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Although multiple imputation is the gold standard of treating missing data, single ratio 
imputation is often used in practice. Based on Monte Carlo simulation, the Expectation-
Maximization with Bootstrapping (EMB) algorithm to create multiple ratio imputation is 
used to fill in the gap between theory and practice. 

 
Keywords: Multiple imputation, ratio imputation, Expectation-Maximization, 
bootstrap, missing data, incomplete data, nonresponse, estimation uncertainty 

 

Introduction 

In survey data, missing values are prevalent. At best, missing data are inefficient 

because the incomplete dataset does not contain as much information as is 

expected. At worst, missing data can be biased if non-respondents are 

systematically different from respondents (Rubin, 1987). The best solution to the 

missing data problem is to collect the true data, by resending questionnaires or by 

calling respondents. Nevertheless, there are two problems to this ideal solution. 

First, data users often have no luxury of collecting more data to take care of 

missingness. Second, facing a worldwide trend of resource reduction in official 

statistics, data providers such as national statistical agencies need to make the 

statistical production as efficient as possible. From these two perspectives for both 

data users and data providers, parametric imputation models, if used properly, 

may help to reduce bias and inefficiency due to missing values. In fact, if the 

missing mechanism is at random (MAR), it has been demonstrated that 

imputation can ameliorate the problems associated with incomplete data (Little & 

Rubin, 2002; de Waal et al., 2011). 

https://doi.org/10.22237/jmasm/1493598840
mailto:mtakahashi@tufs.ac.jp
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Among others, ratio imputation is often used to treat missing values in 

practice (de Waal et al., 2011; Thompson & Washington, 2012; Office for 

National Statistics, 2014). When there is an auxiliary variable that is a de facto 

proxy for the target incomplete variable, ratio imputation is assumed to produce 

high quality data (Hu et al., 2001). On the other hand, proponents of multiple 

imputation have long argued that single imputation generally ignores estimation 

uncertainty by treating imputed values as if they were true values (Rubin, 1987; 

Schafer, 1997; Little & Rubin, 2002). Multiple imputation is indeed known to be 

the gold standard of handling missing data (Baraldi & Enders, 2010; Cheema, 

2014). In the literature, however, there is no such thing as multiple ratio 

imputation, leading to a gap between theory and practice. Here, we fill in this gap 

by proposing a novel application of the Expectation-Maximization with 

Bootstrapping (EMB) algorithm to ratio imputation, where multiple-imputed 

values will be created for each missing value. 

Therefore, the purpose of this study is to examine the standard single ratio 

imputation techniques and their limitations, illustrate the mechanism and 

advantages of multiple ratio imputation, and assess the performance of multiple 

ratio imputation using 45,000 simulated datasets based on a variety of sample 

sizes, missing rates, and missingness mechanisms. Also, a review of 

MrImputation, provided in Takahashi (2017), is included. 

Notations 

D is an n × p dataset, where n is the number of observations and p is the number 

of variables. If no data are missing, the distribution of D is assumed to be 

multivariate normal, with the mean vector μ and variance-covariance matrix Σ, 

i.e., D~Np (μ,Σ). Let i be an observation index, i = 1,…,n. Let j be a variable 

index, j = 1,…,p. Thus, D = {Y1,…,Yp}, where Yj is the jth column in D, and Y−j is 

the complement of Yj. Generally, Y−j refers to all of the columns in D except Yj. 

Especially, this article deals with a two-variable imputation model; thus, Y1 is the 

incomplete variable (target variable for imputation) and Y2 is the complete 

variable (auxiliary variable). Thus, D = {Yi1,Yi2}. 

Also, let R be a response indicator matrix, whose dimension is the same as 

D. Whenever D is observed R = 1, and whenever D is not observed R = 0. Note, 

R in Italics refers to the R software environment for statistical computing and 

graphics. Dobs refers to the observed part of data, and Dmis refers to the missing 

part of data, i.e., D={Dobs,Dmis }. β is the slope in the complete model, ̂  is the 
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slope estimated by the observed model, and   is the estimated slope by multiple 

imputation. 

Assumptions of Missing Mechanisms 

There are three assumptions of missingness (Little & Rubin, 2002; King et al., 

2001). This is an important issue, because the results of statistical analyses depend 

on the type of missing mechanisms (Iwasaki, 2002). The first assumption is 

Missing Completely At Random (MCAR), which means that the missingness 

probability of a variable is independent of the data for the unit. In other words, 

P(R|D) = P(R). Take an economic survey where enterprises choose to answer 

their turnover values by tossing a coin as a perfect example of MCAR. This is the 

easiest case to take care of, because MCAR is simply a case of random 

subsampling from the intended sample; thus, subsamples may be inefficient, but 

unbiased. Note that the assumption of MCAR can be tested by entering dummy 

variables for each variable, and scoring it 1 if the data are missing and 0 otherwise.  

The second assumption is the case where missingness is conditionally at 

random. Traditionally, this is known as Missing At Random (MAR), which means 

that the conditional probability of missingness given data is equal to the 

conditional probability of missingness given observed data. In other words, 

P(R|D) = P(R|Dobs). An example of MAR would be when enterprises with few 

employees, in the above hypothetical survey, are found more likely to refuse to 

answer their turnover values, assuming that there is a column in the dataset that 

has values on the number of employees. If the missing mechanism is at random, 

imputation can rectify the bias due to missingness. Note that the assumption of 

MAR (unlike MCAR) cannot be tested. 

The third assumption is Non-Ignorable (NI), where the missingness 

probability of a variable depends on the variable’s value itself, and this 

relationship cannot be broken conditional on observed data. In other words, 

P(R|D) ≠ P(R|Dobs). Imagine that enterprises with lower values of turnover are 

more likely to refuse to answer their turnover values in our survey, and the other 

variables in the dataset cannot be used to predict which enterprises have small 

amounts of turnover: this would be an example of NI. If the missing mechanism is 

NI, a general-purpose imputation method may not be appropriate. Instead, a 

special technique should be developed to take care of the unique nature of non-

ignorable missing mechanisms.  

For the missingness mechanism to be ignorable, both of the MAR and 

distinctness conditions need to be met (Little & Rubin, 2002, pp.119-120). 
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However, under practical conditions, the missingness data model is often regarded 

as ignorable if the MAR condition is satisfied (Allison, 2002, p.5; van Buuren, 

2012, p.33). This means that NI is Not Missing At Random (NMAR). 

Also, as Carpenter & Kenward (2013) noted, MAR means that the 

probability of observing a variable’s value often depends on its own value, but the 

dependence can be eliminated, given observed data. NI means that the probability 

of observing a variable’s value not only depends on its own value, but also the 

dependence cannot be eliminated, given observed data. However, the meaning of 

MAR differs from researcher to researcher (Seaman et al., 2013); thus, there is 

some ambivalence to this terminology. 

Existing Algorithms and Software for Multiple Imputation 

There are three major algorithms for multiple imputation. The first traditional 

algorithm is based on Markov chain Monte Carlo (MCMC). This is the original 

version of Rubin’s (1978, 1987) multiple imputation. R-Package Norm currently 

implements this version of multiple imputation (Schafer, 1997; Fox, 2015). A 

commercial software program using the MCMC algorithm is SAS Proc MI (SAS, 

2011). The second major algorithm is called Fully Conditional Specification 

(FCS), also known as chained equations by van Buuren (2012). R-Package MICE 

currently implements this version of multiple imputation (van Buuren & 

Groothuis-Oudshoorn, 2011; van Buuren & Groothuis-Oudshoorn, 2015). Other 

commercial software programs using the FCS algorithm are SPSS Missing 

Values (SPSS, 2009) and SOLAS (Statistical Solutions, 2011). The FCS 

algorithm is known to be flexible. The third relatively new algorithm is the 

Expectation-Maximization with Bootstrapping (EMB) algorithm by Honaker & 

King (2010). R-Package Amelia II currently implements this version of multiple 

imputation (Honaker et al., 2011; Honaker et al., 2015). The EMB algorithm is 

known to be computationally efficient. 

Assessing superiority among the different multiple imputation algorithms is 

beyond the scope of the current study. According to Takahashi & Ito (2013), if the 

underlying distribution can be approximated by a multivariate normal distribution 

with the MAR condition, all of the three algorithms essentially give the same 

answers. As for the performance of the EMB algorithm, Honaker & King (2010) 

contended the estimates of population parameters in bootstrap resamples can be 

appropriately used instead of random draws from the posterior. Rubin (1987) 

argued the approximately Bayesian bootstrap method is proper imputation 

because it incorporates between-imputation variability. Also, Little & Rubin 

file:///C:/Users/dp5745/Downloads/ref_van_buuren_2012
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(2002) opined the substitution of Maximum Likelihood Estimates (MLEs) from 

bootstrap resamples is proper because the MLEs from the bootstrap resamples are 

asymptotically identical to a sample drawn from the posterior distribution. 

Therefore, multiple imputation by the EMB algorithm can be considered to be 

proper imputation in Rubin’s sense (1987). Also, according to van Buuren (2012), 

the bootstrap method is computationally efficient because there is no need to 

make a draw from the χ2 distribution, unlike the other traditional algorithms of 

multiple imputation. This means that it is not necessary to resort to the Cholesky 

decomposition (factorization), the property of which is that if A is a symmetric 

positive definite matrix, i.e., A = AT, then there is a matrix L such that A = LLT, 

which means that A can be factored into LLT, where L is a lower triangular 

matrix with positive diagonal elements (Leon, 2006, p.389). Nonetheless, R-

Package Amelia II does not allow estimating the ratio imputation model, nor do 

any of the existing multiple imputation software programs mentioned above. 

Single Ratio Imputation 

Suppose that the population model is equation (1). Under the following special 

case, the ratio 
1 2/Y Y  is an unbiased estimator of β, where εi is independent of Yi2 

with the mean of 0 and the unknown variance of Yi2σ2 (Takahashi et al., 2017; 

Cochran, 1977; Shao, 2000; Liang et al., 2008). Under the general case, the ratio 

1 2/Y Y  is a consistent but biased estimator of β, and the mean of εi is 0 with 

unknown variance. However, as the sample size increases, this bias tends to be 

negligible. Also, the distribution of the ratio estimate is known to be 

asymptotically normal (Cochran, 1977, p.153). 

 

 1 2i i iY Y     (1) 

 

Suppose Yit is missing in the survey and that Yit−1 is fully observed in a previous 

dataset, where Yit is the current value of the variable and Yit−1 is the value of the 

same variable at an earlier moment. The missing values of Yt may be imputed by 

equation (2), where the value of β reflects the trend between the two time points. 

 

 1
ˆ
it itY Y    (2) 

 

A special case of equation (2) is cold deck imputation (de Waal et al., 2011), 

an example of which is that a missing value for unit i in an economic survey at t is 
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replaced with an observed value for unit i in another highly reliable dataset such 

as tax data at t − 1. This model implies that the imputer is confident that β is 

always 1. Thus, there will be no estimation uncertainty whatsoever. A general 

case of equation (2) is ratio imputation (de Waal et al., 2011), an example of 

which is that a missing value for unit i of an economic survey at t is replaced with 

an observed value for unit i of the same economic survey at t − 1, assuming that 

unit i answered at t − 1. In this case, the imputer is not confident that β is always 1. 

Thus, there will be estimation uncertainty. 

Therefore, in the general case of equation (2), the value of β is not known 

and must be estimated from the observed part of data. For this purpose, ratio 

imputation takes the form of a simple regression model without an intercept, 

whose slope coefficient is calculated not by OLS, but by the ratio between the 

means of the two variables. In other words, the ratio imputation model is equation 

(3), where 1, 2,
ˆ /obs obsY Y  . Also, ratio imputation can be made stochastic by 

adding a disturbance term as in equation (4) (Hu et al., 2001). 

 

 1 2
ˆˆ

i iY Y   (3) 

 

 1 2
ˆˆ ˆ

i i iY Y     (4) 

 

To illustrate, consider Table 1, where simulated data on income among 10 

people are recorded. Income0 is the unobserved truth, Income1 is the current 

value, and Income2 is the previous value. The mean of Income0 is 504.500, the 

mean of Income1 is 412.571, and the mean of Income2 is 445.600. 
 
 
Table 1. Example Data (Simulated Weekly Income in U.S. Dollars) 
 

ID Income0 Income1 Income2 

1 543 543 514 

2 272 272 243 

3 797 NA 597 

4 239 239 264 

5 415 415 350 

6 371 371 346 

7 650 NA 545 

8 495 495 475 

9 553 553 564 

10 710 NA 558 
 

Note. Income0 is the true complete variable. Income1 is the observed incomplete variable with NA = missing. 

Income2 is the auxiliary variable. 
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Presented in Table 2 are the imputed dataset by both deterministic ratio 

imputation and stochastic ratio imputation. The true model is, 

Income0=BXincome2 where β = mean(Income0) ⁄ mean(Income2) = 1.132. On the 

other hand, the imputation model is Income1=BxIncome2, where 

̂  = mean(Income1,obs) ⁄ mean(Income2,obs) = 1.048. This clearly means that the 

imputation model consistently underestimates the true model due to missing 

values. 
 
 
Table 2. Example of Imputed Data (Simulated Weekly Income in U.S. Dollars) 

 

   
Deterministic Stochastic 

ID Income0 Income1 Ratio Ratio 

   Imputation Imputation 

1 543 543 543.000 543.000 

2 272 272 272.000 272.000 

3 797 NA 625.594 586.441 

4 239 239 239.000 239.000 

5 415 415 415.000 415.000 

6 371 371 371.000 371.000 

7 650 NA 571.103 575.654 

8 495 495 495.000 495.000 

9 553 553 553.000 553.000 

10 710 NA 584.756 621.730 
 

Note. Income0 is the true complete variable. Income1 is the observed incomplete variable with NA = missing. 

 
 

The deterministic imputations are the exact predicted values by the 

imputation model. The stochastic imputations deviate from the predictions, 

reflecting fundamental uncertainty captured by î . Nevertheless, both types of 

ratio imputation models suffer from the lack of mechanism to incorporate 

estimation uncertainty, i.e., both models share the same deterministically 

calculated value of ̂  = 1.048, which is clearly different from the true β = 1.132. 

Ratio imputation is considered to be an important tool in official statistics, 

because the model is supposed to be intuitively easy to verify for the practitioners 

(Bechtel et al., 2011). As a result, many national statistical agencies use ratio 

imputation in their statistical production processes, such as the U.S. Census 

Bureau (Thompson & Washington, 2012), the UK Office for National Statistics 

(2014), and Statistics Netherlands (de Waal et al., 2011), to name a few. However, 

this section demonstrated that the standard single ratio imputation models ignored 

estimation uncertainty. On this point, multiple ratio imputation comes to the 

rescue. 
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Theory of Multiple Ratio Imputation 

If the missing mechanism is MAR, imputation can ameliorate the bias due to 

missingness (Little & Rubin, 2002; de Waal et al., 2011). Caution is required 

because imputed values are not the complete reproduction of the true values, and 

that the goal of imputation is generally not to replicate the truth for each missing 

value, but to make it possible to have a valid statistical inference. For this purpose, 

it is necessary to evaluate the error due to missingness, for which Rubin (1978, 

1987) proposed multiple imputation as a solution. Indeed, Baraldi & Enders 

(2010) and Cheema (2014) demonstrated multiple imputation is superior to 

listwise deletion, mean imputation, and single regression imputation. Furthermore, 

Leite & Beretvas (2010) contended multiple imputation is robust to violations of 

continuous variables and the normality assumption. Thus, multiple imputation is 

the gold standard of treating missing data. The purpose of the current study, 

therefore, is to extend the utility of ratio imputation by transforming it to multiple 

imputation by way of the EMB algorithm described in this section. 

Multiple imputation in theory is to randomly draw several imputed values 

from the distribution of missing data. However, missing data are by definition 

unobserved; as a result, the true distribution of missing data is always unknown. 

A solution to this problem is to estimate the posterior distribution of missing data 

based on observed data, and to make a random draw of imputed values. Honaker 

& King (2010) and Honaker et al. (2011) suggested the use of the EMB algorithm 

for the purpose of drawing the mean vector and the variance-covariance matrix 

from the posterior density, and presented a general-purpose multiple imputation 

software program called Amelia II, which is a computationally efficient and 

highly reliable multiple imputation program. Nevertheless, as presented above, 

Amelia II does not allow us to estimate the ratio imputation model. 

The value of β was estimated by 1, 2,
ˆ /obs obsY Y  . Therefore, in order to 

create multiple ratio imputation, the mean vector needs to be randomly drawn 

from the posterior distribution of missing data given observed data. In the 

following sections, the EMB algorithm is applied to ratio imputation to create 

multiple ratio imputation. First, however, a review of the bootstrap method and 

the Expectation-Maximization (EM) algorithm is in order, to illustrate how the 

EMB algorithm works for the purpose of generating multiple ratio imputation. 
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Nonparametric Bootstrap 

The first step for multiple ratio imputation is to randomly draw vectors of means 

from an appropriate posterior distribution to account for the estimation 

uncertainty. The EMB algorithm replaces the complex process of random draws 

from the posterior by nonparametric bootstrapping, which uses the existing 

sample data (size = n) as the pseudo-population and draws resamples (size = n) 

with replacement M times (Horowitz, 2001). If data Y1,…,Yn are independently 

and identically distributed from an unknown distribution F, this distribution is 

estimated by F̂ (y), which is the empirical distribution Fn defined in equation (5), 

where I(Y) is the indicator function of the set Y.  

 

    
1

1
.

n

n ii
F y I Y y

n 
    (5) 

 

Based on equation (5), bootstrap resamples are generated. The distribution 

F̂  can be any estimator in order to generate the bootstrap resamples of F based 

on Y1,…,Yn. A nonparametric estimator of F is the empirical distribution Fn 

defined by equation (5) (Shao & Tu, 1995, pp. 2-4, pp. 9-11; DeGroot & 

Schervish, 2002, pp.753-754). 
 
 
Table 3. Bootstrap Data (M = 2) 

 

Incomplete Data 
 

Bootstrap 1 
 

Bootstrap 2 

Income1 Income2 
 

IncomeB11 IncomeB12 
 

IncomeB21 IncomeB22 

543 514   NA 545   495 475 

272 243 
 

272 243 
 

272 243 

NA 597 
 

239 264 
 

371 346 

239 264 
 

NA 597 
 

415 350 

415 350 
 

272 243 
 

NA 597 

371 346 
 

553 564 
 

543 514 

NA 545 
 

272 243 
 

272 243 

495 475 
 

495 475 
 

NA 545 

553 564 
 

553 564 
 

371 346 

NA 558   272 243   NA 545 

 
 

Note. NA represents missing values. 

 
 

This is illustrated in Table 3. The incomplete data are the original missing 

data in Table 1. When listwise deletion is applied to this dataset, the mean of 
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Income1 is 412.571. The Bootstrap 1 and Bootstrap 2 in Table 3 refer to the 

bootstrap resamples, where M = 2. When listwise deletion is applied to these 

bootstrap datasets, the mean of IncomeB11 is 366.000 and the mean of 

IncomeB21 is 391.286. The variation between these estimates is the essential 

mechanism of capturing estimation uncertainty due to imputation. 

However, when incomplete data are bootstrapped, the chance is that each 

bootstrap resample is also incomplete. Therefore, the information from 

incomplete bootstrap resamples is biased and inefficient. The EM algorithm 

refines bootstrap estimates in the next section. 

EM Algorithm 

MLEs are the parameter estimates that maximize the likelihood of observing the 

existing data (Long, 1997, p.26), which have the NICE properties of asymptotic 

Normality, Invariance, Consistency, and asymptotic Efficiency (Greene, 2003). 

Nevertheless, it is difficult to directly calculate MLE in missing data. Making 

incomplete data complete requires information about the distribution of the data, 

such as the mean and the variance-covariance; however, these incomplete data are 

used to estimate the mean and the variance-covariance. Therefore, it is not 

straightforward to analytically solve this problem. For the purpose of dealing with 

this problem, iterative methods such as the EM algorithm were proposed to 

estimate such quantities of interest (Allison, 2002). 

A certain distribution is assumed in the EM algorithm, as are tentative 

starting values for the mean and the variance-covariance. An expected value of 

model likelihood is calculated, the likelihood is maximized, model parameters are 

estimated that maximize these expected values, and then the distribution is 

updated. The expectation and the maximization steps are repeated until the values 

converge, whose properties are known to be an MLE (Schafer, 1997; Iwasaki, 

2002; Do & Batzoglou, 2008). Formally, the EM algorithm can be summarized as 

follows. Starting from an initial value θ0, repeat the following two steps: 

 

1. E-step:      | | | ;t mis obs t misQ l Y P Y Y dY     , where  |l Y  is 

log likelihood. 

2. M-step: Maximize 1t  = arg maxθ  | tQ   with respect to θ. 

 

Under certain conditions, it is proven that  ˆ
t t   . 
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The values in Table 3 were incomplete. If the EM algorithm is used to refine 

these values, the EM mean for IncomeB11 is 405.741 and the EM mean for 

IncomeB12 is 398.100; also, the EM mean for IncomeB21 is 450.912 and the EM 

mean for IncomeB22 is 420.400. Using these values, the ratio will be estimated as 

1.019 and 1.072, respectively. Thus, in this small example, the ratio is estimated 

as 1.046 on average, ranging from 1.019 to 1.072. This variation captures the 

estimation uncertainty due to missingness, which is called the between-imputation 

variance (Little & Rubin, 2002). Obviously, real applications require a much 

larger value of M (Graham et al., 2007; Bodner, 2008). 

Application of the EMB Algorithm to Multiple Ratio Imputation 

The multiple ratio imputation model is defined by equation (6), where tilde means 

that these values are drawn from an appropriate posterior distribution of missing 

data. In other words,   is a vector of ratios drawn from the appropriate posterior 

taking estimation uncertainty into account and i  is the disturbance term taking 

fundamental uncertainty into account (King et al., 2001). 

 

 1 2 ,i i iY Y    where 1

2

Y

Y
    (6) 

 
 
Table 4. Multiple Ratio Imputation Data (M = 2) 
 

ID Income1 Income2 Imputation1 Imputation2 

1 543 514 543.000 543.000 

2 272 243 272.000 272.000 

3 NA 597 620.917 662.732 

4 239 264 239.000 239.000 

5 415 350 415.000 415.000 

6 371 346 371.000 371.000 

7 NA 545 571.100 600.655 

8 495 475 495.000 495.000 

9 553 564 553.000 553.000 

10 NA 558 597.406 637.115 

 
 

Presented in Table 4 are the result of multiple ratio imputation, where M = 2, 

using the same example data as in Table 1. The model is 

21 iIncome Income    . If M = 100, the mean of   is 1.050 with a standard 

deviation of 0.048, ranging from 0.903 to 1.342. This variation captures the 
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stability of the imputation model, which serves as a diagnostic method for 

imputation, because the simulation standard error (between-imputation variance) 

can be appropriately used for assessing the likeliness of the simulation estimator 

being close to the true parameter of interest (DeGroot & Schervish, 2002). In 

Table 4, the values of Imputation1 and Imputation2 for ID 3, 7, and 10 change 

over columns Imputation1 to Imputation2, because the values in these rows are 

imputed values. Also, note that the values in the other rows do not change over 

columns, because they are observed values. 

Just as in regular multiple imputation (Little & Rubin, 2002), the estimates 

by multiple ratio imputation can be combined as follows. Let ˆ
m  be an estimate 

based on the mth multiple-imputed dataset. The combined point estimate 
M  is 

equation (7). 

 

 
1

1 ˆM

M mmM
 


    (7) 

 

The variance of the combined point estimate consists of two parts. Let vm be 

the estimate of the variance of ˆ
m , var( ˆ

m ), let 
MW  be the average of within-

imputation variance, let 
MB  be the average of between-imputation variance, and 

let TM be the total variance of 
M . Then, the total variance of 

M  is equation (8), 

where (1 + 1 ⁄ M) is an adjustment factor because M is not infinite. If M is infinite, 

 1lim 1M M MM
v v   . In short, the variance of 

M  takes into account within-

imputation variance and between-imputation variance. 

 

  
2

1 1

1 1 1 1 ˆ1 1
1

M M

M M M m m M

m m

T W B v
M M M M

 
 

    
                

    (8) 

 

Graphically outlined in Figure 1 is a schematic overview of multiple ratio 

imputation (M = 5). In summary, multiple ratio imputation replaces missing 

values by M simulated values, where M > 1. Conditional on observed data, the 

imputer constructs a posterior distribution of missing data, draws a random 

sample from this distribution, and creates several imputed datasets. Then, conduct 

the standard statistical analysis, separately using each of the M multiple-imputed 

datasets, and combine the results of the M statistical analyses in the above manner 

to calculate a point estimate just as in regular multiple imputation. 
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Figure 1. Schematic of Multiple Ratio Imputation by the EMB Algorithm (M = 5) 

 

Monte Carlo Evidence 

Using 45,000 simulated datasets with various characteristics, the Relative Root 

Mean Square Errors (RRMSE) of the estimators for the mean, the standard 

deviation, and the t-statistics in regression across different missing data handling 

techniques are compared. The data are a modified version of the simulated data 

used by King et al. (2001). The Monte Carlo experiments are based on 1,000 

iterations, each of which is a random draw from the following multivariate normal 

distribution: Variables y1 and y2 are normally distributed with the mean vector (6, 

10) and the standard deviation vector (1, 1), where the correlation between y1 and 

y2 is set to 0.6 (Note that the value of 0.6 was chosen because this is 

approximately the correlation value among the variables in official economic 

statistics which is the target of the current study. Also, in other few runs, not 

reported, the parameter values were changed, and the conclusions were very 

similar). Each set of these 1,000 data is repeated for n = 50, n = 100, n = 200, 

n = 500, and n = 1,000; thus, there are 5,000 datasets of five different data sizes. 

Our simulated data assume that the population model is equation (9). 
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 1 2 ,i i iY Y    where  1

2

0.6, ~ 0,0.64 .i

Y
N

Y
     (9) 

 

Furthermore, following King et al. (2001), each of these 5,000 datasets is 

made incomplete using the three data generation processes of MCAR, MAR, and 

NI as in Table 5. Under the assumption of MCAR, the missingness of y1 

randomly depends on the values of u (uniform random numbers). Under the 

assumption of MAR, the missingness of y1 depends on the values of y2 and u. 

Under the assumption of NI, the missingness of y1 depends on the observed and 

unobserved values of y1 itself and the values of u. 
 
 
Table 5. Missingness Mechanisms and Missing Rates 

 

MCAR 

Missingness of y1 is a function of u. 

 
15%: y1 is missing if u > 0.85. 

 
25%: y1 is missing if u > 0.75. 

  35%: y1 is missing if u > 0.65. 

MAR 

Missingness of y1 is a function of y2 and u. 

 
15%: y1 is missing if y2 > 10 and u > 0.7. 

 
25%: y1 is missing if y2 > 10 and u > 0.5. 

  35%: y1 is missing if y2 > 10 and u > 0.3. 

NI 

Missingness of y1 is a function of y1, x, and u. 

 
15%: y1 is missing if y1 > 6 and u > 0.7. 

 
25%: y1 is missing if y1 > 6 and u > 0.5. 

  35%: y1 is missing if y1 > 6 and u > 0.3. 

 
 

Variable y1 is the target incomplete variable for imputation, Variable y2 is 

completely observed in all of the situations to be used as the auxiliary variable, 

and Variable u in Table 5 is 1,000 sets of continuous uniform random numbers 

ranging from 0 to 1 for the missingness mechanism. The average missing rates are 

set to 15%, 25%, and 35%. These missing rates approximately cover the range 

from 10% to 40% missingness. 

The performance can be captured by the Mean Square Error (MSE), defined 

as equation (10), where θ is the true quantity of interest and ̂  is an estimator. 

The MSE measures the dispersion around the true value of the parameter, 

suggesting that an estimator with the smallest MSE is the best of a competing set 

of estimators (Gujarati, 2003, p. 901). 
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    
2

ˆ ˆMSE E      (10) 

 

For the ease of interpretation, following Di Zio & Guarnera (2013), the 

Relative Root Mean Square Error (RRMSE) is used, which is defined as equation 

(11), where θ is the truth, ̂  is an estimator, and T is the number of trials. For 

example, θ in the following analyses is the mean, the standard deviation, and the 

t-statistic based on complete data. ̂  is the estimated quantity based on imputed 

data. T is 1,000. 

 

  
2

1

ˆ1ˆ
T

t

RRMSE
T

 




 
   

 
   (11) 

 

The complete results based on the 45,000 datasets are presented in Tables 6, 

8, and 9. In the following analyses, the multiple ratio imputation model sets the 

number of multiple-imputed datasets (M) to 100, based on the recent findings in 

the multiple imputation literature (Graham et al., 2007; Bodner, 2008). 

RRMSE Comparisons for the Mean 

Presented in Table 6 are the RRMSE comparisons for the mean among listwise 

deletion, deterministic single ratio imputation, and multiple ratio imputation 

(M = 100), where the RRMSE is averaged over the 1,000 simulations. For 

multiple ratio imputation, the 100 mean values are combined using equation (7) in 

each of the 1,000 simulations. 

The standard recommendation (de Waal et al., 2011, p.245) is that if the 

goal is to calculate a point estimate, the choice is deterministic single ratio 

imputation. Thus, the main purpose of this comparison is to show that the 

performance of multiple ratio imputation is as good as that of deterministic single 

ratio imputation, which is known to be a preferred method for the estimation of 

the mean. If multiple ratio imputation equally performs well compared to 

deterministic single ratio imputation, this means that multiple ratio imputation 

attains the highest performance in estimating the mean. 
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Table 6. RRMSE Comparisons for the Mean (45,000 Datasets) 

 

Sample Size 
Average Missing 

Rate 
Missing 

Mechanism Listwise Deletion 
Deterministic Ratio 

Imputation 
Multiple Ratio 

Imputation 

50 

15% 

MCAR 0.009 0.008 0.008 

MAR 0.017 0.008 0.008 

NI 0.026 0.017 0.018 

25% 

MCAR 0.014 0.011 0.011 

MAR 0.03 0.01 0.011 

NI 0.048 0.032 0.033 

35% 

MCAR 0.017 0.014 0.014 

MAR 0.045 0.012 0.014 

NI 0.075 0.05 0.052 

100 

15% 

MCAR 0.007 0.006 0.006 

MAR 0.016 0.005 0.005 

NI 0.024 0.016 0.016 

25% 

MCAR 0.01 0.008 0.008 

MAR 0.028 0.007 0.008 

NI 0.046 0.03 0.03 

35% 

MCAR 0.012 0.01 0.01 

MAR 0.044 0.008 0.01 

NI 0.073 0.048 0.05 

200 

15% 

MCAR 0.005 0.004 0.004 

MAR 0.015 0.004 0.004 

NI 0.024 0.016 0.016 

25% 

MCAR 0.007 0.005 0.005 

MAR 0.028 0.005 0.005 

NI 0.045 0.029 0.03 

35% 

MCAR 0.009 0.007 0.007 

MAR 0.043 0.006 0.007 

NI 0.072 0.048 0.049 

500 

15% 

MCAR 0.003 0.003 0.003 

MAR 0.014 0.002 0.002 

NI 0.024 0.015 0.015 

25% 

MCAR 0.004 0.003 0.003 

MAR 0.027 0.003 0.003 

NI 0.045 0.029 0.029 

35% 

MCAR 0.006 0.004 0.004 

MAR 0.043 0.004 0.005 

NI 0.072 0.047 0.048 

1000 

15% 

MCAR 0.002 0.002 0.002 

MAR 0.014 0.002 0.002 

NI 0.024 0.015 0.015 

25% 

MCAR 0.003 0.003 0.003 

MAR 0.027 0.002 0.002 

NI 0.044 0.029 0.029 

35% 

MCAR 0.004 0.003 0.003 

MAR 0.043 0.002 0.003 

NI 0.072 0.047 0.048 
 

Note. Average over the 1,000 simulations for each data type. M = 100 for multiple ratio imputation 
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In 42 of the 45 patterns, deterministic ratio imputation and multiple 

imputation both outperform listwise deletion with 3 ties. Even when the missing 

mechanism is MCAR, the results by imputation are almost always better than 

those of listwise deletion. Between the ratio imputation methods, deterministic 

ratio imputation slightly performs better than multiple ratio imputation in 14 out 

of the 45 patterns with 31 ties. However, the largest difference is only 0.002 in 

terms of the RRMSE. Thus, there are no significant differences between 

deterministic ratio imputation and multiple ratio imputation. Furthermore, this 

difference is expected to completely disappear as M approaches infinity. In 

general, under the situations where the model is correctly specified and the 

assumption of MAR is satisfied, both single imputation and multiple imputation 

(M = ∞) would be unbiased and agree on the point estimation (Donders et al., 

2006). The results in Table 6 ensure this general relationship also applies to the 

relationship between single ratio imputation and multiple ratio imputation. 

Therefore, on average, multiple ratio imputation can be expected to give 

essentially the same answers as to the estimation of the mean, compared to 

deterministic ratio imputation. 

Multiple ratio imputation can be more useful than deterministic single ratio 

imputation in the estimation of the mean, because multiple ratio imputation has 

more information in its output. Recall that there are three sources of variation in 

multiple imputation (van Buuren, 2012). One is the conventional measure of 

statistical variability (also known as within-imputation variance). Another is the 

additional variance due to missing values in the data (also known as between-

imputation variance). The last one is simulation variance by the finite number of 

multiple-imputed data captured by /MB M  in equation (8). Among these, the 

between-imputation variance is particularly important, because it reflects the 

uncertainty associated with missingness (Honaker et al., 2011). 

To demonstrate how multiple ratio imputation provides additional 

information on the between-imputation variance, presented in Table 7 is the mean 

of y1 when the missing data mechanism is MAR with the average missing rate of 

35%, where the reported values are the average over the 1,000 simulations. In 

Table 7, when the missing data mechanism is MAR, both of the imputation 

methods are almost equally accurate, in terms of estimating the mean. 

Additionally, multiple ratio imputation has more rows in Table 7 for BISD and CI 

(95%). BISD stands for the Between-Imputation Standard Deviation, and CI 

(95%) stands for the Confidence Interval associated with estimation error due to 

missingness at the 95% level. BISD is the square-root of the between-imputation 
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variance and measures the dispersion of the 100 mean values based on multiple 

ratio imputation (M = 100). In other words, BISD is the variation in the 

distribution of the estimated mean, which is usually called the standard error 

(Baraldi & Enders, 2010, p.16). Thus, based on BISD, the imputer can be 

approximately 95% confident that the true mean value of complete data is 

somewhere between 5.941 and 6.057, after taking the error due to missingness 

into account. Furthermore, the imputer can be approximately 95% confident that 

the imputed mean value (6.00) is meaningfully different from the listwise deletion 

estimate (5.74), which is outside the 95% confidence interval (5.94, 6.06). Single 

ratio imputation (both deterministic and stochastic) lacks this mechanism of 

assessing estimation uncertainty. 
 
 
Table 7. Mean of y1 (MAR-35%) 

 

 
Complete Data  Listwise Deletion 

Deterministic 
Ratio Imputation 

Multiple Ratio 
Imputation 

Mean 6.000 5.741 6.000 5.999 

BISD NA NA NA 0.029 

CI (95%) NA NA NA 5.941, 6.057 

n 500 325 500 500 
 

Note. NA means Not-Applicable. Average over the 1,000 simulations. M = 100 for multiple ratio imputation 

 

RRMSE Comparisons for the Standard Deviation 

Presented in Table 8 are the RRMSE comparisons for the standard deviation 

among listwise deletion, stochastic single ratio imputation, and multiple ratio 

imputation (M = 100), where the RRMSE is averaged over the 1,000 simulations. 

For multiple ratio imputation, the 100 standard deviation values are combined 

using equation (7) in each of the 1,000 simulations. 

The standard recommendation (de Waal et al., 2011) is that if the goal is to 

estimate the variation of data, the choice is stochastic single ratio imputation. 

Thus, the main purpose of this comparison is to show that the performance of 

multiple ratio imputation is as good as that of stochastic ratio imputation, which is 

known to be a preferred method to estimate the standard deviation. Note that, in 

other simulation runs, the EM algorithm was applied to the imputed data by the 

deterministic ratio imputation model, in order to compute the standard deviation. 

However, these results were not good and thus omitted here. 
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Table 8. RRMSE Comparisons for the Standard Deviation (45,000 Datasets) 

 

Sample Size 
Average Missing 

Rate 
Missing 

Mechanism Listwise Deletion 
Stochastic Ratio 

Imputation 
Multiple Ratio 

Imputation 

50 

15% 

MCAR 0.042 0.048 0.037 

MAR 0.045 0.047 0.038 

NI 0.048 0.052 0.043 

25% 

MCAR 0.059 0.062 0.049 

MAR 0.066 0.062 0.054 

NI 0.079 0.074 0.067 

35% 

MCAR 0.075 0.075 0.058 

MAR 0.088 0.071 0.067 

NI 0.146 0.117 0.118 

100 

15% 

MCAR 0.029 0.035 0.026 

MAR 0.031 0.034 0.026 

NI 0.035 0.037 0.031 

25% 

MCAR 0.040 0.044 0.033 

MAR 0.046 0.044 0.037 

NI 0.064 0.058 0.054 

35% 

MCAR 0.052 0.052 0.040 

MAR 0.067 0.054 0.047 

NI 0.121 0.097 0.098 

200 

15% 

MCAR 0.021 0.025 0.018 

MAR 0.022 0.025 0.019 

NI 0.025 0.027 0.023 

25% 

MCAR 0.028 0.030 0.023 

MAR 0.036 0.032 0.027 

NI 0.049 0.044 0.042 

35% 

MCAR 0.037 0.037 0.028 

MAR 0.053 0.038 0.034 

NI 0.109 0.086 0.088 

500 

15% 

MCAR 0.014 0.016 0.012 

MAR 0.014 0.016 0.012 

NI 0.018 0.019 0.016 

25% 

MCAR 0.018 0.020 0.015 

MAR 0.024 0.020 0.017 

NI 0.042 0.038 0.036 

35% 

MCAR 0.022 0.023 0.018 

MAR 0.043 0.024 0.021 

NI 0.106 0.083 0.084 

1000 

15% 

MCAR 0.010 0.012 0.008 

MAR 0.010 0.011 0.008 

NI 0.014 0.015 0.013 

25% 

MCAR 0.013 0.014 0.011 

MAR 0.019 0.014 0.011 

NI 0.040 0.037 0.033 

35% 

MCAR 0.017 0.017 0.013 

MAR 0.038 0.016 0.014 

NI 0.100 0.080 0.079 
 

Note. Average over the 1,000 simulations for each data type. M = 100 for multiple ratio imputation 
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In all of the 45 patterns, multiple ratio imputation always outperforms 

listwise deletion. Even when the missing mechanism is MCAR, the results by 

multiple ratio imputation are always better than those of listwise deletion. In 

contrast, stochastic ratio imputation outperforms listwise deletion in only 20 out 

of the 45 patterns. Especially, when the missing mechanism is MCAR, listwise 

deletion often outperforms stochastic ratio imputation in 11 out of the 15 patterns 

with 4 ties, although the difference is minimal. This implies that when missing 

data are suspected to be MCAR, there is a chance that using stochastic ratio 

imputation may make the situation worse than simply using listwise deletion. 

When the missing mechanism is MAR or NI, stochastic ratio imputation indeed 

outperforms listwise deletion in 20 out of the 30 patterns. 

Between the ratio imputation methods, multiple ratio imputation often 

performs better than stochastic ratio imputation, 41 out of the 45 patterns. 

Therefore, this study contends that multiple ratio imputation is the preferred 

method for the estimation of the standard deviation. Table 8 implies that, 

regardless of missing mechanisms, multiple ratio imputation should be used for 

the purpose of estimating the standard deviation. 

Just as in the case of estimating the mean, let us take the case of 35% 

missingness with the MAR condition as an example. Based on BISD, the imputer 

can be approximately 95% confident that the true standard deviation value of 

complete data is somewhere between 0.960 and 1.040, after taking the error due 

to missingness into account. 

RRMSE Comparisons for the t-Statistics in Regression 

The comparisons in this section are particularly important because even if the 

intercept should be zero and the slope should be estimated by the ratio between 

two variables, there are no other choices but to stick to regular multiple 

imputation for the computation of the t-statistics in regression. The regression 

model in Table 9 is y2 = a + b*y1. The quantity of interest is the t-statistic of b, 

i.e., tb = b ⁄ se(b) . The RRMSE reported here measures the average distance 

between the true tb based on complete data and the estimated tb based on imputed 

data. Table 9 presents the RRMSE comparisons for the t-statistics in regression 

among listwise deletion, regular multiple imputation (Amelia II), and multiple 

ratio imputation, where M = 100 for both regular multiple imputation and multiple 

ratio imputation, and the RRMSE is averaged over the 1,000 simulations. For 

regular multiple imputation and multiple ratio imputation, the 100 coefficient 

values are combined using equation (7), the 100 standard error values are 
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combined using equation (8), and the t-statistics are calculated using these two 

values in each of the 1,000 simulations. 

Remember that the multiple ratio imputation model is equation (6). On the 

other hand, multiple imputation by Amelia II is equation (12), where the 

coefficients are random draws of the mean vectors and the variance-covariance 

matrices from the posterior distribution (Honaker & King, 2010). 

 

 1 0 1 2i i iY Y     , where 
 

 
1 2

1 0 1 1 2

2

cov ,
,
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i i

i

Y Y
Y Y

Y
     . (12) 

 

The standard recommendation (van Buuren, 2012; Hughes et al., 2014) is 

that if the goal is to obtain valid inferences with standard errors, the choice is 

multiple imputation which is a superior variance-estimation method. Thus, the 

main purpose of this comparison is to show that the performance of multiple ratio 

imputation is better than that of regular multiple imputation in terms of estimating 

the t-statistics. The comparison of the t-statistics in regression is appropriate, 

because it is the quantity of interest for many applied researchers in disputing 

whether an independent variable has some impact on a dependent variable. 

According to Cheema (2014), comparisons of t-statistics are fair because the 

complete sample and the imputed sample are identical in all respects including 

power, except for the fact that no values were missing in the complete sample 

while some values were missing in the imputed values. Therefore, the differences 

in the observed values of statistics are caused by the differences between imputed 

values and their true counterparts. 

The comparison of multiple ratio imputation and Amelia II is appropriate, 

because the algorithm is the same EMB under the same platform of the R 

statistical environment. In all of the 45 patterns, regular multiple imputation and 

multiple ratio imputation both outperform listwise deletion. Furthermore, multiple 

ratio imputation almost always outperforms regular multiple imputation 43 out of 

the 45 patterns under the condition where the true population model is equation 

(9). Thus, when the true model is a ratio model such as equation (9), multiple ratio 

imputation is more accurate and efficient than regular multiple imputation. 

Therefore, multiple ratio imputation adds an important option for the tool kit 

of imputing and analyzing the mean, the standard deviation, and the t-statistics. If 

the true model is equation (9), multiple ratio imputation is at least as good as and 

in many cases better than the other traditional imputation methods for the three 

quantities of interest, regardless of the missingness mechanisms. However, it is 
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Table 9. RRMSE Comparisons for t-statistics (45,000 Datasets) 

 

Sample Size 
Average Missing 

Rate 
Missing 

Mechanism Listwise Deletion 
Multiple Imputation 

Amelia II 
Multiple Ratio 

Imputation 

50 

15% 

MCAR 0.126 0.103 0.087 

MAR 0.137 0.107 0.093 

NI 0.141 0.114 0.099 

25% 

MCAR 0.185 0.144 0.113 

MAR 0.220 0.173 0.135 

NI 0.222 0.175 0.138 

35% 

MCAR 0.242 0.189 0.134 

MAR 0.317 0.247 0.171 

NI 0.328 0.269 0.179 

100 

15% 

MCAR 0.104 0.075 0.066 

MAR 0.113 0.080 0.071 

NI 0.111 0.081 0.072 

25% 

MCAR 0.159 0.109 0.087 

MAR 0.192 0.127 0.101 

NI 0.194 0.136 0.108 

35% 

MCAR 0.218 0.153 0.107 

MAR 0.294 0.191 0.131 

NI 0.297 0.224 0.147 

200 

15% 

MCAR 0.091 0.059 0.052 

MAR 0.101 0.064 0.056 

NI 0.101 0.066 0.060 

25% 

MCAR 0.145 0.092 0.075 

MAR 0.181 0.106 0.085 

NI 0.177 0.117 0.095 

35% 

MCAR 0.208 0.136 0.097 

MAR 0.282 0.159 0.113 

NI 0.282 0.199 0.133 

500 

15% 

MCAR 0.084 0.050 0.044 

MAR 0.094 0.053 0.047 

NI 0.093 0.058 0.051 

25% 

MCAR 0.141 0.086 0.066 

MAR 0.171 0.092 0.069 

NI 0.170 0.107 0.083 

35% 

MCAR 0.202 0.127 0.086 

MAR 0.279 0.144 0.097 

NI 0.282 0.193 0.121 

1000 

15% 

MCAR 0.080 0.046 0.041 

MAR 0.089 0.046 0.043 

NI 0.091 0.048 0.049 

25% 

MCAR 0.137 0.053 0.063 

MAR 0.167 0.084 0.067 

NI 0.168 0.105 0.083 

35% 

MCAR 0.198 0.122 0.084 

MAR 0.275 0.132 0.092 

NI 0.275 0.186 0.120 
 

Note. Average over the 1,000 simulations for each data type. M = 100 for multiple imputation 
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not claimed multiple ratio imputation is always superior to regular multiple 

imputation. If the true model is not a ratio model such as equation (9), the 

superiority shown in this section is not guaranteed. 

Conclusion 

A novel application of the EMB algorithm to ratio imputation was proposed, 

along with the mechanism and the usefulness of multiple ratio imputation. Monte 

Carlo evidence was presented, where the newly-developed R-function called 

MrImputation (Takahashi, 2017) for multiple ratio imputation was applied to the 

45,000 simulated data. 

It was shown the fit of multiple ratio imputation was generally as good as or 

sometimes better than that of single ratio imputation and regular multiple 

imputation if the assumption holds. Specifically, for the purpose of estimating the 

mean, the performance of deterministic ratio imputation and multiple ratio 

imputation are essentially equally good, with multiple ratio imputation having 

additional information on estimation uncertainty. For the purpose of estimating 

the standard deviation, multiple ratio imputation outperforms stochastic ratio 

imputation. For the purpose of estimating the t-statistics in regression, multiple 

ratio imputation clearly outperforms regular multiple imputation when the 

population model is equation (9). 

These findings are important because it is often recommended to use 

different ways of imputation depending on the type of statistical analyses, 

meaning that there are no one-size-fit-for-all imputation methods (Poston & 

Conde, 2014). Thus, multiple ratio imputation will be a valuable addition for 

treating missing data problems, so that multiple ratio imputation will expand the 

choice of missing data treatments. 

This is only a starting point for multiple ratio imputation. There are three 

multiple imputation algorithms. The version of multiple ratio imputation 

introduced here used the Expectation-Maximization with Bootstrapping algorithm. 

However, multiple ratio imputation is a generic imputation model; thus, future 

research may apply the other two multiple imputation algorithms to expand the 

scope and the applicability of the method. 
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