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Large scale Monte Carlo applications need a good pseudo-random number generator 
capable of utilizing both the vector processing capabilities and multiprocessing 
capabilities of modern computers in order to get the maximum performance. The 
requirements for such a generator are discussed. New ways of avoiding overlapping 
subsequences by combining two generators are proposed. Some fundamental 
philosophical problems in proving independence of random streams are discussed. 
Remedies for hitherto ignored quantization errors are offered. An open source C++ 

implementation is provided for a generator that meets these needs. 
 

Keywords: Random number generation, SIMD, vector processors, multiprocessors, 

parallel generation, combination of generators, quantization errors, theoretical proofs, 

philosophy of science 

 

Introduction 

The exponential increase in the computing power of mainstream microprocessors 

over several decades, known as Moore's Law, has made large scale Monte Carlo 

applications feasible and common. The current trend in microprocessor 

technology goes towards parallel processing of data in mainly two ways: 1) 

microprocessors have vector registers that can do arithmetic operations on a 

whole vector with a single CPU instruction (Single Instruction Multiple Data, 

SIMD), and 2) microprocessor chips have multiple CPU cores that can execute 

multiple threads simultaneously. The design of pseudo-random number generators 

(PRNGs) has been improved considerably in recent decades, but few of the 

published designs are suitable for utilizing the parallel processing capabilities of 
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today's microprocessors in large scale computations (Manssen, et al., 2012; 

Passerat-Palmbach, Mazel and Hill, 2011). The construction of pseudo-random 

number generator software capable of utilizing both vector processing and multi-

threading for the fast generation of large amounts of pseudo-random numbers of 

high quality, using the newest microprocessor technology are considered. 

Choice of hardware 

Several hardware platforms are available for parallel processing:  

Mainstream CPUs for the PC market 

These CPUs are quite powerful. They are universally available and cheap because 

of high production volumes. The size of vector registers in the common x86 

family of microprocessors has grown exponentially in recent years, as illustrated 

in Table 1. 
 
 
Table 1. Vector register size of x86 family microprocessors. 

 

Year introduced 
Instruction set for integer vector 

operations 
Vector size, bits 

1997 MMX 64 

2001 SSE2 128 

2013 AVX2 256 

expected 2017 AVX-512 512 

 
 

Vector sizes of 1024 bits and perhaps 2048 bits can be expected in 

mainstream CPUs in the coming years. However, the vector size will probably not 

keep growing exponentially because of diminishing returns and because the size 

of mask registers used for conditional execution is limited to 64 bits, 

corresponding to 64 elements of 32 bits each = 2048 bits, in current specifications 

from Intel (Intel, 2014a). 

The high-end CPUs are currently available with 8 or more cores and a clock 

frequency of 3 – 4 GHz. Some models are capable of running two threads in each 

core, but this may not be useful for CPU-intensive code because both threads are 

competing for the same hardware resources (Fog, 2014a). 
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Graphic processors. 

Graphics Processing Units (GPUs) are included in many PCs and designed mainly 

for the purpose of computer games. Contemporary GPUs are available in many 

different configurations with hundreds or thousands of parallel streams and clock 

frequencies ranging from 200 to 1600 MHz. GPUs have increasingly been applied 

to general computation tasks that involve large amounts of parallel data. Software 

libraries for random number generation in GPUs are available (Manssen, et al., 

2012; Demchik, 2011; Barash and Shchur, 2014; Nandapalan, et al., 2012). 

A serious limitation of GPUs is that each stream has access to only a small 

amount of RAM memory, and communication between streams is expensive. We 

have to consider that random number generation is typically only a small part of 

an application, using only a small part of the total CPU time. The other parts of a 

typical application, the ones that consume the random numbers, will typically be 

running in the same units that produced the random numbers and be subject to the 

same limitations on memory use and communication between streams. This is 

limiting the usefulness of GPUs for large scale Monte Carlo applications. 

Many-core coprocessors 

Intel's current Many Integrated Core (MIC) Xeon Phi coprocessor codenamed 

Knights Corner has up to 61 cores with 512-bit vector registers and a clock 

frequency of 1.2 GHz (Chrysos, 2012). The throughput per core is much lower 

than for a general purpose CPU, and the total throughput is rarely more than a few 

times the throughput of the best mainstream CPU configurations. In some cases, a 

mainstream CPU can even outperform the Knights Corner (Saule, Kamer and 

Çatalyürek, 2013; Chan, 2013; Karpiński 2014). The Knights Corner has its own 

instruction set, which makes it less attractive for portable software. The 

announced successor, codenamed Knights Landing, is expected to be faster and it 

will be using the same instruction set (AVX-512) as future mainstream CPUs 

(Anthony, 2013). This will make it possible to use the same software on MIC 

processors and mainstream CPUs. 

Similar products from other vendors include Nvidia Tesla and AMD 

FireStream. These processors have more in common with GPUs. 

Large vector processors 

For most applications, clusters of general microprocessors have largely replaced 

the large and expensive supercomputers that were used decades ago for 

demanding scientific purposes. 
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Parallel generation of pseudo-random numbers in vector 
processors 

A PRNG generally uses a generating function f of the form (L’Ecuyer, 1994) 

 

  1 2f , , ,i i i i nx x x x     

 

where each new value xi is a function of the previous n values. The successive 

values xi may be used directly as random numbers, or they may be transformed by 

an output function g of the form 

 

  1g , , ,i i i i ny x x x    

 

Not all of the values xi−1, xi−2, ..., xi−n need to be included in f. We will say 

that f has a feedback path of length φ if f depends on xi−φ. The function f can be 

implemented in a vector processor with registers of size v bits if v ≤ wφ for all 

feedback paths φ, where w is the number of bits needed to represent each xi. For 

example, for a vector size v of 256 bits and a word size w of 32 bits, the shortest 

feedback path φ must be at least 8 for an efficient vectorized implementation of f. 

If φ ≥ 8 and n ≥ 8 then we can calculate 8 successive values of xi with a vectorized 

function f of the form: 

 

    7 6 1 2, , , , , ,i i i i i i nx x x x x x     f   

 

If v > wφ then the vectorized function f needs to implement multiple steps of 

the generating function f. This is usually so complicated that it offsets the 

advantage of vectorized calculation. 

The last n values of xi are stored in a circular buffer, called the state buffer, 

which is updated by each call of the generating function f or f. The initial value of 

the state buffer is a function of an arbitrary number called the seed. This function 

is the so-called seeding procedure. 

The size of the state buffer is at least wn and often extended to the nearest 

multiple of the vector size v. The implementation is most efficient if wφ and wn 

are multiples of the vector size v. 

Most of the commonly used PRNGs have a feedback path φ = 1, which 

makes them unsuited for vectorized calculation. Preferred generators are those 

with feedback paths corresponding to the largest vector size there is access to in 
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available vector processors. A generator designed to match 128-bit vector 

registers has been published under the name SIMD-oriented Fast Mersenne 

Twister (SFMT) (Saito and Matsumoto, 2008, 2009). 

Parallel generation of pseudo-random numbers in 
independent streams 

The construction of generators suitable for vector processors has received 

relatively little attention in the literature, but the simultaneous generation of 

multiple pseudo-random streams has been discussed in several publications. Five 

different methods for producing independent streams have been proposed 

(L’Ecuyer, 1994; Salmon, 2011; L’Ecuyer, Oreshkin and Simard, 2014; Bauke 

and Mertens, 2007): 

 

1. Use multiple instances of the same generator with different seeds. 

We want to avoid overlap between the generated subsequences. 

Assume that we are generating k subsequences of length ℓ from a 

generator with total cycle length ρ. If the seeding procedure is 

sufficiently random then we can calculate the probability that any of 

the subsequences are overlapping as (L’Ecuyer, Oreshkin and 

Simard, 2014) 

 

  
1 21 1 / /

k
p k k 


      

 

If the total cycle length ρ is sufficiently long then this probability can 

be very small. For example, for a Mersenne Twister MT19937 

(Matsumoto and Nishimura, 1998) with cycle length ρ = 219937−1, 

k = 1000 and ℓ = 1010, we have p = 2∙10−5986. This means that we can 

safely ignore the risk of overlapping subsequences in such cases. 

2. Use a generator with a jump-ahead feature. We use this jump-ahead 

feature to generate each stream as a subsequence of the same 

generator at an offset q ≥ ℓ relative to the preceding stream 

(L’Ecuyer, 1994; L’Ecuyer and Côté, 1991). The jump-ahead feature 

is usually quite complicated and requires a significant amount of 

computing resources. Regularly spaced starting points may cause 

inferior randomness for some generators (Durst, 1989).  
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3. A variant of the jump-ahead method is to put all the randomness in 

the output function g, while the generating function f is a simple 

counting xi = xi−1 + 1 mod 2w (Salmon, 2011). This makes it trivial to 

generate non-overlapping subsequences. The output function g is 

borrowed from cryptology. Instructions for AES encryption are 

implemented in hardware in many computers, using a vector size of 

128 bits, but not higher (Intel, 2014b). 

4. Leapfrogging. The first of k streams uses outputs xi, xi+k, xi+2k, ... The 

next stream uses xi+1, xi+1+k, xi+1+2k, ... and so on. This is useful when 

the k streams form a vector generated by a single vector processor. It 

is more complicated to use leapfrogging when the streams are 

generated in separate processors. Known multiprocessor 

implementations use prime modulus (Bauke and Mertens, 2007), 

which leads to quantization errors (see below). 

5. Use different generators based on the same principle but with 

different sets of parameters in the generating function. If we have 

many streams then we need to either store many pre-calculated 

parameter sets, or include the necessary code to search for good 

parameter sets on the fly (Matsumoto and Nishimura, 2000). This so-

called dynamic creation method requires a lot of computational 

resources, possibly even more than the resources needed to generate 

the random number streams, and it has been reported to make 

inferior parameter sets in some cases (Passerat-Palmbach, Mazel, 

Mahul and Hill, 2010). 

 

There is disagreement among theorists about whether method 5 can be 

recommended. One would intuitively assume that random streams generated by 

different generators with different parameter sets are statistically independent, but 

some have argued that we have no theoretical proof that there is no unwanted 

correlation between such random streams (Passerat-Palmbach, Mazel and Hill, 

2011; L’Ecuyer, 1994). However, those who make this objection seem to ignore 

that the same argument can be made about subsequences from the same generator. 

Perhaps they rely on the implicit (and arguably false) assumption that the most 

recommended generators are perfect, and conclude that non-overlapping 

subsequences from the same generator are statistically independent.  

However, if subsequences are spaced by an offset of e.g. q = 1015 and 

experimental tests for randomness have included no sequences longer than 

ℓ = 1010 then we have no experimental proof that all subsequences are 
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independent, and no theoretical proof either (Bauke & Mertens, 2007). It is 

reasonable to assume that the probability of unwanted correlations between 

sequences from different generators (with different seeds) is not bigger than the 

probability of unwanted correlations between subsequences of the same generator. 

We will return to a more general discussion of theoretical proofs below. 

 

6. A sixth method of making independent pseudorandom streams is 

now proposed. It involves the combination of two different PRNGs. 

We will have two different generators, G and H, and initialize them 

with seeds s1
G and s1

H, respectively. G generates a pseudorandom 

sequence x1
Gi and H makes another sequence x1

Hi, where each x is an 

integer of w bits, and 0 ≤ i < ℓ. The two sequences are now combined 

into one stream by means of a bitwise XOR operation or addition 

modulo 2w, e.g. x1
i = x1

Gi + x1
Hi mod 2w. The combined stream x1

i 

now depends on both seeds s1
G and s1

H. We can make a second 

combined stream (indicated by superscript 2) x2
i by changing the 

seed for G, s1
G to s2

G and keeping the seed for H constant: 

s1
G ≠  s2

G ∧  s1
H = s2

H. The second combined stream is 

x2
i = x2

Gi + x2
Hi = x2

Gi + x1
Hi mod 2w. Now consider the unlikely event 

that the seed s2
G generates a sequence x2

Gi that is offset from x1
Gi by 

a distance q < ℓ, perhaps because of a bad seeding procedure. In this 

case, the sequences x1
Gi and x2

Gi have a partial overlap of length 

ℓ − q because x2
Gi = x1

Gi + q. However, the contribution from H is 

x2
Hi = x1

Hi ≠ x1
Hi + q, except for random i-occurrences with expected 

frequency 2−w. Therefore, the first and second combined sequences 

x1
i and x2

i will be statistically independent, even in the unlucky event 

that the G component of the sequences have a partial overlap. 

7. A variant of method 6 is to change both seeds: 

s1
G ≠ s2

G ∧ s1
H ≠ s2

H. To see if this method is safe from overlaps, 

consider the coincidence of three unlucky events: 1) The sequence 

x2
Gi is offset from x1

Gi by a distance |qG| < ℓ so that the G-sequences 

have a partial overlap; 2) the sequence x2
Hi is offset from x1

Hi by a 

distance |qH| < ℓ so that the H-sequences have a partial overlap; and 

3) the two overlaps are equal qG = qH. The two combined sequences 

x1
i and x2

i have a partial overlap only in this contrived scenario. This 

is a theoretical possibility, but it can only happen at the coincidence 

of three unlucky events, all of which are extremely unlikely. The 

probability of this coincidence happening between any of k 
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combined sequences is approximately k2ℓ / (ρGρH) where ρG and ρH 

are the cycle lengths of G and H, respectively. With large cycle 

lengths, this probability is so low that there is room for human errors. 

Even in the event that both seeding procedures are seriously flawed, 

the coincidence of the three unlikely events seems no more than a 

theoretical possibility. 

 

Method 7 has the advantage that the difference between two combined 

streams di = x2
i – x1

i depends on both generators G and H, while di depends only 

on G if method 6 is used. This gives improved randomness in applications where 

differences between streams are involved. The possible improvement in 

randomness by combining two different generators is discussed in the next section.  

Advantages of combined generators 

The technique of combining two or more PRNGs is often used in order to 

improve randomness and cycle length. The cycle length of a combined generator 

is the least common multiple of the cycle lengths of the individual generators. 

There are different opinions on the merits of combining two or more PRNGs. 

L'Ecuyer has argued that the combined output of two generators may conceivably 

be less random than the individual sequences (L’Ecuyer, 1990, 1994), while the 

acknowledged handbook Numerical Recipes emphasizes: "An acceptable random 

generator must combine at least two (ideally unrelated) methods" (Press, 2007, p. 

342). 

The combination of two random streams can only be less random than its 

components if the two streams are correlated in a certain way. The next section 

will discuss whether it is possible to prove that such an unfortunate correlation 

between two random streams does not exist. 

It has been observed that the combination of two or more PRNGs produces a 

stream that is more random than either component. In fact, many good random 

generators have been made by combining inferior ones. Pragmatically speaking, 

we may say that if generator G has some defects and generator H has some other 

defects, then the combination of G and H has neither of these defects, as long as 

the defects of G and H are of different kinds. This is not a universal law of nature, 

of course, and it requires a more specific analysis to determine whether a 

particular kind of defect can be eliminated by combination of generators. There is 

plenty of theoretical evidence that various defects in random generators can be 

eliminated by combining with other generators that do not have the same kind of 



PSEUDO-RANDOM NUMBER GENERATORS 

316 

defects (Matsumoto and Nishimura, 2000; Deng, Lin, Wang and Yuan, 1997; 

L’Ecuyer and Granger-Piché 2003; Marsaglia, 1985). Experience shows that 

combining two generators is a very efficient way of improving randomness. For 

example, if generator G has a bias that makes certain values more frequent than 

others, and generator H has no such bias, then the combined output of G and H 

will have no bias. If Generator H has a correlation between subsequent numbers 

and generator G has no such correlation, then the combined output will be free 

from such correlations. The two generators should preferably be very different in 

their design in order to avoid that they both have the same kinds of defects (Press, 

2007). 

Combining two or more generators is also useful in applications where 

security is important. It is possible to reconstruct a complete sequence from a 

subsequence in many generators. This becomes very difficult or impossible when 

multiple generators are combined and only the combined output is accessible to 

the attacker. 

How much can be proven? 

It has been argued above that it is unreasonable to demand a theoretical proof that 

streams from different PRNGs are uncorrelated as long as we cannot even prove 

the same thing for different substreams of the same generator. This opens up a 

much more general discussion about what kind of proofs are actually possible in 

relation to PRNGs. There are three kinds of claims that we would like to prove for 

generators: 

 

a) A particular generator G has no unwanted correlation with an 

application A, i.e. a correlation that would make A produce results 

that are significantly different from what perfectly random numbers 

would give. 

b) There is no correlation between non-overlapping subsequences from 

the same generator G. 

c) There is no correlation between the outputs of two different 

generators G and H. 

 

Claims of type (a) are made implicitly or explicitly whenever a particular 

PRNG is recommended. Such claims may later be falsified when a particular 

weakness in a generator is discovered. For example, Linear congruential 

generators which have been widely used in commercial software were found after 
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many years to have serious defects (Entacher, 1998). The popular and often 

recommended Mersenne Twister has the flaw that it can produce long sequences 

with more 0's than 1's if it comes into a state where the state buffer contains 

mostly 0's. This flaw was reported only after the Mersenne Twister had been the 

preferred generator for several years (Saito and Matsumoto, 2008). A tiny bias in 

the Multiply-with-carry generators was discovered a few years after this kind of 

generators had been recommended (Couture and L'Ecuyer, 1997). In fact, one 

defect reported by Bauke and Mertens (2004) applies to a large part of all known 

PRNGs. 

The possibility cannot be ruled out that more such discoveries will be made 

in the future, no matter how good we believe that our generators are. Claims that a 

PRNG is good should therefore be regarded as falsifiable propositions in 

accordance with Popper's (1963) philosophy of science. The claim that a 

generator produces random output is never true in the strictest sense, because the 

output is deterministic. It may be proven experimentally that the output of a 

PRNG passes certain tests for randomness, but the possibility that it will fail some 

test if a larger sample size is used cannot be ruled out. If the sample size is 

increased to the entire cycle length then the total sample is no longer random 

because, typically, all output values occur the same number of times in a full 

cycle. 

In science, theoretical proofs are often regarded as stronger than 

experimental proofs. However, for PRNGs there is a dilemma. If it is possible to 

prove theoretically that a PRNG has a certain desirable property, then the 

theoretical insight that allowed this analysis may also be used in the construction 

of an experimental test that defeats the same generator. For example, the 

construction of generators in the Mersenne Twister family usually relies on the 

Berlekamp-Massey algorithm for verification of the cycle length (Saito and 

Matsumoto, 2008). Therefore, it is no surprise that the Mersenne Twisters fail a 

test based on the Berlekamp-Massey algorithm, the so-called linear complexity 

test (L’Ecuyer and Simard, 2007). If a chaotic behavior with no recognizable 

mathematical structure is what characterizes a good PRNG, then perhaps the best 

generators are the ones that are most difficult to prove good (Fog, 2001). On the 

other hand, attempts to produce PRNGs without any theory have led to very bad 

results (Knuth, 1998). 

Claims of type (a) are generally the easiest to falsify. Most of the generators 

described in the literature have weaknesses that have been discovered by either 

experimental of theoretical methods. 
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Claims of type (b) have occasionally been falsified. Durst (1989) 

demonstrated a correlation between regularly spaced subsequences of linear 

congruential generators. 

Claims of type (c) are the most difficult to falsify. The more different two 

generators are, the more difficult it is to construct a mathematical framework that 

allows the simultaneous analysis of both, and the more unlikely it is that they 

have a common structural property that can produce a correlation (Press, 2007). A 

given generator is more likely to correlate with an application, which can have a 

lot of regularity, than with another generator that was designed with the goal of 

avoiding correlations. 

The dilemma that mathematical tractability is good for theoretical analysis 

but bad for randomness seems to prevent us from making the best random 

generators, or at least from knowing which generators are best. Fortunately, we 

can get along with less than perfect generators as long as we can eliminate known 

defects by combining two different generators. This means that we can live with 

minor imperfections in (a) and (b) as long as we can rely on claims of type (c). 

It is unreasonable to demand a theoretical proof of type (c) for three reasons. 

The first reason is that it is not clear what kind of theoretical proof is expected to 

prove the randomness of a pseudo-random sequence of numbers. The second 

reason is that the philosophy of science does not allow absolute proofs of this kind, 

only evidence and falsifiable hypotheses. And the third reason is that the 

mathematical tractability that would allow such a proof, would also defeat it. 

All evidence, theoretical as well as experimental, supports the claim that we 

can improve randomness by combining the outputs of two or more very different 

generators. We will rely on this claim as long as it has not been falsified, because 

it is the best method we have so far for producing deterministic pseudo-random 

numbers. A more general philosophical discussion is needed about what kind of 

proofs are possible or desirable in relation to PRNGs. 

Quantization effects 

The minimum difference between two floating point numbers in the interval 

[½, 1] is δ = 2−24 for single precision, and 2−53 for double precision according to 

the IEEE-754 standard, which all modern computers support (IEEE Computer 

Society, 2008). The minimum difference for single precision is 2−25 in [¼, ½], 2−26 

in [⅛, ¼], and so on. Many applications require random floating point numbers 

with uniform distribution in the interval [0,1). If we require equidistant points 

with the best possible resolution in single precision, then we will have 224 possible 
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values in the interval [0,1). For this, we need a generator capable of giving 224 

different values, all with the same frequency. If the generator outputs e.g. a 32-bit 

word then we can simply use 24 of these bits and discard the remaining 8 bits. 

For most generators, the generating function f gives an integer output xi in 

an interval [0, m). Typically f is some arithmetic function modulo m. If m is a 

power of 2 then we can easily extract the desired number of random bits. 

Unfortunately, many of the generators that are described in the literature have a 

modulus m which is not a power of 2. Often m is a prime because functions with 

prime modulus have advantageous mathematical properties. When converting a 

pseudorandom integer xi modulo m to a floating point number in [0,1) it is 

common to just divide xi by m. Unfortunately, this does not give equidistant 

points with equal frequency. If m < 224 then there will be some of the possible 

values that never occur. If m > 224 then some values between 0.5 and 1 will occur 

more frequently than other, and values less than 0.5 can be spaced less than 

δ = 2-24 apart. Such quantization effects can lead to systematic errors in 

applications that depend on the probability that a random number falls within a 

certain narrow interval. 

For example, consider a generator with prime modulus m = 232−5 (e.g. 

L'Ecuyer, 1999). A floating point output from this generator will have the value 

0.6 with frequency 255/m, while the next value 0.6 + δ occurs with frequency 

256/m. The value 0.2 occurs with frequency 63/m while the next value 0.2 + δ/4 

occurs with frequency 64/m. 

Such inaccuracies may be unimportant in small applications, but in large 

applications that use billions of random numbers, the accumulated errors may 

actually be statistically significant. It is possible to eliminate the quantization 

errors by means of a rejection method, but this is quite costly in terms of 

efficiency (See below for an example of a rejection method). Alternatively, the 

quantization error may be tempered by an appropriate output function that uses 

multiple elements in the state buffer. 

Why is the output interval half open? 

The half-open intervals [0,1) and (0,1] can both be divided into 224 equidistant 

points with the maximum resolution δ = 2−24 for single precision floating point 

numbers. This makes it easy to generate a uniformly distributed variable from 24 

random bits. We will have quantization errors, as explained above, if we map a 

24-bit random number to one of the symmetric intervals [0,1] and (0,1), which 

have 224 + 1 and 224 − 1 equidistant points, respectively. 
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A Monte Carlo application can generate an event with probability p ∈ [0,1] 

by testing x < p, where x ∈ [0,1) is a uniform random variable. If x is quantized 

as 224 equidistant points in [0,1) with equal frequency and p is similarly quantized 

by δ = 2−24 then the event x < p will occur with the exact frequency p. If x ∈ (0,1] 

then x ≤ p will also occur with the exact frequency p. A uniformly distributed x in 

one of the symmetric intervals [0,1] or (0,1) will give rise to tiny rounding errors 

in the frequency of x < p. 

A disadvantage of the half-open intervals is that the mean is not exactly ½, 

but (1−δ)/2 and (1+δ)/2, respectively. This is acceptable for most purposes since it 

will take a sample size of 8∙1014 to estimate the mean of x with enough precision 

to get a statistically significant error of 3 standard deviations. 

Requirements for good generators 

Consider some requirements that are important for the choice of PRNGs for large 

applications using vector processors, multicore processors and CPU clusters. 

 

1. The generator should pass experimental tests for randomness. 

2. The cycle length should be so high that the risk of overlapping 

subsequences is negligible, but not so high that the state buffer uses 

an excessive amount of data cache. 

3. Good equidistribution, as determined by theoretical or experimental 

methods (L’Ecuyer, 1994). 

4. Good diffusion. This is obtained if each bit in the state buffer 

depends on multiple bits in the previous state (Panneton, L'Ecuyer 

and Matsumoto, 2006). Diffusion is closely related to the concept of 

bifurcation in chaos theory (Fog, 2001; Černák, 1996). A good 

diffusion means highly chaotic behavior, which is a desirable 

property for a PRNG. 

5. The shortest feedback path should be long enough to fit the largest 

available vector register. However, a long feedback path means poor 

diffusion. Therefore, the shortest feedback path should not be longer 

than necessary. 

6. The modulus m should be a power of 2 to avoid quantization effects 

and rounding errors. 

7. The generator should be reasonably fast. 

8. It should be possible to generate independent streams from multiple 

instances of the generator. 
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Construction of a generator satisfying these requirements 

There are many PRNGs described in the literature, but few that satisfy all the 

requirements listed above. Parallel generation has relied more on multiprocessors 

than on vector processors (L’Ecuyer, Oreshkin and Simard, 2014). The only 

generator explicitly designed for vector processors is the "SIMD-oriented Fast 

Mersenne Twister" (SFMT), which relies on 128-bit vectors (Saito and 

Matsumoto, 2008, 2009). Unfortunately, the feedback path of this generator does 

not allow implementations in larger vector registers, and there are no plans for an 

extended version (Saito, 2014). The general Mersenne Twisters have long 

feedback paths (Matsumoto and Nishimura, 1998; Nishimura, 2000) so that they 

can easily be implemented in vector processors. These generators have poor 

diffusion and slow recovery from a state of mostly 0's. The recently published 

variant "Mersenne Twister for Graphic Processors" (MTGP) (Saito and 

Matsumoto, 2013) has somewhat improved diffusion properties, and this appears 

to be the best choice. The chosen version has the Mersenne exponent 11213, 

which gives a state buffer size of 351 x 32 bits. The cycle length is ρ = 211213−1. 

This is more than enough to avoid overlapping subsequences, and higher values 

would be a waste of data cache. Smaller versions have not been published. The 

shortest feedback path is 84 x 32 bits, which makes implementation in large 

vector registers possible.  

This generator has known weaknesses, which are common to the Mersenne 

Twister family: It is vulnerable to tests based on  algebra; it has relatively poor 

diffusion; and it has subsequences with more 0's than 1's. These weaknesses 

should be eliminated by combination with a second generator that does not have 

the same weaknesses. 

Other generators with long feedback paths are difficult to find in the 

literature. The RANROT generator is a lagged Fibonacci generator with bit 

rotation (Fog, 2001). This generator is simple and fast, it can be constructed with 

any feedback path length, and most versions pass all tests for randomness. 

However, this is an example of a generator that is difficult to analyze theoretically. 

Assumptions about the cycle lengths of RANROT generators are based on 

extrapolations from experimental measurements on very small generators. The 

RANROT may be a good generator, but more research is needed before we can 

rely on this generator for demanding applications. 

No other generator was found with a sufficiently long feedback path suitable 

for our purpose. Multiply-with-carry generators with lag have been described, but 

they have an extra feedback path of length 1 in the carry (Marsaglia, 2003). It 
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may be possible to construct a multiply-with-carry generator where the carry 

feedback is also lagged. 

Because no suitable candidate for the second generator has been found with 

a feedback path that allows vectorization, we have instead to rely on multiple 

parameter sets for the same kind of generator (method 5). Each vector position 

will have its own independent generator with different parameters for each. After 

rejecting generators with prime modulus, the best candidate we found was a 

multiply-with-carry (MWC) generator (Goresky and Klapper, 2003). This 

generator is relatively simple, it has excellent randomness and very high diffusion 

or bifurcation. Nine good multipliers for MWC are listed by Press (2007). Eight 

of these are used in order to implement eight generators of 64 bits each in a 512 

bit vector. The output function is a 64-bit XOR-shift method as recommended by 

Press (2007). Unfortunately, there are not enough good multipliers for future 

implementations in larger vector registers. Each MWC generator delivers a 64-bit 

output which is divided into two 32-bit random numbers. 

The eight MWC generators have different cycle lengths, ranging from 5∙1018 

to 9∙1018. This is not enough to completely rule out overlapping subsequences in 

large applications when the MWC generator is used alone, but the MTGP 

generator has prime cycle length so that the cycle lengths are multiplied when the 

MWC and MTGP generators are combined. 

The MWC generator has a very slight bias in the upper bits (Couture and 

L'Ecuyer, 1997). The bias is too small to have practical significance, and it is 

removed by the output function or by the combination with the MTGP generator 

anyway. 

It can be concluded that the MTGP and MWC generators both have known 

defects, but they have no defects in common. There are no known defects in any 

of these two generators that cannot be removed by combination with the other 

generator. Therefore, it is expected that the combined output of these two 

generators is suitable for even the most demanding applications. Multiple 

independent streams can be generated from multiple instances of the combined 

generator by changing the seed of one or both generators, in accordance with 

method 6 or 7. 

Practical implementation 

It was decided to make an implementation that is suitable for the forthcoming 

AVX-512 instruction set, which will be common to the most relevant hardware 

platforms in a near future. Existing instruction sets with vector sizes smaller than 
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512 bits are supported by dividing the data into smaller vectors. C++ is the 

obvious choice of programming language for code that needs to be portable to 

several platforms and operating systems, highly optimized, and needs overloaded 

operators for vector operations. The code is integrated into the vector class library 

(VCL. Fog, 2014b) which provides efficient vector operators for the generator as 

well as for the application that uses it. Supported platforms include Windows, 

Linux and Mac OS with Microsoft, Intel, Gnu and Clang compilers. 

The generator, named RANVEC1, is implemented as a C++ class so that an 

application can make a separate instance for each thread in a multiprocessor 

environment. Each instance can deliver random number vectors of up to 512 bits 

with integer or floating point elements. 

The fastest way of generating a uniform floating point output with 

equidistant points from random bits is to set the exponent of a single precision 

floating point number in the IEEE-754 representation to (0+bias) and set the 

mantissa to 23 random bits. This gives a uniform random number in the interval 

[1,2). Subtracting 1 then gives a number in the desired interval [0,1) (Saito and 

Matsumoto, 2009). This method gives a resolution of 2−23. The maximum 

resolution of δ = 2-24 can be obtained from 24 random bits by first using 23 bits to 

make a random number in the interval [1,2) as above, and then subtracting either 

1 or (1−δ) depending on whether the last bit is 0 or 1. It is possible to make a 

double precision random number with the maximum resolution of 2−53 by the 

same method, but the current implementation gives only a resolution of 2−52 for 

double precision because it was decided that the last bit will have no significance 

for applications with a realistic sample size. 

Many applications need a random integer u with uniform distribution in an 

interval [a,b] of length d = b-a + 1. This can be obtained from a random 32-bit 

unsigned integer x by a 64-bit multiplication: 32/ 2u a xd     . However, this 

method is subject to a bias similar to the quantization error discussed above when 

the interval length d is not a power of 2. Floating point calculation methods give 

the same error because of the mapping of an interval of a power-of-2 length to 

another interval of incommensurable length d. Most standard random generator 

libraries have this error. The error may be negligible when d is small, but it can be 

quite serious for large d. The worst case is d = 3∙230. In this case, values of (u − a) 

that are divisible by 3 occur twice as frequent as other values. This can obviously 

lead to serious errors in applications that happen to depend on u mod 3. This error 

can be eliminated by using a rejection method. Confine x to r possible values 
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where r is a multiple of d. 322 / .r d d     If xd mod 232 ≥ r then reject the value 

and generate a new x. 

Rejection methods are also used for generating random variables with other 

distributions than uniform (Devroye, 1986). Algorithms that involve rejection 

methods may be implemented in vector processors as follows. First generate a 

random vector and execute the steps in the algorithm necessary to determine 

rejection. If any elements of the vector are rejected, then generate another random 

vector and repeat the calculations. Replace any rejected elements in the first 

vector by accepted elements from the second vector. Continue like this until we 

have a vector of only accepted elements. If calculations are expensive and not 

dependent on changing parameters then we may save any remaining accepted 

elements for the next round. If exact reproducibility across platforms is required 

then we must keep the vector size constant. 

Tests of the constructed generator 

The randomness of the generator outputs were tested using the powerful BigCrush 

battery of tests in the TestU01 software suite of experimental tests for randomness 

(L’Ecuyer and Simard, 2007). The MWC generators were tested in various 

configurations: each of the eight generators separately, the lower or upper 32-bit 

half of each generator output, as well as all eight generators in a round robin 

fashion. All tests were passed. The MWC generators failed several tests when the 

XOR-shift output function was removed. 

The MTGP generator failed the linear complexity test as expected, but 

passed all other tests in the BigCrush battery of tests. The MTGP generator also 

failed a binary matrix rank test where the matrix size was increased to 

12000×12000. The test results were the same when the output function (so called 

tempering) was removed. The combination of the MWC and MTGP generator 

passed all tests, with or without tempering. 

The speed of the random generators were tested after compiling with 

different compilers and different vector register sizes. The test measured the time 

required to generate 214 random 32-bit integers and computing their sum. The 

calculation time depends on the CPU clock frequency, which varies a lot due to 

the power-saving features of the CPU. In order to get consistent and reproducible 

time measurements, it was decided to use the core clock count as time unit. This 

time unit is defined by the frequency that the execution unit in the CPU is actually 

running at. Core clock counts were measured using the TESTP test program (Fog, 
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2014c). The calculation speed was measured for the MWC and MTGP generators 

as well as for the SFMT generator and the original Mersenne Twister (MT). The 

results are given in Table 2. 
 
 
Table 2. Random number generation times for various generators using different 

compilers and register sizes. The unit is core clock cycles per 32 bits, single thread. 
 

  

Compiler 

Generator Register size bits Gnu Clang Intel Microsoft 

MWC 
128 4.1 4.0 3.6 3.0 

256 1.8 2.2 2.6 3.1 

MTGP 
128 8.9 10.3 8.8 18.4 

256 4.0 4.5 4.5 43.1 

MTGP w/o tempering 256 3.1 3.5 3.6 18.9 

MWC + MTGP 
128 10.4 12.4 10.4 20.3 

256 5.0 5.7 6.1 46.4 

MWC + MTGP w/o 
tempering 

256 3.9 4.6 5.1 20.7 

SFMT 128 2.0 1.8 2.0 1.9 

MT 32 9.3 14.2 8.5 12.8 
 

Configuration: Intel Haswell microprocessor, 3.4 GHz. Windows 7, 64 bits. Gnu C++ compiler v. 4.8.3 Cygwin. 

Clang C++ compiler v. 3.4.2 Cygwin. Intel C++ compiler v. 15.0. Microsoft C++ compiler v. 17.0.  

 
 

Notice that the combined generator takes 5 – 6 clock cycles per random 

number using a vector size of 256 bits when the Gnu, Clang or Intel compiler is 

used. This corresponds to approximately 6∙108 random numbers per second per 

thread on a 3.4 GHz processor. This number can be multiplied by the number of 

cores in the CPU when each core is running one thread. It is possible to run two 

threads per core on some CPUs, but this may not be optimal if the two threads are 

competing for the same execution resources (Fog, 2014a). 

Most Monte Carlo applications take much more time than this to process the 

random numbers, so that the random number generation will account for only a 

small fraction of the total execution time. A few clock cycles more or less is 

hardly important in this context. Therefore, we can afford the luxury of using a 

combined generator of very high quality. The convenient availability of random 

numbers as vectors can make it easier to vectorize the applications that use the 
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random numbers, possibly leading to very significant speed gains for some 

applications. 

The RANVEC1 code also supports a register size of 512 bits. This was 

verified using Intel Software Emulator version 7.1.0, but no meaningful speed 

measurement was possible because no microprocessor with the AVX-512 

instruction set is available yet. 

The SFMT generator is faster than the MTGP generator because the former 

is designed specifically for vector processing while the MTGP is designed for 

graphics processors. Unfortunately, the SFMT generator cannot be implemented 

with vector sizes higher than 128 bits. 

Conclusion 

There are two main principles for parallel processing: vector processing and 

multicore processing. Large Monte Carlo applications need to utilize both in order 

to get the maximum performance out of modern computers. A literature search 

revealed only one generator specifically designed for vector processing, and none 

that fits the growing vector size of modern processors. Fortunately, it is possible 

to utilize vector processors by adapting other generators with sufficiently long 

feedback paths or by implementing multiple similar generators in parallel. The 

combined generator described here (RANVEC1) utilizes both methods. A C++ 

implementation of this combined generator is available as part of the vector class 

library (VCL) at http://www.agner.org/optimize/#vectorclass. 

As Monte Carlo applications get larger they also put higher demands on the 

quality of random number generators. The following qualities must be considered: 

 

1. Quality of randomness. 

2. Speed. 

3. Avoid overlapping sequences. 

4. Equidistant points with perfectly uniform distribution. 

5. Portability among platforms. 

6. Reproducibility. 

 

The quality of randomness (1) can be improved by combining two 

generators with fundamentally different design. This enables us to overcome the 

flaws caused by the unsolvable dilemma between the need for mathematical 

tractability and the desire for chaotic behavior. 

http://www.agner.org/optimize/#vectorclass
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The speed (2) of the available generators is so high that the generation of 

random numbers accounts for only a small fraction of the total calculation time of 

a typical application. However, there is a pitfall when measuring the speed of a 

generator in isolation. The larger Mersenne Twister generators are consuming 

considerable amounts of data cache whereby they may slow down the 

applications that use them. The size of the state buffer should be a compromise 

between long cycle length and low data cache use. 

The risk of overlapping sequences (3) gets higher as the number of 

simultaneous random streams is increasing. This risk can be made negligible by 

using a generator with an extremely long cycle length, or we can eliminate it 

completely by combining two different generators. 

Quantization effects are often ignored in standard PRNG libraries, which 

makes them deviate from the perfectly uniform distribution (4). Undesired 

quantization effects are seen when the output of a generator with prime modulus 

is mapped onto an interval with power-of-2 modulus and when the output of any 

generator is used for generating a random integer in an interval of arbitrary 

(incommensurable) length. These undesired effects can be eliminated by avoiding 

generators with prime modulus or by using a rejection method. 

Portability (5) is generally obtained by using a standardized programming 

language. The RANVEC1 generator is designed for the vector extensions to the 

x86 instruction set. This fits the most commonly used computer platforms today, 

as well as prospected future processors with 512-bit vectors. It cannot be used on 

platforms with other instruction sets without major reprogramming, and the target 

platform must have similar vector processing capabilities. 

Reproducibility (6) is useful for replaying an interesting simulation event, 

for verifying results and for debugging. It is always possible to reproduce a 

random number stream by using the same generator again with the same seed. 

However, problems may arise when vector sizes change. For example, consider a 

simulation application that uses both integer and floating point random number 

vectors. First, it generates a vector of 8 integers, then a vector of 8 floats, then 8 

integers, 8 floats, etc. If we now update the hardware to a processor that supports 

bigger vectors, we may generate first 16 integers and then 16 floats, etc. This 

means that the numbers are generated in a different order so that the simulation 

results will be different even though we have used the same seed. A remedy 

against this problem is to generate numbers in batches that correspond to the 

biggest possible vector size. The RANVEC1 software uses batches of 512 bits to 

fit the future AVX-512 instruction set, but the reproducibility will be lost in case 
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of future extensions to 1024 bits or more. Reproducibility can also be lost in case 

of outputs that use a rejection method when the vector size is changed. 

Scope for future research 

We have found an acceptable solution to our needs for a good PRNG that utilizes 

both vector processing and multiprocessing, but we can predict the future need for 

a generator that fits larger vector sizes. We would also like a more efficient 

solution even though the speed is acceptable for current purposes. 

The vector implementation of the MTGP is slower than the SFMT even 

though it can use a larger vector size. The difference in speed can be explained by 

the following factors. 

 

 The size of the state buffer in the MTGP is not divisible by the 

vector size. Extra code is needed to handle the wrap-around situation 

where a vector spans part of the end of the buffer and part of the 

beginning. Memory access is misaligned for the same reason. 

 The output function in the MTGP, called tempering, consumes a 

large fraction of the code and CPU time. The purpose of the 

tempering is to improve equidistribution, but this improvement is not 

visible in the test results. The SFMT generator obtains good 

equidistribution by an appropriate choice of parameters without a 

tempering function. 

 The MTGP algorithm has longer dependency chains than the SFMT. 

 The SFMT can use the state buffer also as output buffer in a block 

generation scheme. This is not possible with the MTGP because its 

tempering function needs to read two parts of the state buffer for 

each output value. 

 

A better solution would have a state buffer size that is a multiple of the 

largest vector size we expect to be available in a reasonable future. It is possible 

to increase the state buffer size beyond the Mersenne exponent either by having 

some bits without feedback or by using the same method as the SFMT (Saito and 

Matsumoto, 2008, 2009). The state buffer size should not be excessive because of 

the data cache use. Parameters should be adjusted to give satisfactory 

equidistribution in order to eliminate the need for a tempering function. 

The shortest feedback path should be at least as long as the largest possible 

vector size. There is a tradeoff here because a large feedback path is reducing the 
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diffusion in the generator. The diffusion is already low in many variants of 

Mersenne Twisters because they use sparse matrixes in the algorithm. There are 

various ways to make more dense matrixes without excessive computation time. It 

is possible to implement a 4×32 bit  matrix multiplication with a single 512-bit 

vector permutation instruction, and this method is used in the RANVEC1 code. 

Another possibility, which has not been utilized so far, is to use carry-less 

multiplication. Modern x86 processors have such an instruction. The carry-less 

multiplication instruction multiplies two 64-bit vectors to give a 127-bit product 

(Intel, 2014b), and this corresponds to a dense matrix multiplication in . 

Unfortunately, there is no version of this instruction with larger vectors, but the 

result can easily be broadcast into a larger vector in order to increase diffusion. 

The second generator in our combination, the MWC, cannot easily be 

expanded to larger vectors than 512 bits. There are nine known good multipliers 

for a 64-bit MWC (Press, 2007) and we have used eight of these for implementing 

eight parallel MWC generators. Future implementations with larger vector sizes 

need another generator with more good parameter sets—perhaps a variant of 

MWC with an addend, an extra term or a short lag. 

These are very practical problems, which can definitely be solved. On a 

more philosophical level, we need a clarification of the role of proofs in PRNG 

research. Is it possible to prove that a generator has no defects? What kind of 

evidence can we accept? If all we have is falsifiable propositions, does it make 

sense to say that some propositions have more value than others if it is more 

difficult to find examples that falsify them? Does it make sense to require 

theoretical proofs, e.g. that two random number streams are statistically 

independent, when it is impossible to even prove the more fundamental 

assumptions about randomness of a single stream? 
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