
Journal of Modern Applied Statistical
Methods

Volume 16 | Issue 1 Article 33

5-1-2017

JMASM43: TEEReg: Trimmed Elemental
Estimation (R)
Wei Jiang
University of Kansas Medical Center, willjiang29@gmail.com

Matthew S. Mayo
University of Kansas Medical Center

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

This Algorithms and Code is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been
accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState.

Recommended Citation
Jiang, W. & Mayo, M. S. (2017). JMASM43: TEEReg: Trimmed Elemental Estimation (R). Journal of Modern Applied Statistical
Methods, 16(1), 613-629. doi: 10.22237/jmasm/1493598780

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol16?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol16/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol16/iss1/33?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods 

May 2017, Vol. 16, No. 1, 613-629. 
doi: 10.22237/jmasm/1493598780 

Copyright © 2017 JMASM, Inc. 

ISSN 1538 − 9472 

 

 

 
Dr. Jiang is a Ph.D candidate. Email them at: willjiang29@gmail.com. Dr. Mayo is a 
professor in the Department of Biostatistics. 

 

 

613 

JMASM43: TEEReg: Trimmed Elemental 
Estimation (R) 

Wei Jiang 
University of Kansas Medical Center 

Kansas City, KS 

Matthew S. Mayo 
University of Kansas Medical Center 

Kansas City, KS 

 

 
Trimmed elemental regression is robust to outliers and violations of model assumptions. 
Its properties and statistical inference were evaluated using bias-corrected and accelerated 
bootstrap confidence intervals. An R package named TEEReg is developed to compute 
the trimmed elemental estimates and the corresponding bootstrap confidence intervals. 

Two examples are provided to demonstrate its usage. 
 
Keywords: Trimmed elemental estimator, robust linear regression, R, bias-corrected 
and accelerated bootstrap confidence interval 

 

Introduction 

Linear regression is useful in discovering relationships between observations and 

covariates. Assume that Y is an n-dimensional vector of dependent variables, β is 

a p-dimensional vector of unknown parameters, ϵ is an n-dimensional vector of 

random errors with E(ϵ) = 0 and Var(ϵ) = σ2I, and X is a design matrix with n 

rows and p columns, the multiple linear regression model can be expressed as 

 

  Y Xβ   (1) 

 

For the ordinary least square (OLS) approach, the estimator 

 

  
1

OLS
ˆ t t



β X X X Y   

 

minimizes the sum of squares of the residuals 
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    ˆ ˆˆ ˆ
t

t   Y Xβ Y Xβ   

 

Although the OLS approach has advantages of easy calculation and well-

developed statistical inference, it is sensitive to outliers and violations of model 

assumptions. 

The weighted least square (WLS) and iterative reweighted least square 

(IRLS) are commonly employed alternatives to the OLS approach to deal with 

unequal variances of the error terms and influential outlying observations; see 

Kutner, Nachtsheim, Neter, and Li (2005) for a complete review. Other examples 

of IRLS can be found in Schlossmacher (1973), Sposito, Kennedy, and Gentle 

(1977), Krasker and Welsch (1983), Carroll and Ruppert (1988), and Street, 

Carroll, and Ruppert (1988). There are some other available alternatives to OLS. 

In 1760, Boscovich first introduced the absolute values estimator that was put into 

a more structured form later by Laplace (Dielman, 2005). The concept of 

regression quantiles was generalized by Koenker and Bassett (1978); see also 

Koenker and D’Orey (1987), Gutenbrunner and Jureckova (1992), Koenker 

(1994), and Koenker (2005). The least median of squares regression was 

developed by Rousseeuw (1984), and Hawkins (1993) introduced the globally 

best estimator and the best elemental estimator. Most of these alternatives were 

developed based on modifying fitting criteria. 

The trimmed elemental (TE) estimator that is robust to outliers and 

violations of model assumptions was developed by Mayo and Gray (1997). It 

belongs to a class of regression estimators called leverage-residual weighted 

elemental (LRWE) estimators (Mayo & Gray, 1997). Hall and Mayo (2008) 

explored the inference properties of TE approach by investigating the coverage 

probability of the associated bias-corrected and accelerated (BCa) bootstrap 

confidence interval (CI). Compared with the traditional bootstrap methods, the 

BCa approach proposed by Efron (1987) corrected the bias and skewness of the 

sampling distribution through adjusting the selected percentiles used for 

constructing CIs. 

The purpose of this article is to provide an R-package called TEEReg to 

compute the TE estimates and the corresponding BCa bootstrap CIs. This package 

contains two functions, TEE() and TEE.BCa(), and can be obtained at CRAN at 

http://cran.r-project.org/web/packages/TEEReg/. 

http://cran.r-project.org/web/packages/TEEReg/
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TE Estimator and BCa Bootstrap CI 

The TE estimator developed by Mayo and Gray (1997) is robust to outlying cases 

and violations of model assumptions. It is a solution based on the elemental subset 

and the elemental regressions. 

Elemental Subsets and Elemental Regressions 

In most situations, the sample size n is much larger than the number of unknown 

parameters p. Instead of using all n observations, only p are required to obtain 

estimates of the p-dimensional vector of unknown parameters defined in model 

(1). In this case, there are  n
p

 distinct subvectors of the data and thus  n
p

 

possible solutions for the vector β in which each solution provides an exact fit to 

the corresponding p observations. Let h = {i1, i2,…, ip} be a subset containing p 

distinct values from the n-dimensional set of indices {1, 2,…, n}, Xh denote a p-

dimensional square matrix constructed by the rows of X with corresponding 

indices, and Yh denote a p × 1 subvector of Y of which elements are those in Y 

indexed by the subset h. Then, the subset h is an elemental subset of the data and 

the solution to ˆ
h h hX β Y , a system of p equations with p unknowns, is called an 

elemental regression and is given by 

 

 OLS

ˆ
ˆ ˆ ˆ

t t

h h h h hh

h h ht th h

h hh

w  


 


X X β X X
β β β

X X X X
  (2) 

 

where |A| denotes the determinant of matrix A. This indicates that the least 

squares estimate is a weighted average over all possible elemental estimates ˆ
hβ  

with weights 

 

 

t

h h

h t
w 

X X

X X
  

 

Moreover, Mayo and Gray (1997) demonstrated that the WLS estimator can be 

formed as a function of elemental regressions. Let vi denote the weight for 

observation i, V be a diagonal matrix containing the weights vi, and Vh be a p × p 
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submatrix of V corresponding to the elemental subset h. After some calculations, 

the WLS estimator can be equivalently written as 

 

 *

WLS

ˆ
ˆ ˆ ˆ

t t

h h h h h h hh

h h ht th h

h h hh

w  


 


X V X β X V X
β β β

X V X X VX
  (3) 

 

In practice, the reciprocal of the variances of error terms is usually employed for 

weight vi to deal with unequal error variances (Kutner et al., 2005), so a lesser 

weight is assigned to an observation with a larger variance than another 

observation with a smaller variance. Many weight functions were suggested for 

dampening the influence of outlying observations, including the Huber weight 

function given below (Kutner et al., 2005): 

 

 

1 1.345

1.345
1.345

i

i

i

i

u

v
u

u

 


 





  

 

where ui denotes the scaled residual for which a definition can be found in Kutner 

et al. (2005). It does not reduce the weight of a case from 1 until the absolute 

scaled residual is greater than 1.345. It is usually suggested to re-estimate the 

scaled residual using the process of IRLS to obtain revised weights when the 

initial estimated coefficients are substantially different from the ones obtained by 

OLS (Kutner et al., 2005). 

TE Estimator 

The TE estimator is a special case of a class of estimators called leverage-residual 

weighted elemental (LRWE) estimators developed by Mayo and Gray (1997). 

The LRWE class consists of all estimators that can be expressed in the form 

 

  
   

   

ˆ,
ˆ ,

,

hh

h

w h h

w h h

 
 

 

  
  




β
β   

 

where the factor λ(h) represents the leverage information related to the elemental 

subsets h and the factor ρ(h) represents the information of degree of fit related to 

elemental subsets. The OLS estimator defined in formula (2) belongs to the class 
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of LRWE estimators with   t

h hh  X X , ρ(h) = 1, and w[λ(h), ρ(h)] = λ(h)ρ(h). 

This reveals that the OLS approach only considers the information of leverage but 

does not take the information of degree of fit for each elemental subset h into 

account; the resulting estimates can be easily affected by the influential points. 

Moreover, it can be seen from formula (3) that the WLS estimator is a member of 

the LRWE class with   t

h hh  X X , ρ(h) = |Vh|, and w[λ(h), ρ(h)] = λ(h)ρ(h). 

This is because Xh and Vh are square matrices and t t

h h h h h hX V X X X V . This 

explains why the WLS approach is robust to violations of model assumptions and 

influential observations because it considers the information of both leverage and 

degree of fit. 

Mayo and Gray (1997) developed a robust TE estimator based on the 

LRWE class. Unlike the OLS method where the same weight of degree of fit is 

assigned to all elemental regressions regardless of whether they are influenced by 

outlying cases, the TE method removes or trims out those elemental regressions 

that poorly fit the data due to extreme observations from calculations. With λ(h) 

and ω[λ(h), ρ(h)] remaining the same as those in formula (2), the TE estimator 

alters ρ(h) to have the form 

 

      
1

1, if 1

0, otherwise

n

hi pi

n
rank e

h p


 

  
   

   




  

 

where αp represents the trimming proportion that ranges from 0 to 1 and 
1

n

hii
e

  

is the sum of absolute residuals based on the elemental estimates ˆ
hβ . By ruling 

out those elemental regressions adversely affected by extreme cases, the TE 

approach produces estimators robust to outliers and violations of model 

assumptions. Notice that the degree of robustness of the presented approach 

depends on the values selected for trimming proportion αp. A bigger αp means a 

greater robustness because it removes more elemental regressions with large sums 

of absolute residuals than a lower αp does. Depending on the proportion of 

regressions one would like to remove from consideration, αp can be adjusted 

accordingly. Taking this into account, the TE estimator is denoted as TEE(αp). 

The TE approach is different from eliminating outliers from data. Omission 

of outlying observations takes away multiple elemental subsets including some 

good ones that could potentially exist with those observations. For example, if a 
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dataset contains 10 observations and 2 unknown parameters are of interest, there 

are  10
2

45  elemental regressions total. If one outlier is removed, then the total 

number of elemental regressions reduces to  9
2

36 . As you may expect, the 

number of elemental regressions eliminated from analysis increases dramatically 

as n or p becomes bigger. Deleting observations from data is not the best way to 

handle outliers unless the outlying cases are indeed resulted from mistakes or 

other extraneous causes. 

BCa Bootstrap CI 

The BCa approach, suggested by Efron (1987), seeks to correct the bias and 

skewness of the sampling distribution through adjusting the selected percentiles 

used for constructing CIs. The adjusted percentiles are 

 

 
   

2 1 2

1 2

2 1 2

ˆ ˆ
ˆ ˆand

ˆ ˆˆ ˆ1 1

z z z z
z z

z z z z

 

 

   
 





    
      
      
   

  

 

where ϕ(.) is the standard normal cumulative function and zα represents the 

100α% quantile of the standard normal distribution. The skewness and bias of the 

sampling distribution are respectively adjusted by ẑ  and ̂ , expressions of which 

can be found in Efron (1987) and DiCiccio and Efron (1996). In general, the 

algorithm for creating the 100(1 – α)% BCa bootstrap CIs in terms of the TE 

estimation is given as follows: 

 

 For m = 1,…, M, do: 

(a) Sample data with replacement from the dataset. 

(b) Compute TE estimates TEEβ̂  based on the mth bootstrap sample. 

 Construct the 100(1 – α)% BCa bootstrap CIs using the adjusted 

percentiles given above based on the generated bootstrap sample of TEEβ̂  

 

Hall and Mayo (2008) conducted simulation studies under various scenarios to 

compare the coverage probabilities of BCa bootstrap CIs based on the TE 

estimation to the ones based on other approaches. It was found that the BCa 

bootstrap CIs in terms of TE estimators are almost indistinguishable from those 

based on OLS when error terms follow the Normal, Contaminated Normal, or 
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Student’s t distribution. For the Cauchy and Laplace error distributions, however, 

the TE estimation is preferred (See Hall and Mayo (2008) for more details). This 

indicates the OLS estimator is robust to small departures from normality; however, 

major departures from normality should be of concern. 

Computation Efficiency 

Even with powerful computers available today the computation time for deriving 

TE estimates increases tremendously as the number of regression parameters or 

sample size increases. For example, if there are 10 observations and the model 

only has two parameters, then  10
2

45  elemental subsets need to be fit; however, 

if the sample size and number of parameters increase to 20 and 4, respectively, we 

need to fit  20
4

4845  elemental regressions, which requires over 100 times more 

computations. In order to reduce the computation intensity, Hall and Mayo (2008) 

examined the appropriateness of the approach of random subsample, suggested by 

Hawkins (1993) for the best elemental estimator, for reducing the number of 

computations required for the TE estimator through simulation studies. They 

claimed that computing the TE estimates based on as low as 50% of the elemental 

subsets may be sufficient to produce reliable estimates as long as the error terms 

follow Normal, Cauchy, Laplace, 10% Contaminated Normal, or Student’s t 

distribution. 

TEEReg Package 

The proposed R package TEEReg provides tools for computing the TE estimates 

and the corresponding BCa bootstrap CIs. In this section, the usage of the two 

functions TEE() and TEE.BCa() enclosed in TEEReg are explained. 

The function TEE() is used to compute the TE estimates. Its usage with 

complete arguments is given as: 

 

TEE(formula, data, offset=NULL, p.trimmed=NULL, p.subsample=1, 

method="tee") 

 

Similar to other R functions developed for linear regressions, such as lm() 

and glm(), the first argument formula gives a symbolic description of the model to 

be fitted (e.g. formula = y ∼ x). The second argument specifies the dataset used 



TRIMMED ELEMENTAL ESTIMATION IN R 

620 

for performing regression analyses. Be aware that the data must be formatted as a 

data frame prior to using the TEE() function. The offset can be used to specify 

regressors with coefficients of 1. This argument can be either NULL or a numeric 

vector with length equal to the number of observations. The argument p.trimmed 

indicates the proportion of elemental subsets removed from the computation of 

estimates. It should be either NULL or a numeric value between 0 and 1. 

However, a value must be provided to p.trimmed when method = "tee" is 

specified. The argument p.subsample is for specifying the proportion of random 

selection of elemental subsets. One may improve the computation efficiency by 

providing a numeric value between 0 and 1 to this argument. The default value of 

p.subsample is 1 under which the TE estimates are calculated based on all 

elemental subsets. When using the TEE() function, the TE regression is carried 

out by default (i.e., the default value to argument method is "tee"). Another 

supported option for this argument is "ols" under which the OLS approach is 

employed for fitting linear regressions. When the value ols is given to the 

argument of method, the TEE() function computes the estimates based on the full 

data no matter what values are assigned to p.trimmed and p.subsample. 

The second function TEE.BCa() is used to construct the 100(1 – α)% BCa 

bootstrap CIs based on the TE estimation. It is similar in structure to TEE() and 

has the form with complete arguments as follows: 

 

TEE.BCa(formula, data, offset=NULL, p.trimmed=NULL, p.subsample=1, 

method="tee", est.TEE, conf.level, n.boot) 

 

The specifications of the first six arguments in TEE.BCa() are the same as 

explained above for TEE(). For the remaining three, est.TEE stands for TE 

regression estimates, and conf.level and n.boot represent the confidence level and 

the number of bootstrap samples, respectively. Detailed descriptions of the 

arguments enclosed in these two functions can also be viewed using the 

command ??TEE. 

Sometimes, the elemental regression ˆ
hβ  is not estimable because Xh is 

singular and the inverse matrix 1

h


X  does not exist. This could happen, for 

example, when several subjects have the same covariates values and so the matrix 

Xh is not full-rank. The TEEReg package handles such situations using the 

Moore-Penrose generalized inverse, which is defined and unique for all matrices 

whose entries are real or complex numbers. It is computed using the singular 
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value decomposition. For a review of the Moore-Penrose generalized inverse, see 

Campbell and Meyer (2009). 

Examples 

To evaluate the robustness of the presented TE approach, the first example is 

based on the telephone data (Rousseeuw & Leroy, 1987) with several outlying 

observations and the second example is simulated data based on a Cauchy 

distribution. For both examples, the 95% BCa bootstrap CIs are created based on 

1000 bootstrap samples. 

Example 1: Data with Outliers 

In this example, the telephone data (Rousseeuw & Leroy, 1987) are used to 

demonstrate the usage of the TEEReg package. In the data, the number of 

telephone calls (tens of millions) made in Belgium was recorded from 1959 to 

1973. It contains several extreme observations resulted from mistakes in 

recording units over the years 1964-1969 (see Figure 1), which is useful in order 

to examine the robustness of the TE method to outliers. The response variable of 

the telephone data is the number of telephone calls and the independent variable is 

the year. For illustration purposes, the TE estimates and the corresponding 95% 

BCa bootstrap CIs are computed based on both 30% and 42% trimming 

proportions. The results in terms of all elemental subsets and those based on 70% 

random subsample are also compared in this example. 

The TEEReg package can be loaded into R by the command 

library(TEEReg). The telephone data are stored inside the package and can be 

accessed by the command data(telephone). As explained above, the TE estimates 

and the corresponding 95% BCa bootstrap CIs in terms of the subsample 

proportion of 100% and trimming proportion of 42% can be computed by typing 

the following: 

 

R> fitTEE1 <- TEE(formula=Y~X, data=telephone, p.trimmed=0.42, 

p.subsample=1, method="tee") 

R> CITEE1 <- TEE.BCa(formula=Y~X, data=telephone, p.trimmed=0.42, 

p.subsample=1, + method="tee", est.TEE=fitTEE1$coefficients, 

conf.level=0.05, n.boot=1000) 

 

Their outputs are displayed as below: 
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R> fitTEE1 

$call 

TEE(formula = Y ~ X, data = telephone, p.trimmed = 0.42, p.subsample = 1, 

method = "tee") 

$formula 

Y ~ X 

$coefficients 

(Intercept)        X 

-100.0543   1.991974 

$residuals 

        1          2          3          4         5          6          7 

 4.855597   3.163623   1.171649  0.3796743   -0.9123  -2.204274  -3.396248 

        8          9         10         11        12         13         14 

-4.688223  -4.880197  -5.472171  -5.964145  -6.55612  -7.348094  -4.240068 

       15         16         17         18        19         20         21 

 91.56796   94.57598    110.584    125.592  146.6001   174.6081   3.616112 

       22         23         24 

-17.37586  -16.36784  -16.35981 

$fitted.values 

        1         2          3         4         5         6         7 

-0.455597  1.536377   3.528351  5.520326    7.5123  9.504274  11.49625 

        8         9         10        11        12        13        14 

 13.48822   15.4802   17.47217  19.46415  21.45612  23.44809  25.44007 

       15        16         17        18        19        20        21 

 27.43204  29.42402   31.41599  33.40797  35.39994  37.39191  39.38389 

       22        23        24 

 41.37586  43.36784  45.35981 

 

R> CITEE1 

$call 

TEE.BCa(formula = Y ~ X, data = telephone, p.trimmed = 0.42, p.subsample = 1, 

method = "tee", est.TEE = fitTEE1$coefficients, conf.level = 0.05, n.boot = 

1000) 

$ci 

             estimates(TEE)  Lower limit  Upper limit 

(Intercept)       -100.0543  -452.481442   -49.220453 

X                  1.991974     1.045627     8.588198 
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Note the output yielded by the function TEE() contains the model formula, 

estimates of coefficients, residuals, and fitted values, and the output of the 

TEE.BCa() function consists of the model formula and BCa bootstrap CIs for 

regression parameters. In the case that one only wants to extract, for example, the 

coefficient estimates from the output of TEE() function, the command 

fit1$coefficients can be used. The TE estimates and the corresponding 95% BCa 

bootstrap CIs based on other scenarios planned to be investigated in this example 

can be computed following a similar manner by specifying p.trimmed = 0.30 and 

p.subsample = 1 or 0.7. The key results are summarized in Table 1. For 

comparison purposes, the results based on the OLS approach and the IRLS using 

Huber weight function are also presented in this table. 

The estimated regression function using the TE approach with p.subsample 

= 1 and 42% trimming suggests that the mean number of telephone calls are 

expected to increase by 1.992 (in tens of millions) when the year increases by 1. 

The corresponding 95% BCa bootstrap CI for the slope is (1.046, 8.588) which 

does not include 0. Based on this scenario, it can be concluded that year is 

significantly linearly related to the number of telephone calls. As expected, the 

outlying observations are more influential in the fitted TE regression function 

with p.subsample = 1 and 30% trimming proportion. The estimated slope is 

dragged up by outliers to 3.940 (BCa CI: 1.114, 8.424) due to the fact that more 

elemental regressions with large sums of absolute residuals are used in 

calculations. The same trend can be observed in the case of p.subsample = 0.7. 

Moreover, it can be seen in Table 1 that the TE estimates based on 70% 

random subsample of elemental subsets are similar to those based on all elemental 

subsets for both cases of TEE(30%) and TEE(42%). The 95% BCa bootstrap CIs 

in terms of 70% subsample are wider than the ones based on all elemental subsets, 

but both lead to the same conclusion of statistical inference. It seems that using 

the 70% subsampling provides fairly accurate estimates and works almost equally 

well as utilizing the full data for the given telephone data. 

 
Table 1. Estimates of coefficients and 95% BCa bootstrap Cis based on various 

approaches using telephone data 
 

Methods Intercept est. 95% CI (intercept) Slope est. 95% CI (slope) 

TEE(30%): p.subsample = 1 -204.034 (-452.688, -52.983) 3.940 (1.114, 8.424) 

TEE(30%): p.subsample = 0.7 -217.143 (-516.187, -54.649) 4.193 (1.145, 9.520) 

TEE(42%): p.subsample = 1 -100.054 (-452.481, -49.220) 1.992 (1.046, 8.588) 

TEE(42%): p.subsample = 0.7 -112.678 (-540.452, -50.289) 2.235 (1.062, 10.069) 

OLS -260.059 (-523.136, -118.906) 5.041 (2.475, 9.549) 

IRLS -99.904 (-590.294, -52.987) 1.987 (1.113, 10.873) 
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Figure 1. Fitted regression lines using different regression approaches for telephone data 

 

 

Figure 1 displays the fitted regression lines for a variety of regression 

approaches. The overlaid TE regression lines are obtained in terms of all 

elemental subsets (i.e., p.subsample = 1). In addition, a regression line fitted using 

the OLS approach based on the telephone data with outliers removed is also 

included in this figure for comparison purposes. It is obvious that the OLS 

approach performs the worst with its estimates dramatically affected by outliers. 

The regression lines based on IRLS and TEE(42%) are overlapped with each 

other because they lead to almost identical estimates of unknown parameters (see 

Table 1). This is not surprising because the IRLS approach is also robust to 

outlying cases. The 95% BCa bootstrap CIs for IRLS are wider than the ones for 

TEE(42%) (see Table 1). As explained in the previous paragraph, due to the fact 

that relatively more elemental regressions having large sums of absolute residuals 

are employed in calculations, the TEE(30%) is affected more by the outliers than 

the TEE(42%) and IRLS. Both fitted regression lines of TEE(30%) and 

TEE(42%) are above the one based on the OLS approach with outliers removed. 

The reason is that deleting outlying observations takes away all of their 

corresponding elemental subsets. 
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Example 2: Cauchy Data 

In this example, a simulated dataset consisting of 50 observations and one 

independent variable is used to clarify the usage of TEEReg package and to 

illustrate the robustness to non-normal data of the presented TE estimator. The 

values of the independent variable X are generated from a Poisson distribution 

with mean equal to 10 and the values of the dependent variable Y are computed as 

Y = 0.5 + 1X + ϵ, where the error term ϵ is assumed to follow a Cauchy 

distribution with location 0 and scale 1. We call this artificial dataset the data.sim. 

In this example, the TE estimates and the corresponding 95% BCa bootstrap CIs 

are computed based on all elemental subsets and both 50% and 75% trimming 

proportions. As demonstrated in Hall and Mayo (2008), these two trimming 

proportions provide high coverage probabilities (at least 95%) to the 95% BCa 

bootstrap CIs when the error term follows Cauchy distribution. 

The TE estimates and the corresponding 95% BCa bootstrap CIs in terms of 

the subsample proportion of 100% and trimming proportion of 50% can be 

computed by typing the following: 

 

R> fitTEE3 <- TEE(formula=Y~X, data=data.sim, p.trimmed=0.5, 

p.subsample=1,method = "tee") 

R> CITEE3 <- TEE.BCa(formula=Y~X, data=data.sim, p.trimmed=0.5, 

p.subsample=1, + method="tee", est.TEE=fitTEE3$coefficients, 

conf.level=0.05, n.boot=1000) 

 

The TE estimates and their BCa CIs based on 75% trimming can be computed 

similarly by specifying p.trimmed = 0.75. The key outputs of both scenarios are 

summarized in Table 2. For comparison purposes, the results based on the OLS 

method and the IRLS using Huber weight function are also given in this table. 
 
 
Table 2. Estimates of coefficients and 95% BCa bootstrap Cis based on various 
regression approaches using simulated data 
 

Methods Intercept est. 95% CI (intercept) Slope est. 95% CI (slope) 

TEE(50%) 1.341 (-0.542 , 6.602) 0.899 (0.305, 1.120) 

TEE(75%) 0.919 (-1.026, 3.734) 0.967 (0.634, 1.170) 

OLS 6.639 (1.858, 12.516) 0.471 (-0.096, 0.934) 

IRLS 2.100 (0.0728, 7.281) 0.832 (0.240, 1.055) 
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Figure 2. Fitted regression lines using different regression approaches for simulated data 

 

 

As expected, the OLS approach performs the worst in terms of handling the 

simulated Cauchy data. The corresponding 95% BCa bootstrap CIs for intercept 

and slope are, respectively, (1.858, 12.516) and (-0.096, 0.934), none of which 

captures the true values of 0.5 and 1. The OLS estimates of both intercept and 

slope are significantly different from the true values as well. In contrast, it appears 

that the TEE(75%) performs the best for the given dataset. The resulting TE 

estimates for slope and intercept are, respectively, 0.919 and 0.967, both of which 

are very close to the true intercept and slope used for generating data. The 

estimates produced by TEE(50%) seems to be slightly worse than ones based on 

TEE(75%), but it is closer to the true values than the ones resulting from IRLS. 

The 95% BCa bootstrap CIs of both TEE(50%) and IRLS contain the true 

intercept and slope of 0.5 and 1. It appears that the TE approach is robust to the 

simulated Cauchy data that severely depart from normality. A scatterplot of the 

simulated data along with fitted regression lines using different approaches is 

shown in Figure 2. 
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Summary 

The usage of a new R package TEEReg was explicated for computing the 

TE estimates and creating the BCa bootstrap CIs. This package includes two 

functions: TEE() for the TE regression and TEE.BCa() for the BCa bootstrap CIs. 

Two examples were provided in this paper to demonstrate the usage of the 

TEEReg package. In the first example, the telephone data with several influential 

observations were used to examine the robustness of the TE method to outliers. It 

was found that the TEE(42%) and IRLS approaches work equally well for the 

given dataset. The TEE(30%) was affected more by the outliers because, 

compared to αp = 42%, relatively more elemental regressions with large sums of 

absolute residuals are involved in calculations. The random subsample approach, 

suggested by Hawkins (1993), was employed in this example as well. It appeared 

that, for the telephone dataset, using the 70% subsampling provides fairly 

accurate estimates and works almost equally well as utilizing the full data. This is 

consistent with the conclusions of Hall and Mayo (2008), that the random 

subsample approach is appropriate for reducing computation intensity when the 

error terms follow certain distributions. In the second example, a simulated data 

set with Cauchy error terms was used to assess the robustness of the TE approach 

to non-normal data. It appeared that the TE estimator is robust and efficient to the 

simulated data with Cauchy error terms. This is also consistent with the findings 

based on simulation studies from Hall and Mayo (2008). The new TEEReg 

package can be readily used to conduct TE regression analysis which is a useful 

and robust alternative to OLS in the presence of outliers and violations of model 

assumptions. 
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