
 

 

 Protein analysis: immunoblotting and silver staining. At the indicated time points, 

infected cell monolayers (MOI = 3.0) were washed once with ice cold PBS and lysed in RIPA 

buffer (150 mM NaCl, 10 mM HEPES [pH 7.4], 1% Noniodet P40, 1% sodium deoxycholate, 

0.1% SDS, 1x protease inhibitors (Roche, Indianapolis, IN)).  After incubation for 5 min on ice, 

lysates were clarified by centrifugation at 10,000 x g for 10 min at 4°C.  Protein concentrations 

were measured by BCA assay (Thermo Fisher, Waltham, MA); equal amounts of total protein 

from each lysate, or protein from gradient purified virus fractions were run on 10% 

polyacrylamide gels.  Silver staining of polyacrylamide gels was carried out using a Pierce silver 

stain kit (Thermo Scientific, Rockford, IL).  Immunoblots were transferred to 0.1 µm 

nitrocellulose membrane and then probed with antibodies against the following proteins: IE1 & 

IE2, pp28, gB (Virusys, Taneytown, MD), pp65 (Fitzgerald Industries, Acton, MA), gH (Santa 

Cruz Dallas, TX), and a polyclonal rabbit antibody against the C-terminus of UL48 (a gift from 

Dr. Wade Gibson).  Chemiluminescence was performed with Super Signal Pico West substrate 

(Thermo, Waltham, MA) following the manufacturer’s directions. 

Isolation of viral DNA or total cellular RNA for genome quantitation, microarrays, 

and qRT-PCR analysis.  To ensure accurate multiplicities of infection, one dish of cells was 

trypsinized and counted immediately prior to infection to gauge final cell density.  HFF (p12) 

were then infected with either AD169 or pAD/CRE(ΔUS17) (MOI = 6.0) for 12 or 96 hr.  After 

washing once with PBS, 1 ml of Trizol (Life Technologies, Grand Island, NY) reagent was added 

to each 35 mm dish.  RNA was separated by addition of 200 μl chloroform to each 1 ml Trizol 

sample followed by centrifugation at 12,000 x g for 15 min at 4°C.  The aqueous phase was 

transferred to a clean tube and RNA was precipitated by addition of 500 μl of 100% isopropyl 

alcohol followed by centrifugation at 12,000 x g for 15 min at 4°C.  The RNA pellet was washed 

twice in 70% ethanol and then resuspended in 50 μl of nuclease free deionized water.  DNase I 

treatment was conducted with 2 U of RNase free DNase (New England Biolabs, Ipswich, MA) 
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following the manufacturer’s directions.  RNA concentration was measured by UV spectroscopy 

(260 nm : 280 nm) using a NanoDrop 1000 spectrophotometer (Thermo-Fisher, Waltham, MA).  

RNA quality was assessed on an Agilent Biolyzer (Agilent Technologies Santa Clara, CA); all 

samples had RIN values of 8 to 10.  RNA was then hybridized on Illumina HT-12 v4 human 

bead array chips.  RNA quality assessment, chip hybridization, and array reading were 

performed at the Wayne State University Advanced Genomics Technology Center. 

 cDNA for qRT-PCR analysis was generated from 1 µg of total isolated RNA using an 

iScript first strand cDNA synthesis kit (Bio-Rad, Hercules, CA).  Equal volumes of cDNA were 

analyzed for all viruses using a custom Taq-man array (Applied Biosystems/Life Technologies, 

Grand Island, NY) and the following pre-designed primer/probes sets: GAPDH 

(Hs02758991_g1), IFNB1 (Hs01077958-s1), ISG15 (Hs00192713_m1), CCL5 

(Hs00174575_m1), CXCL10 (Hs00171042_m1), IL6 (Hs00985639_m1), and TNFSF10 

(Hs00921974_m1).  An ABI 7500 fast thermocycler (Applied Biosystems/Life Technologies, 

Grand Island, NY) with the cycling protocol supplied with the custom array.  

 Isolation of viral genomic DNA from cell culture supernatants was carried out using a 

QIAamp MinElute Virus Spin Kit following the manufacture’s direction.  Supernatants were first 

clarified at 1000 rpm for 10 m and DNase treated with 2 U / 200 μl supernatant of DNase I(New 

England Biolabs, Ipswich, MA) for 10 m.  Quantitation of viral genomes was done using a 

Syber-green based assay with primers specific for the HCMV UL83 ORF (forward primer: 

GCAGCCACGGGATCGTACT, reverse primer: GGCTTTTACCTCACACGAGCATT).  Data was 

collected on a Bio-Rad MyIQ real-time thermocycler (40 cycles, 95 ºC for 15 s and 60 ºC for 1 

min).   

Bioinformatic analysis.  Microarray analyses were performed using BRB-ArrayTools 

(v. 4.2.0 beta 2) developed by Dr. Richard Simon and the BRB-ArrayTools Development Team.  
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Differential gene expression analysis was conducted using the significance analysis of 

microarray (SAM) (118) option in BRB array using a false discovery rate of 0.001.  Lists of 

significantly differently expressed genes were generated for each mutant compared to AD169 at 

each respective time point and expression values for these genes were then analyzed for other 

pairwise comparisons (mutant vs. mock, AD169 vs. mock, etc.).  Gene ontology categorization 

of differentially expressed genes was carried out using Cytoscape v. 2.8.1 and the biological 

gene ontology plugin, BiNGO (119).  Gene ontology definitions and annotation files were 

downloaded from http://www.geneontology.org/ and dated 01/19/2012. Genes were grouped 

based on gene ontology biological function and only over-represented categories where 

P<0.0001 were considered relevant for this study. 
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Results 

Deletion of the US17 ORF does not significantly alter viral replication in primary 

fibroblasts.  A BAC mutant (ΔUS17) was constructed in which the entire US17 ORF was 

replaced with a 32 bp frt scar (Fig. 5).  This mutation did not alter the mapped polyA signal 

shared by US18, US19, and US20 (120), and we verified US18 expression by 

immunofluorescence with a previously described antibody (70).  The deletion is likely upstream 

of transcriptional signals for US16.  This mutation deletes the C-terminal 68 aminio acids of 

open reading frame cORF29 (RASCAL) (121).  Expression of this protein was verified in strains 

Towne and TB40e, but not AD169.  No evidence of RASCAL expression was found in a detailed 

translational analysis of cells infected with HCMV strain Merlin (53).  In this same analysis, one 

expressed ORF was identified that is expressed from an alternative translation initiation codon 

within the US17 ORF, and another that is internal to the US17 ORF but in the opposite 

orientation. We cannot discount the possibility that the ΔUS17 phenotypes trace at least in part 

to effects on US16 or other proteins expressed from the US17 locus. 

  The construct was verified by viral genome restriction digestion and sequencing of PCR 

amplimers that span a region from 100 bp upstream to 100 bp downstream of the US17 ORF.  

One-step and multi-step growth analysis of ΔUS17 was performed by infecting low passage 

HFF at MOI of 3.0 or 0.01.  Cell culture supernatants were sampled every 24 to 48 h and 

analyzed in triplicate by limiting dilution plaque assays.  From 24 to 96 hpi (high MOI, one-step) 

or 2 to 11 dpi (low MOI, multi-step) ΔUS17 grew to approximately the same titer as WT AD169, 

and the parental BAC pAD/Cre (Fig. 6, panels A and B). A repair virus was also created in 

which the US17 deletion was repaired by inserting the US17 sequence back into the mutant 

HCMV genome fused in frame with a c-terminal V5 epitope tag (Rev17v5).  This mutant had 

growth characteristics similar to the deletion mutant and the parental virus.  Immunoblotting for 
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various kinetic classes of viral proteins (Immediate early 1 and 2, and late proteins pp65 and 

pp28) over a 96 h time course (MOI = 3.0) revealed no difference in the expression of viral 

proteins between ΔUS17 and parental virus (Fig. 7).   

Microarray: Experiment rationale.  To further examine the biological role of US17 we 

performed cellular transcriptional profiling of cells infected with ΔUS17 or HCMV strain AD169.  

We designed the beadarray experiment to encompass both early (12 hpi) and late events (96 

hpi) in the HCMV replication cycle.  Analyzing cellular transcripts perturbed by ΔUS17 at these 

time points gave detailed information on how deletion of US17 affects biological pathways at 

different stages during HCMV replication.  The 12 hpi time point analyzed cellular events that 

happen before much de novo viral protein synthesis had taken place.  Importantly, this time 

point was before US17 production during infection.  Since others have noted that US12 family 

members influence virion assembly, we hypothesized that US17 may also be affecting virion 

structure.  Thus, the 12 hpi time point allowed us to discriminate events that are affected 

primarily by changes to virion composition/structure.  The late time point, 96 hpi, allowed for the 

identification of any pathways or genes that are directly influenced by US17 expression.  US17 

is produced maximally from 72 hpi to at least 120 hpi, thus, 96 hpi coincides with both US17 

expression and the development of the cytoplasmic viral assembly complex (cVAC) with the 

goal being to study genes directly influenced by US17 that might be important for virion 

assembly. Genes identified as differentially regulated in the absence of US17 (ΔUS17) at 96 hpi 

served as hypothesis generators for down-stream experiments to identify a molecular 

mechanism for US17 in human cytomegalovirus biology.  

Biological conditions for infection were chosen so as to maximize detection of even 

subtle changes to transcription caused by deletion of US17.  Cells in culture are generally 

asynchronous, i.e., they are all at different stages of the cell cycle.  This makes detection of 
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phenotypes difficult as cells at different points in the cell cycle have different basal states, i.e., 

energetic, metabolic, homeostatic, and therefore respond differently to infection.  To address 

this, cells for the microarray experiment were seeded 72 h pre-infection and allowed to grow to 

confluency.  This gave the cells enough time to come to metabolic equilibrium.  HCMV facilitates 

a G1/S block in cells that is necessary for initiation of infection (122).  Cells that are infected in S 

phase or M phase of the cell cycle must finish and return back to G0/G1 before infection can 

proceed (123). Synchronizing the cell population in a quiescent state (G0/G1) by growing to 

confluency ensured that almost every cell that is infected in our assay began the infection cycle 

at the same time.  The high MOI of 6.0 chosen for this experiment further ensured that every 

cell would become infected and minimized any “bystander” effect that could happen due to 

uninfected cells responding to chemokines or cytokines produced by neighboring infected cells. 

The beadarray is designed so that every probe is represented an average of 30 times 

per well.  These individual probes then get averaged together to give the final detection value 

i.e. expression level of the transcript.  Triplicate biological replicates were used, further 

amplifying the statistical power of the assay.  Together, the high number of technical replicates 

per well coupled with the biological replication meant that each transcript expression level was 

sampled an average of ~90 times per infection condition allowing for discrimination of even 

subtle changes in gene expression (~ 1.35-fold from control). 

 Downstream analysis / statistical modeling of the bead array data was done using a 

software package, BRB-ArrayTools, developed by the National Cancer Institute (NCI).  We have 

employed a variety of software features within BRB array tools that are specifically designed for 

differential expression analysis of microarray data.  Illumina beadarray data is directly 

importable into BRB-ArrayTools and can be analyzed using beadarray specific plugins e.g. lumi 

(124) meant to take full advantage of the unique features of the beadarray platform i.e., high 
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number of technical replicates per probe.  Once data was imported into BRB-ArrayTools, 

identification of differentially expressed genes was done using Significance Analysis of 

Microarrays (SAM), a powerful statistical algorithm specifically designed for use in differential 

gene expression analysis of microarray data (118).  An overview of the beadarray experiment 

and bioinformatics workflow is illustrated in Figure 8. 

Microarray experiment: Quality control.  Raw expression data for the 47,213 probes 

from the arrays was imported and collated into BRB-ArrayTools using a beadarray-optimized 

robust spline normalization (124).  A pre-filter was applied to eliminate probes that showed no 

signal differences (P < 0.001) across the full set of viruses, time points, and technical replicates; 

signal intensities of probes for 10,672 unique transcripts were then passed along for 

downstream analysis. 

 To assess consistency across replicate arrays, we used hierarchical clustering to 

construct a dendrogram of the unique probes identified above (centered correlation, average 

linkage) (Fig. 9).  Two major clades were apparent, one consisting of mock infected cells 

(collected at the 12 hpi time point) and the two viruses at 12 hpi, and a second consisting of the 

96 hpi samples for the two viruses.  The mock infected and 12 hpi specimens clustered 

separately from the 96 hpi specimens, and transcript profiles in all infections had no correlations 

with mock profiles, indicating greatly altered transcription profiles in cells infected with both 

ΔUS17 and AD169.  All sets of experimental triplicates clustered with themselves, indicating 

that replicate arrays were in high agreement with each other (correlations ≥ 0.80 except for 

ΔUS17 at 12 hpi, which had a correlation between the replicate arrays of 0.75).  At 96 hpi, 

mutant and AD169 profiles were highly correlated (> 0.90), indicating that most host transcripts 

were expressed at similar levels in infections with either virus.  The dendrogram illustrates that, 
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while, the transcript profile of ΔUS17 was highly similar to that of AD169 there were sufficient 

differences to classify them as distinct entities. 

 To analyze overall gene transcript profiles, scatterplots were constructed for both time 

points for all pairwise comparisons using the 10,672 probes that passed the filtering criteria (Fig. 

10, panels A and B); note that SAM-significant differentially expressed probes are indicated as 

either black or colored dots while non-SAM significant probes are indicated as light gray dots 

(described in detail below).  In comparison to mock infected cells, both viruses induced 

numerous changes to the transcription profiles at either time point.  At 12 hpi, both viruses 

modulated over 1,800 probes infected by ≥ 1.5-fold vs. mock (Fig. 10A).  At 96 hpi, changes to 

the transcriptional profiles were even more pronounced.  Both AD169 and ΔUS17 induced over 

3,000 probes by ≥ 1.5-fold vs. mock infected cells (Fig. 10B).  In contrast, there were relatively 

few transcriptional differences between ΔUS17 and AD169, correlating with the similarity noted 

on the Fig. 9 dendrogram and confirming that ΔUS17 modulated only a small percentage of 

transcripts relative to its parent.   

 Differential gene expression analysis in cells infected with AD169 vs. ΔUS17.  To 

analyze differentially expressed transcripts more robustly, we examined the specific differences 

in cellular transcript profiles between AD169 and ΔUS17 infections using significance analysis 

of microarrays (SAM) with a stringent false discovery rate (FDR) of 0.001.  SAM uses gene 

specific t-tests to compute an expected fold change for each transcript, dε(i).  It then uses 

permutations of the data and compares the observed fold change, d(i) to the expected 

foldchange.  A threshold is set by using a false discovery rate (FDR) which is the number of 

false positives that are statically likely in the data set.  If the observed fold change is larger than 

the threshold set for the expected fold change the gene is considered significantly differentially 

regulated.  Output plots of the SAM analysis are shown in Figure 11.  At 12 hpi, of the 10,672 
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probes that passed the filtering criteria, SAM indicated that only 278 were significantly 

differentially expressed between the two viruses (36 up- and 242 down-regulated); at 96 hpi,  97 

probes were differentially expressed (22 up- and 75 down-regulated) (Fig. 10C).     

To visualize the magnitude of the significant changes between AD169 and ΔUS17, SAM 

significant probes were plotted as black or colored dots in the Fig. 10 scatterplots.  At 12 hpi, a 

large number of SAM significant genes that were highly up-modulated in the AD169 vs. mock 

dataset were relatively attenuated in the ΔUS17 vs. mock dataset, thus resulting in the 

population of genes down-modulated in the ΔUS17 vs. AD169 comparison.  In contrast, at 96 

hpi, the genes that are down-modulated in the ΔUS17 vs. AD169 comparison are the product of 

an amplification of down-modulation that occurred in the AD169 infections.   

ΔUS17 modulates host innate and intrinsic immune responses early after 

infection.  The genes found by SAM analysis to be significantly differentially expressed 

between cells infected with AD169 and ΔUS17 were categorized using Cytoscape and the 

biological network gene ontology plugin (BiNGO).  BINGO searches for statistically over-

represented gene ontology categories among a set of genes and then maps those GO 

categories onto a visual network.  This allows for identification of clusters of gene ontology 

categories that, when used in conjunction with the gene ontology biological process hierarchy, 

highlights major biological themes of the input list of genes.  At 12 hpi, BiNGO was able to 

categorize 239/278 (86%) of the SAM-significant genes into 259 statistically enriched biological 

process gene ontology categories (P < 1x10-4).  Full lists of all gene ontology categories 

identified are summarized in Supplemental Table 2.   

To further categorize this list of gene ontology data we utilized the orthogonal layout 

option within Cytoscape, this minimizes edge (the lines that connect the individual category 

bubbles on the network) overlap between GO categories and has the effect of grouping highly 
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interconnected, and thus closely related, gene ontology categories next to each other.  A full 

visual network of all significantly enriched GO categories is illustrated in Figure 12.  Enrichment 

scores (ES) were calculated for several clusters of highly interconnected GO categories from 

the 12 hpi data set by calculating the inverse log of the geometric mean of the BiNGO 

calculated p-values for each GO categories within the cluster.  Higher enrichment scores denote 

a lower average p value for the cluster and indicate a higher degree of average statistical 

significance (Fig. 13A).  The most statistically significant clusters contained GO categories 

related to various aspects of innate and intrinsic immunity, especially, type I interferon anti-viral 

responses (41 categories, ES=14.6).  This cluster also contained the most significantly enriched 

category overall “response to virus” (P = 2.63x10-40) which contained 40/239 (17%) of the SAM-

significant genes differentially modulated at 12 hpi, genes in this category are associated with 

sensing and responding to viral infections and include many interferon stimulated genes.  Also 

noted were highly enriched clusters of GO categories related to regulation of various immune 

system processes such as leukocyte migration, production of type I interferon, regulation and 

production of cytokines, and regulation of Nf-κB (67 categories, ES=8.1), and apoptosis or 

regulation of apoptotic molecular function (32 categories ES=7.2).  Two less significant clusters 

of GO categories were also identified and contained GO categories related to blood vessel 

development and angiogenesis (13 categories, ES:6.0), and metabolism (32 categories, 

ES=5.7).  Together, genes involved in these five biological themes comprised 174 of the 239 

differentially expressed genes categorized by BiNGO at 12 hpi.  The other 65 genes that were 

SAM significant at 12 hpi, and that had gene ontology biological process information available, 

showed no relationship to anything in the gene ontology hierarchy that passed our threshold of 

significance and thus were not considered for further analysis. 

Venn diagrams were constructed to highlight relationships of the individual genes in 

each of the five major biological process themes identified above.  Of the 216 genes classified 
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by BiNGO, 131 of them fell under the three most significant biological themes of innate and 

intrinsic immunity, regulation of immune processes, and apoptosis (Fig. 13B).  Genes in these 

categories showed a large degree of overlap with each other with few unique genes in each 

theme, with the exception of innate and intrinsic immunity which had 44 genes that were not 

classified in any other category. We next compared the two less significant biological themes of 

metabolism and blood vessel development.  Again, transcripts in these categories were found to 

have a high degree of overlap with GO categories related to the more statistically significant 

immune response and apoptosis GO clusters (Fig. 13B).  Taken together, the high degree of 

overlap between the five identified themes indicates that the most significant of them, innate and 

intrinsic immunity, represents the major biological theme of the genes differentially expressed at 

12 hpi.  

 To put these results into the broader context of host immune responses during HCMV 

infection, we compared expression of the 131 innate and intrinsic immunity related SAM 

significant transcripts differentially regulated by ΔUS17 with that of mock infected cells and 

visualized them by overlaying the genes on the Figure 10 scatterplots.  The subset of 

immune/apoptosis related transcripts identified above was readily apparent, showing a high 

degree of up-modulation in the AD169 vs. Mock pair but a relative attenuation of up-modulation 

in the ΔUS17 vs. Mock pair wise comparison.  The net result was an overall down-modulation of 

these transcripts between ΔUS17 and AD169 (Fig. 10A gold dots).  Of the 131 innate and 

intrinsic immunity related transcripts, 123 were differentially down-modulated in this fashion by 

ΔUS17 compared to AD169, with 54 of those transcripts being ≥ 2-fold down-regulated.  Many 

of the most highly down-regulated genes encode either interferon stimulated genes or soluble 

factors, namely cc and cxc chemokines and cytokines.  These transcripts grouped into two 

highly significant gene ontology categories identified above; “Type I interferon mediated 

signaling” (p= 6.22 x 10-32, 21 probes) and “Inflammatory Response” (p= 3.27 x 10-7, 8 probes). 
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Expression levels of genes in these two categories are illustrated in Figure 14.  Complete lists of 

all SAM-significant genes at 12 hpi and 96 hpi, and transcripts common to both time points are 

provided in Supplementary Table 1.   

To further confirm the phenotype observed using the microarray, we employed a custom 

qRT-PCR array that targets six innate and intrinsic immune response transcripts that showed a 

high degree of down-modulation compared to AD169 at 12 hpi. We compared the parental virus 

pAD/cre, a BAC version of AD169 which contains no deletion of primary sequence but does 

contain a small 32 bp lox scar between the US28 and US29 ORFs, two independently derived 

ΔUS17 mutant viruses (ΔUS17 and 2ΔUS17), and a US17 deletion repair virus (US17cV5).  

The two independent ΔUS17 viruses showed the same down-modulation as was observed on 

the microarray (Fig.15). Additionally, the repair virus restored transcript expression to parental 

levels, indicating that deletion of the US17 locus had a specific effect on expression of immune 

genes.  Overall, these changes in gene expression at 12 hpi, a time that precedes de novo 

expression of most HCMV genes, suggest changes in the way ΔUS17 virions are sensed by the 

host cell. 

Gene ontology analysis at 96 hpi.  At 96 hpi, BiNGO categorized 86 of the 98 SAM 

significant genes into 76 significantly enriched GO biological process categories (P < 1x10-4).  

As evident in the scatterplots (Fig. 10 A and B), differences between ΔUS17 and AD169 were 

generally smaller than at 12 hpi.  Fourteen of the over-represented biological process categories 

related to type I interferon, cytokine, or various other aspects of immune responses and another 

five categories related to apoptosis (Supplementary Table 2).  Together, these categories 

contained 43 differentially regulated transcripts, 22 of which were identified by SAM analysis as 

being differentially expressed between AD169 and ΔUS17 at both 12 hpi and 96 hpi (Fig. 10C).  

Interestingly, for most of these genes, although the magnitude change relative to mock 
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decreased from 12 to 96 hpi, the directions of the transcriptional changes were consistent at 

both times, with ΔUS17 blunting induction of certain immune response transcripts 

(predominantly interferon responsive genes) while amplifying the suppression of other 

transcripts (predominantly genes involved in tissue development).  In sum, ΔUS17 produces 

pronounced changes to host immune transcripts at 12 hpi that persist to at least 96 hpi. 

 Several ER stress and unfolded protein response transcripts were differentially regulated 

at 96 hpi but not at 12 hpi.  This included a number of heat-shock 60 kDa (HSP60) proteins, as 

well as transcripts for proteins involved in ER stress and the ER associated degradation (ERAD) 

pathways.  Positive and negative effects were seen among transcripts associated with these 

genes (Fig. 14).  At least one of these genes (HSPA5 or Bip) is important for the biogenesis and 

function of the HCMV cytoplasmic virion assembly complex (cVAC) (110,125).  US17 shows its 

highest levels of expression from 96 to 120 hpi, thus, transcripts modulated by ΔUS17 at late 

times are probably a direct effect of the mutation rather than the indirect effects seen at 12 hpi. 
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Discussion 
 
 US17 indirectly modulates host innate and intrinsic immune responses.  As for 

other infectious agents, modulation of immune responses is a fundamentally important aspect of 

HCMV biology. The process of HCMV host cell immunomodulation begins at the very earliest 

stages of viral attachment to the cell and is highly dependent on the structural components of 

the virion, i.e., envelope glycoproteins such as gB and gH, and tegument proteins such as pp65 

(114,126-128)  reviewed in (9). We found that deletion of US17 had little impact on production of 

infectious viral particles in fibroblasts, but nevertheless exerted a tangible influence over viral 

replication.  ΔUS17 markedly blunted the host cell anti-viral response at a very early time point 

(12 h) after infection.  Many interferon stimulated transcripts and transcripts encoding for pro-

inflammatory chemokines and cytokines were down-modulated by 3- to 5-fold when compared 

to the parental virus.  These changes to immune sensing of the host cell at 12 hpi happened in 

the absence of US17 expression, thus we conclude that virions produced by ΔUS17 infected 

cells differ in their composition from those produced by parental virus.  

A role for US17 mediated manipulation of ER stress responses late in infection.  In 

contrast to the modulation of immune responses at 12 hpi, other effects were seen at 96 hpi, a 

time that corresponds with both high expression of US17 and the formation of the cVAC (96).  

Specifically, expression of some ER stress response and chaperone transcripts were 

significantly altered by ΔUS17.  By unknown mechanisms, HCMV modulates various pathways 

and genes involved in ER stress and the unfolded protein response (106,108). One such gene, 

HSPA5 (GRP78/BIP), which was up-regulated 1.6-fold by ΔUS17, is important for formation of 

the cVAC and production of infectious virions (110,112,125).  Several other important regulators 

of ER stress were also modulated, including DDIT3 (also known as CHOP) (2.11-fold increase) 

and CHAC1 (1.6-fold increase), both of which are known to promote apoptosis during the ER 

stress response (129-131).  Relative to mock-infected cells, ΔUS17 and its parent altered 
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regulation of most of these transcripts in opposite directions.  This is in sharp contrast to the 

sets of immune transcripts that at 12 hpi were modulated by ΔUS17 and its parent in the same 

direction relative to mock-infected cells.   

The modulation of gene expression by US17 at later stages of infection provides insights 

into a potential mechanism of action for US17 and offers cellular targets that could be studied in 

this context.  We note that US12 family members share sequence similarity with the trans-

membrane bax inhibitor-1 (TMBIM) family of conserved eukaryotic anti-apoptotic seven 

transmembrane proteins (71).  These proteins localize to membranes of various cellular 

organelles where they act as rheostats that modulate apoptotic and ER stress signaling by 

influencing cellular calcium levels (80-84).  Interestingly, over expression of Bax inhibitor-1, 

showed lower levels of expression of both BIP and CHOP in response to the ER stress inducers 

thapsigargin and tunicamycin (132).  This is directly opposite to the phenotypes observed here 

where deletion of US17 exhibited higher expression of both BIP and CHOP in response to 

HCMV infection.  Taken together, it is possible that US17 is a bax inhibitor-1 ortholog that 

shapes virion composition by modulating levels of ER stress response and apoptosis genes 

involved in regulation of protein folding, trafficking, and cVAC function. 
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Figure 5.  Schematic detailing recombinant viruses used in this study.  
Bacterial artificial chromosome recombineering was used to generate a virus 
deleted in frame for US17 leaving only a 32 bp FRT scar (ΔUS17).  The deletion 
mutant was repaired by insertion of the wild type US17 sequence in place of the 
FRT scar with an additional C-terminal V5 small epitope tag (Rev17cV5).  
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Figure 6.  Deletion of US17 does not significantly affect production of 

infectious virus in fibroblasts.  (A) Multistep (MOI=0.1) and (B) Single step 
(MOI=3.0) growth curves comparing production of infectious virus using the 
parental virus pAD/Cre, the US17 deletion mutant (ΔUS17), and the repair 
virus Rev.cV5.    
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Figure 7.  Deletion of US17 does not alter production of viral proteins.  
Immunoblot of cellular lysates from HFF infected with either pAD/Cre (P), 
ΔUS17 (Δ17) or the repair virus 17cV5 (V5) at MOI = 3.0 for 24 to 96 hpi. 
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Figure 8.  Beadarray experiment overview and bio-informatics workflow. 
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Figure 9. ΔUS17 alters small sets of host transcripts at both 12 and 96 hpi.  
Dendrograms showing the relationships of cellular transcript profiles generated 
by Illumina HT-12 beadarray analysis. Three biological replicates were analyzed 
for each virus and are as follows: AD = AD169, Δ17 = ΔUS17 and Mo = Mock 
infected.  Correlation scores closer to 1 denote a higher degree of similarity 
between two clades. 
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Figure 10. Transcripts modulated by ΔUS17 at 12 and 96 hpi found significant by SAM.  A and 
B: Pair-wise scatterplot analysis of the 10,672 probes that passed the initial pre-screen filter.  
Colored dots indicate SAM-significant differentially regulated gene sets between ΔUS17 and AD169 
(FDR = 0.001) as follows: Black: non-immune SAM significant genes, yellow: SAM significant innate 
and intrinsic immune related genes differentially expressed at 12 hpi, light blue: SAM significant 
innate and intrinsic immune related genes differentially expressed at 96 hpi.  Black lines represent 
≥1.5 fold change in either direction. C: Venn diagrams of total SAM significant transcripts and 
immune related SAM significant transcripts at 12 and 96 hpi. 
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Figure 11.  SAM plots of genes differentially regulated by ΔUS17 compared to AD169.  
The threshold, representing a FDR of 0.001 is the dashed red line.  Genes significantly up-
regulated by ΔUS17 vs. parental virus are shown as red dots while down-regulated genes 
are shown as green dots. 

49



Innate & Intrinsic Immunity 

Regulation of immune process 

Apoptosis 

Blood vessel development 

Metabolism 

p value 

1x10-4 < 1x10-9 

Apoptosis 

Figure 12. Cytoscape gene ontology maps of genes significantly regulated by ΔUS17 

compared to parental at 12 hpi.  Lists of SAM significant genes were imported into cytoscape 
using the BiNGO plugin.  Gene ontology biological process maps were generated using a p 
value cutoff of 0.0001.  Categories are color coded based on p value with black being the least 
significant and red representing the most significant.  Maps were organized using an orthogonal 
layout which clustered closely connected GO categories next to each other.  Colored boxes 
represent the five biological themes identified.   
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Figure 13. Gene ontology analysis of SAM significant transcripts. (B) Table outlining the five biological 
themes identified.  Listed are the numbers of individual gene ontology categories for each theme out of the 
259 total GO categories identified as statistically significant (P < 0.0001).  Also listed are numbers of SAM 
significant transcripts in each theme out of the 239 that could be categorized into a gene ontology biological 
process category.  The enrichment score denotes the average level of significance of all of the GO 
categories in a particular theme.  Higher enrichment scores indicate a more significant, mean log 
transformed p value for that theme. (A) Venn diagrams detailing numbers of differentially modulated SAM 
significant transcripts from the ΔUS17 vs. AD169 12 hpi comparison that grouped into the five most highly 
significant biological categories identified by BiNGO gene ontology biological process clustering. The left 
Venn diagram is a comparison of transcripts that grouped into either of the three most significant gene 
ontology themes of innate immunity and interferon production, regulation of immune response, or apoptosis.  
The right Venn diagram is a comparison of transcripts that grouped into either of the first three themes 
against the two minor identified gene ontology themes of blood vessel development and metabolism.  
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HCMV employs numerous strategies to combat, subvert, or co-opt host immunity.  One 

evolutionary strategy for this involves “capture” of a host gene and then its successive 

duplication and divergence, forming a gene family, many of which have immunomodulatory 

activities. The HCMV US12 family consists of ten tandemly arranged sequence-related genes in 

the unique short region of the HCMV genome (US12-US21).  Each gene encodes a protein 

possessing seven predicted transmembrane domains, and patches of sequence similarity with 

cellular GPCRs and the bax inhibitor-1 family of anti-apoptotic proteins.   

We show that one member, US17, plays an important role during virion maturation. 

Microarray analysis of cells infected with a recombinant HCMV deleted for US17 (ΔUS17) 

revealed blunted host innate and interferon responses at early times after infection (12 hpi), a 

pattern opposite that previously seen in the absence of the immunomodulatory tegument protein 

pp65 (pUL83).  Although ΔUS17 produced equal numbers of infectious particles in fibroblasts 

compared to parental virus, at equal multiplicities of infection, it produced >3-fold more genome-
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containing non-infectious viral particles, and delivered increased amounts of pp65 to newly 

infected cells.   

At later time points (96 hpi) ΔUS17 infected cells displayed aberrant expression of 

several host ER stress response genes and chaperones, some of which are important for the 

final stages of virion assembly and egress.  Our results suggest that US17 modulates host 

pathways which control virion composition enabling production of virions that elicit an 

appropriately balanced host immune response. 
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