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This paper presents some tests for seasonality in a time series data which considers the 
model structure and the nature of trending curve. The tests were applied to the row 

variances of the Buys Ballot table. The Student t-test and Wilcoxon Signed-Ranks test have 
been recommended for detection of seasonality. 
 
Keywords: Model structure, trending curves and seasonal indices, Buys-Ballot table, 
row variances, paired sample data 

 

Introduction 

Decision making is paramount to any organization. Making a good decision 

depends largely on predicting future events and conditions. The basic assumption 

made when forecasting is that there is always an underlying pattern which describes 

the event and conditions, and that it repeats in the future. A time series is a 

chronological sequence of observations on a particular variable. Hence, there are 

two major goals of time series analysis: (1) identifying the nature of the 

phenomenon represented by the sequence of observations; and (2) forecasting 

(predicting future values of the time series variable). Identification of the pattern 

and choice of model in time series data is critical to facilitate forecasting. Thus, 

both of these goals of time series analysis require that the pattern of observed time 

series data is identified and described. Two patterns that may be present are trend 

and seasonality. In order to understand the effectiveness of identification of patterns 

of observed time series data, it is important to first identify what a time series 

http://dx.doi.org/10.22237/jmasm/1478002920
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consists of. In time series analysis, it is assumed that the data consists of a 

systematic pattern (usually a set of identifiable components) and random noise 

(error). Most time series patterns can be described in terms of four basic classes of 

components: The systematic pattern includes the trend (denoted as Tt), seasonal 

(denoted as St), and cyclical (denoted as Ct) components. The irregular component 

is denoted as It or et, where t stands for the particular point in time. These four 

classes of time series components may or may not coexist in real-life data. 

The two main goals of a time series analysis are better achieved if the correct 

model is used. The specific functional relationship among these components can 

assume different forms. However, the possibilities are that they are combined in an 

additive (additive seasonality) or a multiplicative (multiplicative seasonality) 

fashion, but can also take other forms such as pseudo-additive/mixed (combining 

the elements of both the additive and multiplicative models) model. 

The additive model (when trend, seasonal and cyclical components are 

additively combined) is given as: 

 

 , 1,2, ,t t t t tX T S C I t n       (1) 

 

The multiplicative model (when trend, seasonal and cyclical components are 

multiplicatively combined) is given as: 

 

 , 1,2, ,t t t t tX T S C I t n       (2) 

 

and the Pseudo-Additive/Mixed Model (combining the elements of both the 

additive and multiplicative models) is given as: 

 

 , 1,2, ,t t t t tX T S C I t n       (3) 

 

Cyclical variation refers to the long term oscillation or swings about the trend, and 

only long period sets of data will show cyclical fluctuation of any appreciable 

magnitude. If short periods of time are involved (which is true of all examples in 

this study), the cyclical component is superimposed into the trend (Chatfield, 2004) 

and then the trend-cycle component is denoted by Mt. In this case, (1), (2), and (3) 

may, respectively, be written as: 

 

 , 1,2, ,t t t tX M S I t n      (4) 
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 , 1,2, ,t t t tX M S I t n      (5) 

 

 , 1,2, ,t t t tX M S I t n      (6) 

 

The pseudo-additive model is used when the original time series contains very 

small or zero values. However, this work will discuss only the additive and 

multiplicative models. 

As long as the trend is monotonous (consistently increasing or decreasing), 

the identification of the trend component is not very difficult. Tests for trend are 

given in Kendall and Ord (1990). The cyclical component exhibits variation at 

periods that may be fixed or not fixed, but which are predictable. Many time series 

exhibit a variation which repeats itself in systematic intervals over time and this 

behavior is known as seasonal dependency (seasonality). The seasonal component, 

St, is associated with the property that S(i–j)s+j = Sj, i = 1, 2,…. The difference 

between a cyclical and a seasonal component is that the latter occurs at regular 

(seasonal) intervals, although cyclical factors have usually a longer duration that 

varies from cycle to cycle. 

In some time series data, the presence of a seasonal effect in a series is quite 

obvious and the seasonal periods are easy to find (e.g., 4 for quarterly data, 12 for 

monthly data, etc.). Seasonality can be visually identified in the series as a pattern 

that repeats every k elements. The following graphical techniques can be used to 

detect seasonality: (1) a run sequence plot (Chambers, Cleveland, Kleiner, & Tukey, 

1983); (2) a seasonal sub-series plot (Cleveland, 1993); (3) multiple box plots 

(Chambers et al., 1983); and (4) the autocorrelation plot (Box, Jenkins, & Reinsel, 

1994). Both the seasonal subseries plot and the box plot assume that the seasonal 

periods are known. If there is significant seasonality, the autocorrelation plot should 

show spikes at multiples of lags equal to the period, the seasonal lag (Box et al., 

1994). For quarterly data, we would expect to see significant spikes at lag 4, 8, 12, 

16, and so on. Iwueze, Nwogu, Ohakwe, and Ajaraogu (2011) pointed out that 

seasonality in time series can be identified from the time plot of the entire series by 

regularly spaced peaks and troughs which have a consistent direction and 

approximately the same magnitude every period/year, relative to the trend. 

In some cases the presence of a seasonal effect in a series is not quite obvious 

and, therefore, testing is required in order to confirm the presence of the seasonal 

effect in a series. Davey and Flores (1993) proposed a method which adds statistical 

tests of seasonal indexes for the multiplicative model that helps identify seasonality 

with greater confidence. Tests for seasonality are also given in Kendall and Ord 
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(1990). Chatfield (2004) suggested the use of the Buys Ballot table for inspecting 

time series data for the presence of trend and seasonal effects. Fomby (2008) 

presented various graphs suggested by the Buys Ballot table for inspecting time 

series data for the presence of seasonal effects. Fomby (2010), in his study of Stable 

Seasonal Pattern (SSP) models, gave an adaptation of Friedman’s two-way analysis 

of variance by ranks test for seasonality in time series data. Several statistics have 

also been proposed to test for seasonality. They can be broken down into three 

groups: the Chi-Square (χ2) Goodness-of-Fit test and the Kolmogorov-Smirnov 

type statistic, the Harmonic analyses based on the Edwards’ type statistic (Edwards, 

1961), and the Nonparametric Tests. 

The χ2 goodness-of-fit test is relatively popular for detecting seasonality 

because of its simple mathematical theory, which makes it easy to calculate and 

understand (Hakko, 2000). The test is on whether the empirical data can be a sample 

of a certain distribution with sampling error as the only source of variability 

(McLaren, Legler, & Brittenham, 1994). This test requires a sample from a 

population with an unknown distribution function F(x) and a certain theoretical 

distribution function F0(x). Although there is no restriction on the underlying 

distribution, usually the hypothetical distribution is a uniform distribution. 

For seasonality studies, the frequency Oi, i = 1, 2,…, k is the observed value 

at the ith season, while the frequency Ei, i = 1, 2,…, k is the expected cell frequency 

at the ith season. Under the null hypothesis that there is no seasonal effect (i.e., F0(x) 

is a uniform distribution), then E1 = E2 =…= Ek and the statistic 

 

 
 

2

1

k
i i

i i

O E
T

E

 
  

  
   (7) 

 

is asymptotically distributed as χ2 with ν = k − 1 degrees of freedom (Horn, 1977). 

The χ2 goodness-of-fit test for seasonality has been recently used for the analysis 

of seasonality in suicide, myocardial infarction, diarrhoea, pneumonia, and overall 

mortality (Flisher, Parry, Bradshaw, & Juritz, 1996; Herring & Hoppa, 1997; 

Rihmer, Rutz, Pihlgren, & Pestiality, 1998; Sheth, Nair, Muller, & Yusuf, 1999; 

Underwood, 1991; Villa, Guisecafré, Martinez, & Muñoz, 1999). 

In his article, Edwards (1961) explicitly mentions the possibility to estimate 

cyclic trends by considering the ranking order of the events which are above or 

below the median number. This idea was used by Hewitt, Milner, Csima, and 

Pakula (1971) but did not use a binary indicator as suggested by Edwards (1961), 

instead using all of the ranking information. Rogerson (1996) made an attempt to 
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generalize this test by relaxing the relatively strict assumption of Hewitt et al. 

(1971) that seasonality is only present if a six-month peak period is followed by a 

six-month trough period. Rogerson (1996) allowed that the peak period can also 

last three, four, or five months. Rau (2005) further relaxed these assumptions and 

allows total flexibility for the basic time duration as well as for the length of the 

peak period. 

The Kolmogorov-Smirnov goodness-of-fit test (KS-Test) is comparable to 

the χ2 goodness-of-fit test because both approaches are designed to test if a sample 

drawn from a population fits a specified distribution. However, the KS-Test does 

not compare observed and expected frequencies at each season, but rather the 

cumulative distribution functions between the ordered observed and expected 

values (Rau, 2005). 

For seasonality studies, if FN(t), t = 1, 2,…, s, is the empirical distribution 

function based on the observed frequencies at each season and F0(t) is the 

corresponding distribution function under the null hypothesis that there is no 

seasonal effect, the test-statistic used is: 

 

          0 0
1 12 1 12
max F F max F FN N N

t t
T V N t t t t

   

     
  

  (8) 

 

The statistic T does not follow any of the known distributions (e.g. χ2, N(µ, σ2), 

etc.). The distribution of T was determined empirically by Freedman (1979) using 

Monte Carlo simulations and tabulated in Freedman’s article. Freedman’s modified 

KS-Type Test has been used for the study of seasonality (Verdoux, Takei, Cassou 

de Saint-Mathurin, & Bourgeois, 1997). 

In all these tests for the presence of seasonal effect in a time series data, the 

model structure (i.e. whether Additive or Multiplicative models) and nature of the 

trending curve (Linear, Quadratic, Exponential, etc.) were not taken into 

consideration. However, Iwueze and Nwogu (2014) have shown that, for precise 

detection of presence of seasonal effect in a series the model, structure and trending 

curves are necessary. Some of the questions that come to mind are: “How does the 

model structure affect the detection of presence of seasonal effect in a time series 

data?”; “How does the nature of the trending curves affect the test for presence of 

seasonal effect in a series?” These and other related questions are what this study 

intends to address. 

Therefore, the ultimate objective of this study is to develop tests for 

seasonality in a series which take into account the nature of the model structure and 



NWOGU ET AL. 

387 

trending curves for precise detection of the presence of seasonal effect in a series 

where it exists. The specific objectives are to: 

 

(a) Review the Buys Ballot procedure for selected trending curves, 

(b) Construct test(s) for the detection of presence of seasonal effect in a series 

using the row, column, overall means and variances of the Buys-Ballot table, 

and 

(c) Assess the performance of the developed test statistics in detection of the 

presence of seasonal effects in a series using empirical examples. 

 

Based on the results, recommendations are made. 

The rationale for this study is to fill the gap in the existing tests for seasonality 

by providing analyst with objective test for the detection of the presence of seasonal 

effect in a series when it exists. 

The Buys-Ballot procedure was developed by Iwueze and Nwogu (2004) for 

short period data in which trend and cyclical components are jointly estimated; the 

tests developed in this study are based on this assumption. In their results, on the 

basis of which the proposition for choice of appropriate model was made, Iwueze 

and Nwogu (2014) showed that, for the selected trending curves, the column 

variances depend only on the trend parameters for the additive model and on both 

trend parameters and seasonal indices for the multiplicative model. Therefore, if 

the seasonal/column variances are functions of the trend parameters, only then is 

Additive the appropriate model. However, if the seasonal/column variances are 

functions of both the trend parameters and seasonal indices, then the appropriate 

model is Multiplicative. It is the presence of the seasonal effect in the 

seasonal/column variances that makes the model multiplicative. In other words, 

once the seasonal/column variances indicate that the appropriate model is 

Multiplicative, it also indicates that the series contains seasonal effects. Therefore, 

in this study, tests for detection of the presence of seasonal effect in a time series 

data are developed for the additive model only. 

For the additive model and all trending curves studied, the row variances 

contain both the trending parameters and the seasonal component, while the column 

variances do not contain the seasonal component. Therefore, the parameters of the 

trending curves have been varied in order to see their effects on the powers of the 

tests. In particular, the slope parameter b of the linear trend has been assigned the 

values b = 0.02, 0.20, and 2.00 to check its effect on the test(s). 



SOME TESTS FOR SEASONALITY IN TIME SERIES DATA 

388 

Furthermore, the power of the tests will be measured by considering the 

percentages of the total simulations in which the test correctly detected the presence 

of seasonal effect when it exists. 

Methodology 

The summary of the row variances for the additive model derived by Iwueze and 

Nwogu (2014) are shown in Table 1 for the selected trending curves, with 

 

 2

1 2

1 1

,
s s

j j

j j

C jS C j S
 

     

 

Tests for seasonality in the Additive model are constructed by applying the tests for 

the matched pairs of data to the row variances of the Buys-Ballot table. 
 
 
Table 1. Summary of row variances of the Buys-Ballot table for the additive model and 

the selected trending curves 
 

Trending Curve Row Variance (
2

i
σ ) 

Linear: 
a + bt 

     
2 2

=1 =1

+1 2 1
+ +

12 -1 -1

s s

j j

j j

s s b
b jS S

s s
 

Quadratic: 
a + bt +ct2 

 
     

  
 

 
     

        



2 3 2

2

2 2

2

1 2

=1

1

+1
2 - 1 8 - 11 - 30 - 1 +15

180

1
+ + 2 - 2 + 2

- 1

4+1 +1
+ - - 1 + +

3 - 1 3

s

j

j

s s
s s c s bc b

S b cs C cC
s

csCs s s s c
bc c s i i

s

 

Exponential: 
bect 

       
    
   

 
2

2 2 -1 +1 2 -1

2

=1 =1

1- e 1 1- e
e - + + 2 e e

1- e 1- e

cs cs s s
c i s c i s cj

j jc c

j j

b S b S
s

 

 

Source: Iwueze and Nwogu (2014). 

 
 

For the matched pairs of data, (Ui, Vi), i = 1, 2,…, n, define 

 

 i i id U V    (9) 

 



NWOGU ET AL. 

389 

where, for the ith observation unit, Ui and Vi denote measures on two characteristics. 

For the variable di, any of these test statistics: (a) the Student’s t-distribution; (b) 

the sign test; or (c) the Wilcoxon Signed-Rank; can be used to test the null 

hypothesis that the two characteristics have the same mean or median. 

Student t-Distribution 

The statistic 

 

 0
c

d

d d
t

S n


   (10) 

 

is known to follow the Student’s t-distribution with n – 1 degrees of freedom under 

the null hypothesis that the two characteristics have the same mean or median (or 

are drawn from a population with the same median), where 

 

  
2

1 1

1 1
,

1

n n

i d i

i i

d d S d d
n n 

  


    

 

and d0 (usually assumed zero under H0: d = d0) is the value of the man or median 

of the deviations under the null hypothesis. The null hypothesis (H0) is rejected at 

α level of significance if |tc| > t1–α/2, where t1–α/2 is the 100(1 − α) percentile of the 

Student’s t-distribution with n − 1 degrees of freedom. 

Sign Test 

The test statistic for the sign test is k, the smaller of the number of positive signs n+ 

and the number of negative signs n-. That is 

 

  min ,k n n    (11) 

 

Under the null hypothesis that the medians of the two variates are equal, the random 

variable k follows the binomial distribution with parameters n and p = 0.5. That is, 

the number of positive signs (n+) and negative (n-) signs are expected to be equal. 

For smaller sample sizes (i.e., 0 < n < 25), the observed value of k is 

compared with the critical value (kα) and the null hypothesis (H0) is rejected at α 

level of significance if k < kα, where kα is computed from the binomial probability 

function as 
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    
 

 
1

!
F ; , Pr 1

! !

k
n xx

x

n
k n p X k p p

x n x



  
  





    


   (12) 

 

where p = 0.5 and k    is the “floor” under kα, i.e., the greatest integer less than or 

equal to kα (Corder & Foreman, 2014). 

For larger sample sizes (i.e., n ≥ 25), Corder and Foreman (2014) 

recommended the use of zc, given as 

 

 
 0.5 0.5

0.5
c

k n
z

n

  
   (13) 

 

where k' = max(n+, n-). This approximately follows the standard normal 

distribution under the null hypothesis. The null hypothesis (H0) is rejected at α level 

of significance if k' > zα and accepted otherwise. 

Wilcoxon Signed-Ranks Test 

For small sample sizes (i.e., n ≤ 30), the Wilcoxon Signed-Ranks test statistic is 

given by 

 

 
1 1

Min ,
i i

n n

c d d
i i

T R R
 

 

 

 
  

 
    (14) 

 

where 
1 i

n

di
R




  is the sum of the positive ranks of non-zero differences and 

1 i

n

di
R




  is the sum of the absolute values of the negative ranks of non-zero 

differences. If the null hypothesis (H0) is true, these sums are expected to be equal. 

For large sample sizes (i.e., n > 30), the Wilcoxon Signed-Ranks test statistic 

is given by Corder and Foreman (2014) as 

 

 c T
c

T

T
z






   (15) 

 

where n is the number of matched pairs of data for which their differences is not 

zero and 
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    1 1 2 1

,
4 24

T T

n n n n n
 

  
    

 

i.e., the mean and standard deviation of Tc, respectively, under the null hypothesis. 

The null hypothesis (H0) is rejected at α level of significance if zc < zα and accepted 

otherwise. 

When the usual parametric assumptions (difference scores are normally and 

identically distributed in the population from which the sample was drawn and that 

they are measured on at least an interval scale) are met, the Student’s t-distribution 

is used. The sign test and the Wilcoxon signed-ranks test are used when the usual 

assumptions of parametric tests are not met. It is important to note that the sign test 

and Wilcoxon signed-ranks test require only that the distribution of the study data 

be symmetric. 

For detection of the presence of seasonal effect in a time series data, we let Ui 

denote the row variance in the presence of the seasonal effect and Vi denote row 

variance in the absence of the seasonal effect. 

For example: 

(a) For the linear trend-cycle component, in the presence of seasonal effect, 

the row variance is 

 

    
 2 2 2

1 1

1 2 1
ˆ

12 1 1

s s

i i j j

j j

s s b
U L L b jS S

s s


 

   
      

   
    (16) 

 

When there is no seasonal effect, Sj = 0 ∀j = 1, 2,…, s, and so 

 

  
 2

1

12
i

s s
V L b

 
  

 
  (17) 

 

and 

 

       2

1 1

2 1

1 1

s s

i i i j j

j j

b
d L U L V L jS S

s s 

 
    

  
    (18) 

 

which is zero under null hypothesis (H0: Sj = 0). 

(b) For the Quadratic trend-cycle component, in the presence of seasonal 

effect, the row variance is 
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When there is no seasonal effect, Sj = 0 ∀j = 1, 2,…, s, 2
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which is zero under null hypothesis (H0: Sj = 0). 

(c) For the Exponential trend-cycle component, in the presence of seasonal 

effect, the row variance is 
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When there is no seasonal effect, Sj = 0 ∀j = 1, 2,…, s, 2
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Which again is zero under the null hypothesis (H0: Sj = 0). 

It is clear from di = Ui – Vi (see (18), (21), and (24)) that when the trend 

dominates the series, the presence of the seasonal effect in a series will be difficult 

to detect. Therefore, it is advisable to isolate the trend before embarking on test for 

presence of seasonal effect in a series. It is important to note that the di represented 

by (18), (21), and (24) for linear, quadratic, and exponential curves respectively are 

functions of the seasonal components only when the trend is removed. 

Empirical Examples 

This section presents some empirical examples to illustrate the application of the 

tests for seasonality in time series data discussed previously, and to compare the 

powers of the tests in the detection of the presence of seasonal effects in a series. 

The data used consists of 106 data sets of 120 observations each, simulated using 

the MINITAB software from: (a) Xt = (a + bt) + St + et with a = 1 and b = 0.02, 

0.20, and 2.00, for the linear trend-cycle component; (b) Xt = (a + bt +ct2) + St + et 

with a = 1, b = 2.0, and c = 3 for the Quadratic trend-cycle component; and 

(c) Xt = (bect) + St +et with b = 10 and c = 0.02 for exponential trend-cycle 

component. In each case it is assumed that et ~ N(0, 1) and Sj, j = 1, 2,…, 12 are as 

shown in Table 2. Meteorological data were collected from the meteorlogical 

station in Owerri, southeastern Nigeria, for the period of 1990-2010 with the 

assistance of the computer unit of the Federal Meteorological Centre Oshodi, Lagos. 

The weather parameters collected are mean monthly values of air temperature, 

relative humidity, and rainfall. Data on monthly U.S. male (16 to 19 years) 

unemployment figures (in thousands) for the period 1948 to 1981, monthly gasoline 

demand Ontario (gallon millions) for the period 1960 to 1975, monthly production 

of Portland cement (thousands of tons) for the period 1956 to 1970, and monthly 

milk production (pounds per cow) for the period 1962 to 1975, sourced from 

Hyndman (2014), were used to further illustrate the application of the proposed 

tests for seasonality in real life time series data. 
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Table 2. Seasonal indices used for simulation 

 

j 1 2 3 4 5 6 7 8 9 10 11 12 

Sj -0.89 -1.22 0.10 -0.15 -0.09 1.16 2.34 1.95 0.64 -0.73 -2.14 -0.97 

 
 
Table 3. Summary results of tests for seasonality when b = 0.02, 0.20, and 2.00 for linear 

trend curve 
 

  1% (0.01)  5% (0.05)  10% (0.10) 

Slope Test Statistic %Pass %Fail   %Pass %Fail   %Pass %Fail 

b = 0.02 t-test 100.00 0.00  100.00 0.00  100.00 0.00 

 S-R test 100.00 0.00  100.00 0.00  100.00 0.00 
 Sign test 84.91 15.09   99.06 0.04   99.06 0.04 
          

b = 0.20 t-test 100.00 0.00  100.00 0.00  100.00 0.00 

 S-R test 74.53 25.47  100.00 0.00  100.00 0.00 
 Sign test 76.41 23.59   99.06 0.04   99.06 0.04 
          

b = 2.00 t-test 67.92 32.62  74.53 25.47  82.08 17.92 

 S-R test 60.38 39.62  74.53 25.47  80.11 19.81 
 Sign test 47.17 52.83   65.09 34.91   65.09 34.91 

 
 

The summary of the results of the application of the three tests for the 

presence of seasonal effects in the simulated series are shown in Table 3 when the 

trend-cycle component is present for linear trend curve and Table 4 when trend-

cycle component is absent for linear, quadratic, and exponential trend curves. 

As Table 3 shows, when the slope b is 0.02, the t-test and Wilcoxon signed-

ranks test performed equally well (100% of the time) in detecting the presence of 

seasonal effect at the three chosen levels of significance (i.e. 1%, 5%, and 10%). 

The sign test was able to detect the presence of seasonal effect from at least 84.91% 

of the time at 1% level of significance to about 99.06% of the time at both 5% and 

10% levels of significance. When the slope b is increased to 0.20, the t-test was 

able to detect the presence of seasonality 100% of the times at the three chosen 

levels of significance. The Wilcoxon signed-ranks test was able to detect the 

presence of seasonality 100% of the time at 5% and 10% levels of significance and 

less than 75% of the time at 1% levels of significance. The sign test, on the other 

hand, was able to detect the presence of seasonal effect about 99.06% of the time 

at both 5% and 10% levels of significance but at about 76.41% of the time at 1% 

level of significance. For b = 2.00, all three tests did not perform as well in detection 

of the presence of seasonal effects in a series. 
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Table 4. Summary results of tests for seasonality for the de-trended series for linear, 

quadratic, and exponential trend curves 
 

Trend 
Component 

 1%  5%  10% 

Test Statistic %Pass %Fail   %Pass %Fail   %Pass %Fail 

Linear: t-test 100.00 0.00  100.00 0.00  100.00 0.00 

a = 1.0, S-R test 85.85 14.15  100.00 0.00  100.00 0.00 

b = 2.0 Sign test 85.85 14.15  99.06 0.04  99.06 0.04 
          

Quadratic: t-test 100.00 0.00  100.00 0.00  100.00 0.00 

a = 1.0, b = 2.0, S-R test 100.00 0.00  100.00 0.00  100.00 0.00 

c = 3.0 Sign test 84.91 15.09  99.06 0.04  99.06 0.04 
          

Exponential: t-test 100.00 0.00  100.00 0.00  100.00 0.00 

b = 10, S-R test 100.00 0.00  100.00 0.00  100.00 0.00 

c = 0.02 Sign test 96.23 4.77  100.00 0.00  100.00 0.00 

 
 

The best, the t-test, was able to detect the presence of seasonal effects at most 

82% of the time at 10% level of significance and less than 75% of the time at 1% 

and 5% levels of significance. 

In summary, the performances of all the tests (t-test, Wilcoxon signed-ranks 

test, and sign test) appear to have decreased with increasing dominance of the trend- 

cycle component in the simulated series and increased with increasing levels of 

significance. The t-test was observed to have performed better than the other two 

statistical tests applied while the Sign test appears to be trailing behind others. 

The results also appear to support the claim made by Iwueze and Nwogu 

(2014) that it is necessary to de-trend time series data before conducting test for 

seasonality. This claim was supported by results of (18), (21), and (24). In other to 

assess the authenticity of this claim, the three tests (t-test, Wilcoxon signed-ranks 

test, and sign test) were applied to the de-trended series from the simulated series 

with b = 2.0. The results of these are shown in Table 4. 

The results in Table 4 show that the t-test and Wilcoxon signed-ranks test are 

equal and perfect in performance (100% all through) in detecting the presence of 

seasonal effects, although the sign test has performance percentages of about 

85.85% at 1% level of significance and 99.06% at both 5% and 10% significance 

levels. These are in line with the results obtained when the slope b = 0.02, and 

supports the claim that dominance of a series by trend can obscure the presence of 

seasonal effect in a series. 
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Table 5. Results of tests for seasonality using real life time series data 

 

 t-Test Wilcoxon S-R Test Sign Test 

Weather Parameter P-Value Sig. (2-tailed) 

Air Temperature 0.003 0.001 0.000 

Relative Humidity 0.000 0.000 0.000 

Rain Fall 0.000 0.000 0.000 

US Male (16-19 years) Unemployment 0.000 0.003 0.006 

Gasoline Demand 0.000 0.002 0.000 

Production of Portland Cement 0.004 0.008 0.006 

Milk Production 0.000 0.002 0.000 

 
 

The summary of the results of the application of the three tests for presence 

of seasonal effect in the real life time series are shown in Table 5. The three 

proposed tests (t-test, Wilcoxon signed-ranks test, and sign test) performed well in 

the detection of the presence of seasonal effects in all the real life time series data 

used, even at 1% significance level. 

Concluding Remark 

In this study, three tests (t-test, Wilcoxon signed-ranks test, and sign test for paired 

sample data) for detection of seasonal effects in a time series data have been 

proposed. The tests were developed using the row variances of the Buys-Ballot 

table when the model structure is additive, and for selected trending curves. The 

performances of the tests were assessed using simulated series with different 

trending curves and at different levels of significance, and with real life time series 

data. 

The results of the analysis from the simulated series show that the 

performances of all three tests to have decreased with increasing dominance of the 

trend-cycle component in the simulated series, and increased with increasing levels 

of significance. The t-test was observed to have performed better than the other two 

statistical tests applied, while the sign test appears to be trailing behind others. 

When the tests were applied to the de-trended series from a trend dominated 

series (simulated series with b = 2.00), the results are in line with the results 

obtained when the slope b is 0.02. This supports the claim by Iwueze and Nwogu 

(2014) that dominance of a series by trend can obscure the presence of seasonal 

effect in a series and that it is necessary to de-trend a time series data before 

conducting test for seasonality. 
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In view of these results, it has been recommended that the Student’s t-test and 

Wilcoxon signed-ranks test be used for the detection of the presence of seasonal 

effects in time series data when the model structure is additive until further studies 

prove otherwise. It has also been recommended that the tests be applied to the de-

trended series when a series is dominated by trend. Preliminary assessments like 

the time plot of the study series can offer a guide to determining when a series is 

dominated by the trend. 

Furthermore, when real life time series data were used, the three proposed 

tests (t-test, Wilcoxon signed-ranks test, and sign test) performed well in detection 

of the presence of seasonal effect even at 1% significance level. 
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