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FIGURE 4.6. Endocytosis is decreased in VPA-treated glioblastoma cells. Glioblastoma
U251 cells were grown in DMEM with 10% FBS. Serum-starved cells were treated with 1
mM VPA and the endocytic marker FM4-64 was added, as described in Materials and
Methods. To monitor internalization and uptake of the dye, samples were removed at
the indicated times following addition of the dye. All images were taken at the same

magnification (1000X).
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FIGURE 4.7. Internalization of transferrin is decreased in VPA-treated glioblastoma
cells. Glioblastoma U251 cells were grown in DMEM with 10% FBS. Serum-starved cells
were treated with 1 mM VPA. Uptake of transferrin was monitored at the indicated

times. All images were taken at the same magnification (1000X).
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DISCUSSION

This study was carried out to identify novel pathways or processes that are altered in
response to VPA-treatment and may, thus, underlie the therapeutic effect of the drug.
The majority of the genes identified in the cDNA screen fell into three major categories:
ribosomal proteins, glycolytic enzymes, and proteins involved in vesicular trafficking
(Table 4.2). | focused on trafficking as my previous studies showed that VPA perturbs
the vacuole by decreasing V-ATPase activity and perturbing PI3,5P, levels, both of which
are involved in endocytic trafficking. This led me to hypothesize that VPA perturbs
endocytosis. The following are my findings: 1) VPA decreases endocytosis in yeast;
evidence suggests that decreased endocytosis is due to perturbed PI4,5P, levels in the
plasma membrane. 2) Perturbation of endocytosis by VPA is conserved in mammalian
cells.

The observations that VPA causes a phenotype similar to that resulting from
overexpression of AKL1, which perturbs endocytic trafficking (Fig. 4.1), and that FM4-64
trafficking to the vacuolar membrane is delayed in VPA-treated cells (Fig. 4.2), suggest
that VPA delays but does not completely inhibit endocytosis. A possible mechanism
whereby VPA affects endocytic trafficking is by decreasing levels of Pl4,5P,, which
activates and stabilizes membrane proteins that regulate endocytosis (DeHart et al.,
2007). P14,5P,-dependent membrane proteins anchor the actin cytoskeleton, which is a
major regulator of membrane trafficking in yeast, and also, recruit other proteins

required for the endocytic process (Smythe and Ayscough, 2006; DeHart et al., 2007).
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Temperature-sensitive mss4 mutants were shown to be defective in receptor
internalization (Derevieres et al., 2002), indicating that PI4,5P, is required for endocytic
trafficking.

King et al. (2009) have shown that the presence of a large PI4,5P, pool in the
plasma membranes, and the dynamic changes associated with its role as a precursor for
the signaling molecules IP; and DAG, obscure detection of changes in levels of this
phosphoinositide. This is in agreement with a study | have done using a GFP-tagged
FLARE that specifically binds PI14,5P,, where the high intensity of fluorescence observed
did not reveal differences in PI4,5P, levels in plasma membranes of VPA-treated and
untreated cells (data not shown). Therefore, | used two indirect approaches to
determine if VPA alters Pl14,5P, levels; (i) visualization of PI4P, the precursor of Pl4,5P,,
and (ii) assays of P14,5P,-dependent functions.

Studies by Pawolleck and Williams (2009) and Xu et al. (2007) have shown that
VPA causes a decrease in PI4P and PI4,5P,, an effect that was phenocopied by
attenuation of phosphoinositide signaling in Dictyostelium. Furthermore, VPA was
shown to decrease PI4P and Pl4,5P, levels in a dose- and time-dependent manner
(Chang et al., 2011). These reports are consistent with my finding that VPA causes a
decrease in PI4P (Fig. 4.3) and support my conclusion that PI4,5P, is decreased in
response to VPA treatment of yeast cells.

The rationale for the second approach, assay of Pl4,5P, -dependent functions,
was that if decreased endocytosis caused by VPA is due to decreased Pl4,5P,, then other

processes that are dependent on PI4,5P,, would be disrupted in the presence of VPA.
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Rho1, the functional ortholog of the mammalian RhoA (Qadota et al., 1994), is a small
GTPase that regulates several processes, including actin organization, CWI, and B-glucan
synthesis through independent effectors. It resides in the plasma membrane where it is
activated and stabilized by binding to PI4,5P, via a polybasic domain (Yoshida et al.,
2009). mss4 mutants, which are defective in PI4,5P, production, have been shown to
display defects in actin organization and CWI at elevated temperatures (Desrevieres et
al., 1998), thus, confirming the importance of PI4,5P, for Rho1 activity.

Three processes regulated by Rhol were perturbed in response to VPA. This
suggests that VPA perturbs Rhol activity, either by inhibiting Rhol directly, or by
perturbing Pl4,5P, which is required for activation and stabilization of Rhol. The
observation that inositol supplementation rescued the cell wall defect (Fig, 4.4A) and
the temperature sensitivity of VPA-treated cells (Fig. 4.4B) suggests that observed
perturbations caused by VPA are inositol dependent, and likely due to a decrease in
P14,5P;.

The PKC-CWI pathway protects the cell from environmental stress that could
damage the protective cell wall, such as heat stress (Kamada et al., 2005) and hypo-
osmotic shock (Davenport et al., 1995). Yeast cells grown in |- medium at 30°C and
shifted to 39°C showed increased levels of phosphorylated SIt2 (Fig. 4.5B), which
indicates activation of CWI. However, under the same conditions, VPA-treated cells did
not show an equivalent increase in P-SIt2, suggesting that VPA inhibits activation of the

CWI pathway. Interestingly, heat shock activates the PI4P 5-kinase Mss4, causing an
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increase in PI4,5P, (Desrivieres et al., 1998; Aduhya and Emr, 2002). It has been
suggested that this increase is required for activation of the CWI pathway at high
temperatures (Levin, 2011). The finding that VPA inhibits activation of CWI at 39°C, and
that inositol supplementation rescues this effect (Fig. 4.5), suggests that attenuation of
CWI by VPA is due to perturbed synthesis of Pl4,5P,. Another significance of this result is
that attenuation of CWI signaling by VPA signifies that VPA inhibits PKC. Although VPA
has been shown to inhibit mammalian PKC in cell extracts (Chen et al., 2004), the effect
of VPA on PKC in yeast has not been reported before, and may be of importance to
regulation of inositol biosynthesis, as discussed in Chapter 3.

Taken together, the results presented here suggest that VPA-mediated
perturbation of cell wall biosynthesis, the CWI pathway, and endocytosis are due to
decreased Pl4,5P, synthesis. Although these findings are indirect, two different
approaches support the conclusion that the decrease in PI4,5P, may underlie the
mechanism whereby VPA causes decreased endocytosis. Nevertheless, the possibility
remains that other mechanisms may be involved as well (Fig. 4.8).

Perturbation of V-ATPase and PI3,5P, by VPA (Chapter 3) is consistent with
decreased endocytosis shown here. V-ATPase null mutants have a markedly decreased
rate of endocytosis (Perzov et al., 2002). It is possible that reduced V-ATPase activity in
response to VPA results in decreased lumenal acidification of vesicles. This may affect
membrane recruitment of components required for the endocytic machinery.

Furthermore, PI3,5P; is required for regulating flux through the endocytic pathway and
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for sorting endocytosed cargo at the multivesicular body (Shaw et al., 2003). It is
possible that more than one mechanism may underlie perturbation of endocytosis
caused by VPA.

How might decreased endocytosis relate to the therapeutic effect of VPA? The
mechanism that underlies the GABAergic effect caused by VPA is a subject of
controversy. An increase in GABA levels following VPA treatment has been observed in
cultured mammalian cells, human plasma, and rat brains (MacDonald et al., 1979;
Loscher and Schmidt, 1980; Patsalos et al., 1981). The mechanism that underlies the
increase in GABA levels in response to VPA is not known. Several mechanisms have been
proposed. For example, VPA was shown to elevate GABA levels by increasing the
availability of the GABA precursor, a-ketoglutarate, through the inactivation of a-
ketoglutarate dehydrogenase (Luder et al, 1990). Decreased breakdown of GABA by the
two catabolic enzymes, GABA transaminase and succinate semialdehyde dehydrogenase
(SSD), was also reported (Loscher, 1993; Whittle and Turner, 1978). Modulation of the
post-synaptic response has also been suggested as a possible mechanism for the VPA-
induced GABAergic effect. Cunningham et al. (2003) showed that VPA prolongs the post-
synaptic inhibitory response by binding to the regulatory site of the GABA receptors on
the postsynaptic membrane. Thus, there is no consensus as to how VPA elicits its
GABAergic inhibitory effect.

In glioblastoma cells, VPA decreased the incorporation of FM4-64 into vesicles

(Fig. 4. 6). It also decreased the internalization and recycling of transferrin (Fig. 4. 7).



123

This suggests that VPA decreases clathrin-dependent endocytosis, the same mechanism
responsible for internalization of GABA, receptors. Therefore, it is tempting to speculate
that VPA may decrease internalization of GABA, receptors, prolonging their exposure to
the inhibitory effect of GABA present in the synapse. In support of this speculation,
phosphorylation of the GABAA receptors by PKC and GSK-f3 is required for internalization
and trafficking of these receptors (Tyagarajan et al., 2011; Brandon et al., 2000; Clayton
et al., 2010). Interestingly, both kinases are inhibited by VPA (Chen et al., 1994; Chen et
al., 1999; Kim et al., 2005), suggesting that inhibition of PKC and GSK-$ by VPA may be
another mechanism whereby VPA inhibits endocytosis.

In conclusion, the aim of this study was to identify cellular functions that are
affected by VPA. Here | show that VPA perturbs endocytosis, and that this perturbation
is conserved in yeast and human cells. Decreased endocytosis by VPA may be due to: 1)
decreased V-ATPase activity and PI3,5P, levels, 2) decreased PI4,5P, levels, or 3)
inhibition of PKC and GSK-f. While several mechanisms have been suggested to explain
the GABAergic effect caused by VPA, none have addressed the trafficking of GABA,
receptors. | propose decreased endocytosis as a novel effect of VPA that may underlie

its anticonvulsant effect.
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FIGURE 4.8. Model: VPA causes a decrease in endocytosis. VPA inhibits biosynthesis of

inositol, the precursor of phosphatidylinositol (Pl) required for the synthesis of the two

phosphoinositides P13,5P, and PI4,5P,. Two mechanisms that may underlie the decrease

in endocytosis observed in VPA-treated yeast cells are perturbation of PI3,5P, which

decreases V-ATPase coupling, and perturbation of PI4,5P, required for stabilization of

membrane proteins that regulate endocytosis.
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CHAPTER 5

FUTURE DIRECTIONS

The studies described in this dissertation show novel findings pertaining to
regulation of inositol biosynthesis and cellular consequences of inositol depletion. These
findings will, hopefully, contribute to a better understanding of the therapeutic
mechanism of action of the inositol-depleting drug, VPA. Although my studies have
answered some questions raised by those who embarked on this project before me, |
now raise new questions based on the work | have done, and hope that they enthuse
future students to continue with this exciting project. Highlighted in this chapter are

some unanswered questions that require continued investigation.

Kinases that regulate myo inositol 3-phosphate synthase (MIPS):

The inositol biosynthesis pathway is highly conserved, and is regulated at the level of
the first and rate-limiting enzyme, MIPS. In Chapter 2, | showed that MIPS is
postranslationally regulated, and that at least three phosphosites that are conserved in
yeast and human MIPS play a role in its regulation. Phosphosite prediction analysis
showed that the two inhibitory phosphosites, $184 and S374, lie within recognition
sequences for PKA and PKC, respectively, while S296, is within a recognition sequence
for GSK3. Preliminary experiments showed that both PKC and PKA decreased MIPS

activity in vitro, while GSK3 increased activity (data not shown). While these results
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seem to correlate with the predictions, further experiments are necessary to elucidate
the role of these kinases in regulating MIPS. In vitro experiments using purified and
dephosphorylated MIPS should clearly show the effect of each kinase on
phosphorylation and activity of MIPS. The use of the site mutants as controls would
greatly facilitate these studies.

Another question of fundamental importance to the mechanism of VPA is, which
of the identified residues (if any) are phosphorylated in response to VPA? MIPS purified
from VPA-treated cells shows a higher level of phosphorylation than enzyme from
untreated cells. Answering this question, would be crucial to demonstrate the
mechanism by which VPA inhibits MIPS and which is targeted by VPA. Identification of
the kinase may help identify upstream regulators of MIPS that may be directly affected
by VPA.

In a previous study, Ju and Greenberg (2003) showed that VPA causes an
increase in the transcriptional level of INO1, the gene coding for MIPS, concomitant with
a decrease in inositol biosynthesis. This indicates that inositol depletion does not result
from perturbation of INO1 transcription. The current study shows that VPA increases
MIPS phosphorylation. It would be interesting to determine if there is a direct
correlation between increased phosphorylation and decreased inositol levels in
response to VPA. What is the time frame during which the protein is modified by
phosphorylation? These studies were previously hindered by the lack of available
antibodies that detect MIPS. Now that the phosphosites have been identified,

antibodies could be designed that specifically recognize phosphorylated MIPS.
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Regulation of human MIPS — Surprisingly, not much is known about regulation of
human MIPS. In Chapter 2, | showed that the three regulatory phosphosites initially
identified in yeast MIPS, are conserved in the human homolog. Shaltiel et al. (2004 and
2007) showed that VPA decreased inositol biosynthesis in human prefrontal cortex by
inhibiting MIPS. Thus, it is likely that, similar to what we observed in yeast, VPA may
decrease human MIPS activity by increasing its phosphorylation. Although we have
shown that VPA increases the phosphorylation of yeast MIPS, similar experiments were
not done with the human enzyme. It is particularly important to determine if the
kinases PKC and GSK3 regulate human MIPS, because although earlier studies have
shown that VPA inhibits mammalian PKC and GSK3 (Chen at al. 1994; Chen et al., 1999),
no connection has been made between inositol depletion and the inhibition of these
two enzymes. Elucidating the effect of PKC and GSK3 on human MIPS would be of direct

relevance to the mechanism by which VPA causes inositol depletion in human.

VPA as a tool to uncover regulation of Fab1:

In Chapter 3, | showed that VPA inhibits the PI3,5P,-dependent osmotic stress response.
Cells respond to hyperosmotic stress by activating two pathways - the high osmolarity
glycerol (Hogl) pathway, which initiates a long term response, and the PI3,5P;-
dependent immediate, short term response (Bonangelino et al., 2002). The latter leads
to a 20-fold increase in PI3,5P,, which triggers an increase in the number of small
vacuoles, thereby increasing total vacuole membrane surface area. The finding that

VPA blocks the rapid increase in PI3,5P, suggests that VPA may perturb activation of
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Fab1, the kinase that generates PI13,5P, from PI3P. Fab1 is regulated by two activators,
Vac7 and Vacl4, which form part of a multimeric complex on the vacuolar membrane.
There are no published studies describing how these two activators respond to stress.
Are they activated by phosphorylation, for example by the Hogl kinase? Is it a
coincidence that both pathways are activated at the same time in response to osmotic
stress? Does VPA perturb activation of Vac7 and Vacl4, thus negatively affecting Fabl
and, hence, preventing an increase in PI3,5P,? One approach to address these questions
is to determine if the Fabl pathway is regulated by the Hogl kinase, in which case the
pathway would be altered by deleting or overexpressing HOG1. A complementary
approach would be to ascertain if Vac7 and Vacl4 are phosphoproteins, and if VPA
affects their activity by altering phosphorylation of these proteins.

While the HOGL1 stress response pathway has been extensively studied, not
much is known about the osmotic stress response that depends on PI3,5P,. This is a very
promising area because it is becoming increasingly evident that PI3,5P, has many more
functions than previously thought (Ho, 2012). Answering the questions addressed here
would not only identify the mechanism by which VPA inhibits the PI3,5P,-dependent
response to osmotic stress, but may also uncover a novel regulatory mechanism of

PI3,5P; synthesis.

Does VPA cause temperature sensitivity as a consequence of altered plasma

membrane lipid composition?
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In Chapter 4, | showed that VPA inhibits growth of cells at elevated temperatures. The
response of Scaccharomyces cerevisiae to heat stress involves two phases. Initially,
growth is arrested for about an hour (Shin et al., 1987), during which cells gain
thermotolerance. This involves an increase in trehalose accumulation and activation of
heat shock proteins (Weimken, 1990; Lindquist and Craig, 1988). In the second phase,
degradation of trehalose takes place, and cells resume growth (Hottiger et al., 1992).
The heat stress response is also characterized by a dramatic, transient increase in
sphingolipids and ceramides within the first 15 min and 1 hr, respectively (Jenkins et al.,
1997; Chen et al., 2013). In two separate studies, Desrevieres et al. (1998) and Audhya
and Emr (2002) showed that heat shock causes an increase in Pl4,5P,, which is
predominantly found in the plasma membrane. Interestingly, the synthesis of the three
lipids, sphingolipids, ceramides, and PI4,5P; is perturbed in inositol limiting-conditions
(Henry et al., 2014). Thus, it is likely that thermosensitivity caused by VPA may be due to
the inositol-depleting effect of the drug. It would be interesting to find out if VPA alters
the phospholipid content of cells grown at elevated temperature. For this purpose, it
would be essential to measure the lipids at different times following the transfer of cells
to a high growth temperature.

Another interesting finding in Chapter 4 was that VPA perturbs activation of the
CWI pathway when cells are shifted from 30°C to 39°C for 1 h. This signaling pathway is
activated in response to growth at elevated temperatures (Kamada et al., 1995; Zarzov

et al., 1996). However, its activation is detectable after about 20 min (Kamada et al.,
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1995), suggesting that CWI signaling is detecting a secondary effect of exposure to high
temperature (Levin, 2011). It is tempting to speculate that one or more of the
phospholipids Pl4,5P,, sphingolipids, or ceramides may constitute the secondary effect
in question, and that perturbation of these lipids as a result of VPA-mediated inositol
depletion leads to decreased activation of CWI signaling. Deletion mutants for synthesis
of each of the phospholipids, or commercially available inhibitors (Jesch et al., 2010)
could be used to determine if any of these phospholipids are required for CWI
activation.

In the same context, | would like to draw attention to glycosylphosphatidyl
inositol (GPI) lipids, which are synthesized from Pl and used to anchor several cell wall
proteins (Pittet and Conzelmann, 2007). Surprisingly, the effect of VPA on this group of
inositol-lipids has never been addressed in our lab. It would be interesting to find out if
levels of GPI are altered in response to VPA, as this may uncover new cellular processes

affected by the drug.

What is the mechanism underlying decreased endocytosis in response to VPA?

One of the main aims of this study was to elucidate the mechanism of action of VPA by
identifying cellular processes that are affected by this drug. The studies in Chapter 4
show that VPA perturbs endocytosis in both yeast and mammalian cells. This is by no
means the end of the story. | hypothesize that VPA potentiates the inhibitory GABA-
mediated effect (Johannessen, 2000; Loscher, 2002) by decreasing the internalization of

the GABA, receptors, thus prolonging exposure of the receptors to GABA. The



131

hypothesis is supported by the finding that VPA perturbs clathrin-mediated
internalization depicted by Fig. 4.7 shown in Chapter 4. A further test of the hypothesis
would be to determine if VPA perturbs the internalization of GABAs receptors in
mammalian cells. This experiment is challenging but doable. A decrease in
internalization of the receptors would suggest a new mechanism that may explain how
VPA may potentiate the inhibitory effect.

What is the mechanism responsible for the VPA-mediated decrease in
endocytosis? Several studies have shown that phosphoinositides, ceramides, and
sphingolipids play a role in regulating endocytosis by recruiting proteins, acting as
signaling molecules, or by playing a structural role (Munn et al., 1999; Chen et al., 1995;
Zanolari et al., 2000). While it is possible that the VPA-mediated defect may be due to
altered phospholipid composition of the plasma membrane, an intriguing possibility is
that the defect may be due to inhibition of the kinases PKC and GSK3R, both of which
are required for phosphorylation of proteins essential for the internalization step of the
GABA receptors (Brandon et al., 2000; Tyagarajan et al., 2011). Interestingly, both
kinases are inhibited by VPA (Chen et al., 1994; Chen et al., 1999). If inhibition of these
two enzymes is responsible for the observed VPA-mediated decrease in endocytosis,

this would uncover a novel effect of VPA that has not been identified before.

Is there cross talk between the glycolytic and inositol biosynthetic pathways?
The cDNA screen discussed in Chapter 4 showed that overexpression of any of ten

different glycolytic enzymes caused increased sensitivity to VPA (Table 4.2 and Fig. 5.1).
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This finding raises the possibility that accumulation of glycolytic enzymes or products
causes sensitivity to the drug. Overexpression was not deleterious to cells in the
absence of VPA. At least three possibilities may explain these findings:

1) Glycolytic intermediates negatively affect a process already compromised by
VPA. For example, some intermediates may inhibit enzymes of the inositol biosynthetic
pathway, causing a further decrease in inositol levels. In support of this, the study by
Shi et al. (2005) showed that dihydroxyacetone phosphate (DHAP) and glyceraldehyde
3-phosphate (G-3-P), two glycolytic intermediates, inhibit the activity of MIPS. Thus, it is
possible that accumulation of other intermediates may inhibit MIPS and cause a further
decrease in inositol biosynthesis. Inositol levels could be quantified in each of the clones
expressing the glycolytic genes and compared to levels in wild-type cells. Clones that
show decreased inositol levels may identify new MIPS inhibitors.

2) Glycolysis and the inositol biosynthetic pathway depend on glucose-6-
phosphate (G-6-P) as the primary precursor. Two enzymes, MIPS and phosphoglucose
isomerase (PGl), use G-6-P as a substrate. MIPS converts G-6-P to inositol 3-P, while PGl
converts G-6-P to fructose-6-P (Fig. 5. 1). It is possible that overexpressing glycolytic
enzymes shifts the reaction in favor of glycolysis, and away from inositol biosynthesis,
leading to increased sensitivity to VPA. What determines the direction of the reaction?
It is tempting to speculate that the flux of the reaction may be regulated by a metabolic
signal, for example, an allosteric regulator that responds to altered ATP levels. In the

event of ATP shortage, the regulator may direct the flux towards glycolysis.
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The Glycolytic Pathway
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3) Some glycolytic enzymes have additional roles. For example, glyceraldehyde
phosphate dehydrogenase (GAPDH), which converts glyceraldeyde-3-phosphate to
glycerate 1,3-bisphosphate is involved in several non-glycolytic processes, including
apoptosis (Tarze et al., 2007), transcription activation, ER to Golgi shuttling (Tisdale et
al.,, 2004), and fast axoplasmic transport (FAT) (Zala et al., 2013). GAPDH provides
glycolytic energy for FAT, which is responsible for vesicular transport and movement of
organelles, including synaptic vesicles, to and from the neuron cell body along the
axoplasm. Interruption of this process is associated with neurodegenerative diseases
(Chevalier-Larsen and Holzbaur, 2006). The cDNA screen (Chapter 4) showed that
overexpression of triose phosphate dehydrogenase (TDH), the yeast homolog of GAPDH,
confers sensitivity to VPA. This raises the possibility that by increasing glycolytic flux
(and decreasing inositol biosynthesis), VPA may increase activation of GAPDH/TDH. In
neurons, this would increase the efficiency of FAT, which would be of great significance
if FAT is defective in neurons of BD patients. In yeast, however, the only two known
functions of TDH are in gluconeogenesis and glycolysis (Boucherie et al., 1995). Thus, a
study to determine if TDH plays a role in vesicular trafficking in yeast may uncover a

novel mechanism that has not been reported previously for this enzyme!

Does VPA perturb the unfolded protein response (UPR) pathway?
The UPR pathway is generally activated in response to ER stress caused by accumulation
of misfolded protein in the ER lumen. Three mechanisms help alleviate the ER stress,

including attenuation of protein synthesis, targeting the misfolded proteins for
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degradation, and properly folding existing proteins (Kim et al., 2005). Results of several
screens for VPA sensitivity indicate that VPA may perturb the UPR pathway. A study by
Shulin Ju (2005 PhD dissertation) showed that cells exhibit increased resistance to VPA
in response to overexpression of Ubi4, a ubiquitin that marks proteins and targets them
for selective degradation. Thus, VPA may perturb selective degradation of misfolded
proteins. In Chapter 4, | showed that overexpression of ribosomal proteins increases
sensitivity to VPA. It is possible that an increase in ribosome biogenesis ensues, leading
to increased protein synthesis and accumulation of misfolded proteins. It is also possible
that overexpression of proteins stresses cells and causes accumulation of misfolded
proteins. Thus, perturbation of the UPR by VPA may explain the increased sensitivity of
cells when proteins are overexpressed.

Furthermore, ribosomal proteins have extra-ribosomal functions, including
regulation of gene expression, DNA repair, DNA replication, and repression of
translation (Warner and Mclntosh, 2009; Weisberg, 2008). The INO1 gene is particularly
sensitive to defects in general transcription factors (Henry et al., 2014). It is possible that
some of the ribosomal proteins identified in the screen may perturb the transcription of
INO1 and, thus, account for the increased sensitivity to VPA.

In conclusion, VPA is a drug that, for years, has been successfully used for the
treatment of two devastating illnesses, BD and epilepsy, without knowing how it elicits
its therapeutic effect. It is very likely that the effect involves more than one mechanism
and numerous targets. The identification of novel targets and cell processes that are

perturbed by VPA, undoubtedly uncovers new leads towards potential mechanisms of
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action of this drug. These mechanisms may be responsible for the therapeutic effect,
side effects, or may even shed light on the pathophysiology of a disorder that remains

poorly understood.
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And a final thought...

During my work on this project, | had the chance to train a student who is
afflicted with bipolar disorder. Needless to say, she is one of the smartest, most
thoughtful, creative, and cheerful persons | have ever met. | have often thought of her
during my work.

It is heart-wrenching to see the increase in number of people affected by mental
disorders and the devastating consequences that ensue. In spite of all the advancements

that are generated by science, there is no proper cure for these disorders.

I hope that my work contributes to the advancement of research in this area.
For all future students working on the bipolar project, | pass the torch to you....
Good luck,

Rania
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Inositol is a six-carbon cyclitol that is ubiquitous in biological systems. It is a
precursor for the synthesis of numerous biologically important compounds, including
inositol phosphates and phosphoinositides that are essential for cell function and
viability. Inositol compounds play a role in membrane formation, gene regulation,
signaling, regulation of ion channels, and membrane trafficking. Furthermore,
inositol regulates hundreds of genes, including those involved in the biosynthesis of
inositol and phospholipids. While transcriptional regulation of inositol biosynthesis
has been extensively studied and well characterized, regulation of inositol
biosynthesis at the enzymatic level has not been addressed. The current study shows
that myo-inositol 3-phosphate synthase (MIPS), the enzyme that catalyzes the rate-
limiting step in inositol biosynthesis, is a phosphoprotein. Mass spectrometry analysis
identified five phosphosites, three of which are conserved in yeast and human MIPS.

Analysis of phosphorylation-deficient and phosphomimetic site-mutants of both
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yeast and human MIPS indicated that the three conserved sites affect MIPS activity.
Two of the phosphosites are inhibitory, and one is critical for activity.

Previous studies have shown that valproate (VPA), a branched chain fatty acid
that has been successfully used for the treatment of bipolar disorder, epilepsy, and
migraine, causes inositol depletion by inhibiting MIPS in vivo but not in vitro, which
suggests that inhibition is indirect. Elimination of the two inhibitory phosphosites
caused an increase in MIPS activity, conferred a growth advantage, and partially
rescued sensitivity to VPA, suggesting that VPA-mediated inositol depletion may
result from phosphorylation of MIPS.

Decreased IP;3 signaling caused by Inositol depletion has been proposed as a
mechanism that underlies the therapeutic effect of VPA. However, no direct
correlation between altered IP; signaling and the therapeutic effect has been
established. Because of the versatility of inositol compounds, inositol depletion may
have more far-reaching consequences that may account for the effect of VPA. This
study showed that inositol depletion caused by VPA or by starvation of ino1A cells,
which cannot synthesize inositol, perturbs vacuolar structure, decreases vacuolar
ATPase (V-ATPase) proton pumping, and causes partial un-coupling of the V-ATPase.
These perturbations were rescued by inositol supplementation. Furthermore, VPA
compromised the synthesis of PI3,5P,, which is necessary for stabilization of the V-
ATPase complex. Osmotic stress, known to increase PI3,5P; levels, did not rescue the

compromised PI3,5P; levels, nor did it induce vacuolar fragmentation in VPA-treated



183

cells, suggesting that perturbation of the V-ATPase is a consequence of altered
PI3,5P, homeostasis under inositol-limiting conditions. These findings identify novel
consequences of inositol depletion and provide evidence for a previously unidentified
link between inositol levels and the V-ATPase.

To identify novel pathways and processes that are altered in response to VPA,
a yeast cDNA library was screened for genes that increase sensitivity to VPA when
overexpressed. One of the major categories identified was endocytic trafficking
genes, which led to the hypothesis that VPA perturbs endocytosis. The study showed
that VPA perturbs endocytosis in yeast and human cells. Evidence showed that the
likely mechanism underlying decreased endocytosis by VPA is decreased PI4,5P,
levels.

Taken together, my studies led to three major novel findings. First, | identified
a regulatory mechanism of inositol biosynthesis characterized by phosphorylation of
the rate-limiting enzyme myo-inositol 3-phosphate synthase (MIPS). Second, |
demonstrated that the highly conserved vacuolar ATPase (V-ATPase) is a target of
VPA. Third, my studies indicated that VPA-mediated inositol depletion perturbs
endocytosis in both yeast and mammalian cells. These findings suggest new
mechanisms that may underlie the therapeutic action of VPA, and identify potential

targets that may be used for the development of more effective and safer drugs.
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