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Lower Bound 
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The greatest lower bound to the reliability of a test, based on a single administration, is 
the Greatest Lower Bound (GLB). However the estimate is seriously biased. An 
algorithm is described that corrects this bias. 
 

Keywords: test reliability, greatest lower bound, GLB, unbiased estimate, 
capitalization on chance 

 

Introduction 

In classical test theory the concept of reliability refers to the precision of a 

measurement. In order to estimate the reliability of a test one needs two or more 

measurements applied to the same subjects. However, in many situations it is 

impossible to repeat a test administration under the same conditions. The next 

best thing is to estimate a lower bound to the reliability. 

The current study is restricted to the reliability of tests that consist of a 

number of items and to the situation where the test is administered only once. The 

total score is the sum of scores on the individual items. According to classical test 

theory, the score xij of person i on item j consists of two parts: the true score τij 

and an error component εij : xij = τij + εij. The error component includes not only 

real measurement errors but also the information that is unique to the item. It is 

assumed that these error components are uncorrelated with the true parts, as well 

as with each other. As a consequence the covariance matrix Γ of the items is the 

sum of two component matrices: the covariance matrix Γτ of the true parts and the 

covariance matrix Γε of the error components: 

 

https://doi.org/10.22237/jmasm/1493598960
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Γ = Γτ + Γε 

 

The assumption of uncorrelated errors implies that Γε is a diagonal matrix. 

Therefore the off-diagonal cells of Γ and Γτ are identical.   

The reliability of a test consisting of v items is defined as: 
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According to these definitions the formula of reliability can be rewritten as 
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The Greatest Lower Bound  

From (4) it becomes clear, given the covariance matrix Γ, that the reliability is 

maximal if the trace of the error covariance matrix Γe is minimal. As Jackson and 

Agunwamba (1977) remark, the only restrictions that the classical model imposes 

on the elements of Γε are  

 

 (1)      0 ≤ Γeii ≤ Γii (5) 

 

 (2)      Γτ = Γ − Γε is non-negative definite 
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Therefore, if the set of values Γe can be found that maximizes its trace   

under these restrictions, the result is the smallest possible value for the reliability, 

given the covariance matrix Γ. Τhis value is the greatest possible lower bound to 

the reliability, called the GLB. Its possible values are restricted to the range [0,1]. 

A procedure to estimate it from a given covariance matrix is described in Ten 

Berge, Snijders and Zegers (1981). 

A serious problem with the GLB is that it suffers from a phenomenon 

known as capitalization on chance: if it is estimated from a sample it tends to 

overestimate the population value. The bias increases with decreasing sample size 

and with lower values of the GLB; see Shapiro and ten Berge (2000). Moreover, 

the bias will be larger with a larger number of items. 

To illustrate the seriousness of the problem: imagine a set of 40 items, 

completely uncorrelated and all with a unit normal distribution. Because the 

covariance matrix of these items is diagonal, the GLB for the test is zero. 

However, if samples of size 200 are drawn from the population, the average GLB-

estimate from these samples is about 0.56.   

Finding an unbiased estimator 

Bendermacher (2010) describes an algorithm which reduces the bias in the 

estimated GLB by the use of a bootstrapping procedure. A large number of 

samples are drawn (with replacement) from the observed data with sample sizes 

equal to the size of the observed sample. For each sample the GLB is computed 

and the difference between the average of the sample-GLBs and the observed 

GLB is taken as an estimate of the bias. If this difference is subtracted from the 

observed GLB, the result is a less-biased estimate. The algorithm to be explained 

in this article starts in the same way, but it proceeds a few steps further and 

thereby manages to reduce the bias to a negligible quantity. 

The algorithm tries to reconstruct the population covariance matrix Γ and 

then takes the GLB of this reconstructed matrix Gp as an unbiased estimator of the 

population GLB. The reconstruction is based on the following simple starting 

points: 

 

1. The population-GLB β is smaller than the observed sample-GLB bo. 

Theoretically this is incorrect (take for instance the case β = 1), but 

in almost all practical situations it will hold. 
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2. The population matrix Γ is similar to the sample covariance matrix 

Go. 

3. If samples Gs are drawn from the reconstructed covariance matrix Gp 

(with the same size as the sample from which the observed matrix 

Go was computed) their uncorrected GLB has as its expectation the 

observed value bo. 

 

The reconstruction of Γ will be called Gp. It is built by adjustments to Go, 

which lower the value of its GLB. Because the three starting points still leave a 

considerable room in the exact way they are operationalized, several approaches 

were investigated, like adding error variances to the diagonal of Go, shrinking the 

off-diagonal cells, and reflecting some items to make their item-rest correlations 

negative. All these methods succeed in finding a covariance matrix that complies 

with the three starting points, but that does not mean by itself that the resulting 

GLB is an unbiased estimator. After some trial and error based on analyses of 

samples from two large real life data files, the following procedure appears to 

produce the best results by far: 

 

1. Given the observed covariance matrix Go, compute the estimate Gt 

of Γτ with on its diagonal the minimal true variances and with its off-

diagonals equal to those of Go. Example: 

Go= 
    

Gt= 
   6.4259 … … … 

 

3.0717 … … … 

3.0040 3.9210 … … 

 

3.0040 3.6019 … … 

1.5511 1.2191 5.0580 … 

 

1.5511 1.2191 0.9501 … 

1.2958 0.3373 1.0951 14.3406 

 

1.2958 0.3373 1.0951 1.8588 

The GLB of Go is bo = 0.5666. 

 

2. Multiply the diagonals of Gt by a factor c ≤ 1. Call the resulting 

matrix G*.The rationale is that if Γ has a lower GLB than Go its 

minimal true variances must be relatively smaller. How the factor c 

should be chosen will be explained later on.  

The example with c = 0.69543: 
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G*= 
    

 

2.1358 … … … 

 

 

3.0040 2.5045 … … 

 

 

1.5511 1.2191 0.6606 … 

 

 

1.2958 0.3373 1.0951 1.2924 

  

3. Due to its lowered diagonal elements, G* will have some negative 

eigenvalues. 

Compute the eigenvectors V and eigenvalues Λ of G*, such that G* = 

VΛVT. Example: 

 

Λ= 
   

 

6.4570 … … … 

 

… 1.4324 … … 

 

… … -0.3546 … 

 

… … … -0.9415 

 

4. Replace the negative eigenvalues of G* by zeros and add their 

(negative) values to the smallest non-negative eigenvalues without 

letting them become negative. Call the result Λ*. Example: 

 

Λ*= 
   

 

6.4570 … … … 

 

… 1.3630 … … 

 

… … 0.0000 … 

 

… … … 0.0000 

 

5. Compute G* = VΛ*VT; its trace will be c.TR(Gt) 

 

6. Complete the reconstruction of the population matrix by replacing 

the diagonal of G* by that of Go : Gp = G* − DIAG(G*) + DIAG(Go). 

Example: 

 

Gp= 
   

 

6.4259 … … … 

 

2.5760 3.9210 … … 

 

1.4686 1.4016 5.0580 … 

 

1.1435 1.0547 0.6671 14.3406 
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7. Compute the GLB bp of Gp. This is the corrected estimate of the 

population GLB. In the example, bp = 0.5005. 

 

There remains a crucial question: what is the correct value of the factor c in 

step 2 of the above procedure. The answer is based on the third starting point. The 

factor c must be chosen such that the expected GLB of samples from Gp is equal 

to the observed GLB bo. This means that one can start from a well chosen guess c, 

compute Gp and perform a bootstrapping run in which a large number of samples 

matrices Gsi are drawn from Gp. 

The average bs of the sample GLB-values, as compared to the observed 

GLB bo, is used to update the choice of c, and the process is repeated until the 

correct value has been found. More details are given in the section Algorithm. 

This procedure requires several bootstrapping runs, each generating a vast number 

of samples. Therefore it is important to have an efficient algorithm that keeps the 

number of bootstrap runs at a minimum.  

Drawing samples from a covariance matrix 

How a sample covariance matrix can be derived from a population matrix without 

knowing the underlying raw data will now be explicated. The algorithm requires 

covariance matrices based on samples from the data from which Go is computed. 

If these data are available one might actually draw such samples and compute 

covariance matrices from them. However, because the algorithm implies a 

number of bootstrapping runs, with a large amount of samples for each run, such a 

procedure would be very time consuming. Moreover, the algorithm also requires 

sampling from modified covariance matrices for which no raw data are available. 

Fortunately it is possible to compute these sample covariance matrices directly 

from the observed or constructed covariance matrix and the given or assumed 

distributions of the items. 

If a sample of raw data is given, estimates of the distributions of the items 

can be derived from that sample. If no information is available about the 

distributions of the items one may assume a multivariate normal distribution. 

Sampling from a given v × v covariance matrix G with sample size k can be 

performed as follows: 

 

1. Compute, by Cholesky triangularization, a matrix C such that 

CCT = G. 
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2. Generate k times a vector of v independently chosen random 

drawings using the distributions of the v items. Compute the 

covariance matrix Gz from these vectors, as if they were observed 

cases. 

 

3. Compute a matrix G* by dividing each cell of Gr by the standard 

deviations of the two items involved: * zij

ij

i js s


G
G . 

 

4. Compute the sample matrix as Gs = CG*CT 

 

The average of the GLB-values of the matrices Gz (see step 2) gives an 

estimate of the expected sample GLB bz under the null hypothesis that Gp has 

GLB-value zero. If the observed GLB (bo) is clearly less than bz the corrected 

estimate bp can immediately be set to zero. 

If one assumes a multivariate normal distribution of the items, the v 

independently chosen drawings mentioned in step 2 can be drawings from a unit 

normal distribution. To speed up the program one may construct in advance a 

long list (say 4000 numbers) of drawings from a unit normal distribution by 

taking equally spaced values between 0 and 1 and computing the inverse of the 

cumulative normal distribution function for them. Sampling from a unit normal 

distribution then comes down to randomly choosing from this list, using a 

uniform random generator. 

Algorithm 

This description of the algorithm uses the following definitions: 

 

Go the observed covariance matrix 

Gp the current reconstruction of Γ 

bo the GLB of Go 

bp the GLB of Gp, i.e. the provisional estimate of β 

bs the average GLB of the samples from the most recent bootstrap run 

bz the average of the GLB-values of samples simulated under the null 

hypothesis of uncorrelated items 

bt the intended GLB-value for an updated reconstruction Gp 
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The algorithm consists of the following steps: 

  

Step 1: Choose a precision criterion Precision; 0.001 will do well. 

Choose MaxSteps = the maximum number of steps in the main 

algorithm; suggested value: 100. 

Set CurrentPrecision = Precision × 5; set ShrinkFactor = 0.2⅕ 

ShrinkFactor will be used to decrease CurrentPrecision in five 

steps towards Precision. 

 

Step 2: Perform a bootstrap run in which samples are drawn from Go until 

the standard error of the mean of sample GLB-values is less than 

CurrentPrecision or a maximum number of samples is drawn. 

The main results are: bz, bs and Significance. Significance gives 

the proportion of samples generated under the null hypothesis of 

uncorrelated items with a GLB-value greater than bo. 

 

Step 3: If bo < bz × 0.9 or Significance ≥ 0.5, then set Bestbp = 0 and go to 

step 16 

 

Step 4: Initialize some variables:  BestDiff = 9, Bestbp = bo, BestCount = 0, 

Count = 0  

 

Step 5: Find successive new versions of the reconstructed population matrix 

Gp by repeating steps 6-15 

 

Step 6: Increase Count; If Count > MaxSteps go to step 16 

 

Step 7: Find a new bt: 

If bs ≤ bo then  

set LowLim = MIN(bs,bp) 

set UppLim = MAX(LowLim,UppLim) 

set bt = (LowLim + UppLim) / 2 

else perform steps 7a - 7d 

Step 7a: Set UppLim = bp 
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Step 7b: Set LowLim = MIN(LowLim,UppLim) 

Step 7c. Find a second order polynomial y = f(x) through the 

points (x,y) = (bz,0), (bs,bp) and (1,1) 

and find bt = f(bo).  

Compute the predictor matrix P and the criterion 

vector Q: 

P = 

2

2

1

1

1 1 1

z z

s s

b b

b b

 
 
 
 
 

; Q = 

0

1

pb

 
 
 
  

 

If P is singular set 

bt = MIN(1,MAX(0,bp − (bs − bo) × 1.2) 

else compute the weights W = P−1Q and set 

bt = 2

1 2 3o oWb W b W   

 

Step 8. IF Count = 1 set bt= MIN(bt,0.95) 

 

Step 9. Find a new estimate Gp such that its GLB bp is close enough to bt, i.e. 

until ABS(bp−bt) < CurrentPrecision) or a maximum of steps is 

taken. 

Compute the GLB bp of Gp. The details of this step are described 

later. 

 

Step 10. Perform a bootstrap run and compute the average value bs of the 

sample GLB's. 

 

Step 11. Compute Diff = ABS(bs−bo) 

If Diff < BestDiff then 

set BestDiff = Diff; set Bestbp = bp; and set BestCount = Count 

 

Step 12. If Diff ≤ CurrentPrecision then 

If CurrentPrecision = Precision go to step 16 

else set CurrentPrecision = Precision 
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Step 13. If BestCount  ≤ Count − 5 then 

If CurrentPrecision = Precision go to step 16 

else set CurrentPrecision = Precision 

 

Step 14. If Count < 4 

set CurrentPrecision = ShrinkFactor × CurrentPrecision  

If Count = 4 set CurrentPrecision = Precision 

 

Step 15. Go back to step 6 

 

Step 16. Set bp = MAX(0,MIN(Bestbp,1) 

 

Step 17. Now bp is the final value of the corrected GLB 

 

Some explanations: 

 

at Step 1: The algorithm may be very time consuming. Therefore the required 

precision is varied from 5 times Precision in the first cycle to 

Precision in the fifth and following cycles.  

 

at Step 9: The factor c and the corresponding matrix Gp can be found by the 

following algorithm: 

 

Step 9a. Set Lowc = 0; Set Highc = 1; set Lowb = bz; set 

Highb = bo 

 

Step 9b. Repeat steps 9c through 9h 

 

Step 9c. Set Midc = (Lowc + Highc)/2 

If ABS(Highb − Lowb) < CurrentPrecision go to step 

9i 

 

Step 9d. Copy Go to Gp 

 

Step 9e. If MidC  ≥  1 − Precision set Midb = bo 

else ... (steps 9f through 9h)  
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Step 9f. Replace the diagonal of Gp by Midc 

times the vector of minimal true 

variances of Go 

Compute the eigenvectors V and the 

diagonal matrix Λ with eigenvalues of 

Gp 

 

Step 9g. Set T1 = TR(Gp); set T2 = sum of the 

negative eigenvalues in Λ. 

Replace the negative eigenvalues by 

zero. 

Loop over the positive eigenvalues λi 

from smallest to greatest: 

If Λi,i ≥ T2 then set 

Λi,i = Λi,i − T2 and continue 

with step 9h 

else set T2 = T2 − Λi,i and set 

T2 = 0; continue the loop over 

the eigenvalues 

 

Step 9h. Recompute Gp = VΛV with the 

adjusted eigenvalues given by Λ 

Replace the diagonal of Gp by that of 

Go and compute its GLB bp. 

Set Midb = bp 

 

Step 9i. If ABS(bt − Midb) < CurrentPrecision go to step 9k  

If a maximum (e.g. 30) number of cycles (9c through 

9h) is taken go to step 9k 

If bt < MidB set HighC = MidC 

else set LowC = MidC 

 

Step 9j. Go back to step 9c 
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Step 9k. Now Gp is the wanted matrix with its GLB bp close to 

bt. 

Border effects 

The correction procedure as it was specified above may fail for extreme observed 

GLB-values bo. For low values, there may be no population matrix possible with 

bo as its expected sample value. This happens if the observed GLB is lower than 

the expected sample value bz under the null hypothesis bp = 0. In such cases the 

corrected estimate can immediately be set to 0. For high values of bo, the problem 

is not that easy to be solved. If the observed GLB bo is (almost) 1, the estimator 

bp = 0.99... complies with the three starting points, but samples from a population 

with a lower value might as well have a GLB equal to or close to 1. In such cases 

the algorithm may erroneously overestimate the population GLB.  

Evaluating the estimation procedure 

In order to test the quality of the above procedure several large datasets were 

downloaded (personality-testing.info, n.d.), not including the files used in the trial 

and error phase. From each of these datasets one or more tests were selected and 

from each test 100 or 50 samples were taken, consisting of randomly chosen cases. 

Cases with missing values were not allowed to enter the samples. 

As a result several sets were available each consisting of a large population 

and 100 or 50 samples extracted from it. The mean of the corrected GLB-values 

over the samples renders an estimate of the expected value of the corrected GLB. 

If the correction algorithm works correctly, these expected corrected GLB's 

should be (almost) equal to their corresponding population values. The tests were 

taken from the following data collections: 

 

1. 16PF, test 1, items A1-A10, ordinal scores (1-5), 49159 cases 

2. 16PF, test 2, items B1-B13, ordinal scores (1-5), 49159 cases 

3. 16PF, test 3, items C1-C10, ordinal scores (1-5), 49159 cases 

4. ECR, items Q1-Q36, ordinal scores (1-5), 17386 cases 

5. MSSCQ, items Q1-Q100, ordinal scores (1-5), 17685 cases 
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Table 1 summarizes the main results, with column definitions as follows: 

 

test name of the test 

# files number of sample files taken from the large population file 

v test length 

n sample size 

β the GLB-value computed from the large population file; the 

average bp (in column 7) should be close to this value  

bo the mean of the uncorrected observed GLB-values from the 

sample files 

bp the mean of the corrected GLB-values from the sample files; 

it should be close to the population value β 

bz the mean of the expected GLB-values under the null 

hypothesis of uncorrelated items 

SE(bp) the standard error of the mean of the corrected GLB-values 

duration the average time (mm:ss) needed to analyze a single sample 

file on a basic desk top computer 
 
 
Table 1. Results of the testing procedure. 

 
test # files v n β bo bp bz SE(bp) duration 

16PF_1 100 10 100 0.6716 0.7559 0.6791 0.3389 0.0075  0:02 

16PF_2 100 13 200 0.5581 0.6410 0.5571 0.3099 0.0084  0:06  

16PF_3 100 10 500 0.4404 0.4722 0.4373 0.1671 0.0060  0:07 

ECR 100 32 100 0.9016 0.9601 0.9052 0.6889 0.0023  1:11 

ECR 100 32 200 0.9016 0.9410 0.9044 0.5184 0.0018  1:02 

ECR 100 32 500 0.9016 0.9247 0.9072 0.3543 0.0010  1:05 

ECR 100 32 1000 0.9016 0.9142 0.9011 0.2545 0.0006  1:09 

MSSCQ 50 100 100 0.9675 0.9986 0.9834 0.9725 0.0012 53:36 

MSSCQ 50 100 200 0.9675 0.9924 0.9782 0.8406 0.0008 28:20 

MSSCQ 50 100 500 0.9675 0.9828 0.9712 0.6138 0.0006 24:44 

MSSCQ 50 100 1000 0.9675 0.9772 0.9711 0.4651 0.0003 19:45 

 
 

The result of these tests strongly suggest that the chosen algorithm reduces 

the bias in the GLB to a negligible quantity. However, the procedure becomes 

laborious when the observed GLB is close to unity. It should also be noticed that 

the expected GLB under the null hypothesis of uncorrelated items (bz) may 

become extremely high when the ratio v/n is almost 1. 
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The assumption of multivariate normality of the items 

Above, all scales consisted of ordinal items with a small set of possible scores and 

their distributions could be estimated from the observed data. If only a covariance 

matrix is available without information about the distribution of the item scores, 

one might fall back on the assumption of multivariate normality, but this 

assumption will frequently be incorrect. In order to get an impression of the 

seriousness of violations of this assumption, the tests described in the previous 

section were repeated, now replacing drawings from the actual distributions by 

drawings from normal distributions. The results are given in Table 2. These 

results suggest an analysis based on the assumption of multivariate normality will 

deliver a correct estimator of the GLB, even if the assumption is incorrect. 
 
 
Table 2. Results using actual distributions and results assuming multinormality. 

 

  
Actual Distributions Normal Distributions 

test β bp bz bp bz 

16PF_1 0.6716 0.6791 0.3389 0.6710 0.3397 

16PF_2 0.5581 0.5571 0.3099 0.5539 0.3106 

16PF_3 0.4404 0.4373 0.1671 0.4353 0.1645 

ECR 0.9016 0.9052 0.6889 0.8923 0.6873 

ECR 0.9016 0.9044 0.5184 0.9034 0.5206 

ECR 0.9016 0.9072 0.3543 0.9066 0.3534 

ECR 0.9016 0.9011 0.2545 0.9011 0.2549 

MSSCQ 0.9675 0.9834 0.9725 0.9498 0.9576 

MSSCQ 0.9675 0.9782 0.8406 0.9723 0.8403 

MSSCQ 0.9675 0.9712 0.6138 0.9704 0.6142 

MSSCQ 0.9675 0.9711 0.4651 0.9707 0.4659 

 
 
Table 3. Distributions (proportions) of the 10 items in scale 16PF. 

 

 
Items 

 
1 2 3 4 5 6 7 8 9 10 

Score 1 0.0425 0.0238 0.0350 0.0316 0.0203 0.0185 0.0221 0.0729 0.2560 0.1771 

Score 2 0.1163 0.0748 0.0893 0.1087 0.0678 0.0753 0.0699 0.3092 0.4727 0.4053 

Score 3 0.1511 0.1787 0.1337 0.1664 0.1767 0.2588 0.1285 0.2486 0.1420 0.2340 

Score 4 0.4764 0.4749 0.4771 0.5267 0.4964 0.4732 0.5469 0.2770 0.0997 0.1500 

Score 5 0.2137 0.2479 0.2648 0.1666 0.2387 0.1742 0.2326 0.0922 0.0296 0.0336 

 
 

As an illustration, Table 3 shows the distributions of the items of the 

population 16PF. The scores are clustered into only 5 categories and the 
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distribution over these categories is different for the individual items. 

Nevertheless the estimation of the GLB remains practically unbiased.  

Conclusion 

It is clear that under the assumptions of the classical test theory and without 

additional assumptions, the measure known as the Greatest Lower Bound (GLB) 

is the highest possible lower bound to the reliability of a test. Unfortunately the 

use of this measure is severely hindered by its bias for small or even moderate 

samples. It is possible to remove this bias by the given algorithm. 

The ideas of this article are implemented in a program called GLBFind, 

which is available at http://www.ru.nl/socialewetenschappen/rtog/software/ 

statistische/kunst/glbfind/. 
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