
Wayne State University Wayne State University

Wayne State University Theses

January 2022

Speedster: An Efficient Multi-Party State Channel Via Enclaves Speedster: An Efficient Multi-Party State Channel Via Enclaves

Jinghui Liao
Wayne State University

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Liao, Jinghui, "Speedster: An Efficient Multi-Party State Channel Via Enclaves" (2022). Wayne State
University Theses. 884.
https://digitalcommons.wayne.edu/oa_theses/884

This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been
accepted for inclusion in Wayne State University Theses by an authorized administrator of
DigitalCommons@WayneState.

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/oa_theses
https://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_theses/884?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F884&utm_medium=PDF&utm_campaign=PDFCoverPages

SPEEDSTER: AN EFFICIENT MULTI-PARTY STATE CHANNEL VIA ENCLAVES

by

JINGHUI LIAO

THESIS

Submitted to the Graduate School,

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

2022

MAJOR: COMPUTER SCIENCE

Approved By:

———————————————————–
Advisor Date

©COPYRIGHT BY

JINGHUI LIAO

2022

All Rights Reserved

TABLE OF CONTENTS

List of Tables . iv

List of Figures . v

Chapter 1 Introduction . 1

Chapter 2 Background . 6

2.1 Blockchain and Smart Contract . 6

2.2 Layer-2 Channels . 6

2.3 Trusted Execution Environment . 8

Chapter 3 Threat Model and Design Goals . 9

3.1 Threat Model . 9

3.2 Design Goals . 9

Chapter 4 SPEEDSTER Design . 12

4.1 System Architecture . 12

4.2 Workflow . 13

4.3 Key Functions . 15

Chapter 5 ΠSPEEDSTER Protocol . 19

5.1 SPEEDSTER Protocol ΠSPEEDSTER . 19

Chapter 6 Security and Privacy Analysis . 22

Chapter 7 Ideal Functionality . 25

7.1 Ideal Functionality FSPEEDSTER . 26

7.2 Construction of S . 27

7.3 Indistinguishability . 30

Chapter 8 Implementation and Evaluation . 35

ii

8.1 Implementation of SPEEDSTER . 35

8.2 Evaluation . 37

8.2.1 Code Size . 38

8.2.2 Time Cost for Transaction Authentication 38

8.2.3 Transaction Performance . 39

8.2.4 Channel System Comparison . 42

8.2.5 Main Chain Cost . 44

Chapter 9 Discussion and Limitation . 46

Chapter 10 Related Work . 47

Chapter 11 Conclusion . 49

References . 50

Abstract . 62

Autobiographical Statement . 63

iii

LIST OF TABLES

Table 1 Code size in Speedster. 37

Table 2 Local time cost for end-to-end transaction (ms). 40

Table 3 Channel performance. 41

Table 4 Feature comparison with other channel projects. 42

Table 5 Number of on-chain transactions and Blockchain Costs (BC) per channel. 44

iv

LIST OF FIGURES

Figure 1 Framework of SPEEDSTER. 13

Figure 2 Workflow . 14

Figure 3 A Multi-party Example. 18

Figure 4 Ideal functionality of SPEEDSTER. 29

Figure 5 Ideal functionality of Blockchain. 32

Figure 6 ΠSPEEDSTER. 32

Figure 7 progenclave. 33

Figure 8 TEE Functionality. 34

Figure 9 Performance comparison. 39

Figure 10 Network setup for the evaluation. 42

v

1

CHAPTER 1 INTRODUCTION

Blockchain (aka layer-1 main chain) has been deemed a disruptive technology to build

decentralized trust and foster innovative applications in both public and private sectors.

However, scalability has become a great concern in practice when adopting the decen-

tralized infrastructure. For example, the Bitcoin network [81] can only handle approx-

imately 3, 500 transactions in every new block due to the block size limitation [18] and

process 7 transactions per second (tps) on average [81, 19]. The issue has also haunted

other major Blockchain networks which are based on a similar design principle, such as

Ethereum [25]. Modifying the on-chain protocols helps alleviate the problem, for instance,

using alternative consensus algorithms [79] and improving the information propagation

[102, 69]. Nevertheless, changes at layer-1 Blockchain level may adversely affect the

existing participants with undesired costs [46, 62]. Shifting to layer-2 payment chan-

nels [68, 84, 78, 24] is considered an effective remedy by carrying out micropayment

transactions off the Blockchain to avoid the expensive on-chain overhead. State channels

[78, 1, 42] further advances this off-chain innovation by enabling stateful transactions

and smart contract execution. Promising as it is, the state channel also has the following

limitations.

(L1) Opening a new channel requires freezing deposits of channel participants to lock

in their collateral, which significantly affects liquidity rates and network efficacy. Every

time a channel is created or closed, an associated transaction is required to send this

signal to the main chain, thus incurring additional transaction fees and waiting time for

main chain confirmation.[68, 84, 78, 65, 1].

2

(L2) With the help of Hashed Timelock Contract (HTLC) [68], the architectural com-

plexity is reduced and multi-hop transaction becomes feasible in the state channel net-

work. However, HTLC also raises many privacy concerns with the intermediate nodes [50,

70, 40, 52] and leads to a multitude of attacks, such as wormhole attacks [71], bribery

attacks [93], and DoS attacks [90, 60].

(L3) The current dispute resolution in the state channel is not robust and vulnerable to

the denial-of-service (DoS) attack. A malicious channel participant can send an outdated

channel state to the Blockchain while DoS-ing the victim to prevent the submission of the

lasted channel state.

(L4) Despite the ambition of the instant processing of off-chain transactions [68], the

complex routing and state updating mechanisms give rise to a non-negligible overhead,

thus considerably degrading promised performance. The actual throughput of the state

channels is still unsatisfactory (tens of tps measured in [78, 66, 40]).

(L5) The state exchange is confined within a pairwise channel, which poses fundamen-

tal challenges for creating and executing multi-party smart contracts. Though a multi-party

state channel can be recursively established using the virtual channel techniques [40, 39,

31], the associated expensive cost is still a concern for implementation.

TECHNICAL CONTRIBUTIONS. We present SPEEDSTER to address the above limitations.

The main idea of SPEEDSTER is that every user creates and funds an off-chain account pro-

tected by the enclave, an instance of a Trusted Execution Environment (TEE). As SPEED-

STER transfers the on-chain trust with the Blockchain to the off-chain trust with enclaves,

we significantly reduce the design complexity to accomplish a plethora of innovations,

such as multi-party channels, and lightweight protocols for channel confidentiality, au-

3

thenticity, finalization, and dispute resolution. SPEEDSTER outperforms the conventional

state channel networks in terms of security, performance, and functionality.

In SPEEDSTER, a node does not need to send an on-chain transaction to open/close a

channel. Only one deposit transaction is needed to initialize a TEE-enabled account for

each off-chain participant. Later, a participating node can directly create/close channels

with any other nodes completely off the main chain with the balance in their enclave ac-

counts, thereby turning SPEEDSTER into a peer-to-peer state channel network and resolving

L1. SPEEDSTER addresses L2 by eliminating the need for HTLC-based multi-hopping and

routing [71, 90, 60, 93] via the use of the peer-to-peer state channel network.

SPEEDSTER adopts a novel certificate-based off-chain transaction processing model where

the channel state is retained in the enclave. SPEEDSTER modifies the state before sending

out or after receiving transactions to make sure the state submitted to the Blockchain is

always up to date. As a result, L3 is addressed as attackers cannot roll back to old states

by DoS-ing counterparts and fool the Blockchain into biased decisions.

By leveraging the off-chain enclave trust, SPEEDSTER replaces the costly public-key

algorithms with efficient symmetric-key operations for transaction generation and verifi-

cation. Experimental results show that SPEEDSTER increases the throughput by four orders

of magnitude compared to the Lightning Network, the most popular payment channel

network in practice, thus, allieviating the concerns in L4.

Off-chain multi-party smart contracts for L5, can be enabled and efficiently executed

in SPEEDSTER. With the certificate-based channels, SPEEDSTER naturally supports inter-

actions among multiple parties. The state information can be correctly exchanged across

multiple channels of the same account.

4

EVALUATION. SPEEDSTER is intentionally designed to be compatible with different ma-

jor TEE platforms for availability and usability, such as AMD [3], Intel [77], and ARM [9].

We evaluate its cross-platform performance to show the advantage over other popular

layer-2 designs. Specifically, we migrate eEVM [32], a full version of Ethereum Virtual

Machine (EVM) [43] into SPEEDSTER, and execute unmodified Ethereum smart contracts

off-chain. We develop a set of benchmark contracts to show the unique features and per-

formance of SPEEDSTER. Through thorough experiments, we present the SPEEDSTER’s

specifications, the much-improved transaction throughput, and the capability of execut-

ing different kinds of smart contracts that traditional state channels cannot support. The

experiments include:

• Transaction load test: To test the transaction throughput directly between two parties

without loading any smart contract;

• Instant state sharing: Participants can update and share their states instantly; this

is an important performance indicator for time-sensitive applications, such as racing

games and decentralized financial services;

• ERC20 contracts: To show the performance of off-chain fund exchange;

• Gomoku contract: To show the performance of the turn-based contracts;

• Paper-Scissors-Rock contract: To illustrate the fairness (for in-parallel execution) in

SPEEDSTER channel;

• Monopoly contract: To test the multi-party state channel capability of SPEEDSTER,

we load a Monopoly smart contract that is executed by four players alternately.

5

The evaluation results show that SPEEDSTER is efficient and takes only 0.02ms, 0.14ms,

and 20.49ms to process a value-transfer transaction on Intel, AMD, and ARM platforms,

respectively, which leads to much higher throughput than that of Lightning network. The

source code of SPEEDSTER is available at https://bit.ly/3a32ju7.

https://bit.ly/3a32ju7

6

CHAPTER 2 BACKGROUND

2.1 Blockchain and Smart Contract

Blockchain is a distributed ledger that leverages cryptography to maintain a transpar-

ent, immutable, and verifiable transaction record [81, 25]. In contrast to the permissioned

Blockchain [7, 89], permissionless Blockchain [98] is publicly accessible but constrained

by the inefficient consensus protocols, such as the Nakamoto consensus in Bitcoin [81, 57],

on top of the asynchronous network infrastructure, which leads to a series of performance

bottlenecks in practice. See [94, 48, 86, 105] for detailed discussion.

Smart contracts in Blockchain complement the ledger functions by providing essential

computations. In general, a smart contract is a program that is stored as a transaction on

the Blockchain. Once being called, the contract will be executed by all the nodes in the

network. The whole network will verify the computation result through consensus proto-

cols, thus creating a fair and trustless environment to foster a range of novel decentralized

applications [75, 107]. A well-known example is the Ethereum smart contract [25, 26],

which runs inside the EVM [43]. EVM needs to be set up on every full Ethereum node to

create an isolated environment from the network, file system, and I/O services for contract

execution. The user transactions will be taken as input to the contract inside the EVM.

2.2 Layer-2 Channels

Layer-2 technologies are proposed to address the scalability concerns [100], short

storage for historical transactions [99], etc., for the layer-1 Blockchain.

Payment channel is the first attempt to use an off-chain infrastructure to process mi-

cropayments between two parties without frequent main chain involvement. To create

7

a channel, each party needs to send a transaction to the Blockchain to lock in a certain

amount of deposit on the main chain until a transaction is issued later to close the channel.

When the channel is open, transactions can be sent back and forth between participants as

long as they do not surpass the committed channel capacity.

Payment channel network (PCN) is built on top of the individual payment channels to

route transactions for any pair of parties who may not have direct channel connections [78,

60, 68]. Hashed Timelock Contract is exploited to guarantee balance security along the

payment route, i.e., the balances of the involved nodes are changed in compliance with

the prescribed agreement. PCN greatly relieves the users from costly channel creation and

management, but it also brings up concerns about the privacy with intermediate routing

nodes and the formation of the centrality of the network.

State channel network extends PCN by allowing for stateful activities, such as off-chain

smart contract [40, 41, 42, 31, 39]. However, recording and updating states across mul-

tiple parties are still expensive due to the sophisticated trust management and protocol

design. For example, the current multi-party state channel [31, 39] is realized through re-

cursive virtual channel establishment [40, 41, 42], which introduces non-negligible com-

plexity and overhead.

Regardless of the technical differences of the above layer-2 technologies, they all need

to involve the inefficient Blockchain for channel creation, closure, or dispute resolution.

Moreover, privacy and instability [90] concerns also arise and hamper the wide adoption

of those technologies.

8

2.3 Trusted Execution Environment

Trusted Execution Environment provides a secure, isolated environment (or enclave) in

a computer system to execute programs with sensitive data. Enclave protects the data and

code inside against inference and manipulation by other programs outside the trusted com-

puting base (TCB). Intel Software Guard eXtensions (SGX) [77, 6, 53] and AMD Secure

Encrypted Virtualization (SEV) [59, 5] are two popular general-purpose hardware-assisted

TEEs developed for the x86 architecture. Precisely, the TCB of SGX is a set of new pro-

cessor instructions and data structures that are introduced to support the execution of

the enclave. The TCB of AMD SEV is the SEV-enabled virtual machine protected by an

embedded 32-bit microcontroller (ARM Cortex-A5) [59]. Other prominent TEE examples

include TrustZone [9] and CCA [10] on ARM, MultiZone [47] and KeyStone [64] on RISC-

V, and Apple Secure Enclave in T2 chip [8]. To demonstrate the cross-platform capability

of SPEEDSTER, we implement a prototype that can run on Intel, AMD, and ARM machines,

and we make SPEEDSTER design general enough for other TEE platforms not limited to the

tested environments.

Remote attestation [83] is used to verify the authenticity of the enclave before executing

enclave programs. Specifically, to prevent attackers from simulating the enclave, a TEE-

enabled processor uses a hard-coded root key to cryptographically sign the measurement of

the enclave, including the initial state, code, and data. Note that even if one TEE processor

sets up multiple enclaves with the same set of functions, their respective measurements

will be distinctively different. As such, everyone can publicly verify the authenticity of the

established enclave with help from vendors.

9

CHAPTER 3 THREAT MODEL AND DESIGN GOALS

3.1 Threat Model

We assume that nodes in the system run on TEE-enabled platforms, and all parties trust

the enclaves after the successful attestation. An adversary may compromise the operating

system of a target node and further control the system’s software stack.

In SPEEDSTER, we use TEE as a secure abstraction to make the design and security

independent of the specific platforms. We provide rigorous security proofs to show the

reliability and robustness of SPEEDSTER. However, like any secure function, theoretical

security could be compromised by erroneous implementations. Therefore, to be consistent

with prior work [66, 30, 36], we additionally consider attacks on specific TEE platforms in

our implementation for completeness, which does not indicate the insecurity of the general

design of SPEEDSTER. See Section 6 for the detailed discussion for the particular platforms.

Similar to prior research [40, 41, 42, 31, 39], this work also assumes a Blockchain ab-

straction to provide desired ledger functions, such as transparent and immutable storage,

and verifiable computations with smart contracts. SPEEDSTER assumes that the Blockchain

nodes are equipped with adequate resources for computation and storage so that we only

concentrate on the off-chain related design (see Section 7 for more discussion on the TEE

and Blockchain abstractions).

3.2 Design Goals

Efficient Channel System (L1, L3, L4) : The current layer-2 channel system de-

sign principle derails from the promised efficiency for off-chain micropayment process-

ing. As discussed in Section 2.2, the existing systems need expensive interactions with the

10

Blockchain for various channel operations in terms of time and economic costs. Users are

required to trust the intermediate nodes and pay extra fees for transaction forwarding and

state updating.

In this work, we attempt to devise a functionally efficient off-chain network that aims

to significantly reduce the channel cost for creation and closure and eliminate the dispute

in light of unsynchronized communications.

Peer-to-Peer Channel Network (L2, L4): Due to the expensive channel cost, a node

in layer-2 currently cannot afford to establish direct channel connections with all other

nodes in the system. Multi-hopping addresses the problem but raises privacy concerns

about the emergent centralized payment hubs [52, 85, 40], which is at odds with the

decentralization promise of Blockchain.

In contrast, we aim to build a peer-to-peer channel network to allow users to freely set

up direct channels with intended parties, thus eliminating centrality concerns. Note that

none of the existing work can support this function [68, 78, 65, 66].

Efficient Multi-Party State Channel (L5): Sharing states among multiple parties is

instrumental for many real-world applications, such as voting, auctioning, and gaming.

However, most off-chain state channels only support pairwise state exchange [40, 38]. The

involvement of more channel participants depends on intermediaries, which complicates

the network setup and trust management [39, 31]. SPEEDSTER targets a more efficient

multi-party state channel by streamlining the architectural design for easy setup and use.

The state information of one SPEEDSTER node can be freely shared with other parties of

interest without worrying about the additional cost in prior work.

Other Goals: Besides, SPEEDSTER also aims to: (1) preserve the privacy of transactions

11

(see Section 6 for detailed security definition and analysis), (2) be abstract and general

enough to not rely on any specific TEE platform.

12

CHAPTER 4 SPEEDSTER DESIGN

For simplicity, we use the following symbols to model SPEEDSTER system.

cert Channel certificate

Σ Signature Scheme (KGen, Sig, Vf)

σ Signature generated from Σ.Sig()

sk/pk Secret/Public key generated from Σ.KGen()

accenclave Account generated and managed by the Enclave

state Channel state or accenclave state

tx transaction (id)

inp/outp Function input/output

4.1 System Architecture

SPEEDSTER contains two components: the state channel core program progenclave exe-

cuted inside the enclave and the on-chain smart contract contractSPEEDSTER running on the

Blockchain. Figure 1 shows the high-level architecture of SPEEDSTER, in which two partic-

ipants are connected by a Certified Channel (see Definition 1).

Progenclave. The program that operates inside the enclave is referred to as progenclave.

progenclave creates and manages an enclave account for a SPEEDSTER node. It executes

commands from the user to open and close channels as well as constructs and processes

channel transactions. To verify enclave authenticity, it also generates measurements for

remote attestation.

ContractSPEEDSTER. contractSPEEDSTER is a smart contract deployed on the Blockchain to

manage the on-chain states of SPEEDSTER accounts. To register an account, a deposit must

be sent to this contract and recorded in the Blockchain. This record will then be used to

13

enclave
Certified Channel
State(cert0, cert1, ck)

Blockchain (contractSPEEDSTER)

P0 P1

progenclave

enclave
progenclave

Figure 1: Framework of SPEEDSTER.
A channel is opened directly between enclaves of two users. Off-chain transactions are

processed by progenclave in the enclave. The contractSPEEDSTER is deployed on the Blockchain to
record the states of the nodes. The initial state of the enclave is synchronized from the

Blockchain.

initialize the enclave state. The smart contract also handles transactions to claim funds for

SPEEDSTER accounts.

4.2 Workflow

In this subsection, we outline the workflow of SPEEDSTER which includes: (1) node

initialization, (2) enclave state attestation, (3) channel key establishment, (4) channel

certification, and (5) multi-party state channel establishment (optional). The workflow is

illustrated in Figure 4.2.

Node Initialization: When the program progenclave is loaded into the enclave for the

first time, an account accenclave along with a pair of keys pk and sk are generated. The

enclave keeps sk private and publishes pk as the account address that can be used to

deposit accenclave on the Blockchain. To ensure the authenticity of the opened account

accenclave for off-chain attestations, an initial deposit transaction is required to register the

account on the Blockchain. After the Blockchain confirms the transaction, the user loads

relevant information into the enclave as proof-of-registration to initialize the enclave state

14

Certified
Channel

Terminate

Multi-party
Channel

E

msg1 = tx

msg2 = 𝛔att

msg3 = pk (3) Key
Establishment

(1)
Initialization

(2)
Attestation

Channel
Key

(4) Certify

Initialized
State

(5)

fail

Figure 2: Workflow
Workflow of node initialization and certified channel creation. E is the environment,
including the Blockchain and the channel users, who pass input to SPEEDSTER nodes.

state0 := (tx, aux), a tuple that contains the deposit transaction tx and auxiliary information

aux, where tx can be more than one deposit and aux can be the current balance or account-

related configuration information. Further deposits will update the initial state state0.

Enclave State Attestation: Step 2 is enclave attestation that needs to be carried out to

authenticate the enclave environment including state0. Note that we add the initial state

state0 and the public key pk into the enclave measurement σatt = Σ.Sig(msk, (progenclave,

pk, state0)) 1 where msk is the manufacturer-generated secret key for the processor [83].

The initial state reflects the starting point of accenclave, which should match the recorded

state on the Blockchain. If a node passes the attestation, it means that the accenclave is set

up with the correct on-chain deposit and should be trusted for the subsequent off-chain

transactions.

Channel Key Establishment: Once the enclave account is verified, the channel partic-

ipants start to generate the shared channel key by leveraging any secure two-party key

1Specific implementation may vary depending on the underlying platform.

15

agreement protocols [15, 22].

Channel Certification: In this step, an identifier denoted as ccid := H(SORT ({pk0, pk1}))

is assigned for the channel, where H is a hash function and SORT can be any function used

to make sure both parties agree on the same order of pk’s, thus leading to the identical

ccid. Next, both ends create a certificate certi := (pk1−i∥inp∥σi)i∈{0,1} for the other party by

including the target public key pk as the identifier. With the cert, a channel user can claim

the fund received from counterpart on the Blockchain when channel is closed.

Multi-party State Channel Establishment: This step is optional for establishing the multi-

party state channel. To this end, a group channel-key is generated for securely sharing the

channel states among participants. This step cannot complete until after all the neces-

sary two-party channels have been established. Note that the group key only works for

the multi-party state channel function and coexists with the keys for direct channels (see

Section 4.3).

4.3 Key Functions

Certified Channel: One main challenge by incorporating TEE into the Blockchain is

that current Blockchain implementation does not support remote attestation for TEE plat-

forms. As a result, Blockchain cannot verify the authenticity of the transactional activities

from layer-2. To address the problem, we propose Certified Channel defined below.

Definition 1 (Certified Channel). A SPEEDSTER channel is called a Certified Channel if it

is established between two attested enclave accounts and both participants have the channel

certificate issued by the other party.

With the Certified Channel designation, Blockchain is agnostic to the enclave attestation

16

and offloads this task to the layer-2 nodes. As long as a node can present a valid certificate

issued by the other channel party, Blockchain will trust this enclave node and its associated

transactions. In this way, balance security is guaranteed.

Dispute-free Channels. The main reason for the disputes existing in prior state channel

networks is that Blockchain struggles to discern old states in an asynchronous network.

A victim node may be intentionally blocked, for instance, in favor of an attacker’s claim

when closing a channel [68, 84, 66]. With Certified Channel, SPEEDSTER relies on enclaves

to correctly update its state before sending out and after receiving transactions. The node

locks the channel states if it intends to send a “claim" transaction to the Blockchain. As

a result, channel states are always up to date and the channel can be unilaterally and

securely closed without fear of unstable network connections. In this regard, SPEEDSTER

is free from expensive on-chain dispute resolution operations.

Peer-to-Peer Channel Network: We anticipate that a peer-to-peer channel network

(P2PCN) will significantly improve layer-2 network stability while complementing the de-

centralized nature of Blockchain technology. We define a peer-to-peer channel network as

follows.

Definition 2 (Peer-to-Peer Channel Network). A payment/state channel network in which a

node can establish direct channel connections with other nodes efficiently off-chain and process

transactions without relying on intermediaries.

It is economically impractical to turn current state channel networks into P2PCN be-

cause it will lock in a significant amount of collaterals into the main chain. SPEEDSTER

addresses this issue by adopting an account-based channel creation structure that uses ev-

ery single on-chain deposit to open multiple off-chain channels. P2PCN also eliminates

17

the need for transaction routing intermediaries, thus relieving users of additional fees,

operational costs, and security and privacy concerns.

Multi-Party State Channel: As discussed in Section 3.2, achieving a multi-party state

channel is inherently challenging but necessary for many off-chain smart contract use

cases, such as multi-party transactions and games. Next, we detail our design.

Multi-party channel establishment. Before establishing a group channel, we assume

that a peer-to-peer channel has already been set up between each pair of members be-

forehand. With n known participants in a tentative multi-party channel to be created, the

channel id ccid is generated by hashing the sorted public keys of all participants as follows:

ccid := H(SORT ({pki}i∈[N])). Then, a group key gk can be generated with any secure multi-

party key exchange algorithm [16, 12, 20]. The group key gk is then bound with the ccid,

and only transactions with a tag that matches the ccid can use the key for encryption and

decryption. As a result, multi-party channel transactions only need to be encrypted once,

then broadcast to other members.

Coordinated transaction execution. To avoid transaction execution ambiguity in a multi-

party smart contract scenario, transactions from different parties need to be ordered before

being processed. In a distributed network, it is difficult to locate a trusted time source for

coordination. To address this issue, we let each party i send their transactions in order as

determined by SORT({pki}i∈[N]). Specifically, all nodes except for the one with the highest

SORT function value are muted after the channel key is created. Moving forward, all other

nodes need to wait for their turn for execution. Figure 4.3 shows an example of how a

value-transfer multi-party contract is executed among three channel members A, B, and C.

In the figure, Certified Channels are opened between any two member nodes. The nodes

18

Figure 3: A Multi-party Example.
An example of executing a multi-party transfer contract among A, B and C, assuming
SORT(pkA)>SORT(pkB)>SORT(pkC). (+) and (-) in the tables represent the balance

change after each respective Certified Channel transaction.

send transactions txi, txi+1, and txi+2 successively through the multi-party state channel

identified by a ccid. The figure also shows the balance change of A with other two channel

members after each round of communication. Note that the total balance of underlying

Certified Channels should not surpass the amount allocated by the nodes for the multi-party

channel at any time. Moreover, channel members are also relieved from disputes concerns

thanks to the unsynchronized state inherited from the underlying Certified Channels.

19

CHAPTER 5 ΠSPEEDSTER PROTOCOL

5.1 SPEEDSTER Protocol ΠSPEEDSTER

We use the ideal functionalities Fblockchain[Contract] and Gatt [27, 83] (See detail in

Section 7) to formally present the protocol ΠSPEEDSTER in two parts: the program progenclave,

in Figure 7.3, that runs the enclave and the smart contract contractSPEEDSTER running on the

Blockchain, shown in Figure 7.3. In the protocol, P denotes a user, R as the counterpart

users in a channel, and tx represents an on-chain transaction. To execute an off-chain smart

contract in progenclave, we define the function Contractcid(·) as parameterized with smart

contract id cid. Contractcid(·) consumes the channel state and node balance to ensure

balance consistency across channels. Contractcid(·) generates output outp based on the

input and updates the channel state.

Node Initialization: To initially boot up a SPEEDSTER node, a node sends the “install" com-

mand to the enclave to load progenclave. Then, the node calls the function (1) of progenclave

by sending a message (“init") to create an enclave account accenclave with key pair (sk, pk).

For attestation purposes, an enclave measurement σatt is generated with the progenclave, the

public key pk of accenclave, and the node initial state state0.

Deposit: To deposit, a node must first sends a tx to contractSPEEDSTER on the main chain.

The transaction includes the pk of the enclave account accenclave as the account address.

Next, the node calls function (2) of progenclave by sending the message “deposit" and passing

tx as a parameter. Finally, progenclave verifies the signature of tx, and updates the local initial

state state0.

Certified Channel: Each certified channel in ΠSPEEDSTER is identified by a channel ID ccid.

20

A shared channel key ck is produced in this step. The certificate cert of the channel is cre-

ated using the public keys of both parties. To prevent rollback attacks on σatt, progenclave

generates a signature σatt by signing the tuple (state0, {pki}i∈{0,1}, progenclave) for each chan-

nel after function (3) returns. The tuple is signed by the manufacture secret key msk to

reflect the root trust embedded in the hardware. The cert is verified in function (5).

Multi-Party State Channel: A multi-party state channel is built upon the existing certi-

fied channels. To create a multi-party state channel, a node calls function (4) of progenclave

by sending the message “openMulti" and passing a set of ccid to inform the underlying cer-

tified channels with other participants of this multi-party state channel. We abstract out

the process of multi-party shared key generation, which could be replaced with any secure

multi-party key negotiation protocol [16, 12, 20].

Transaction: To send a channel transaction, a node calls function (6) of progenclave via

the “send" command through Gatt.resume(·) and passes the target ccid along with other

necessary parameters in input inp. Then, progenclave executes inp with the associated contract

by calling Contractcid(·) and updating the channel state accordingly. A channel transaction

is constructed over the public key of pk, the new channel state state′, the input inp, and

the output outp. Then, the transaction is encrypted with an authentication scheme,such as

AES-GCM, using the channel key ck.

Claim: To claim the funds that P receives from the channel transactions, the node issues

a “claim" call to function (7) of progenclave. progenclave first freezes all two-party channels, and

extracts all certs from those channels. The certs and the local node state state constitute

the claim transaction tx. progenclave then signs the tx with the private key sk of accenclave and

returns the signed transaction that is further forwarded by the node to the contractSPEEDSTER.

21

In the end, contractSPEEDSTER verifies and executes the claim transaction on the Blockchain to

redeem funds for the node.

22

CHAPTER 6 SECURITY AND PRIVACY ANALYSIS

We formalize the Universal Composability (UC) [27, 11, 63, 66] ideal functionality

FSPEEDSTER (shown in Figure 7.2) to realize the security goals of ΠSPEEDSTER.

The security of ΠSPEEDSTER is explained in Theorem 1.

Theorem 1 (UC-Security of ΠSPEEDSTER). If the adopted authenticated encryptionAE is IND-CCA

secure and digital signature scheme Σ is EU-CMA secure, then the protocol ΠSPEEDSTER securely

UC-realizes the ideal functionality FSPEEDSTER in the (Gatt, Fblockchain)-hybrid model for static

adversaries.

Proof. (Sketch) We prove that the protocol ΠSPEEDSTER securely UC-realizes ideal function-

ality FSPEEDSTER by simulating the behavior of a real-world adversary A in an ideal world

simulator S. Showing that S could indistinguishably simulate the behavior of A for all

environment E [27] proves the security of ΠSPEEDSTER. Let E be an environment and A be

a real-world probabilistic polynomial-time (PPT) adversary who simply relays messages

between E and dummy parties. To show that ΠSPEEDSTER UC-realizes FSPEEDSTER, we spec-

ify a simulator S below such that no environment can distinguish an interaction between

ΠSPEEDSTER and A from an interaction with FSPEEDSTER and S. That is, for any E, S satisfies

∀E.EXECEΠSPEEDSTER,A ≈ EXECEFSPEEDSTER, S

A detailed proof can be found in Section 7.1.

Theorem 1 also implies stronger privacy protection compared to conventional pay-

ment/state channel networks in that: (1) All SPEEDSTER channels are created directly

23

between participants. No intermediate node is required to relay transactions, thus allevi-

ating the privacy concerns introduced by HTLC [50, 70, 40, 52]; (2) off-chain channels

transactions are encrypted by AES-GCM, and only the enclaves of participants can decrypt

it. Therefore, SPEEDSTER ensures transaction confidentiality.

Preventing Double-Spending Attacks. Each processor has a unique built-in key that

is hard coded in the CPU [3, 6] to differentiate its identity during attestation. Moreover,

the processor generates and assigns each enclave a unique identifier [53, 3] ensuring that

even enclaves created by the same processor are distinctive. To prevent double-spending

attacks, progenclave updates balance before sending transactions to peers. Once the state

is updated, it can not be rolled back. Therefore, no fund can be spent multiple times in

SPEEDSTER.

Defending Against TEE Attacks. The hardware-assisted TEE serves as a way to replace

complex software-based cryptographic operations. Promising as it seems, recent research

shows that TEE implementations on specific platforms are vulnerable to the side-channel

attacks [95, 88, 49, 97, 80], rollback attacks [34, 72, 21] and incorrect implementation

and configuration [82, 23, 55, 13]. In SPEEDSTER, we use a generalized TEE abstrac-

tion that does not rely on a specific platform’s design, and its security has been proven

in Theorem 1. In addition, we offer suggestions and proactively mitigate the above vul-

nerabilities for both hardware and software. For example, we use SEV-SE [3] to protect

against specific speculative side-channel attacks and TCB rollback attacks. We also up-

date the microcode of Intel/AMD/ARM TEE to the latest version. Besides these measures,

proper implementation of the system can also help mitigate known side-channel vulner-

24

abilities [54]. SPEEDSTER uses a side-channel-attack resistant cryptographic library [73],

and requires that all nodes run on the latest version of the firmware to defend against

known TEE attacks. Further, an adversary may launch a DoS attack against the node by

blocking the Internet connection of the victim or abruptly shutting down the OS to force

quit the enclave functions. While beyond the scope of this article, such DoS attacks can

be addressed by adopting a committee enforcement design [30, 66]. The channel node

state is jointly managed by a committee of TEE nodes to tolerate Byzantine fault. Despite

the inevitable performance loss in light of the complexity of the committee chain, SPEED-

STER still outperforms existing works by enabling efficient multi-party state processing and

management in a peer-to-peer manner (see Section 4.3 and Section 8.2.4).

25

CHAPTER 7 IDEAL FUNCTIONALITY

In ΠSPEEDSTER, two ideal functionalities are assumed: a Blockchain abstraction function

Fblockchain[Contract] and a TEE abstraction Gatt formally defined in [83]. As a result, the

design and security of SPEEDSTER are independent of the specific Blockchain and TEE

implementations as long as they can provide the required functions. Specifically, we de-

fine Fblockchain[Contract] as an ideal functionality that models the behavior of Blockchain.

Fblockchain defines a smart-contract enabled append-only ledger. The parameter Contract

is the smart contract function of the Blockchain. Fblockchain has an internal Storage that

contains the Blockchain data associated with transaction IDs. To append a transaction to

the Blockchain, a user sends a transaction to Fblockchain, which will subsequently trigger the

function “append" to execute the transaction (see Figure 7.3 for details).

Gatt [83] provides an abstraction for the general-purpose TEE-enabled secure processor.

During initialization, Gatt creates a key pair as the manufacture key (msk, mpk), while msk

is preserved in the processor and the mpk could be accessed through “getpk" command. In

such an ideal functionality, user first creates an enclave, and loads progenclave into enclave

by sending an “install" command. To call the functions in progenclave, user sends “resume"

command to Gatt along with the parameters. All operations through the “resume" command

of Gatt is signed with msk by default to ensure the authenticity, whereas Certified Channel

leverages symmetric-key authenticated encryption instead of digital signatures. Therefore,

we add a switch to “resume" command to be able to turn off the signature and only when the

switch is set, execution output through “resume" is signed. (see Figure 7.3 for detail).

26

7.1 Ideal Functionality FSPEEDSTER

The ideal functionality in Figure 7.2 defines the security goal of ΠSPEEDSTER in the ideal

functionality FSPEEDSTER. Participants of FSPEEDSTER are denoted as P. The internal communi-

cation among participants is protected through authenticated encryption scheme. Follow-

ing [27] [30], we parameterize FSPEEDSTER with a leakage function ℓ(·) : {0, 1}∗ −→ {0, 1}∗

to demonstrate the amount of privacy leaked from the message that is encrypted by the

authenticated encryption scheme.

Security Proof for Theorem. 1

As defined in Theorem. 1, we now formally present the proof that the protocol ΠSPEEDSTER

securely UC-realizes ideal functionality FSPEEDSTER by simulating the behavior of a real-

world adversary A in an ideal world simulator S. And the security of ΠSPEEDSTER is proved

by showing that S could indistinguishably simulate the behavior of A for all environment

E [27].

Proof. Let E be an environment and A be a real-world PPT adversary [27] who simply re-

lays messages between E and dummy parties. To show that ΠSPEEDSTER UC-realizes FSPEEDSTER,

we specify below a simulator S such that no environment can distinguish an interaction

between ΠSPEEDSTER and A from an interaction with FSPEEDSTER and S. That is, for any E, S

should satisfy

∀E.EXECEΠSPEEDSTER,A ≈ EXECEFSPEEDSTER, S

27

7.2 Construction of S

S simulates A, FSPEEDSTER internally. S forwards any input e from E to A and records the

traffic going to and from A.

(1) Deposit: If Pi is honest, S obtains message (“deposit", tx, aux), and emulates a call

of “deposit" to Gatt through “resume" interface. Otherwise, S reads tx and aux from E, then

emulates message (“deposit", tx, aux) to FSPEEDSTER with the identity of Pi and sends the

“deposit" call to Gatt.

(2) Open Channel: When Pi is honest, S emulates a call of “open" to Gatt on receiving

(“open", cid, Pj, inp) from FSPEEDSTER.

When Pi is corrupted:

• S obtains a public key pk, and a smart contract id cid from E, then generate a random

string as inp. S sends the message (“open", cid, pk, inp) to FSPEEDSTER and collect the

output with the identity of Pi. Then S emulates a “resume" call to Gatt with the same

messages (“open" , cid, pk, inp) on behalf of Pi and collect the output from Gatt.

• Upon receiving (“open", cid,Pj) from FSPEEDSTER. S obtains inp from E and emulates a

“resume" call to Gatt sending message (“open", cid, Pj) on behalf of Pi and record the

output from Gatt

(3) Channel Authentication: Upon receiving message (“authenticate", ccid, Pj, cert) of

an honest node Pi, S records cert. S emulates a “resume" call to Gatt sending message

(“authenticate", ccid, Pj, cert). Then, S sends an “OK" command to FSPEEDSTER.

If Pi is corrupted, S obtains a public key pk, a channel id ccid from E, a sk from a

signature challenger SCh, then generates a random string as m. S computes signature

28

σ := Σ.Sig(sk,m), then sends the message (“authenticate", pk, ccid, (pk∥m∥σ)) to FSPEEDSTER

and collects the output with the identity of Pi. Then S emulates a “resume" call to Gatt with

the same messages on behalf of Pi and collects the output from Gatt.

(4) Multi-party Channel: Upon receiving message (“openMulti", cid, {ccid}∗) of an honest

Pi, S emulates a “resume" call to Gatt sending message (“openMulti", cid, {ccid}∗). Then

relay the output to Pi.

While dealing with a corrupted party Pi:

• S queries a set of channel id {ccid}∗ and a smart contract id cid from E. Then, S sends

the message (“openMulti", cid, {ccid}∗) to FSPEEDSTER and collects the output with Pi’s

identity. Then S emulates a “resume" call to Gatt with the same messages on behalf

of Pi and collects the output from Gatt.

• Upon receiving message (“openMulti", cid, {ccid}∗). S emulates a “resume" call to Gatt

sending message (“openMulti", cid, {ccid}∗). Then relay the output to Pi.

(5) Channel Transaction: Upon receiving the message (“send", ccid, ℓ(msg)) fromFSPEEDSTER

of Pi, S requests a key from a challenger Ch who generates AE keys. S generates a random

string r, and computes m := AE .Enc(key, r), of which |m| = |ℓ(msg)|. S emulates a “resume"

call to Gatt sending message (“receive", ccid,m) on behalf of Pi. Then relay the output to Pi.

While dealing with a corrupted party Pi:

• S queries a channel id ccid and a random string inp := {0, 1}∗ from E. Then, S sends

the message (“send", cid, {ccid}∗) to FSPEEDSTER on Pi’s behalf, and collects the output.

Then S emulates a “resume" call to Gatt with the same messages on behalf of Pi and

collects the output from Gatt.

29

Initially:
bals := ∅, certs := ∅, channels:= ∅, states0 := ∅
For each Pi: (pki, ski)←$ Σ.KGen(1n)
(1) On receive (“deposit", tx, aux) from Pi where i ∈ [N]:

parse tx as (pk’, $val, _, σ) // _ means unused value
Verify signature of tx, abort if false
bals[Pi] += $val
append (tx, aux) to states0[Pi]
leak (“deposit", tx) to A

(2) On receive (“open", cid, Pj , inp) from Pi where i, j ∈ [N] and Pi ̸= Pj:
ccid←$ {0, 1}∗

stateccid := Contractcid(pki,
−→
0 ,⊥)

append (ccid, (cid, stateccid, {Pj , Pi})) to channels
leak (“open", ccid, cid, Pi, Pj , inp) to A

(3) On receive (“authenticate", ccid, Pj , cert) from Pi where i, j ∈ [N] and i ̸= j:
assert certs[ccid][Pi] = ⊥
certs[ccid][Pi] := cert
leak (Pi, Pj , “authenticate", cert) to A;
await “OK" from A
send(“authenticate", cert) to Pj

(4) On receive (“openMulti", cid, {ccid}∗) from Pi where i ∈ [N]:
ccid←$ {0, 1}∗

state := Contractcid(Pi,
−→
0 ,⊥)

collect dummy parties {P}∗ in channels {ccid}∗
append (ccid, (cid, state, {P}∗)) to certs
leak (“openMulti", ccid, cid, {ccid}∗) to A

(5) On receive (“send", ccid, inp) from Pi where i ∈ [N]:
(cid, state, {P}∗) = certs[ccid] abort if ⊥
(state’, outp) := Contractcid(Pi, state, inp)
msg := (Pi∥r∥inp∥state′∥outp)
leak (“send", ccid, ℓ(msg)) to A; await “OK" from A
send(msg) to each member of {P}∗ except Pi

(6) On receive (“claim") from Pi where i ∈ [N]:
construct an on-chain claim transaction tx
leak(“claim", tx) to A; await “OK" from A
append(tx) to Blockchain

Figure 4: Ideal functionality of SPEEDSTER.
Internal communications are assumed to be encrypted with authenticated encryption.

30

• Upon receiving message (“send", ccid, ℓ(msg)) from FSPEEDSTER. S requests a key from

Ch. S computes m := AE .Enc(key,−→0), of which |m| = |ℓ(msg)|. S emulates a “resume"

call to Gatt sending message (“receive", ccid, m) on behalf of Pi. Then relay the output

to Pi.

(6) Claim: Upon receiving message (“claim", tx) of Pi from FSPEEDSTER, S emulates a

“resume" call to Gatt sending message (“claim", tx) on behalf of Pi. Then, and send “OK" to

FSPEEDSTER, and relay the output to the Blockchain.

While Pi is corrupted. S sends message (“claim") to FSPEEDSTER on behalf of Pi and

collects the output. Then S emulates a “resume" call to Gatt with the same message on

behalf of Pi and collects the output from Gatt, then relay the output to the Blockchain.

7.3 Indistinguishability

We show that the execution of the real-world and ideal-world is indistinguishable for

all E from the view of a probabilistic polynomial-time adversary A by a series of hybrid

steps that reduce the real-world execution to the ideal-world execution.

• Hybrid H0 is the real-world execution of SPEEDSTER.

• Hybrid H1 behaves the same as H0 except that S generates key pair (sk, pk) for digital

signature scheme Σ for each dummy party P and publishes the public key pk. Whenever A

wants to call Gatt, S faithfully simulates the behavior of Gatt, and relay output to Pi. Since

S perfectly simulates the protocol, E could not distinguish H1 from H0.

• Hybrid H2 is similar to H1 except that S also simulates Fblockchain. Whenever A wants

to communicate with Fblockchain, S emulates the behavior of Fblockchain internally. E cannot

distinguish between H2 and H1 as S perfectly emulates the interaction between A and

31

Fblockchain,

• Hybrid H3 behaves the same as H2 except that: If A invokes Gatt with a correct install

message with program progenclave, then for every correct “resume" message, S records the

tuple (outp, σ) from Gatt, where outp is the output of running progenclave in Gatt, and σ is

the signature generated inside the Gatt, using the sk generated in H1. Let Ω denote all

such possible tuples. If (outp, σ) /∈ Ω then S aborts, otherwise, S delivers the message to

counterpart. H3 is indistinguishable from H2 by reducing the problem to the EUF-CMA of

the digital signature scheme. If A does not send one of the correct tuples to the counterpart,

it will fail on attestation. Otherwise, E and A can be leveraged to construct an adversary

that succeeds in a signature forgery.

• Hybrid H4 behaves the same as H3 except that S generates a channel key ck for

each channel. When A communicates with Gatt on sending transaction through channel,

S records ct from Gatt, where ct is the ciphertext of encrypted transaction, using the ck of

that channel. Let Ω denote all such possible strings. If ct /∈ Ω then S aborts, otherwise,

S delivers the message to counterpart. H4 is indistinguishable from H3 by reducing the

problem to the IND-CCA of the authenticated encryption scheme. As A does not hold

control of ck, it can not distinguish the encryption of a random string and Ω.

• Hybrid H5 is the execution in the ideal-world. H5 is similar to H4 except that S

emulates all real-world operations. As we discussed above, S could faithfully map the

real-world operations into ideal-world execution from the view of A. Therefore, no E

could distinguish the execution from the real-world protocol ΠSPEEDSTER and A with S and

FSPEEDSTER.

32

Fblockchain[Contract]
// initialization:
On initialize: Storage := ∅
// public query interface: On receive* read(id) from P:
output Storage[id], or ⊥ if not found
// public append interface:
On receive* append(tx) from P:
abort if Storage[tx.id] ̸=⊥
if Contract(tx) = true :
Storage[tx.id] := tx; output ("success")

else
output ("failure")

Figure 5: Ideal functionality of Blockchain.
Modeling an append-only ledger.

contractSPEEDSTER

Parameters:
Ledger : Append only public ledger of Fblockchain

Coin : Blockchain function that convert value into coins.

On receive (“deposit", tx) from P:
assert tx /∈ Ledger
execute tx on the Blockchain
append tx to Ledger

On receive (“claim", tx) from P:
parse tx as ({cert}∗, state) // state contains channel data
For each cert in {cert}∗:

parse cert to (to´, from´, σ); abort if Verify(σ, cert) fails // verify the cert
extract $val from state[from]
assert $val ̸= 0 and to´ = P
send(from, P, Coin($val)) if $val > 0; send(P, from, Coin(−$val)) otherwise

append(tx) to Ledger
On receive (“read", tx) from P:
output Ledger[tx]

Figure 6: ΠSPEEDSTER.
On-chain smart contract contractSPEEDSTER of ΠSPEEDSTER.

33

Program progenclave
Initially:
bal := ∅, certs := ∅, channels := ∅, state0 := ⊥
(1) On receive(“init")

(pk, sk)←$ Σ.KGen(1n) // generate accenclave
mpk := Gatt.getpk()
return (pk,mpk)

(2) On receive (“deposit", tx, aux)
parse tx as (_, pk’, $val, σ) // _ represents unused value
assert $val ≥ 0; assert Σ.Vf(pk, tx)
bal += $val; add (tx, aux) to state0

(3) On receive (“open", cid, P, inp)
ccid := H(SORT{pkP , pk})
abort if channels[ccid] ̸=⊥
ck←$ {0, 1}∗ // channel key; cp := {pk, pkP}
(state’, outp) := Contractcid(sk, bal,

−→
0 , cp)

append (ccid, (ck, cid, state’, cp)) to channels
σ = Σ.Sig(sk, pkP∥inp∥state0); cert = (pkP∥inp∥σ)
return (cert, state0, outp)

(4) On receive (“openMulti", cid, {ccid}∗)
for each ccid’∈ {ccid}∗:

assert channels[ccid’] ̸=⊥; extract pk’ from channels[ccid’]
cp := {{pk’}∗ ∪ pk}; ccid := H(SORT (cp))
assert channels[ccid] = ⊥, gk←$ {0, 1}∗ // Group key
(state’, outp) := Contractcid(ski, state,

−→
0 , cp)

append (ccid, (gk, cid, state’, cp)) to channels; ct := Enc (gk, outp)
return (ct)

(5) On receive (“authenticate", ccid, P, cert)
abort if certs[ccid][pkP] ̸=⊥; parse cert as (msg, σ), Σ.Vf(pkP ,msg, σ)
extract state0P from msg, check state0R on Blockchain
certs[ccid][pkP] := cert

(6) On receive (“send", ccid, inp):
assert certs[ccid] ̸=⊥
(ck, cid, state, cp) := channles[ccid]
(st´, outp) := Contractcid(sk, state, state, inp)
update channels[ccid] to (ck, cid, st´, cp)
msg := (pk∥inp∥state’∥outp); ct := Enc (ck, msg)
return (ct)

(7) On receive (“claim")
freeze send function
tx := {cert}∗∥state; σ := Σ.Sig(sk,tx); return (tx∥σ)

Figure 7: progenclave.
progenclave program of ΠSPEEDSTER

34

Gatt[Σ, reg]
// initialization:
On initialize: (mpk,msk) := Σ.KGen(1n);T = ∅
// public query interface:
On receive* getpk() from some P: send mpk to P

Enclave operations

//local interface — install an enclave:
On receive* install(idx, prog) from some P ∈ reg:
if P is honest, assert idx = sid
generate nonce eid ∈ {0, 1}λ,
store T [eid,P] := (idx, prog, 0), send eid to P
// local interface — resume an enclave:
On receive* resume(eid, inp, switch := on) from some P ∈ reg:
let (idx, prog,mem) := T [eid,P], abort if not found
let (outp,mem) := prog(inp,mem),
update T [eid,P] := (idx, prog,mem)
if switch is set to on

let σ := Σ.Sigmsk(idx, eid, prog, outp)
send (outp, σ) to P

otherwise:
send (outp,⊥) to P

Figure 8: TEE Functionality.
A global functionality modeling an SGX-like secure processor. Compared to [83], a switch

is added to the “resume" command to allow users to disable the signature. The default
value of switch is set to “on".

35

CHAPTER 8 IMPLEMENTATION AND EVALUATION

8.1 Implementation of SPEEDSTER

We build a Virtual Machine (VM) on top of the open-source C++ developed Ethereum

Virtual Machine eEVM [32], which allows SPEEDSTER to run off-the-shelf Ethereum smart

contracts. The cryptographic library used in progenclave is mbedTLS [73], an open-source

SSL library ported to TEE [33, 103]. For this work, we adopt 1) SHA256 to generate

secret seeds in the enclave and the hash value of claim transactions, 2) AES-GCM [76] to

authentically encrypt transactions in the state channel, and 3) ECDSA [58] to sign certs and

claim transactions. We also customize the OpenEnclave [33] to compile the prototypes for

Intel and ARM platforms. For AMD SEV, we use VMs as the enclaves to run progenclave, as

the host can communicate with the enclave via the socket. To highlight the advantages of

SPEEDSTER, the performances of a few functions are tested, as discussed below.

Direct Transactions (Trade): This function is implemented in C++ and allows users to

directly transfer funds and share messages through channels without calling an off-chain

smart contract. Before sending out a transaction, the sender first updates its local enclave

state (e.g., the account balance), then marks the transaction as “sent". Communication

between the sender and receiver enclaves is protected by AES-GCM.

Instant State Sharing: We implement an instant state sharing function in C++ to allow

a user to create direct channels with other users off-chain. We also remove costly signature

operations for transactions and replace it with AES-GCM, thereby significantly reducing

communication overhead and enabling instant information exchange (like high-quality

video/audio sharing) while preserving privacy. This is previously difficult to realize using

36

asymmetric cryptographic functions [68, 78, 66].

Faster Fund Exchange: We implement a ERC20 contract [96] with 50 LOC in Solidity [35]

to demonstrate the improved performance of SPEEDSTER in executing off-chain smart con-

tracts. This can be attributed to the elimination of asymmetric signature operations for

off-chain transactions.

Sequential Contract Execution: To highlight the performance of SPEEDSTER in executing

sequential transaction contracts, we implement the popular two-party Gomoku chess smart

contract with 132 LOC in Solidity. Furthermore, players cannot reuse locked funds until the

game ends, thus nullifying all benefits of cheating the system.

Parallel Contract Execution: Applications that require simultaneous user action, such

as Rock-Paper-Scissors (RPS), are not easy to run in conventional sequentially structured

state channels. SPEEDSTER supports applications running in parallel, faithfully manages

multi-party states, and only reveals to players the final results. We implement a typical

two-party RPS game with 64 LOC in Solidity to demonstrate this.

Multi-party Applications: To test the ability of multi-party off-chain smart contract exe-

cutions, a Monopoly game smart contract with 231 LOC in Solidity is implemented. In this

game, players take turns rolling two six-sided dice to determine how many steps they will

move forward and how to interact with other players.

37

8.2 Evaluation

SGX platform: We test SPEEDSTER with a quad-core 3.6 GHz Intel(R) E3-1275 v5

CPU [56] with 32 GB memory. The operating system that we use is Ubuntu 18.04.3 TLS

with Linux kernel version 5.0.0-32-generic. We also deploy LN nodes [67] as the baseline

for comparison on another physical machine with the same configurations.

SEV platform: We evaluate SPEEDSTER on an SEV platform with 64 GB DRAM and an SEV-

enabled AMD Epyc 7452 CPU [4], which has 32 cores and a base frequency of 2.35 GHz.

The operating system installed on the AMD machine is Ubuntu 18.04.4 LTS with an AMD

patched kernel of version 4.20.0-sev [3]. The version of the QEMU emulator that we use

to run the virtual machine is 2.12.0-dirty. The virtual machine runs Ubuntu 18.04 LTS with

the kernel version 4.15.0-101-generic and 4 CPU cores.

TrustZone platform: The evaluation of TrustZone is carried out in the QEMU cortex-a57

virtual machine with 1 GB memory and Linux buildroot 4.14.67-g333dc9e97-dirty as the

kernel.

Table 1: Code size in Speedster.

Component Code LOC Total(#)

Shared eEVM [32] C++ 25.3k 25.3k

SGX/TrustZone
progenclave C++ 3.1k

5.4k

other C++ 2.3k

AMD SEV
progenclave C++ 3.7k

7.8k

other C++ 4.1k

38

8.2.1 Code Size

To port eEVM into SPEEDSTER, we added extra 650 LOC to eEVM. In general, the

eEVM contains 3.2k LOC in C++ and another 22.1k LOC coming from its dependencies.

SPEEDSTER is evaluated on Intel, AMD, and ARM platforms with around 38.5k LOC in

total, as shown in Table 1. Specifically, 25.3k LOC comes from the contract virtual ma-

chine eEVM [32] which is shared with all cases. progenclave has 3.1k LOC in C++ for

SGX/TrustZone and 3.7k LOC for AMD SEV. The contractSPEEDSTER deployed on the Blockchain

is implemented with 109 LOC in Solidity.

8.2.2 Time Cost for Transaction Authentication

In the SPEEDSTER prototype, we use AES-GCM to replace the ECDSA adopted in previous

channel projects for transaction authentication. By trusting a secure enclave, SPEEDSTER

uses efficient symmetric operations to simultaneously achieve both transaction confiden-

tiality and authenticity. Figure 9 compares the performance of ECDSA and AES-GCM when

processing 128, 256, and 1024 bytes of data, respectively. This experiment is carried out on

Intel, AMD, and ARM platforms with four operations: ECDSA sign, ECDSA verify, AES-GCM

encrypt, and AES-GCM decrypt. ECDSA is evaluated under secp256k1 curve. The key size of

ECDSA is 256 bits while that of AES-GCM is 128 bits.

Figure 9 is plotted on a log scale. We can see that regardless of the tested platform,

AES-GCM is 3 − 4 orders of magnitude faster. Additionally, AES-GCM performs better with

small-sized messages. With increased data size, the time cost of ECDSA remains constant

while that of AES-GCM grows. This is because ECDSA always signs a constant hash digest

rather than the actual data. In practice, the average transaction size on the Ethereum is 405

39

100 101 102 103 104 105

Time(s)

trustzone_ecdsa_sign

trustzone_ecdsa_verf

trustzone_aes_enc

trustzone_aes_dec

sgx_ecdsa_sign

sgx_ecdsa_verf

sgx_aes_enc

sgx_aes_dec

sev_ecdsa_sign

sev_ecdsa_verf

sev_aes_enc

sev_aes_dec 128 bytes
256 bytes
1024 bytes

Figure 9: Performance comparison.
Performance comparison between ECDSA and AES-GCM enabled transaction security on

SGX, SEV, and TrustZone platforms. We run every experiment 10, 000 times.

bytes [44]. Therefore, using symmetric-key operations will significantly boost transaction-

related performance.

8.2.3 Transaction Performance

We evaluate SPEEDSTER on time costs for transactions in a direct channel on Intel, AMD,

and ARM platforms under the test cases in Section 8.1. In this experiment, we use the

popular layer-2 network, the LN, as a baseline. We measure the time cost for transactions

over a direct channel, which may include the time cost for transaction generation and

confirmation, corresponding contract execution, transmission in the local network, and

other related activities in a life cycle of an off-chain transaction. We test SPEEDSTER in

AES-GCM mode to reflect our intended symmetric-key design. Additionally, we also test the

batching transaction performance to compare with that of TeeChain [66].

40

Table 2: Local time cost for end-to-end transaction (ms).
Payment ERC20 Gomuku RPC

LN 192.630 N/A N/A N/A
SEV:AES-GCM 0.1372 0.1382 0.6667 0.1365
SGX:AES-GCM 0.0205 0.3500 0.4500 0.1930
TZ:AES-GCM 20.496 40.148 95.092 37.215

The experiment results are averaged from 10,000 trials and shown in Table 2 with the

implemented smart contracts ERC20, Gomoku, and rock-paper-scissor (RPC).

Evaluation on SGX: Evaluation of SPEEDSTER on the SGX platform is carried out by

running two SPEEDSTER instances on the same SGX machine. Direct transaction without

contract execution takes 0.0205ms with AES-GCM, which is four orders of magnitude faster

compared to LN. It takes 0.1930ms− 0.4500ms to process a contract-calling transaction.

Evaluation on AMD: As no AMD cloud virtual machine supports SEV, we only evaluate

SPEEDSTER on the AMD platform by running the progenclave in two Ubuntu guest virtual

machines as the enclaves. To protect the code and data of progenclave that runs in the

enclave, we only allow users to access progenclave by calling the related interface through

the socket.

For the direct transaction, SEV:AES-GCM takes an average of 0.1372ms. When invoking

smart contracts, the time cost varies for different applications. As shown in Table 2, RPC

(0.1365ms) and ERC20 (0.1382ms) are faster than Gomoku (0.6667ms) due to simpler logic

and fewer steps.

Evaluation on ARM: As the evaluation of ARM TrustZone runs upon the QEMU emulator,

the performance of ARM is the worst. Nevertheless, the evaluation results in Table 2 show

that progenclave takes 20.496ms to run direct transactions. For smart contract execution, it

typically takes 30− 90ms to process contract transactions.

41

Table 3: Channel performance.
LN (lnd) Speedster

Payment ERC20 RPC Gomoku

Throughput (tps) 14
±9%

72,143
±4%

30,920
±10%

53,355
±7%

2,549
±15%

Latency (ms)
548.183
±7%

80.483
±1%

82.490
±1%

80.743
±1%

82.866
±1%

Real-world Evaluation: To evaluate the performance of SPEEDSTER in the real world,

we deploy SPEEDSTER on two Azure Standard DC1s_v2 (1 vCPUs, 4 GB memory) virtual

machines, which are backed by the 3.7GHz Intel XEON E-2288G processor, one in East

US, and the other in West Europe, as shown in Figure 10. The kernel of the virtual ma-

chine is 5.3.0-1034-azure, and the operating system is version 18.04.5 LTS. LN node is

deployed and evaluated on the machine as a baseline to highlight the significant perfor-

mance improvement of SPEEDSTER. We run every experiment 10 times and every time

we run 10,000 transactions in series, table 3 shows the evaluation result. The throughput

of LN is 14tps while SPEEDSTER achieves 72, 143tps on payment operation, 5, 000× more

efficient than LN. Specifically, the latency to execute a SPEEDSTER transaction is around

80ms, close to the RTT between testing hosts, while the latency to run an LN payment

transaction is around 500ms.

TeeChain is a TEE-supported payment channel network [66]. We tried hard to run a

head-to-head comparison with it but failed to do so 2. Instead, we provide insights for a

theoretical comparison. TeeChain nodes coupled with committee chains to defend against

node failure. SPEEDSTER can be adapted to a similar design but inevitably sacrifices the

2Though TeeChain is open source, we were not able to successfully run the project even after we contacted
the author of TeeChain.

42

Table 4: Feature comparison with other channel projects.

Features Channel Projects

LN [68] TeeChain [66] SFMC [24] Perun [40] Speedster

Direct Channel Open ✗ ✓ ✓ ✓ ✓

Direct Channel Close ✗ ✓ ✓ ✓ ✓

Dynamic Deposit ✗ ✓ ✓ ✗ ✓

Contract Execution ✗ ✗ ✗ ✗ ✓

P2PCN ✗ ✗ ✗ ✗ ✓

Multi-Party Channel ✗ ✗ ✓ ✗ ✓

Dispute-Free ✗ ✓ ✗ ✗ ✓

Duplex Channel ✗ ✓ ✓ ✗ ✓

performance 3. In this regard, the throughput of the committee-based SPEEDSTER will be

comparable with that of TeeChain. However, SPEEDSTER is much more efficient in off-chain

channel creation/closure (see Section 8.2.5) and supports multi-party state processing.

Azure Standard
DC1s_v2

West Europe

Enclave

Azure Standard
DC1s_v2

East US
RTT: 80ms

Bandwidth: 281Mbps
Enclave

Figure 10: Network setup for the evaluation.

8.2.4 Channel System Comparison

To highlight the advantages of SPEEDSTER, we compare SPEEDSTER with other major

channel projects. Table 4 shows these differences in terms of the following features: Direct

off-chain channel open/closure, dynamic deposit (dynamically adjusting funds in an exist-

ing channel on-demand [66]), symmetric-key operations for transactions (using symmetric

encryption algorithms to ensure the authenticity and privacy of off-chain transactions), off-
3Each fund spending needs to be approved by the committee using a multi-signature.

43

chain smart contract execution, full decentralization (see Definition 2), multi-party state

channel, dispute-free, and duplex channel (where both channel participants can send funds

back and forth).

We compare the functions provided by SPEEDSTER and TeeChain. TeeChain is not a

peer-to-peer channel network. Despite the dynamic deposit and bilateral termination [66],

every channel opened in TeeChain has to be associated with a deposit locked on the main

chain. As a result, similar to the Lightning network, creating many channels requires freez-

ing a significant amount of collateral on the Blockchain and incurring expensive on-chain

operations. Therefore, it is not realistic to build direct channels for any pair of nodes in

the network. Alternatively, TeeChain still largely depends on HTLC for transaction routing

in practice, which leads to privacy concerns. On the contrary, a deposit in SPEEDSTER can

be shared by multiple off-chain channels. Direct channels can be efficiently established.

Further, TeeChain does not support the off-chain smart contract execution and multi-party

state channels. The pairwise channel structure of TeeChain confines the state within the

channel. In contrast, due to balance sharing and Certified Channel, states across multiple

channels can be managed and exchanged authentically in the same SPEEDSTER account.

In Perun [40], virtual channels can also be opened and closed off the Blockchain, but

once the channel is created, the underlying ledger channels have to be locked. The min-

imum funds across the ledger channels determine the available capacity. As shown in

Table 4, SPEEDSTER is the only off-chain state channel project that accomplishes all

the listed functions.

44

Table 5: Number of on-chain transactions and Blockchain Costs (BC) per channel.

Payment Channel Setup| Open| Close| Claim Total

No.tx BC No.tx BC

LN [68] 2|1|1|0 2|2|2|0 4 6

TeeChain [66] 1|0|0|1 1+p/2|0|0|1+p/2+m 2 2+p+m

DMC [37] 0|1|1|0 0|2|2|0 2 4

SFMC [24] 1/c|0|0|1/c p/c|0|0|p/c 2/c 2p/c

Speedster 1/c|0|0|1/c 1/c|0|0|1/c 2/c 2/c

8.2.5 Main Chain Cost

Similar to the previous works [24, 66], we evaluate the main chain costs: (1) the

number of required on-chain transactions and (2) the number of pairs of public keys and

signatures that are written to the Blockchain (defined as Blockchain cost in [24]).

We select a set of representative channel projects to evaluate and compare with SPEED-

STER. In particular, we choose LN [68] (the most popular payment channel system in

reality), DMC [37] (a duplex payment channel), TeeChain [66] (a TEE-based channel

project), and SFMC [24] (it also supports off-chain channel open/closure). The compari-

son is carried out by analyzing each project under bilateral termination [66], i.e., a channel

is closed without disputes. The result is shown in Table 5. We take LN and TeeChain, for

example, to demonstrate the cost efficiency of SPEEDSTER.

Before opening an LN channel, each node has to send one on-chain transaction with a

Blockchain Cost (BC) of 1 to commit a deposit in the channel. Then, each LN channel has

to send one on-chain transaction with a BC of 2. To close this channel, one of the channel’s

participants needs to send a transaction with the latest channel state and signatures from

both sides to the Blockchain.

In TeeChain [66], a group of committee nodes handles and dynamically associates

45

deposits with channels. Thus, at least one “deposit" transaction is needed to set up the

system with a BC of 1 + p/2, where p is the size of the committee. Since TeeChain can

also close the channel off-chain, associated costs can be avoided. All TeeChain committee

members use the same m-out-of-p multi-signature for each “deposit" transaction, so the BC

is 1 + p/2 +m.

In contrast, a deposit to a SPEEDSTER account can be freely allocated to different chan-

nels. Therefore, we only need 1 “deposit" transaction to initialize the account and create c

channels. There is no cost to open or close channels as SPEEDSTER can do this completely

offline. To claim the remaining fund from active channels, one on-chain transaction needs

to be sent. Assuming that one deposit and one claim transactions are shared by c chan-

nels on average, SPEEDSTER requires 2/c on-chain transactions with a BC of 2/c for each

channel on average.

In summary, we observe that SPEEDSTER needs 80% less on-chain transactions than LN

and the same number of transactions as TeeChain when c ≥ 2 and one deposit when a

2-out-of-3 multi-signature is used for each TeeChain channel. For the BC of each channel,

SPEEDSTER outperforms LN by at least 66% when c ≥ 2, and 97% if c ≥ 11 [17]. Compared

to TeeChain, SPEEDSTER reduces BC by over 84% when c ≥ 2.

46

CHAPTER 9 DISCUSSION AND LIMITATION

Availability of TEE Hardware. SPEEDSTER leverages TEE to ensure the off-chain trust,

which implies that only hardware equipped with TEE may join SPEEDSTER. However, as

stated in Section 2.3, all major CPUs vendors of various architectures have incorporated

TEE into their chip design. We have shown that SPEEDSTER can be deployed to run over

multiple kinds of platforms, including Intel SGX, AMD SEV, and ARM Trustzone. We plan

to further implement SPEEDSTER on more CPU architectures, such as RISC-V.

Security of TEE. Although TEE implies strong security assumptions to provide a se-

cure and isolated execution environment, different platforms may have varying implemen-

tations that may contain a variety of known and unknown faults that could jeopardize the

protection. Indeed, it is impossible to eradicate all TEE attacks, we explored defensive

strategies for TEE vulnerabilities in Section 6, such as single node failure and rollback

attacks.

Privacy Concerns with Remote Attestation. Remote attestation must be performed

on the central server of the chip manufacturers, which is a centralized approach that raise

privacy concerns [51]. However, the message used for remote attestation contains no

runtime information about progenclave, therefore, the privacy of transactions in SPEEDSTER

channel is preserved. Additionally, there are ongoing efforts to address the privacy con-

cerns associated with remote attestation [87, 29], which SPEEDSTER could adopt in the

future without breaching any commitment.

47

CHAPTER 10 RELATED WORK

HTLC Privacy and Security: HTLC is one of the fundamental building blocks in the

current layer-2 channel design to facilitate transactions between parties without direct

channel connections [84, 68]. HTLC comes with privacy issues [50, 70, 40, 52], however,

and is vulnerable to various types of attacks [71, 93, 90, 60]. MAPPCN [92], MHTLC [70],

AMHL [71], and CHTLC [101] tried to address the privacy issues introduced by HTLC by

adding additional countermeasures. MAD-HTLC [93] presented the mutual assured de-

struction HTLC that could mediate the bribery attack. Nevertheless, they introduce extra

overhead and still require HTLC. Perun [40] enabled a user to create a virtual payment

channel to avoid HTLC, but it can only span two ledger channels. In contrast, SPEED-

STER allows all nodes to connect directly without relying on HTLC and expensive on-chain

operations.

Efficient Channel Network: Multi-hop transactions in existing channel networks [68,

84] incur non-negligible overhead and come with capacity and scalability issues. Current

channel design addresses these problems with distinct focuses. MicroCash [2], for exam-

ple, introduced the escrow setup that supports concurrent micropayments. Sprites [78]

is built on LN and reduced LN latency in multi-hop transactions. Celer [38] leveraged a

provably optimal value transfer routing algorithm to improve HTLC routing performance.

Pisa [74] enabled parties to delegate a third party manager in case routing goes off-line.

REVIVE [60] rebalances channel funds to increase the scalability of its payment channel

network. Liquidity Network [45, 61] used hubs to connect users, which raises privacy and

centralization concerns. SPEEDSTER, in contrast, is an account-based peer-to-peer channel

48

network, and outperforms existing channel networks in various ways.

Multi-Party Channel Network: Several related works offer multi-party payment/state

channel solutions. Based on Perun, Dziembowski et al. proposed the first multi-party state

channel [39] that operates recursively among participants. Burchert et al. [24] presented

a multi-party channel with timelocks by adding a new layer between the Blockchain and

the payment channel. Hydra [28] introduced an isomorphic multi-party state channel by

directly adopting the layer-1 smart contract system. SPEEDSTER establishes multi-party

channels directly between participants without intermediaries, thus reducing costs and

enhancing security.

Blockchain projects based on trusted hardware: Using trusted hardware provides

promising solutions to Blockchain issues. For instance, Town Crier [104] used SGX to im-

plement an authenticated data feed for smart contracts. Ekiden [30], PrivacyGuard [106],

and FastKitten [36] proposed Blockchain projects that aims to elevate the confidentiality of

smart contracts. In Tesseract [14], credits could be exchanged across multiple chains. Ob-

scuro [91] built a privacy-preserving Bitcoin mixer. For layer-2 compatibility, TeeChan [65]

was built on top of the Lightning network and instantly created new off-chain channels.

However, it still requires synchronization with Blockchain and cannot create multiple chan-

nels with a single deposit. Based on TeeChan, TeeChain [66] was proposed to set up a

committee for each node and dynamically allocate deposits to channels, but it is a payment

channel system and still requires HTCL for multi-hop transactions. In contrast, SPEEDSTER

provides better privacy protection via peer-to-peer decentralization.

49

CHAPTER 11 CONCLUSION

SPEEDSTER is the first account-based state channel system, where off-chain channels

can be freely opened/closed using the existing account balance without involving Blockchain.

SPEEDSTER introduces Certified Channel to eliminate the expensive operations for transac-

tion processing and dispute resolution. To the best of our knowledge, SPEEDSTER is the

first channel system that achieves P2PCN, thus eliminating the risks and overhead intro-

duced by HTLC once for all. With the Certified Channel and P2PCN, SPEEDSTER is capable

of executing multi-party state channel efficiently. The practicality of SPEEDSTER is vali-

dated on different TEE platforms (i.e., Intel SGX, AMD SEV, and ARM TrustZone). The

experimental results show much-improved performance compared to LN and other layer-2

channel networks.

50

REFERENCES

[1] I. Allison. Ethereum’s vitalik buterin explains how state channels address privacy

and scalability, 2016.

[2] G. Almashaqbeh, A. Bishop, and J. Cappos. Microcash: Practical concurrent pro-

cessing of micropayments. arXiv preprint arXiv:1911.08520, 2019.

[3] AMD. AMD ESE/AMD SEV. https://github.com/AMDESE/AMDSEV, 2018. Accessed:

2020-04-27.

[4] AMD. Amd epyc™ 7452. https://www.amd.com/en/products/cpu/

amd-epyc-7452, 2020. Accessed: 2020-04-27.

[5] AMD. Secure encrypted virtualization (sev). https://developer.amd.com/sev/,

2020.

[6] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology for cpu

based attestation and sealing. In Proceedings of the 2nd international workshop on

hardware and architectural support for security and privacy, volume 13, 2013.

[7] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,

D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al. Hyperledger fabric: a

distributed operating system for permissioned blockchains. In Proceedings of the

Thirteenth EuroSys Conference, pages 1–15, 2018.

[8] Apple. Apple T2 Secure Chip, 2019.

[9] ARM. Arm trustzone technology. https://developer.arm.com/ip-products/

security-ip/trustzone, 2019-12-13.

https://github.com/AMDESE/AMDSEV
https://www.amd.com/en/products/cpu/amd-epyc-7452
https://www.amd.com/en/products/cpu/amd-epyc-7452
https://developer.amd.com/sev/
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone

51

[10] ARM. Arm confidential compute architecture. https://developer.arm.com/

architectures/architecture-security-features, 2021. accessed: 2021-03-31.

[11] C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas. Bitcoin as a transaction ledger:

A composable treatment. In Annual International Cryptology Conference, pages 324–

356. Springer, 2017.

[12] R. Barua, R. Dutta, and P. Sarkar. Extending joux’s protocol to multi party key agree-

ment. In International Conference on Cryptology in India, pages 205–217. Springer,

2003.

[13] G. Beniamini. Trust issues: Exploiting trustzone tees. Google Project Zero Blog, 2017.

[14] I. Bentov, Y. Ji, F. Zhang, L. Breidenbach, P. Daian, and A. Juels. Tesseract: Real-time

cryptocurrency exchange using trusted hardware. In Proceedings of the 2019 ACM

SIGSAC Conference on Computer and Communications Security, pages 1521–1538.

ACM, 2019.

[15] D. J. Bernstein. Curve25519: new diffie-hellman speed records. In International

Workshop on Public Key Cryptography, pages 207–228. Springer, 2006.

[16] G. Biswas. Diffie–hellman technique: extended to multiple two-party keys and one

multi-party key. IET Information Security, 2(1):12–18, 2008.

[17] bitcoinvisuals.com. Average channels per node. https://bitcoinvisuals.com/

lightning, 2021.

[18] blockchain.com. Average block size. https://www.blockchain.com/charts/

avg-block-size, 2021.

[19] blockchain.com. Bitcoin transaction rate. https://www.blockchain.com/en/

charts/transactions-per-second?timespan=all, 2021.

https://developer.arm.com/architectures/architecture-security-features
https://developer.arm.com/architectures/architecture-security-features
https://bitcoinvisuals.com/lightning
https://bitcoinvisuals.com/lightning
https://www.blockchain.com/charts/avg-block-size
https://www.blockchain.com/charts/avg-block-size
https://www.blockchain.com/en/charts/transactions-per-second?timespan=all
https://www.blockchain.com/en/charts/transactions-per-second?timespan=all

52

[20] D. Boneh and M. Zhandry. Multiparty key exchange, efficient traitor tracing, and

more from indistinguishability obfuscation. Algorithmica, 79(4):1233–1285, 2017.

[21] M. Brandenburger, C. Cachin, M. Lorenz, and R. Kapitza. Rollback and forking

detection for trusted execution environments using lightweight collective memory.

In 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN), pages 157–168. IEEE, 2017.

[22] E. Bresson, O. Chevassut, and D. Pointcheval. Provably secure authenticated group

diffie-hellman key exchange. ACM Transactions on Information and System Security

(TISSEC), 10(3):10–es, 2007.

[23] R. Buhren, C. Werling, and J.-P. Seifert. Insecure until proven updated: Analyzing

amd sev’s remote attestation. In Proceedings of the 2019 ACM SIGSAC Conference on

Computer and Communications Security, pages 1087–1099, 2019.

[24] C. Burchert, C. Decker, and R. Wattenhofer. Scalable funding of bitcoin micropay-

ment channel networks. Royal Society open science, 5(8):180089, 2018.

[25] V. Buterin et al. Ethereum: A next-generation smart contract and decentralized

application platform. URL https://github. com/ethereum/wiki/wiki/% 5BEnglish%

5D-White-Paper, 2014.

[26] V. Buterin et al. A next-generation smart contract and decentralized application

platform. white paper, 2014.

[27] R. Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In Proceedings 42nd IEEE Symposium on Foundations of Computer Science,

pages 136–145. IEEE, 2001.

53

[28] M. M. Chakravarty, S. Coretti, M. Fitzi, P. Gazi, P. Kant, A. Kiayias, and A. Russell.

Hydra: Fast isomorphic state channels. IACR Cryptol. ePrint Arch., 2020:299, 2020.

[29] G. Chen, Y. Zhang, and T.-H. Lai. Opera: Open remote attestation for intel’s se-

cure enclaves. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, pages 2317–2331, 2019.

[30] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels, A. Miller, and

D. Song. Ekiden: A platform for confidentiality-preserving, trustworthy, and perfor-

mant smart contracts. In 2019 IEEE European Symposium on Security and Privacy

(EuroS&P), pages 185–200. IEEE, 2019.

[31] T. Close. Nitro protocol. IACR Cryptology ePrint Archive, 2019:219, 2019.

[32] M. Corporation. Evm. https://github.com/microsoft/eEVM, 2019.

[33] M. Corporation. openenclave. https://github.com/microsoft/openenclave,

2019.

[34] V. Costan and S. Devadas. Intel sgx explained. IACR Cryptology ePrint Archive,

2016(086):1–118, 2016.

[35] C. Dannen. Introducing Ethereum and solidity, volume 318. Springer, 2017.

[36] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig, S. Faust, and A.-R.

Sadeghi. Fastkitten: practical smart contracts on bitcoin. In 28th USENIX Security

Symposium (USENIX Security 19), pages 801–818, 2019.

[37] C. Decker and R. Wattenhofer. A fast and scalable payment network with bitcoin

duplex micropayment channels. In Symposium on Self-Stabilizing Systems, pages

3–18. Springer, 2015.

https://github.com/microsoft/eEVM
https://github.com/microsoft/openenclave

54

[38] M. Dong, Q. Liang, X. Li, and J. Liu. Celer network: Bring internet scale to every

blockchain. arXiv preprint arXiv:1810.00037, 2018.

[39] S. Dziembowski, L. Eckey, S. Faust, J. Hesse, and K. Hostáková. Multi-party virtual

state channels. In Annual International Conference on the Theory and Applications of

Cryptographic Techniques, pages 625–656. Springer, 2019.

[40] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski. Perun: Virtual payment

hubs over cryptocurrencies. In 2019 IEEE Symposium on Security and Privacy (SP),

pages 327–344, 2019.

[41] S. Dziembowski, S. Faust, and K. Hostakova. Foundations of state channel networks.

IACR Cryptology ePrint Archive, 2018:320, 2018.

[42] S. Dziembowski, S. Faust, and K. Hostáková. General state channel networks. In

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security, pages 949–966. ACM, 2018.

[43] ethereum. Ethereum virtual machine (evm) awesome list. https://github.

com/ethereum/wiki/wiki/Ethereum-Virtual-Machine-(EVM)-Awesome-List,

2020-05-02.

[44] etherscan.io. Ethereum blockchain size. https://etherscan.io/chartsync/

chaindefault, 2021.

[45] G. Felley, A. Gervais, and R. Wattenhofer. Towards usable off-chain payments. 2018.

[46] W. Foxley. As bitcoin cash hard forks, unknown mining pool continues old chain.

https: // shorturl. at/ svATX , 2019.

[47] C. Garlati. Multi zone trusted execution environment free and open api. In RISC-V

Workshop, 2019.

https://github.com/ethereum/wiki/wiki/Ethereum-Virtual-Machine-(EVM)-Awesome-List
https://github.com/ethereum/wiki/wiki/Ethereum-Virtual-Machine-(EVM)-Awesome-List
https://etherscan.io/chartsync/chaindefault
https://etherscan.io/chartsync/chaindefault
https://shorturl.at/svATX

55

[48] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun. On

the security and performance of proof of work blockchains. In Proceedings of the

2016 ACM SIGSAC conference on computer and communications security, pages 3–

16, 2016.

[49] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller. Cache attacks on intel sgx. In

Proceedings of the 10th European Workshop on Systems Security, page 2. ACM, 2017.

[50] M. Green and I. Miers. Bolt: Anonymous payment channels for decentralized cur-

rencies. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-

munications Security, pages 473–489. ACM, 2017.

[51] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais. Sok: Layer-

two blockchain protocols. In International Conference on Financial Cryptography and

Data Security, pages 201–226. Springer, 2020.

[52] J. Herrera-Joancomarti, G. Navarro-Arribas, A. R. Pedrosa, P.-S. Cristina, and

J. Garcia-Alfaro. On the difficulty of hiding the balance of lightning network channels.

PhD thesis, Dépt. Réseaux et Service de Télécom (Institut Mines-Télécom-Télécom

SudParis . . . , 2019.

[53] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo. Using innovative

instructions to create trustworthy software solutions. In HASP@ ISCA, page 11,

2013.

[54] Intel. Security best practices for side channel resistance. https:

//software.intel.com/security-software-guidance/insights/

security-best-practices-side-channel-resistance. accessed: 2020-08-

18.

https://software.intel.com/security-software-guidance/insights/security-best-practices-side-channel-resistance
https://software.intel.com/security-software-guidance/insights/security-best-practices-side-channel-resistance
https://software.intel.com/security-software-guidance/insights/security-best-practices-side-channel-resistance

56

[55] Intel. Intel® Processors Voltage Settings Modification Advisory, 2019.

[56] Intel. Intel® xeon® processor e3 v5 family. https:

//ark.intel.com/content/www/us/en/ark/products/88177/

intel-xeon-processor-e3-1275-v5-8m-cache-3-60-ghz.html, 2019-12-3.

[57] M. Jakobsson and A. Juels. Proofs of work and bread pudding protocols. In Secure

Information Networks, pages 258–272. Springer, 1999.

[58] D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve digital signature algo-

rithm (ecdsa). International journal of information security, 1(1):36–63, 2001.

[59] D. Kaplan, J. Powell, and T. Woller. Amd memory encryption. White paper, 2016.

[60] R. Khalil and A. Gervais. Revive: Rebalancing off-blockchain payment networks. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security, pages 439–453. ACM, 2017.

[61] R. Khalil, A. Gervais, and G. Felley. Nocust-a non-custodial 2nd-layer financial in-

termediary. IACR Cryptol. ePrint Arch., 2018:642, 2018.

[62] C. Kim. Ethereum’s istanbul upgrade arrives early, causes testnet split. https:

// shorturl. at/ bEQ29 , 2019.

[63] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain

model of cryptography and privacy-preserving smart contracts. In 2016 IEEE sym-

posium on security and privacy (SP), pages 839–858. IEEE, 2016.

[64] D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanović. Keystone: A framework

for architecting tees. arXiv preprint arXiv:1907.10119, 2019.

[65] J. Lind, I. Eyal, P. Pietzuch, and E. G. Sirer. Teechan: Payment channels using

trusted execution environments. arXiv preprint arXiv:1612.07766, 2016.

https://ark.intel.com/content/www/us/en/ark/products/88177/intel-xeon-processor-e3-1275-v5-8m-cache-3-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/88177/intel-xeon-processor-e3-1275-v5-8m-cache-3-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/88177/intel-xeon-processor-e3-1275-v5-8m-cache-3-60-ghz.html
https://shorturl.at/bEQ29
https://shorturl.at/bEQ29

57

[66] J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and P. Pietzuch. Teechain: a secure

payment network with asynchronous blockchain access. In Proceedings of the 27th

ACM Symposium on Operating Systems Principles, pages 63–79, 2019.

[67] lnd. Lightning network daemon. https://github.com/lightningnetwork/lnd,

2019.

[68] loomx.io. Loom: A new architecture for a high performance blockchain. https:

//loomx.io/, 2017. Accessed: 2019-054-18.

[69] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena. A secure

sharding protocol for open blockchains. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, pages 17–30. ACM, 2016.

[70] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi. Concurrency and

privacy with payment-channel networks. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, pages 455–471. ACM, 2017.

[71] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and M. Maffei. Anony-

mous multi-hop locks for blockchain scalability and interoperability. In Network and

Distributed System Security Symposium (NDSS), 2019.

[72] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais, A. Juels,

and S. Capkun. ROTE: Rollback protection for trusted execution. In 26th USENIX

Security Symposium (USENIX Security’17), pages 1289–1306, 2017.

[73] mbed.org. mbedtls:an open source, portable, easy to use, readable and flexible ssl

library. https://tls.mbed.org/. Accessed: 2019-12-3.

[74] P. McCorry, S. Bakshi, I. Bentov, S. Meiklejohn, and A. Miller. Pisa: Arbitration

outsourcing for state channels. In Proceedings of the 1st ACM Conference on Advances

https://github.com/lightningnetwork/lnd
https://loomx.io/
https://loomx.io/
https://tls.mbed.org/

58

in Financial Technologies, pages 16–30. ACM, 2019.

[75] P. McCorry, S. F. Shahandashti, and F. Hao. A smart contract for boardroom voting

with maximum voter privacy. In International Conference on Financial Cryptography

and Data Security, pages 357–375. Springer, 2017.

[76] D. McGrew and J. Viega. The galois/counter mode of operation (gcm). Submission

to NIST Modes of Operation Process, 20, 2004.

[77] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue,

and U. R. Savagaonkar. Innovative instructions and software model for isolated

execution. In HASP@ISCA, page 10, 2013.

[78] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry. Sprites and state chan-

nels: Payment networks that go faster than lightning. In International Conference

on Financial Cryptography and Data Security, pages 508–526. Springer, 2019.

[79] D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun. A review on consensus

algorithm of blockchain. In 2017 IEEE International Conference on Systems, Man,

and Cybernetics (SMC), pages 2567–2572. IEEE, 2017.

[80] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and F. Piessens. Plun-

dervolt: Software-based fault injection attacks against intel sgx. In 2020 IEEE Sym-

posium on Security and Privacy (SP), 2020.

[81] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.

org/bitcoin.pdf, 2016.

[82] Z. Ning and F. Zhang. Understanding the security of arm debugging features. In

2019 IEEE Symposium on Security and Privacy (SP), pages 602–619. IEEE, 2019.

http://bitcoin. org/bitcoin.pdf
http://bitcoin. org/bitcoin.pdf

59

[83] R. Pass, E. Shi, and F. Tramer. Formal abstractions for attested execution secure

processors. In Annual International Conference on the Theory and Applications of

Cryptographic Techniques, pages 260–289. Springer, 2017.

[84] Raiden. The raiden network. https://raiden.network/, 2017.

[85] E. Rohrer, J. Malliaris, and F. Tschorsch. Discharged payment channels: Quanti-

fying the lightning network’s resilience to topology-based attacks. arXiv preprint

arXiv:1904.10253, 2019.

[86] F. Saleh. Blockchain without waste: Proof-of-stake. Available at SSRN 3183935,

2020.

[87] V. Scarlata, S. Johnson, J. Beaney, and P. Zmijewski. Supporting third party attes-

tation for intel sgx with intel data center attestation primitives. White paper, 2018.

[88] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. Malware guard exten-

sion: Using sgx to conceal cache attacks. In International Conference on Detection of

Intrusions and Malware, and Vulnerability Assessment, pages 3–24. Springer, 2017.

[89] T. Swanson. Consensus-as-a-service: a brief report on the emergence of permis-

sioned, distributed ledger systems. Report, available online, 2015.

[90] S. Tochner, S. Schmid, and A. Zohar. Hijacking routes in payment channel networks:

A predictability tradeoff. arXiv preprint arXiv:1909.06890, 2019.

[91] M. Tran, L. Luu, M. S. Kang, I. Bentov, and P. Saxena. Obscuro: A bitcoin mixer

using trusted execution environments. In Proceedings of the 34th Annual Computer

Security Applications Conference, pages 692–701, 2018.

[92] S. Tripathy and S. K. Mohanty. Mappcn: Multi-hop anonymous and privacy-

preserving payment channel network. In International Conference on Financial Cryp-

https://raiden.network/

60

tography and Data Security, pages 481–495. Springer, 2020.

[93] I. Tsabary, M. Yechieli, and I. Eyal. Mad-htlc: because htlc is crazy-cheap to attack.

arXiv preprint arXiv:2006.12031, 2020.

[94] A. Urquhart. The inefficiency of bitcoin. Economics Letters, 148:80–82, 2016.

[95] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein,

T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow: extracting the keys to the

intel SGX kingdom with transient out-of-order execution. In 27th USENIX Security

Symposium (USENIX Security’18), pages 991–1008, 2018.

[96] F. Vogelsteller and V. Buterin. Erc-20 token standard. Ethereum Foundation (Stiftung

Ethereum), Zug, Switzerland, 2015.

[97] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza. Asyncshock: Exploiting

synchronisation bugs in intel sgx enclaves. In European Symposium on Research in

Computer Security, pages 440–457. Springer, 2016.

[98] K. Wüst and A. Gervais. Do you need a blockchain? In 2018 Crypto Valley Conference

on Blockchain Technology (CVCBT), pages 45–54. IEEE, 2018.

[99] www.blockchain.com. Blockchain size. https://www.blockchain.com/charts/

blocks-size, 2020.

[100] www.blockchain.com. Average confirmation time. https://www.blockchain.com/

charts/avg-confirmation-time?timespan=all&daysAverageString=7, 2021.

[101] B. Yu, S. K. Kermanshahi, A. Sakzad, and S. Nepal. Chameleon hash time-lock con-

tract for privacy preserving payment channel networks. In International Conference

on Provable Security, pages 303–318. Springer, 2019.

https://www.blockchain.com/charts/blocks-size
https://www.blockchain.com/charts/blocks-size
https://www.blockchain.com/charts/avg-confirmation-time?timespan=all&daysAverageString=7
https://www.blockchain.com/charts/avg-confirmation-time?timespan=all&daysAverageString=7

61

[102] M. Zamani, M. Movahedi, and M. Raykova. Rapidchain: Scaling blockchain via

full sharding. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security, pages 931–948, 2018.

[103] F. Zhang. mbedtls-SGX: a SGX-friendly TLS stack (ported from mbedtls), 2017.

[104] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi. Town crier: An authenticated

data feed for smart contracts. In Proceedings of the 2016 aCM sIGSAC conference on

computer and communications security, pages 270–282. ACM, 2016.

[105] F. Zhang, I. Eyal, R. Escriva, A. Juels, and R. Van Renesse. Rem: Resource-efficient

mining for blockchains. IACR Cryptology ePrint Archive, 2017:179, 2017.

[106] N. Zhang, J. Li, W. Lou, and Y. T. Hou. Privacyguard: Enforcing private data usage

with blockchain and attested execution. In Data Privacy Management, Cryptocurren-

cies and Blockchain Technology, pages 345–353. Springer, 2018.

[107] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan. Smart contract-based access

control for the internet of things. IEEE Internet of Things Journal, 6(2):1594–1605,

2018.

62

ABSTRACT

SPEEDSTER: AN EFFICIENT MULTI-PARTY STATE CHANNEL VIA ENCLAVES

by

JINGHUI LIAO

December 2022

Advisor: Dr. Weisong Shi

Major: Computer Science

Degree: MASTER OF SCIENCE

State channel network is the most popular layer-2 solution to the issues of scalabil-

ity, high transaction fees, and low transaction throughput of public Blockchain networks.

However, the existing works have limitations that curb the wide adoption of the technol-

ogy, such as the expensive creation and closure of channels, strict synchronization between

the main chain and off-chain channels, frozen deposits, and inability to execute multi-party

smart contracts. In this work, we present SPEEDSTER, an account-based state-channel sys-

tem that aims to address the above issues. To this end, SPEEDSTER leverages the latest

development of secure hardware to create dispute-free certified channels that can be oper-

ated efficiently off the Blockchain. SPEEDSTER is peer-to-peer decentralized and provides

better privacy protection than prior channel projects. It supports fast native multi-party

contract execution, which is previously unavailable in TEE-enabled channel networks.

63

AUTOBIOGRAPHICAL STATEMENT

EDUCATION

Ph.D., Computer Science Sep ’18 – Sep ’23 (expected)

Wayne State University, Detroit, US

Adviser: Professors Fengwei Zhang, Weisong Shi

B.E., Computer Science Sep ’13 – Jul ’17

Hunan University, Hunan, China

PUBLICATION

1. J. Liao, W. Shi, and B. Chen "TrustZone Enhanced Plausibly Deniable Encryption

System forMobile Devices" SEC ’21, December 14–17, 2021, San Jose, CA, USA, doi:

10.1145/3453142.3493512.

2. J. Liao, F. Zhang, W. Sun and W. Shi "Speedster: A TEE-assisted State Channel Sys-

tem" To Appear In Proceedings of the 17th ACM ASIA Conference on Computer and

Communications Security (AsiaCCS’22), Nagasaki, Japan, May 2022.

3. Z. Ning, J. Liao, F. Zhang and W. Shi, "Preliminary Study of Trusted Execution En-

vironments on Heterogeneous Edge Platforms," 2018 IEEE/ACM Symposium on Edge

Computing (SEC), Seattle, WA, USA, 2018, pp. 421-426, doi: 10.1109/SEC.2018.00057.

4. L. Zhou, J. Liao et al., "KShot: Live Kernel Patching with SMM and SGX," 2020 50th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN), Valencia, Spain, 2020, pp. 1-13, doi: 10.1109/DSN48063.2020.00021.

	Speedster: An Efficient Multi-Party State Channel Via Enclaves
	Recommended Citation

	List of Tables
	List of Figures
	Introduction
	Background
	Blockchain and Smart Contract
	Layer-2 Channels
	Trusted Execution Environment

	Threat Model and Design Goals
	Threat Model
	Design Goals

	Speedster Design
	System Architecture
	Workflow
	Key Functions

	Lg Protocol
	Speedster Protocol Lg

	Security and Privacy Analysis
	Ideal Functionality
	Ideal Functionality Lg
	Construction of S
	Indistinguishability

	Implementation and Evaluation
	Implementation of Speedster
	Evaluation
	Code Size
	Time Cost for Transaction Authentication
	Transaction Performance
	Channel System Comparison
	Main Chain Cost

	Discussion and Limitation
	Related Work
	Conclusion
	References
	Abstract
	Autobiographical Statement

