of these design factors (Khuri & Mukhopadhyay, 2010; Robinson, Borror, 

& Myers, 2004). In robust parameter designs, design of experiment techniques are 

used to obtain data that are subsequently analyzed to explore the relationship 

between the quality characteristics and the levels of the design factors (Choi & 

Allen, 2009). 

Taguchi advocated the use of crossed array designs and suggested a 

convenient analysis using signal to noise ratio. However, the limitations of an 

analysis based on the “signal to noise” ratio have been pointed out by many 

researchers (Box, 1988; Barreau, Chassagnon, Kobi, & Seibilia, 1999). Various 

methods of analysis have been proposed in robust parameter designs. Vining and 

Myers (1990) suggested a dual response surface methodology in which the 

https://doi.org/10.22237/jmasm/1493597400
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(primary) response surface of standard deviation is minimized subject to a target 

constraint based on a (secondary) response surface of the mean (see also Chan & 

Mak, 1995). 

Another common approach exploits the possible existence of mean-variance 

relationship to achieve simpler variance minimization computationally. With this 

method, the variance is assumed to be a product of a function of the mean and a 

“Performance Measure Independent of Adjustment” (PerMIA) (Box, 1988, p. 2). 

The PerMIA is a function of a proper subset of design factors (control factors) and 

the complement of this subset constitutes the subset of adjustment factors which 

influence variance only through its presence in the mean. Because of this variance 

factorization it is possible to minimize variance through the unconstrained 

minimization of the PerMIA, which is then followed by the searching of the levels 

of the adjustment variables to attain the desired target value. 

Both the dual response surface methodology and the PerMIA approach 

conduct an analysis based on the sample variance or standard deviation calculated 

from replicates at each treatment combination. For the crossed array design, the 

sample variances are calculated from observations in the outer arrays that are 

crossed with the treatment combinations or inner arrays in the experiment. The 

sample variances calculated from the outer arrays do not constitute estimates of 

variances obtained from random samples. In crossed array or combined array 

designs, the noise factors which occur randomly during the lifetime usage of the 

product are controlled and have known values in the experiment (Welch, Yu, 

Kang, & Sacks, 1990; Shoemaker, Tsui, & Wu, 1991; Mak & Nebebe, 2005). 

Thus in the design stage, roles of the design and noise factors are 

indistinguishable. In the analysis of such designs, a regression function is first 

fitted, from which the variance function is derived with respect to the randomness 

of the noise factors. Variance minimization can then be conducted based on the 

inherent variance function from this regression modeling approach. This 

regression analysis is conceptually simple and exploits the quality characteristic 

and noise factor relationships to achieve possibly greater efficiency. However, 

this regression approach has two issues to be properly addressed: First, it does not 

accommodate the possible dependency of the variance on the mean. Mak and 

Nebebe (2004) demonstrated with an example that settings determined by the 

regression approach can yield a variance that is substantially higher than the 

actual attainable optimal variance. They also proposed a new model that 

incorporates the mean-variance relation and includes the regression model as a 

special case. Second, the form of the variance function is not flexible and 

completely determined by the formulated regression model based on the 



MAK & NEBEBE 

181 

interactions between the control and noise variables (O’Donnell & Vining, 1997). 

It does not permit the formulation of a simple linear relationship between the 

variance and the design factors and the variance model has to be at least of the 

second order. Unfortunately, as seen in the simulation studies in this paper, this 

second order variance model in the regression approach is usually inadequate. The 

aforementioned issues in the regression approach are addressed in this study, and 

some practical recommendations are made in the light of the simulation result. 

Methodology 

Modeling Mean-Variance Relationship 

Denote by y the quality characteristic of interest. Let X1,…, Xp be p design factors 

influencing y. Suppose that there are q noise factors Z1,…, Zq, the levels of which 

are controlled in the experimenting stage. Mak and Nebebe (2004) proposed the 

following model for analyzing robust parameter designs: 

 

         1
, V , h , ,y yy e   x β x β x z θ   (1) 

 

where x = (X1,…, Xp)', z = (Z1,…, Zq)', e is the error term with variance 2

e , 

μy(x, β) is the conditional mean of y given x (with respect to the distribution of z 

and e), and β is the vector of regression parameters. Furthermore, x(1) ⊆ x is a 

subset of “control factors”, and Vλ(μy) is a scalar function with parameter λ 

specifying the dependence of the variance on the mean. It is required that 

Vλ(μy) ≡ 1 for a certain λ, say λ = 0. Because E(y) = μy(x, β), it follows that 

E(h(x(1), z, θ)) = 0, where the expectation E(∙) is taken with respect to the 

distribution of z. It follows from (1) that 

 

         2

1
Var V Var h , ,y ey    x z θ   

 

where Var is the variance operator taken with respect to the distribution of z and e, 

μy is written in place of μy(x, β) when there is no possibility of ambiguity. Because 

Vλ(μy) ≡ 1 when λ = 0, Mak and Nebebe’s model includes the situation where 

there is no mean-variance relation as a special case. It is clear that the PerMIA is 

given by 
2Var(h( )) e(1)

x ,z,θ , and x(2) = x \ x(1) is the vector of adjustment 

factors that influence the variance through its presence in the mean. Thus to 
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minimize variance around a target, one can choose levels of x(1) to minimize the 

PerMIA and then adjust the levels of x(2) to attain the desired target mean. With 

the use of PerMIA, only unconstrained minimization is needed and a change in 

the target value requires only readjustment of the levels of the adjustment factors 

(Box, 1988). In the next section, we give an algorithm for computing iteratively 

estimates of β and θ given λ. 

Box (1988) proposed a transformation approach for designs with replicates 

which can be easily extended to crossed array or combined array designs. 

Specifically, it is assumed that there exists a transformation Tλ such that 

Tλ(y) = m(x, β) + h(x(1), z, θ) + e, eliminating the dependency of the variance on 

the mean on the transformed scale. Thus      1

1
T m , h , ,y e

  x β x z θ  and to 

terms of the linear order, we have approximately, 

 

   
  

 

   
1

1

m ,

T
T m , h , ,

u

d u
y e

du











  
1

x β

x β x z θ   

 

which is in the form of (1). Thus we have seen that Mak and Nebebe’s model is 

approximately equivalent to Box’s (1988) transformation approach. The analysis 

conducted on the transformed scale using Box’s approach has to be followed by 

an “aim-off” analysis in order that variance be minimized on the original metric. 

Determining λ and the identification of x(1) 

From (1), if 
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y e








  

1
x z θ   (2) 

 

then there is an ordinary regression model with homogeneous errors. However, if 

the λ used on the left is different from the true value of λ, say λ0, then 
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Table 1. Simulated data and mean, variance calculations 

 

    
z1 -1 1 1 -1 

  

 

  

    
z2 -1 1 -1 1 True  Sample 

x1 x2 x3 x4 z3 -1 -1 1 1 mean var  mean var 

-1 0 0 0 
 

22.2 25.1 22.5 28.0 26.2 2.5  24.5 5.5 

-1 1 1 1 
 

26.0 28.4 25.6 26.9 29.8 4.3  26.7 1.1 

-1 -1 -1 -1 
 

19.1 20.1 17.2 24.9 20.8 1.0  20.3 8.1 

0 -1 0 1 
 

9.0 10.5 10.5 10.1 9.8 0.7  10.0 0.4 

0 0 1 -1 
 

24.5 36.9 40.0 22.9 30.2 62.7  31.1 56.0 

0 1 -1 0 
 

20.4 31.0 28.7 21.1 26.0 34.7  25.3 21.6 

1 -1 1 0 
 

25.8 26.9 24.7 28.7 28.2 3.4  26.6 2.2 

1 0 -1 1 
 

19.5 18.9 19.5 20.3 19.5 0.8  19.5 0.2 

1 1 0 -1 
 

23.6 25.0 22.6 28.5 26.1 2.5  24.9 4.9 

 
 

Because μy = E(y) = μy(x, β) is a function of possibly all the design factors, the 

adjustment factors would also appear to have some influences on the variable 
*y . 

Thus the relationship between *y  and the adjustment variables will be zero only 

when the true λ is used in (2) so that the explained variation by each of these 

adjustment variables should attain its minimum at a value around the true λ. This 

fact could be exploited to determine the value of λ approximately. To illustrate 

this, consider a set of simulated data from a crossed array design involving four 

design factors and three noise factors. The inner and outer arrays are, respectively, 

L9 and L4 arrays so that the experiment consists of (9)(4) = 36 experimental runs 

crossed between the inner and outer arrays. For each experimental run, the quality 

characteristic y is simulated using the model 

 

    2

2 1 1 2 30.0024 0.003 0.001 0.002y yy u X Z Z Z e         

 

where u2(X) is the quadratic orthogonal polynomial 2 – 3X, u1(X) = X is the linear 

orthogonal polynomial, and σe = 0.003. The levels of the design and noise factors 

in the design and the simulated data are given in Table 1, along with the true 

mean μy of y for each inner array used to simulate the data. 

The mean of y for each of the nine inner arrays is simply estimated by the 

mean of the y values from the corresponding crossed outer array.  V y



    

and the true λ is equal to 4. Note the h function can be approximated by a 

quadratic function in z but the second order terms vanish since E(h(x(1), z, θ) = 0. 

If we also retain only up to the quadratic effects of the Xi on the variance, then the 

h function is approximately a linear combination 
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Figure 1. The proportion of sum of squares plot 
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of the terms. Zj, u1(Xi)Zj, u2(Xi)Zj, i = 1,…, 4, j = 1, 2, 3. Thus, even if the 

functional form of the h function is not exactly known, the suggested method can 

still be used to determine λ, though the value is only approximately unbiased. 

Also, as with any estimation procedure, the suggested method will not yield the 

true value of λ due to the randomness of the error term e. In the present example, 

the linear combination of effects described above is used as the h function in 

fitting the regression model (2) in order to determine λ. For any given λ, the linear 

regression model (2) can therefore also be fitted to the data yielding the total sum 

of squares SS(Xi) corresponding to each design factor Xi (i.e. total of the sum of 

squares for u1(Xi)Zj, u2(Xi)Zj, j = 1, 2, 3), for i = 1,…, 4. A graphical plot is 

presented in Figure 1 of P(Xi) = SS(Xi)/SST against λ for i = 1,…, 4. 

It is clear that X1 is the only control variable affecting variance and X2, X3, 

and X4 are adjustment variables. Furthermore, the value of P(Xi) is smallest when 

λ is equal to 4.7, 4.3, and 3.6 for X2, X3, and X4, respectively. The proportion of 

sum of squares 
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corresponding to all the adjustment variables X2, X3, and X4 is also plotted against 

λ in Figure 1. The value of P attains a minimum at λ = 4.2, which indicates that, 

collectively, the observed relationship between 
*y  and the variables X2, X3, and X4 

are lowest when λ is close to 4. Thus in the present example, the suggested 

method determines quite accurately the true value of λ. 

Estimation of Parameters 

Consider the iterative estimation of β and θ for given λ. Suppose there are n 

experimental runs in the experiment. Let X1i,…, Xpi and Z1i,…, Zqi be the levels of 

the design and noise factors, respectively, in the ith run. Let yi be the observed 

quality characteristic and μyi = E(yi) = μy(xi, β), where now xi = (X1i,…, Xpi)'. The 

computing of the estimates calls an external algorithm denoted, say, by 

WLS(y, X, r(∙), w, p). The input arguments y, X, r, and w of WLS represent, 

respectively, the array of values of the dependent variable, the design matrix, the 

regression function, and the array of weights. The array p holds the output 

weighted least squares estimates of the regression parameters. The algorithm for 

computing the estimates β̂  and θ̂  of β and θ is given below. 

 

Step 0. Initialize and save the starting values of β̂  and θ̂  in the arrays b0 and 

f0. 

Step 1. For i = 1 to n 

i. Read the values of xi, x(1)i, zi into the ith row of two-dimensional 

arrays XA, XA1, ZA 

ii. Next 

iii. Read the values of y into a one-dimensional array y 

Step 2. For i = 1 to n 

i. Let m = μ(xi, b0). Here xi is from the ith row of XA 

ii. Let      Vys i y i m m     

iii. Let w(i) = 1 

iv. Read x(1)i, zi into the ith row of a two-dimensional array XZA 

v. Next 

Step 3. Call WLS(ys, XZA, h(∙), w, f1). Here the regression function h is 

h(x(1)i, zi, θ) 

Step 4. For i = 1 to n 

i. Let m = μ(xi, b0). Here xi is from the ith row of XA 



ROBUST PARAMETER DESIGNS 

186 

ii. Let         11
V h , ,iu i y i m  x z f . Here x(1), zi are from the ith 

row of XA1, ZA 

iii. Let w(i) = 1/Vλ(m) 

iv. Next  

Step 5. Call WLS(u, XA, µ(∙), w, b1). Here the regression function µ is 

µ(xi, β) 

Step 6. If b1 and f1 differ from respectively b0 and f0 by less than certain 

prescribed small values 

i. Then 

 Stop the program 

ii. Else 

 Let b0 = b1 

 Let f0 = f1 

 Go to Step 2 

iii. End if 

 

Let β̂  and θ̂  be the final values of b1 and f1 obtained from the iterative 

procedure. The estimate  ˆ ˆ,β θ  is a solution of the system of equations in β and θ: 
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1

1

1

x z θx β
x z θ

θx β

x β
x β x z θ x β

βx β

  

 

Because the left sides of this system of equations have zero expected values, the 

estimator  ˆ ˆ,β θ  is consistent for (β, θ). 

Another method of estimation is the familiar maximum likelihood approach 

in which the error term is assumed to be normally distributed. The maximum 

likelihood estimators do not have a closed form and must be obtained numerically. 

One possibility is to use a generic search optimization algorithm, such as the 

simplex search, that does not require first or second order derivatives. It is 

however quite well-known in the regression literature that the estimation of the 

mean could be more adversely affected when the variance function is mis-

specified. In this regard, the dual response surface methodology in which separate 
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regression models are fitted with the sample means and standard deviations 

calculated from the replicates (or observations from the outer arrays) may be more 

robust in the estimation of the mean to the misspecification of the variance 

component. However, for experiments with few experimental runs and a large 

number of factors, a quadratic response surface for the variance may not be 

feasible. The estimation procedure proposed in this paper may also be adversely 

affected by the mis-specification of the h function as it also appears in the second 

estimation equation for estimating the β. 

Results: Extensions of the Classical Regression Approach 

To simplify the notation and the discussion of the classical regression (CR) 

approach and its possible ramification, assume the variance is functionally not 

dependent on the mean. In the presence of a variance-mean relationship, the 

analyses proposed here can be readily generalized to incorporate such a 

relationship using the method above. In the classical regression approach, the 

mean function μy(x, β) is usually assumed to be quadratic in form (without cross-

product terms between factors in some designs). The dependence of the variance 

on the control factors is typically introduced into the model by incorporating in 

the function h(x(1), z, θ) cross-product terms between the terms in the quadratic 

mean model and the noise factors. For example, for the orthogonal inner array L9 

used in Vandenbrande’s (1998) experiment, the mean function involves the 

saturated model: 

 

          11 1 1 12 2 1 41 1 4 42 2 4,y u X u X u X u X          x β   

 

and 

 

 

      

   

3 4 3

1 1 2 2

1 1 1

3 4

1 1 2 2

1 1

h , , j j ij i j ij i j

j i j

j ij i ij i j

j i

Z u X z u X Z

u X u X Z

  

  

  

 

    

 
   

 

 

 

1
x z θ

  

 

Consequently, 
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2

3 4
2 2

1 1 2 2

1 1

Var
je j ij i ij i z

j i

y u X u X    
 

 
    

 
    

 

where, without loss of generality, the variances of Z1, Z2, and Z3 can be taken to 

be unity. Thus under the classical regression model the fourth order of a control 

factor may be involved. If this interaction model is approximately valid and the 

variance function can be reasonably approximated by a quadratic function, then 

θij2 = 0 for all i and j and the following reduced model can be considered: 

 

 
    

3 4 3

1 1

1 1 1

h , , j j ij i j

j i j

Z u X Z 
  

  1
x z θ   

 

The variance function for this reduced model becomes: 

 

  
2

3 4
2

1

1 1

Var e j ij i

j i

y X  
 

 
   

 
    

 

because u1(x) = x and 
2 1

jz  . It is clear that a major drawback of the interaction 

model is that the variance can never assume the form of a linear function of the 

control factors and is therefore not appropriate for designs used in the steepest 

descent stage for locating the region containing the optimal variance solutions. 

Proposed here is a generalization of the classical model to attain greater 

efficiency and flexibility in handling a wider range of applications. Consider the 

following functional form of the function h: 

 

 
    h , , sign ψ | ψ |j j j

j

Z1
x z θ   (3) 

 

indexed by γ, where ψj is a function of x(1) with a vector parameter θ(j). In most 

applications, we could choose ψj to be a quadratic function of x(1). When γ = 1 and 

ψj is a quadratic function, the model clearly becomes the classical regression 

model. The case γ = 0.5 is also of special interest since it yields a linear or 

quadratic approximation to the variance function depending on whether the 

functional forms chosen for ψj are linear or quadratic. 

For the analysis of crossed array designs, the dual response surface method 

(Vining & Myers, 1990) is a serious competitor to the classical regression 
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approach. In the dual response surface approach, a quadratic response surface is 

additionally postulated with the sample variance (or standard deviation) as the 

response variable. It is argued that the calculation of the sample variance for each 

inner array using the observations from the crossed outer array is not entirely 

appropriate, because they do not constitute a random sample. If 

 

     , h , ,yy e  
1

x β x z θ   

 

for any functional form of h, it is not difficult to show that an unbiased estimator 

of the variance for each inner array is indeed given by 

 

  
21 1 2a y y a 

     

 

where a is the dimension of the outer arrays (number of observations in the outer 

array). Note that the divisor in the first term is a not a – 1. Thus if σε is small, an 

approximately unbiased estimator of the variance for each inner array is given by 

the simple estimator  
21

i a y y   . 

Simulation 

Simulation studies were conducted to compare the performances of the following 

four variance estimators discussed above: 

 

1. Response surface method (RSM). The value νi is used as the response 

value of the ith inner array. A quadratic model is then fitted to this variance 

response surface. 

2. The classical regression approach (CR). 

3. The classical regression approach leading to a quadratic variance 

function (CRQV). This model includes only the cross-product terms 

between the linear effects of the design factors and the noise factors in the 

function h, which gives rise to a quadratic variance function as explained 

in the previous section. 

4. The generalized regression approach (GR) with γ = 0.5 in (3). 
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Again, the design studied in Mak and Nebebe (2004) and Vandenbrande (1998) 

were used. The means and variances used to simulate the data are given in Table 2. 

The true model used to generate the y observations is: 
 
 
Table 2. True means and variance of the model used to simulate the data 

 

x1 x2 x3 x4 True mean True variance 

-1 0 0 0 41.15 18 

-1 1 1 1 44.80 18 

-1 -1 -1 -1 35.83 18 

0 -1 0 1 24.83 7 

0 0 1 -1 45.18 7 

0 1 -1 0 41.03 7 

1 -1 1 0 43.20 8 

1 0 -1 1 34.47 8 

1 1 0 -1 41.05 8 

 
 

     , h , ,yy e  
1

x β x z θ   

 

where h is given by (3) with γ = 0.5. Here, for the simplicity of comparisons, the 

factor x1 is the only control factor appearing in the functions ψj: 

 

  1 1 2 1 2 1 3 1ψ 5 3 2 , ψ 1 , ψ 1X u X X X           

 

The standard deviation of the normally distributed error term is 2. Two hundred 

samples were simulated from the true model in the Monte Carlo studies. For each 

simulated sample, the four methods RSM, CR, CRQV, and GR are each used to 

fit a variance function. Table 3 summarizes the results for estimating the 

variances of y for X1 = -1.5, -1.0, -0.5, 0, 0.5, 1.0, 1.5. In reporting the simulation 

results, we calculate both an estimate’s relative bias (RB, defined as (mean of 

variance estimate – true variance)/true variance) and the coefficient of variation 

(CV, defined as SD of variance estimate/Mean of variance estimate). 

It is seen that in most cases, the CR and the CRQV approaches can be 

heavily biased (with RB greater than 15%) even for X1 within the boundary of the 

experimental region. The bias is particularly severe if the two approaches are used 

for extrapolating variances (X1 = -1.5 and 1.5). The two approaches have in 

general about the same CV in estimating variances. These CV of variance 

estimates are also comparable to those of the GR approaches (with the exception 
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of the case X1 = 1.5 where the GR approach has a considerably smaller CV) which 

in general has smaller biases. The RSM approach has about the same biases as 

GR and far smaller biases than CRQV in most cases. These observations suggest 

that the classical approach can be very inadequate even if the true model is 

reasonably approximated by a quadratic function. 
 
 
Table 3. Expected values and standard deviations of variance estimates obtained by 

simulations 
 

  
RSM  GR  CRQV  CR 

True 
variance 

Mean SD 
 

Mean SD 
 

Mean SD 
 

Mean SD 

x1 RB CV  RB CV  RB CV  RB CV 

-1.5 28 26.08 8.74  26.88 6.25  19.25 4.90  41.47 13.02 

  
-0.069 0.335  -0.040 0.233  -0.313 0.254  0.481 0.314 

-1.0 18 16.69 3.94  16.86 3.49  15.00 3.23  17.51 3.64 

  
-0.073 0.236  -0.064 0.207  -0.167 0.215  -0.027 0.208 

-0.5 11 10.25 2.80  10.15 2.32  11.80 2.51  8.55 2.16 

  
-0.068 0.273  -0.077 0.228  0.073 0.213  -0.223 0.253 

0.0 7 5.96 2.10  5.99 1.59  8.77 1.96  5.33 1.45 

  
-0.148 0.351  -0.145 0.265  0.253 0.224  -0.239 0.271 

0.5 6 4.84 1.93  5.02 1.61  6.88 1.81  4.63 1.36 

  
-0.194 0.398  -0.164 0.321  0.146 0.263  -0.229 0.294 

1.0 8 7.03 3.28  7.19 3.03  5.97 2.29  7.09 2.90 

  
-0.122 0.466  -0.101 0.421  -0.253 0.383  -0.114 0.409 

1.5 15 12.14 6.91  13.57 5.27  5.86 3.05  16.63 8.61 

    -0.190 0.569  -0.096 0.388  -0.609 0.521  0.109 0.518 

 
 

The simulation studies shed some light on the performance of the different 

methods in practice. Of the four approaches, the RSM is the only one that does 

not rely on the knowledge of the functional form of the function h. In fact, it does 

not even model variance involving the noise variables Z controlled in the 

experiment. It simply approximates the variance function directly with a linear or 

quadratic function of the design variables. Consequently, it does not suffer from 

the same potential model misspecification (of the variance) experienced by the 

other methods. This is consistent with the simulation results as the bias of RSM is 

seen to be generally smaller than those based on the regression approach. 

However, since the fitting relies on the sample standard deviations based on 

repeated observations, which in general have greater sampling variability, this 

robustness is achieved at the expense of an inflated variance of variance estimates 

– of the four approaches, it has substantially higher CV. For the regression 

approaches (GR, CR, CRQV), the variance parameters in θ are more efficiently 
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estimated as the regression coefficients of a mean regression model and therefore, 

as observed in the simulation studies, have smaller variances than RSM. Thus in 

practice, the regression approaches may be preferred, but caution must be taken to 

ensure the validity of the model, especially the functional form of the function h. 

The quadratic variance function of the CRQV approach is actually in the form of 

the square of a linear function and therefore does not have the same effectiveness 

in approximating h as a general quadratic function. In this regard, the extension 

suggested in the previous section, provides a more flexible and effective means of 

approximating the true h function, as demonstrated in the simulation studies 

where GR has considerably smaller biases than CR and CRQV in most cases. 

Conclusion 

Mak and Nebebe (2004) demonstrated the importance of the incorporation of the 

mean-variance relationship, if it exists, in analyzing crossed or combined array 

designs. They also proposed a model generalizing the traditional method of 

analysis. In this paper, we proposed a simple method of determining an 

appropriate mean-variance relation to be used in the model. An estimation 

procedure is also proposed for the model. With a numerical example, the 

advantages of Mak and Nebebe’s model is demonstrated in terms of variance 

minimization. In terms of robustness of mean estimation to mis-specification of 

the variance function, the dual response surface methodology is also appealing, 

though it has other limitations. It might also be interesting to modify the proposed 

estimation by modifying the second estimating equation so that the estimation of 

the regression parameter is still consistent but less adversely affected by model 

misspecification. 

The model proposed by Mak and Nebebe (2004) assumed an error term with 

homogeneous variances. In analyzing combined array designs, Engel and Huele 

(1996) considered a model in which the error terms have heterogeneous error 

variances which are functions of some of the design factors (they however assume 

Vλ(μy) ≡ 1). This generalization may also be incorporated in Mak and Nebebe’s 

model and the iterative estimation method suggested will then have to be 

modified accordingly, using traditional methods of regression analysis with 

heterogeneous variances. However, when the noise factors have already 

accounted for the majority of the unconditional variance of the quality 

characteristic so that the error term is in general small, this modification may not 

yield substantial practical differences. 
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