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Estimation of population variance in two-phase (double) sampling is considered using 

information on multiple auxiliary variables. An unbiased estimator is proposed and its 
properties are studied under two different structures. The superiority of the suggested 
estimator over some contemporary estimators of population variance was established 
through empirical studies from a natural and an artificially generated dataset. 
 
Keywords: Double sampling, study variable, auxiliary variable, chain-type, 
regression, bias, variance, efficiency 

 

Introduction 

Auxiliary information plays a role in the planning, selection, and estimation 

stages of a sample survey. Sometimes information on several auxiliary variables 

may be readily available. For instance, to study the case of public health and 

welfare of a state or a country, the number of beds in different hospitals, doctors, 

and supporting staffs may be known, as well as the amount of funds available for 

medicine. When such information is lacking, it may be possible to obtain a large 

preliminary sample in which the auxiliary variable is measured, which is the 

premise of two-phase sampling, also known as double sampling. It is a powerful 

and cost-effective technique for obtaining reliable estimates in the first phase 

sample for the unknown parameters of the auxiliary variables. 

Variation is an inherent phenomenon of nature. The use of auxiliary 

information in the estimation of population variance was considered by Das and 

Tripathi (1978), and extended by Isaki (1983), R. K. Singh (1983), Srivastava and 
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mailto:rebamaji09@gmail.com
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Jhaji (1980), Upadhyaya and Singh (1983), Tripathi, Singh, and Upadhyaya 

(1988), Prasad and Singh (1990, 1992), S. Singh and Joarder (1998), R. Singh, 

Chauhan, Sawan, and Smarandache (2011), and Tailor and Sharma (2012), among 

others. However, most of these estimators of population variance are biased and 

based on the assumptions that the population mean or variance of the auxiliary 

variables are known, which may become a serious drawback in estimating 

population parameters in sample surveys. 

Motivated with the above arguments, the objective of the present work is to 

propose an efficient and unbiased estimator of the population variance. The 

properties of the proposed estimator have been studied under two different 

structures of double sampling and results are supported with suitable simulation 

studies carried over six real datasets and an artificially generated data set. 

Formulation of the Proposed Estimator 

Consider a finite population  1 2U , , , NU U U . Let y be the character under 

study and xi, i = 1, 2,…, p, be p (non-negative integer constant) auxiliary variables, 

taking values yh and 
hi

x , respectively, for the hth unit. We define 
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are the population means of y and xi, respectively. For large N, 
2 2

y yS   and 

2 2

i ix xS   ∀i = 1, 2,…, p. 

Estimate the population variance 
2

yS  of y when the population variances 
2

ixS  

of xi (i = 1, 2,…, p) are unknown. When the variables y and the xi are closely 

related but no information is available on the population variances 
2

ixS  of xi, we 

seek to estimate 
2

yS  from a sample S, obtained through a two-phase (or double) 
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selection. In this sampling scheme, a first phase sample S' (S' ⊂ U) of size n' is 

drawn by a simple random sampling without replacement (SRSWOR) scheme 

from the entire population U and the auxiliary variables xi are observed to furnish 

the estimates of 
2

ixS  (i = 1, 2,…, p). A second phase sample S of size n (n ≤ n') is 

drawn according to one of the following rules by the method of SRSWOR to 

observe the study variable y: 

 

Case I:  The second phase sample is drawn as a subsample of the first 

phase sample (i.e. S ⊂ S'). 

Case II: The second phase sample is drawn independently of the first phase 

sample. 

Using one auxiliary variable x, Isaki (1983) suggested a ratio estimator for 
2

yS  whose two-phase sampling version may be defined as 
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The two-phase sampling version of the exponential estimator for 
2

yS  

proposed by R. Singh et al. (2011) is 
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Additional auxiliary variables which are highly correlated to the study 

variable y can be used to enhance the precision of the estimator. Motivated by 
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Chand (1975), consider a chain ratio-type estimator using information on two 

auxiliary variables x and z for estimating 
2

yS  as 
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A modified chain ratio-type estimator for 
2

yS  suggested by H. P. Singh, 

Mathur, and Chandra (2009) is 
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and β2(z) is the known population coefficient of kurtosis of the variable z. There 

may be several auxiliary information, which if efficiently utilized can improve the 

precision of the estimates. 

Motivated by the above, consider an unbiased estimator for the population 

variance 
2

yS  of the study variable y using p (non-negative integer constant) 

auxiliary variables xi (i = 1, 2,…, p) as 
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and the Ki (i = 1, 2, 3) are real scalars suitably chosen such that 

 

 
1 2 3 1K pK pK     (6) 

 

Remark 1: The estimator TRK(p) is proposed under the following conditions: 

 

i. The sum (K1 + pK2 + pK3) is one. 

ii. The weights of the linear form are chose such that the approximate bias is 

zero. 

iii. The approximate variance of TRK(p) attains minimum. 

Properties of the Estimator TRK(p) 

Noted from equation (5), the proposed estimator TRK(p) is biased for 
2

yS . 

Following Remark 1, it may be made unbiased for up to the first order of 

approximations. The variance V(.) up to the first order of approximations are 

derived under large sample approximations using the following transformations: 
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Under the above transformations, the estimator TRK(p) takes the following 

form: 
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Hence, the bias and mean square error of the estimator TRK(p) must be derived 

separately for Cases I and II of the two-phase sampling structure. 

Case I 

The second phase sample S is drawn as a subsample of the first phase sample S'. 

In this case, the expected values of the sample statistics are 
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where, for integers s, t ≥ 0, 
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Expanding the right-hand side of equation (7) in terms of the e and using the 

results from equation (8), the expression of bias and mean square error of the 

estimator TRK(p) using large sample approximations is 
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where 

 

 
2 3K K     (11) 

 

Minimization of the mean square error in equation (10) with respect to α 

yields its optimum value as 
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Substituting the optimum value of α in equation (10) we obtain the minimum 

mean square error of TRK(p) as 
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Further, from equations (11) and (12), 
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From equations (6) and (14), note that only two equations in three unknowns 

are not sufficient to find the unique values of the Ki (i = 1, 2, 3). In order to get 

unique values of the Ki, impose a linear restriction as 

 

  RKB T 0p      (15) 

 

Thus from equation (9), 
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Equations (6), (14), and (16) can be written in matrix form as 
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Solving (17), we get the unique values of the Ki as 
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  (18) 

 

From equation (18), substituting the values of (K1)opt, (K2)opt, and (K3)opt in 

equation (5) yields the optimum unbiased estimator for 
2

yS  as 
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whose optimum variance up to the first degree of approximations is given by 
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Case II 

When the second-phase sample S is drawn independently of the first-phase 

sample S'. In this case, the following expected values of the sample statistics are 
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Proceeding as in Case I, the optimum unbiased estimator for 
2

yS  is obtained as 
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with optimum variance up-to first order of approximations as 
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Remark 2: It is to be noted from equation (18) that the unique value of the 

scalars Ki (i = 1, 2, 3) involved in estimator depend on unknown population 

parameters C0, Ci, ρ0i, and ρij (i, j = 1, 2,…, p). Thus, to make the estimator 

practicable, one has to use the guessed or estimated values of these unknown 

population parameters. Guessed values of population parameters can be obtained 

either from past data or experience gathered over time; see Murthy (1967), Reddy 

(1978), and Tracy, Singh, and Singh (1996). If the guessed values are not known 

then it is advisable to use their respective sample estimates as suggested by 

Upadhyaya and Singh (1999), H. P. Singh, Chandra, Joarder, and Singh (2007), 

and Gupta and Shabbir (2008). The minimum variance of the proposed class of 

estimators remains the same up to the first order of approximations, even if 

population parameters are replaced by their respective sample estimates. 



VARIANCE ESTIMATION USING MULTI-AUXILIARY VARIABLES 

168 

Empirical Investigations 

As p, the number of auxiliary variables, is a non-negative integer, therefore it is 

not practically possible to deal with the suggested estimator TRK(p) in its general 

form to carry out the numerical illustrations. Thus, for empirical investigations, 

consider TRK(p) with p = 1 and 2, where the suggested estimator TRK(p) is 

superior to t1 and t2 for TRK(1) (i.e. p = 1) and dominates t3 and t4 for p = 2. The 

performance of TRK(1) is examined under two different cases of double sampling. 

The MSEs of the estimators t1, t2, t3, and t4 and the variance of TRK(p) (for 

p = 1, 2) up to first order of approximations under both the Cases I and II of two-

phase sampling set up are presented below. 
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Case II 
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with θ as described above. 

Numerical Illustration using Known Natural Populations 

Six natural datasets were chosen to elucidate the efficacious performance of the 

proposed estimator TRK(p) (for p = 1, 2) over the estimators stated above. The 

source of the variables y, x, and z and the values of the various parameters are 

given below. 

 

Population I:  Source: Murthy (1967, p. 288). 

y: Output. 

x: Fixed capital. 

z: Number of workers. 
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Population II:  Source: Cochran (1977, p. 182). 

y: Food cost. 

x: Size of the family. 

z: Income. 

 

Population III: Source: Anderson (1958). 

y: Head length of second son. 

x: Head length of first son. 

z: Head breadth of first son. 

 

Population IV: Source: Wang and Chen (2012, p. 39). 

y: Volume. 

x: Diameter. 

z: Height. 

 

Population V:  Source: Dobson (1990, p. 192). 

y: Survival time. 

x: White blood cell count. 

z: White blood cell count at page number 74. 

 

Population VI: Source: Sukhatme and Sukhatme (1970, p. 185). 

 

y: Area (acres) under wheat in 1937. 

x: Area (acres) under wheat in 1936. 

z: Total cultivated area (acres) in 1931. 
 
 
Table 1. Parametric values of different populations 
 

Population N θ C0 C1 C2 ρ01 ρ02 ρ12 

I 80 0.999996 1.1255 1.6065 1.3662 0.7319 0.7940 0.9716 

II 33 0.981200 1.0104 1.1780 1.0691 0.1341 0.4630 0.3905 

III 25 0.953485 1.3512 1.4295 1.2853 0.5057 0.5683 0.4213 

IV 31 0.943500 1.2634 1.2018 1.1962 0.7448 0.0547 0.3256 

V 17 0.152800 0.8351 1.4049 1.0818 -0.0144 0.4468 0.5790 

VI 34 1.000000 1.5959 1.5105 1.3200 0.6251 0.8007 0.5342 
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The values of various parameters obtained from above populations are 

presented in Table 1. 

To obtain a tangible idea about the performance of the proposed estimator 

TRK(p) (for p = 1, 2), the percent relative efficiencies (PREs) of TRK(p) (for p = 1, 

2) and other estimators were computed with respect to the sample variance  2

ys n , 

the natural estimator for 
2

yS , for both the cases of two-phase sampling set up. The 

results are demonstrated in Tables 2 and 3. 

The PRE of an estimator TRK(p) with respect to sample variance estimator 
2

ys  is defined as 

 

 
 
 

2

RK opt

V
PRE 100

V T

ys

p
 

  

  (24) 

Numerical Example using Artificially Generated Population 

Three sets of independent random numbers were generated of size N (N = 100), 

kx , ky , and 
kz  (k = 1, 2, 3,…, N) from a standard normal distribution via R. 

Motivated by the artificial data set generation techniques adopted by S. Singh and 

Deo (2003) and S. Singh, Joarder, and Tracy (2001), the following transformed 

variables of U were generated with the values of 
2 100y  , μy = 40, 2 225x  , 

μx = 50, 2 25z  , and μz = 30 as 

 

 
 

 

2

2

 1 , ,

and 1

k y y xy k xy k k x y k

k z z xz k xz k

y x y x x

z x z

     

   

        
  

     
  

  

 

PREs of different estimators for fixed and varying values of ρxy and ρxz are 

presented in Tables 3 and 4, respectively. 
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Table 2. PREs of different estimators 

 

Population Percent Relative Efficiency 

Pop. I Case I  Case II 

N n' n t1 t2 TRK(1) t3 t4 TRK(2)  t1 t2 TRK(1) t3 t4 TRK(2) 

80 65 45 103.796 160.387 160.447 120.674 120.675 170.217  * 162.396 170.389 100.937 100.937 182.593 

  

40 104.167 170.012 170.085 116.933 116.933 182.212  * 171.764 177.066 101.913 101.913 191.046 

  

30 104.691 185.605 185.703 112.068 112.068 202.155  * 186.854 188.867 103.313 103.313 206.274 

 
50 35 102.853 139.961 139.996 131.523 131.523 145.523  * 142.380 157.539 * * 166.643 

  

25 103.931 163.758 163.823 119.287 119.287 174.391  * 165.682 172.679 101.290 101.290 185.479 

  

20 104.341 174.910 174.991 115.265 115.265 188.407  * 176.515 180.635 102.376 102.376 195.613 

         

 

      Pop. II Case I  Case II 

N n' n t1 t2 TRK(1) t3 t4 TRK(2)  t1 t2 TRK(1) t3 t4 TRK(2) 

33 25 12 * * 101.492 * * 111.007  * * 101.545 * * 111.432 

  

10 * * 101.574 * * 111.665  * * 101.605 * * 111.923 

  

8 * * 101.642 * * 112.224  * * 101.66 * * 112.369 

 
15 8 * * 101.121 * * 108.079  * * 101.317 * * 109.611 

  

6 * * 101.337 * * 109.768  * * 101.441 * * 110.595 

  

4 * * 101.525 * * 111.267  * * 101.568 * * 111.622 

         

 

      Pop. III Case I  Case II 

N n' n t1 t2 TRK(1) t3 t4 TRK(2)  t1 t2 TRK(1) t3 t4 TRK(2) 

25 20 12 * 124.425 124.489 100.282 101.028 144.897  * 123.551 126.228 * * 148.651 

  

10 * 127.01 127.083 * * 150.529  * 126.351 128.074 * * 152.734 

  

7 * 129.934 130.017 * * 157.146  * 129.531 130.39 * * 158.008 

 

15 8 * 121.231 121.286 102.2 103.257 138.205  * 120.107 124.172 * * 144.22 

  

6 * 125.23 125.297 * 100.499 146.629  * 124.422 126.78 * * 149.87 

  

4 * 128.665 128.743 * * 154.24  * 128.149 129.352 * * 155.623 
 

Note: “*” indicates no gain, i.e., PRE is less than 100 
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Table 2, continued. 

 

Population Percent Relative Efficiency 

Pop. IV Case I  Case II 

N n' n t1 t2 TRK(1) t3 t4 TRK(2)  t1 t2 TRK(1) t3 t4 TRK(2) 

31 17 12 132.59 130.114 136.282 * * 113.144  104.343 157.393 157.471 * * 118.941 

  

10 145.21 141.475 150.88 100.041 103.811 117.253  118.68 164.905 166.253 103.718 106.548 121.049 

  

8 157.601 152.472 165.527 116.059 119.744 120.88  133.876 171.675 175.826 119.654 122.393 123.179 

 
12 8 129.891 127.662 133.2 * * 112.203  110.422 160.73 161.166 * * 119.847 

  

6 146.535 142.658 152.432 101.654 105.424 117.659  120.25 165.656 167.229 105.331 108.158 121.274 

  

5 155.339 150.476 162.83 112.972 116.688 120.245  131.013 170.48 174.001 116.597 119.363 122.786 

         

 

      Pop. V Case I  Case II 

N n' n t1 t2 TRK(1) t3 t4 TRK(2)  t1 t2 TRK(1) t3 t4 TRK(2) 

17 12 8 * * 100.013 * * 102.832  * * 104.438 * * 100.098 

  

7 * * 100.015 * * 103.197  * * 104.721 * * 100.104 

  

6 * * 100.016 * * 103.498  * * 104.981 * * 100.11 

 
10 7 * * 100.011 * * 102.281  * * 104.067 * * 100.09 

  

6 * * 100.013 * * 102.779  * * 104.399 * * 100.097 

  

5 * * 100.015 * * 103.197  * * 104.721 * * 100.104 

         

 

      Pop. VI Case I  Case II 

N n' n t1 t2 TRK(1) t3 t4 TRK(2)  t1 t2 TRK(1) t3 t4 TRK(2) 

34 25 12 130.044 141.943 145.778 155.47 155.47 209.612  103.4 143.687 143.736 108.245 108.245 202.714 

  

10 132.338 145.463 149.733 151.613 151.613 223.762  112.559 147.867 148.505 116.48 116.48 219.25 

  

8 134.343 148.581 153.251 148.495 148.495 237.318  120.683 151.21 152.888 123.628 123.628 235.875 

 

15 7 123.927 132.792 135.581 167.614 167.614 177.625  * 138.968 139.116 * * 188.047 

  

6 126.494 136.592 139.801 162.149 162.149 190.144  104.639 144.281 144.371 109.37 109.37 204.829 

    4 131.394 144.008 148.096 153.161 153.161 217.773  115.766 149.225 150.218 119.319 119.319 225.573 
 

Note: “*” indicates no gain, i.e., PRE is less than 100 
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Table 3. PREs of different estimators under artificially generated populations for ρxy = 0.7 

and ρxz = 0.5 
 

Artificial 
Population  Estimators 

Case I 

N n' n  
 2

y
s n  

t1 t2 TRK(1) t3 t4 TRK(2) 

100 80 55  100 * 108.8652 109.8181 * * 108.0435 

  
45  100 * 110.2873 111.4091 * * 109.3225 

  
40  100 * 110.8303 112.0177 * * 109.8100 

 
70 50  100 * 107.1820 107.9408 * * 106.5256 

  
40  100 * 109.1417 110.1271 * * 108.2923 

  
30  100 * 110.5859 111.7437 * * 109.5906 

  
Case II 

N n' n  
 2

y
s n  

t1 t2 TRK(1) t3 t4 TRK(2) 

100 80 55  100 * 105.3662 110.9395 * * 108.9443 

  
45  100 * 107.8582 111.9666 * * 109.7676 

  
40  100 * 108.8234 112.4033 * * 110.1168 

 
70 50  100 * 102.4825 109.9041 * * 108.1116 

  
40  100 * 105.8466 111.1271 * * 109.0948 

    30  100 * 108.3879 112.2033 * * 109.9569 
 

Note: “*” indicates no gain, i.e., PRE is less than 100 

 
 
Table 4. PREs of Different estimators for varying values of ρxy and ρxz 

 

  
Case I Estimators 

ρxy ρxz t1 t2 TRK(1) t3 t4 TRK(2) 

0.8 0.8 101.983 116.671 116.696 * 101.536 117.440 

 
0.6 126.096 121.277 127.007 109.818 115.747 118.407 

 
0.4 115.223 117.736 119.551 * * 109.180 

 
0.2 * 119.547 119.551 * * 111.733 

        
0.5 0.8 * * 100.349 * * 100.390 

 
0.6 * 102.123 103.171 * * 101.590 

 
0.4 * * 100.159 * * 100.227 

 
0.2 * * 102.017 * * 100.300 

        
0.2 0.8 * * 100.188 * * 100.573 

 
0.6 * * 100.033 * * 100.025 

 
0.4 * * 100.035 * * 100.351 

  0.2 * * 100.289 * * 101.920 
 

Note: “*” indicates no gain, i.e., PRE is less than 100 
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Table 4, continued. 

 

  
Case II Estimators 

ρxy ρxz t1 t2 TRK(1) t3 t4 TRK(2) 

0.8 0.8 * 119.103 132.247 * * 133.885 

 
0.6 106.535 156.666 156.841 * 101.806 136.045 

 
0.4 * 136.901 138.644 * * 116.728 

 
0.2 * 118.359 138.644 * * 121.799 

        
0.5 0.8 * * 100.596 * * 100.666 

 
0.6 * * 105.528 * * 102.740 

 
0.4 * * 100.272 * * 100.387 

 
0.2 * * 103.488 * * 100.511 

        
0.2 0.8 * * 100.321 * * 100.981 

 
0.6 * * 100.057 * * 100.044 

 
0.4 * * 100.059 * * 100.600 

  0.2 * * 100.493 * * 103.318 
 

Note: “*” indicates no gain, i.e., PRE is less than 100 

Conclusion 

For natural population datasets, Table 2 exhibits that, under different structures of 

two-phase sampling set up, our suggested estimator TRK(p) (for p = 1 and 2) is 

superior to the existing one under its respective optimality condition and also 

preferable in general situations. For fixed n' (first-phase sample size), the PRE of 

the proposed estimator is increasing with decreasing values of n (second-phase 

sample size), i.e. the smaller the second phase sample, the more efficiency in 

TRK(p) will be achieved, which reduces the cost of the survey. 

For the artificially generated data set, the results compiled in Table 3 

indicate the proposed methodology yielded impressive gains in efficiency over the 

existing methods, and same behavior in efficiency of TRK(p) was reflected, 

indicating the proposed methodology is cost-effective. 

It can also be observed from Table 4 that if several populations are 

generated artificially for various combinations of values of ρxy and ρxz, our 

proposed methodology is always preferable over the existing one. The proposition 

of the estimator in the present study is justified as it unifies several desirable 

results including unbiased and efficient estimation strategy, and may be 

recommended for practical applications. 
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