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CHAPTER 1 INTRODUCTION

Healthcare is transitioning to a new paradigm under the emergence of large biomedical

datasets in various domains of health. In fact, the explosive access to large Electronic

Health Records (EHR) and advanced analytics is providing a great opportunity in recent

years for improving the quality of healthcare [30, 49]. The availability of patient-centric

data brings about new opportunities in healthcare and enable data scientists to pursue new

research avenues in the realm of personalized medicine using data-driven approaches.

Since EHRs are complex, sparse, heterogeneous and time dependent, leveraging them

for personalized medicine is challenging and complicated to interpret. Representation

learning (feature learning) provides an opportunity to overcome this problem by trans-

forming medical features to a higher level abstraction, which can provide more robust

features. On the other hand, labeling of clinical data is expensive, difficult and time con-

suming in general. However, there are many instances where unlabeled data may be

abundant. Representation learning through unsupervised approaches is a very effective

way to extract robust features from both labeled and unlabeled data which can enhance

the performance of supervised learning on the top of labeled data.

There are many methods in the literature developed in order to overcome challenges in

pattern recognition of electronic health records. These methods so called shallow learning

like as Principle Component Analysis (PCA), Independent component analysis (ICA) and

Manifold learning could not solve many challenges faced in EHR analytics. In addition,

the traditional feature selection approaches like as tree-based algorithms [30, 57] or linear

approaches (e.g Lasso regression [64, 59]) could improve the clinical prediction tasks and

provide interpretable results but were not enough for many purposes . In the other hand,
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deep representation or deep learning provides several promising performance in learning

from complex data like as electronic health records. In comparison with shallow feature

mapping, the key advantage of feature representation using deep learning is the ability to

provide more abstract features representation at higher levels by non-linear transformation

using deep hidden layers [3].

Deep representation leaning has shown success in several domains such as computer

vision, natural language processing, audio recognition and signal processing [13]. The

choice of data representations has a significant impact on the performance of different

machine learning tasks [3]. There has been increasing interest in using representation

learning, which tries to learn higher level abstraction of data representations that are

crucial as input to improve the performance of prediction models [13].

In clinical domain, building an accurate prediction model is challenging since EHRs

include high dimensional heterogeneous structured and unstructured data components in-

cluding demographic information, laboratory test results, diagnoses, medication informa-

tion, clinical test notes, and medical images. Therefore, representation learning is needed

to provide better information as input of prediction tasks in clinical domain such as preci-

sion medicine that focuses on the use of patient-centered data to recommend a treatment

based on personalized health attributes. [26, 42]. Representation learning can overcome

many challenges (e.g. label scarcity [31]) in facing EHRs while the choice of feature rep-

resentation is significant to achieve better accuracy [3].

Recently several research have been applied deep feature representation as unsuper-

vised approach on clinical data in the domain of precision medicine and health informatics

[71] in order to provide more accurate prediction results on different targets such as risk
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of disease, disease phenotyping, treatment recommendation and medical events [41]. In

spite of performing many representation learning research, there is significant opportunity

to investigate about the choice of representation to provide a comprehensive guidance

based on real work experimental studies.

In this research, we perform exploratory analysis [16] to show the impact of deep fea-

ture representation on prediction performance and investigate the choice of deep learn-

ing approach across small and large datasets. For this goal, we proposed an integrated

approach as illustrated in Figure 1 including three consecutive steps. In step 1, we do

preprocessing on clinical data including data integration from different sources of data

(diagnosis, test results, patient information, etc.), cleaning the data (handling missing val-

ues and data quality) and transferring text features to vectors. In step 2, we trained deep

neural network for feature representation based on different deep Auto-Encoders (AE).

This step is unsupervised learning step and can be utilized by both labeled and unlabeled

data specially in the cases that labeled data are scarce and expensive to be collected. Af-

ter training the deep network for feature representation based on training set, the trained

network is applied to represent (transform) the patient features (for both training and

evaluation sets) as input of supervised learning step.

Step 3 is the supervised learning step where the target of interest is predicted using

represented features. Since we applied different AEs in step 2, the best deep architecture

is selected based on performance of supervised learning in step 3. While the proposed

approach utilizes deep learning for feature representation to improve the prediction accu-

racy, the main goal is to compare and evaluate the choice of feature representation (deep

network architecture) through steps 2 and 3 in case of small and large EHR datasets.
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With this goal, we apply the proposed approach on two different healthcare informatics

case studies using real clinical data. The first case study is related to prediction of risk

disease where we use small-size EHRs data for specific subgroup of patient to predict

heart failure risk. In the second experimental study, we apply the proposed approach on

two large datasets to predict the patient length of stay in Intensive Care Unit (ICU). We use

eICU collaborative research database, a freely available multi-center database for critical

care research.

In general, we develop a predictive approach using deep learning and data representa-

tion for EHRs. In our method, we apply four deep architectures for feature representation

in higher levels abstraction: Stacked sparse autoencoders, Deep belief network, Adversar-

ial autoencoders and Variational autoencoders. Our contributions in this paper lie into two

folds: 1) Improving predictive modeling by deep feature representation on EHRs where

we apply various deep networks including advanced generative autoencoders (AAE, VAE)

and regular autoencoders (SSAE, DBN). 2) It is one of the first comparative studies to in-

vestigate the choice of deep representation among small and large datasets, and provide

practical guidelines.

In the rest of this thesis, in chapter 2, we review the shallow feature learning methods

and importance of deep feature learning approaches in health informatics. In chapter 3,

we explain the proposed prediction approach in detail and chapter 4 reports two clinical

experimental case studies and implementation results. Finally, chapter 5 finishes with a

discussion of results and future works.
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CHAPTER 2 RELATED WORKS

Since principal component analysis (PCA) is developed [46], feature learning (feature

extraction or representation learning) has been researched for more than a century to

overcome the challenges of high dimensionality [73]. In this period, many shallow meth-

ods including linear and non-linear feature learning approaches have been developed until

deep learning is introduced as an exciting new trend of machine learning in recent years.

In the feature representation learning domain, generally, the algorithms can be divided

into two categories: shallow learning and deep learning, based on the level of their hierar-

chical abstraction from input features. Before 2006, several researchers (e.g. [28]) made

significant efforts to train deep multilayer network (more than five hidden layers) but their

efforts was not successful because of lack of large scale data and existence of many hyper

parameters in deep network. Therefore, shallow learning approaches overcome the fea-

ture learning and representation domain. Principal component analysis (PCA) [46] and

linear discriminant analysis (LDA) [17] are two most popular shallow learning algorithms.

The first one is a an unsupervised approach and the second one is a supervised method.

Hinton and Salakhutdinov [20] introduced a fast algorithm based on greedy layer-wise

pre-training approach for deep neural networks training, and initiated a new research area

of deep learning. Accordingly, their work was continued by other researches with similar

idea. Deep learning demonstrated a great performance in feature representation through

supervised and unsupervised learning approaches especially in the medical and health

science domains. In this section, we first review the shallow feature learning methods and

then we describe the importance of deep feature learning and review both supervised and

unsupervised deep feature representation approaches.
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2.1 Shallow Feature Learning

The most popular shallow feature representation approach is Principle Component

Analysis. PCA produces linear combinations of features, called principal components,

which are orthogonal to each other, and can explain variation of features, and may achieve

lower dimensionality. PCA is applied in several healthcare applications. Martis et al. [37]

used PCA for classification of ECG signals for automated diagnosis of cardiac health. Yeung

et al. [70] applied PCA to project gene expressions into lower dimension to cluster genes.

In the other study [34], authors proposed a systematic approach based on PCA to detect

the differential gene pathways which are associated with the phenotypes.

In addition to standard PCA, several PCA-based approaches have been developed and

applied in bioinformatics studies to improve the performance of PCA. For example, super-

vised PCA is proposed in [1] in order to diagnose and treat cancer more accurately using

DNA microarray data. Zou et al. [75] proposed Sparse PCA using lasso (elastic net) regres-

sion for gene expression arrays. In the other research, Nyamundanda et al. [45] applied

Probabilistic PCA to analyze the structure of metabolomic data.

Instead of PCA-based approaches, several other shallow feature learning methods have

been developed with application to healthcare. Independent Component Analysis (ICA)

[69] and Linear Discriminant Analysis (LDA) [68] are good examples of linear approaches.

Non-linear dimensionality reduction first developed by Kernel version of some linear

dimensionality reduction algorithms. These kernel based approaches map the original

feature space to a higher dimensions using a nonlinear function and then apply linear

dimensionality reduction on the high dimensional feature space [73]. Two efficient kernel

dimensionality reduction methods are the kernel version of PCA and LDA. The fisrt one is
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kernel PCA (KPCA) [53] and the second one is generalized discriminant analysis (GDA)

[2]. There are many studies in bioengineering domain specially in ECG signal classification

that applied kernel based dimensionally reduction [6, 24].

Among other nonlinear dimensionality reduction or so-called manifold learning ap-

proaches, isometric feature mapping (Isomap) [58], locally linear embedding (LLE) [52]

and stochastic neighbor embedding (SNE) [21] are the most popular models. Several man-

ifold learning algorithms have been developed with the goal of keeping local information

between instances in the lower dimensional space.

While Kernel-based approaches map the original feature space into a higher dimensions

and then project them to a reduced space through a linear function, manifold learning

methods directly learn nonlinear representation of original features. For example, Isomap

uses the geometric distances between all pairs of instances and estimates the intrinsic

geometry of a data manifold and provides low-dimensional embedding of features [58]

while LLE can learn the whole structure of nonlinear manifold and provides the local sym-

metries of linear reconstructions [52]. Finally, stochastic neighbor embedding (SNE) as

another nonlinear dimension reduction approach formulates the neighborhood relation-

ship among features in a low dimensional space [21]. SNE utilizes Gaussian distribution

in the low dimensional space, Maaten and Hinton [35] extended SNE to t-SNE which uses

a heavy-tailed Student-t distribution with one-degree of freedom to compute the similarity

among the embeddings.

In the biomedical domain, Li et al. [29] applied LLE on the gene expression data to

map them to low dimensional space in order to improve the accuracy of classification tasks.

There are many other applications of manifold learning in the medical domain which are
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addressed in a review study by Mateus et al. [38].

In general, The key benefit of using shallow feature learning is the capability to inter-

pret the represented features. Shallow feature learning approaches are efficient computa-

tionally and the learning process is straight forward but they have not demonstrated great

performance in high dimensional and complex data such as temporal/spatial data or image

data because they cannot be stacked to provide deeper and more abstract representations

[3].

2.2 Deep Feature Learning

Deep neural networks have been illustrated to contribute promising capabilities in

learning complex patterns in data, and have achieved remarkable success in several do-

mains such as computer vision, natural language processing, speech recognition and etc.

Recently, many efforts have been made in the field of biomedical and health informatics to

improve the performance of machine learning tasks.

Deep feature representation has been employed in several areas using EHRs (e.g. di-

agnosis and medication data), genomics data, medical text and imaging data with various

purposes including risk factors selection, disease phenotyping and disease risks prediction

or classification [41]. Feature representation using deep learning can be achieved either

by supervised deep learning predictive models (e.g., deep feed-forward neural network

and convolutional nets) or by unsupervised deep learning approaches (e.g., deep autoen-

coders). In this section, we review the related studies for both approaches in biomedical

and healthcare applications.
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2.2.1 Deep Supervised Feature Learning

The supervised deep predictive approaches extract features through learning weights

and biases with considering target variable in the cost function. As a good example, Li et

al. [32] proposed a novel deep feature selection model for selecting significant features

inputted in a deep neural network for multi-label data. The authors used elastic net regu-

larization to select most important features. They added a one-to-one linear layer between

the visible layer and the first hidden layer of a multi-layer perception (MLP) to rank fea-

tures based on regularized weights in the input layer obtained after training. Finally, they

applied their model to a genomics dataset. In another study, Cheng et al. [9] first repre-

sented the EHRs as a temporal matrix with two dimensions, time and event for all records

and then used four-layer CNN for extracting phenotypes and applying prediction for two

case studies: congestive heart failure and chronic obstructive pulmonary disease.

Choi et al. [10] proposed a predictive framework termed Doctor AI for medical events.

The authors employed a recurrent neural network (RNN) on large-scale temporal EHR

data to predict the diagnosis and medication categories for further visits. Zhao et al. [72]

developed a brain tumor image segmentation method using convolutional neural networks

(CNNs). They applied their approach on multimodal brain tumor image segmentation

benchmark (BRATS) data and obtained advanced accuracy and robustness.

Feature learning through deep supervised predictive approach requires large scale la-

beled data for training while in many healthcare applications it is hard to collect enough

labeled data. Unsupervised and semi-supervised feature learning approaches can over-

come the label scarcity problem and provide better feature representation.
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2.2.2 Deep Unsupervised Feature Learning

Many studies used unsupervised or semi-supervised deep feature learning for EHRs

and applied predictive models on top of represented features. Miotto et al. [40] applied

stack denoising autoencoders (SDA) for feature learning and representation of large scale

electronic health records. They used EHRs of approximately 700, 000 individuals related

to several diseases including schizophrenia, diabetes, and various cancers. Their model

improved medical prediction, which could offer a machine learning framework for aug-

menting clinical decision systems.

Recently, Che at al. [8] proposed a semi-supervised framework for EHRs risk predic-

tion and classification. They developed a modified generative adversarial network called

ehrGAN for feature representation and used CNN for performing prediction task. In the

other research, [43], authors proposed a novel feature selection model using deep stacked

autoencoders. They performed their approach on a health informatics problem to iden-

tify the most important risk factors related to African-Americans who are in risk of heart

failure. Wulsin et al. [66] developed an approach using deep belief nets for electroen-

cephalography (EEG) anomaly detection to monitor brain function in critically ill patients.

Cao et al [7] trained deep belief network on several large datasets for prediction of pro-

tein tertiary structure for protein quality assessment based on different perspectives, such

as physio-chemical and structural attributes. In the other study [14], a healthcare recom-

mender system developed based on variational autoencoders and collaborative filtering.

Authors used VAE to learn better relationships between items and users in collaborative

filtering.

Our predictive approach for cardiovascular risk level (LVMI) and length of stay (LOS)
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in ICUs can be considered in the last group. Readers for more comprehensive review about

deep feature learning applications in healthcare can refer to recent review articles provided

by Ravi et al. [50], Litjens et al. [33], Miotto et al. [41], Xiao et al. [67] Shickel et al.

[54] and Purushotham et al. [48].

Although deep feature learning (supervised, unsupervised and semi-supervised) gener-

ally provides better representation rather than shallow approaches, but it is hard to inter-

pret them and computationally expensive to train with several hyperparameters. There-

fore, the right choice of deep network can reduce significant effort in training process. In

this way, we try to provide empirical insights for choice of deep representation approach

across small and large datasets which has not been studied in the literature.
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CHAPTER 3 DEEP REPRESENTATION LEARNING

Many machine learning tasks can be improved depending on how the input data is

represented. For example, the operation of inserting a digit into the right position in

a sorted list considered as an O(n) operation in the case that the list is represented in a

linked list, but if the list represented as a red-black tree, it changes to an O(logn) operation.

This example shows how data representation can enhance different information processing

tasks including machine learning. In other words, a good feature representation approach

can make machine learning tasks easier and more accurate [18]. Therefore the choice

of representation learning can be considered as important step of machine learning tasks

which can improve their performance significantly.

Similar to supervised deep networks (e.g. feed-froward deep architecture), unsuper-

vised deep learning algorithms include a main objective for training but also they learn

a feature representation as additional output. This represented features can be used on

the other tasks. Accordingly, multiple tasks including supervised and unsupervised can

be learned with together based on shared represented layers. Since representation learn-

ing can provide unsupervised and semi-supervised learning, it becomes interesting. In

many application such as healthcare, labeled data are insufficient and expensive which

lead to over-fitted trained supervised models. On the other side, there are large amount

of unlabeled data for training and feature representation that provide this opportunity to

overcome this over-fitting problem by learning from unlabeled data. Particularly, we can

utilize the represented unlabeled data to improve the supervised learning tasks [18].

Unsupervised learning considered a key step in revolution of deep learning and it en-

ables scientists to train deep supervised network without need of special networks such
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as recurrence or convolution architectures. This unsupervised learning that trained before

supervised learning task called layer-wise unsupervised training [18]. Greedy layer-wise

unsupervised pre-training approach depends on a single layer representation learning al-

gorithm such as an Restricted Boltzmann Machine (RBM), a single-layer Auto-Eencoder

(AE) or any other model that can learn latent representations. In this approach, each layer

is pre-trained based on unsupervised learning and the output of that layer is used for input

of the next hidden layer as a new represented data with a new distribution whose the

pattern can be learned easier.

Greedy layer-wise training algorithms based on unsupervised learning have long been

studies to solve the problem of jointly training the layers of a deep architecture for a

supervised goal. The discovery of layer-wise approach in 2006 by Hinton [20] started the

journey to develop a good initialization for a joint learning algorithm over all the layers

which could be applied successfully to train fully connected architectures as well.

In this chapter of this thesis, we review 4 important unsupervised deep architecture for

representation learning: Stacked Sparse Autoencoder, Deep Belief Network, Variational

Autoencoder and Adversarial Autoencoder. We try to provide a sufficient explanation for

each of them including their architecture, objective function and their pros and cons.

3.1 Stacked Sparse Autoencoder

An autoencoder network is an unsupervised learning methodology which number of

output layer’s neurons are equal to the number of input layer’s neurons. AE tries to recon-

struct input data (x) in output (x′) layer by encoding and decoding process [22, 62]. AEs

consist of an encoder, which converts the input to a latent representation, and a decoder,

that remodels the input from this representation. Autoencoders are trained to minimize
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the reconstruction errors. Stacked Autoencoders is a deep network consisting of multiple

layers of autoencoders (Figure 2) which can be trained in layer wised approach [4]. Af-

ter training of deep network, middle layer illustrates the highest-level representation of

original features [27].

The loss function for training an autoencoder can be defined as following:

Loss(x, x
′
) = ‖x− x′‖ = ‖x− f(W

′
(f(Wx+ b)) + b

′
)‖, (3.1)

where f is the activation function and W , W ′, b and b
′ are the parameters of the hidden

layers.

The above loss function is reliable when the number of hidden units in the latent layer

being small, but even in the case of large hidden units (even greater than the number

of input features), which is called sparse representation or stacked sparse autoencoder

(SSAE), we can still explore reliable architecture, by imposing sparsity constraints on the

network [44]. In Sparse autoencoders, we formulate the loss function with regularizing

activations (not weights of the network) and we encourage the learners to train encoding

and decoding based on activating a small number of neurons. We can impose this sparsity

constraint by adding L1 regularization or KL-Divergence (E.q 3.2) to the loss function [44].

Loss(x, x
′
) + λ

∑
i

| a(h)i | or Loss(x, x
′
) + λ

∑
j

KL(ρ‖ρ̄j). (3.2)
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3.2 Deep Belief Network

Deep Belief Networks are probabilistic generative models that are composed by stack-

ing of multiple RBMs to provide better representation rather than single RBM. Hinton and

Salakhutdinov [22] proposed the layer-wise training procedure which deep belief network

can be trained layer by layer in unsupervised learning approach. They used the joint prob-

ability distribution between visible and latent layers as follows:

P (x, h1, ..., hl) =
l−2∏
k=0

P (hk|hk+1)P (hl−1hl), (3.3)

where, x= h0, P (hk|hk+1) is a conditional probability of visible units in level k given the

state of hidden units of the RBM in level k + 1, and P (hl−1, hl) defined as visible-hidden

joint distribution in the last level of RBM. This structure has been illustrated in Figure 3.

In the layer-wised training approach, the input layer or so called visible units is trained

as a RBM and the output is transformed into the hidden layer based on optimizing of
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log-likelihood as below [20]:

log p(x) = KL(Q(h(1)|x)‖p(h(1)|x)) +HQ(h(1)|x)+ (3.4)∑
h

Q(h(1)|x)(log p(h(1))) + log p(h(1)).

KL(Q(h(1)|x)‖p(h(1)|x)) is the KL divergence between Q(h(1)|x) of the first RBM and

p(h(1)|x). Then the represented hidden units in the first layer are considered as input layer

(visible units) for the second layer of DBN and this process continues until training of

whole network. More comprehensive detail about the training process of DBN is provided

in [20] and [4].

Input

h1

h2

h3

RBM3

RBM2

RBM1

Figure 3: Deep Belief Network (DBN) architecture

3.3 Variational Autoencoder

Variational Autoencoder (VAEs) is one of the most popular approaches to representa-

tion learning developed in recent years. Variational autoencoders are probabilistic gen-
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erative models and have the same architecture as autoencoders, but consider specific

assumptions about the distribution of middle/latent layer variables. Variational autoen-

coders learn the true distribution of input features from latent variables distribution using

Bayesian approach and present a theoretical framework for the reconstruction and regu-

larization purposes [56]:

p(x) =

∫
p(x, z)dz =

∫
p(x|z)p(z)dz. (3.5)

In Eq. (3.5), p(x|z) is the probability function of the observed data and the output of

the decoder network by considering noise terms. In this equation, z is the latent represen-

tation and p(z) is the representation prior with an arbitrary distribution such as standard

normal distribution or a discrete distribution like as Bernoulli distribution. There exist

two problems for solving above equation: defining the latent variables (z) and marginal-

izing over z. The key intention behind the variational autoencoder is to try to sample

values of z that are likely to have generated x and compute p(x) for these values. To make

tractable above integral, an approach is to maximize its variational lower bound using the

Kullback-Leibler divergence (KL divergence or D) as follows: [15]:

Eqφ(z|x)[logp(x|z)]−D(q(z|x) ‖ p(z)) =

logp(x) −D[q(z|x) ‖ p(z|x)] . (3.6)
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We can apply Bayes rule to p(z|x) and reformulate Eq. (3.6):

logp(x) −D[q(z|x) ‖ P (z|x)] =

Ez∼q[log
p(x|z)]−D[q(z|x) ‖ p(z)], (3.7)

while q is encoding x to z and p is decoding z to reconstruct input x. The structure of

variational autoencoder has been illustrated in Figure 4.

Input (𝑋)

Encoder (𝑄)

𝛴(𝑋)𝜇(𝑋)

Sample 𝑧 from N(𝜇(𝑋), 𝛴(𝑋))
KL[N(𝜇(𝑋), 𝛴(𝑋))  N(0,I)]

Decoder(P)

𝑓(𝑧) 𝑋 − 𝑓(𝑧) 2

Figure 4: Variational autoencoder network, where P (X|z) is Gaussian distribution

3.4 Adversarial Autoencoder

Adversarial autoencoder (AAE) is a probabilistic autoencoder based on generative ad-

versarial networks (GAN) [19] which propose a minmax game among two neural network

models: generative model (G) and discriminative model (D). The discriminator model,

D(x), is a neural network that estimate the probability of a point x in data space came



20

from data distribution (true distribution which our model is training to learn) rather than

coming from generative model [36]. At the same time, the generator model, G(z), tries to

map sample points z from the prior distribution p(z) to the data space. G(z) is trained by

maximum confusing of discriminator in trusting that samples it produces; originated from

the data distribution. The generator is trained by using the gradient of D(x) related to x,

and using that to improve its parameters. The solution of this game can be represented as

below:

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼p(z)[log(1−D(G(z)))]. (3.8)

Input (𝑋)

+

-

Input
Distinguishing 
positive samples 𝒑 𝒛
from 
negative samples 𝒒 𝒛

𝑞(𝑧|𝑥)

𝑧~ 𝑞(𝑧)

Draw sample 
from 𝑝(𝑧)

(𝑋′)

Figure 5: Adversarial autoencoder network, where the top row is a standard autoencoder
and the bottom row shows a second network trained to discriminatively classify whether
a sample arises from the latent layer or from a arbitrary distribution
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The adversarial autoencoder uses similar idea of GAN in training true distribution of

data space by matching the aggregated posterior of latent variables to an arbitrary prior

distribution in the reconstruction and the regularization phases [36]. In the other word,

The adversarial autoencoder is an autoencoder that is regularized by coordinating the

aggregated posterior, q(z), to an arbitrary prior, p(z). Simultaneously, the autoencoder

attempts to minimize the reconstruction error. The architecture of an adversarial autien-

coder is shown in Figure 5.

The summary of deep networks applied in this study has been described in table 1.
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Table 1: Summary and comparison of deep networks used in this study

Architectures Description Key Points

1. Stacked Sparse Autoencoder

• Proposed in [22, 44] with the goal of
dimensionality reduction

• AE tries to reconstruct input data in
output layer by encoding and decoding
process

Pros

• Sparse autoencoder is appropriate for
small data through regularization.

• Sparse autoencoder can be fine tuned
easily by itself using ordinary back-
propagation approach

Cons

• The pre-training step is needed

• Vanishing errors may cause problem in
training step

2. Deep Belief Network

• Introduced in [20] constructed by
stacking of several RBMs

• DBNs are graphical models that can
be trained based on greedy-layer wised
approach

• Only the connection between top layers
is undirected

Pros

• Take the advantages of energy-based
loss function instead of ordinary one

Cons

• Training process is computationally ex-
pensive

• Fine tuning of DBNs seems to be diffi-
cult

3. Variational Autoencoder

• Proposed in [25] to learn the true dis-
tribution of input features from latent
space distribution using Bayesian ap-
proach

• VAEs apply a KL divergence term to im-
pose a prior on the latent layer

Pros

• VAEs are flexible generative model

• VAE is a principled approach to gener-
ative models

Cons

• Approximation of true posterior is lim-
ited

• VAEs Can have high variance gradients

4. Adversarial Autoencoder

• Proposed in [36] to impose the struc-
ture of input data on the latent layer of
an autoencoder

• Adversarial autoencoders are genera-
tive autoencoders that use adversarial
training to match the distribution of an
arbitrary prior on the latent space

Pros

• Flexible representation to impose arbi-
trary distributions on the latent layer.

• It can capture any distribution for gen-
eration sample, both continuous and
discrete

Cons

• It is challengeable to train because of
the GAN objective

• It is not scalable to higher number of
latent variables
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CHAPTER 4 METHODOLOGY AND EXPERIMENTAL RESULTS

In this project, we propose a comprehensive evaluation study using an integrated pre-

dictive framework for deep representation learning. We use this framework to compare

different deep networks to solve healthcare informatics problems in predictive modeling.

Our methodology follows the work flow shown in Figure 6 that includes three consecutive

steps.
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Figure 6: The technical workflow of the proposed approach
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4.1 Step−1: Preprocessing and Word Embedding

In the first step, we use the preprocessing methods such as outlier detection and im-

putation for missing values existed in the dataset. We also transform text variables to

vectors using word embedding techniques. Discovering efficient representations of text

features have been a key challenge in a variety of biomedical and healthcare applications

[11]. Word Embedding algorithms are developed to map text features (words) to vectors

of real numbers. Word embeddings have been widely applied in Natural Language Pro-

cessing (NLP) applications to provide vector representations of unstructured data. Word

embedding can capture semantic properties and relationship between words using word

co-occurrence matrix and shallow neural networks techniques. Word embeddings have

been popular used as feature input to machine learning tasks, which provide better repre-

sentation from raw text data [65].

There has been an increasing amount of research using word embeddings in biomedical

domain [65]. For instance, recently some studies have been applied word embedding

techniques to learn vector representations of diagnosis codes and procedure information in

EHR, and improve the performance of various medical prediction tasks [12, 65]. There are

different approaches for word embedding (word representation) including skip-gram [39],

continuous bag of words [39] and Glove [47]. In general, these approaches try to predict

the probability of word given its context. So the vector represented for two words with

similar context will be similar. Figure 7 illustrates our word embedding approach (based

on continues bag of words) to represent the medical diagnosis codes as N-dimensions

vectors for each patient. We implemented the word embedding using gensim library in

python [51].
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1

Diagnosis text Context Target

cardiovascular, chest pain, coronary artery, arrhythmias (cardiovascular, chest pain) cardiovascular

cardiovascular, chest pain, coronary artery, arrhythmias (cardiovascular, chest pain)

(chest pain, coronary artery)

chest pain

cardiovascular, chest pain, coronary artery, arrhythmias (chest pain, coronary artery)

(coronary artery, arrhythmias)

coronary artery

cardiovascular, chest pain, coronary artery, arrhythmias (coronary artery, arrhythmias) arrhythmias

1× 𝑽

Fixed length (N) vector representation of each word

cardiovascular [𝑉1
1, 𝑉2

1, 𝑉3
1, …… , 𝑉10

1 ]

chest pain [𝑉1
2, 𝑉2

2, 𝑉3
2, …… , 𝑉10

2 ]

coronary artery [𝑉1
3, 𝑉2

3, 𝑉3
3, …… , 𝑉10

3 ]

arrhythmias [𝑉1
4, 𝑉2

4, 𝑉3
4, …… , 𝑉10

4 ]

1× 𝑽

1× 𝑽

1× 𝑽

.

.

𝑾𝟏
V× 𝑵

.

.

Input layer Hidden layer

1× 𝑽 1×𝑵

𝑾𝟐
N× 𝑽

1× 𝑽

Output layer

1 2

3

Example of training input with window size =1

The final word-vector representation of 

diagnosis text for each patient is 

calculated based on average of word-

vectors in each diagnosis text. 

4

Input Word embedding

Vector representation for each word Diagnosis test representation for each patient

Figure 7: Word embedding for vector representation of text features

As shown in Figure7, the input of word embedding approach is all words of a text

feature (column) such as diagnosis codes. The table in step 1 is demonstrating how context

and target is defined in training set based on window size of 1. Step 2 is word embedding

method (continues bag of words) that captures context and target from training set and

train a shallow neural network. Step 3 is the vector representation of each word which

obtained from the hidden layer for trained network in step 2, and finally in step 4, the

vector for diagnosis text related to each patient is calculated based on average of vectors

of that text’s words.

4.2 Step−2: Feature Representation using Deep Learning

In the second step, all features will be represented in higher-level abstraction by four

different deep autoencoder networks separately: 1) Stacked sparse Autoencoder (SSAE),

2) Deep Belief Network (DBN), 3) Adversarial Autoencoder (AAE) and 4) Variational Au-

toencoder (VAE). The performance of each network could be various in the different cases
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and it is necessary to consider hyper-parameters tuning such as learning rate, batch size,

number of epochs, and number of hidden layers and hidden units for precise training to

avoid over-fitting.

4.3 Step−3: Supervised Learning

In this step, we apply supervised learning models on the top of represented dataset

for all four feature extraction approaches. Once the features are extracted, these repre-

sentations from main dataset are entered in a linear and non-linear supervised regression

models such as Random Forests, SVM and LASSO for prediction. Finally we evaluate and

compare the performance of feature learning step by RMSE based on the prediction mod-

els.

4.4 Experimental Study

In our experimental study, we implement our methodology on three different EHRs

datasets. First, we use a small dataset related to cardiovascular disease with high dimen-

sional features, then we apply our method on two large datasets from eICU collaborative

research database. This study design (considering small and large datasets) helps us to

discover the performance of our method in different scenarios and compare the choice of

representation learning for each one.

4.4.1 Experiment 1- Small Dataset

In the first experimental study, we used data related to a group of African-American pa-

tients diagnosed with cardiovascular disease at high risk of heart attack. This data received

from emergency department at Detroit Medical Center (DMC). Cardiovascular disease is

one of the main causes for death in the United State which has different risk level among

racial subgroups. For instance, the risk of cardiovascular disease in African-Americans is
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higher than white patients. In addition, Hypertension is significantly prevalent among

African-Americans and impacts directly to the risk of stroke and heart failure.

The size of dataset used in this case study is small related to 91 patients with 172 at-

tributes after cleaning and preprocessing step. This data includes several attributes such

as demographic information, patient medical history, laboratory test results and cardiovas-

cular related measurements. However, we used Left Ventricular Mass Index (LVMI) as the

target of prediction task which is an important risk factor in cardiovascular disease and

has significant cost of measurement.

We implemented Deep Belief Network, Variational autoencoder and Adversarial au-

toencoder by using TensorFlow and Theano libraries and executed Stacked sparse autoen-

coder by Keras library with tensorflow backend in Python. All authoencoders except DBN

are applied with 5 hidden layers (two hidden layers of encoders and decoders and one

middle layer). We performed deep belief network with 3 hidden layers.

For each deep architecture, we applied parameter tuning for major parameters such

as learning rate, activation functions and batch size to select the best parameters. We

performed different deep networks which differ in the number of neurons in hidden layers

for all autoencoders type and then select the best performance of autoencoders across all

networks.

For the supervised learning step we consider three well-known supervised classifiers:

Random Forests [5], Lasso Regression [59] and Support Vector Machine (SVM) [55]. We

used Root Mean Squared Error (RMSE) as our evaluation measure for performance vali-

dation in testing process. We evaluated the prediction performance in each combination

of deep represented data and supervised learners (e.g. VAE for features representation
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and Random Forest for prediction task) using the average results of 5-folds cross valida-

tion process (for each fold we considered 80% of the data for training, 10% for test and

10% for validation set). We used the weights learned in training process to represent the

data in the testing and validation processes. In addition, we performed the same approach

for finding the performance of each supervised learners on original data (unrepresented

data).

The comparison results have been illustrated in Table 2. Based on the RMSE results,

in general our framework improves the performance of prediction task using deep rep-

resentation learning. In addition, combination of stacked sparse autoencoders for feature

representation and Random Forests for supervised learning achieved the least RMSE in the

case of small dataset.

Table 2: Performance comparison among represented data and original features
(DMC dataset)

Approach RF Lasso SVM

SSAE 6.89 9.53 9.31

DBN 7.91 9.81 10.02

AAE 8.49 9.89 10.06

VAE 9.65 10.17 9.95

Original 11.08 13.86 12.16

4.4.2 Case study 2 (Large Datasets): eICU dataset

In the second case study, we used the eICU collaborative research database: a large,

publicly available database provided by the MIT Laboratory in partnership with the Philips

eICU Research Institute [23]. Medical doctors predict intensive care units (ICUs) length

of stay for planning ICU capacity as an expensive unit in the hospital and identifying



29

unexpectedly long ICU length of stay in special cases to better monitoring [61]. The care

provided by ICUs is complicated and the related costs are high, so ICUs are particularly

interested in evaluating, planning and improving their performance [60].

The most popular approach for prediction of length of stay in ICUs is developed based

on acute physiology score of APACHE (Acute Physiology and Chronic Health Evaluation)

which lead to poor prediction performance in several cases [61]. APACHE introduced in

1978 for developing of severity-of-illness classification system and proposing a measure for

describing different groups in ICUs and assessing their care [63]. APACHE approaches use

multivariate linear regression procedure based on acute physiology score and some other

variables such as age and chronic health conditions [74] to predict length of stay.

The data in the eICU database includes patients who were admitted to intensive care

units during 2014 and 2015. Among different patients, we choose cardiovascular and

Neurological patients admitted in the Cardiac-eICU and Neuro-eICU respectively. We inte-

grated several features including hospital and administration data, demographics informa-

tion, diagnosis and laboratory test data, drugs information, monitored invasive vital sign

data and clinical patient history data. After cleaning and preprocessing step, we finalized

more than 150 features for each dataset with approximately 7000 and 8000 records be-

longing to Cardiac-eICU and Neuro-eICU units, respectively. In this case study, we conduct

the same approach as we did for the first case study and our purpose is to predict the

patient length of stay (days) in these two ICU units based on high-dimensional features.

Table 3 and 4 demonstrate RMSE results for different types of autoencoders and su-

pervised learners in Cardiac-ICU and Neuro-ICU data respectively. Although, AAE shows a

great performance, VAE’s results are impressive and provides perfect prediction for length
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of stay. As illustrated, SSAE and DBN could not improve the model accuracy as much as

AAE and VAE.

We also considered the prediction results of APACHE approach reported in eICU collab-

orative research database and calculated the RMSE for both Cardiac and Neuro patients.

The results indicated weak performance of APACHE approach, for instance, the RMSE for

Cardiac and Neuro datasets were 8.04 and 8.12 respectively. Therefore, different ma-

chine learning approaches using original data or represented data outperformed APACHE

approach significantly.

Table 3: Performance comparison be-
tween represented data and baseline
(Cardiac-ICU)

Approach RF Lasso SVM

SSAE 1.59 4.08 2.47

DBN 0.97 3.78 2.29

AAE 0.57 3.57 1.99

VAE 0.20 2.83 1.87

Original 1.65 4.14 2.52

Table 4: Performance comparison be-
tween represented data and baseline
(Neuro-ICU)

Approach RF Lasso SVM

SSAE 1.31 2.76 3.34

DBN 0.95 2.53 2.06

AAE 0.72 2.28 2.45

VAE 0.14 2.05 1.94

Original 1.38 2.95 3.51

To better understanding of SSAE and VAE performance in the representation learning,

we analyze their training and validation loss for small and large datasets separately. As

illustrated in Figures 8a, 8b, 8c and 8d, the training and validation loss are end up to

be roughly the same and also their values are converging (good fitting). Since we used

regularization in both SSAE and VAE, it leads to have less amount of loss in validation

set rather than training. Based on Figures 8a and 8b, the SSAE loss (which is based on
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MAE loss function) in small dataset (DMC data) is less than SSAE loss of large dataset

(Cardiac-ICU) across 100 epochs, hence the SSAE achieves better representation for small

dataset. In the other side (Figures 8c and 8d), VAE loss (which is based on MSE of re-

construction error + average of KL loss) in large dataset is lower than VAE loss in small

dataset, therefore provides better representation learning.
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Figure 8: Training and validation loss of SSAE and VAE in training process for small and
large datasets
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CHAPTER 5 CONCLUSION AND FUTURE WORKS

In this research, we proposed a comparative study for evaluation of deep feature rep-

resentation in applications to Electronic Health Records (EHRs). Our Deep Integrated

Prediction approach discovers the complexity and dependencies in the EHRs using unsu-

pervised learning (feature representation) which improves the clinical prediction perfor-

mance significantly. The proposed approach consists three steps: data preprocessing, deep

feature representation and supervised learning. We applied our approach on two different

experimental studies while the first one is related to a small dataset of African-Americans

in high risk of cardiovascular disease and second one includes two larger datasets from

eICU collaborative research database. In the first case study we try to predict the heart

failure risk level using EMR and in the second one, the goal is to predict length of stay in

ICU units based on personalized patient attributes such as demographics data, diagnosis

history, medication information and laboratory test results.

In both case studies, we used four different deep architectures (SSAE, DBN, AAE and

VAE) for representation learning of EMRs. We considered different training parameters

in each network (including number of hidden units, batch size, number of epochs and

learning rate). Then, we performed three well-known linear and non-linear supervised

learners (Random Forests, Lasso Regression and SVM) on the top of represented features

and original features.

According to our results, the choice of deep representation achieves different perfor-

mance in prediction tasks among small and large datasets. In the first experimental study,

regular autoencoders (SSAE, DBN) had a better accuracy in comparison with advanced

generative autoencoders (AAE, VAE) and in the second study with large datasets (eICU
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database), Variational Auto-encoder outperforms the other deep architectures significantly.

In general, use of representation learning improves the accuracy of prediction tasks for

both small and large datasets while the choice of deep architecture leads to different per-

formance. The generative networks like as AAE and VAE try to find true distribution of

original variables based on distribution of samples from latent variables (middle layer)

and provides better representation in case of larger datasets.

Empirically, our results demonstrate that: 1) Medical feature representation can im-

prove the performance of prediction and 2) Choice of representation can lead to different

performances which should be selected appropriately. This choice of representation might

be related to the number of instances (n) and number of features (p) in the dataset. For

future works, here are some directions which can extend this research:

• It is necessary to compare the performance of generative models (e.g. AAE and VAE)

with some other approaches (e.g. SSAE and DBN) in different scenarios. As a guide-

line, we need to consider four scenarios: a) large n and large p, b) large n and small

p, c) small n and large p, d) small n and small p and generate some insights about

choice of representation between advanced generative models and otherwise.

• The proposed approach can be applied on different domains and datasets. For exam-

ple, choice of representation learning for images or time series data would lead to

interesting results.

• Although representation learning can improve the performance of supervised learning

tasks, it makes them hard to interpret the prediction model (the black box). In other

words, after feature representation, it will be difficult to discover the most important
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features and their relationship to the desired target variable (model interpretabil-

ity). Therefore, further research can focus on finding interpretive approach for deep

representation and provide a trade-off between accuracy and interpretability of deep

representation.
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Increasing volume of Electronic Health Records (EHR) in recent years provides great

opportunities for data scientists to collaborate on different aspects of healthcare research

by applying advanced analytics to these EHR clinical data. A key requirement however

is obtaining meaningful insights from high dimensional, sparse and complex clinical data.

Data science approaches typically address this challenge by performing feature learning in

order to build more reliable and informative feature representations from clinical data fol-

lowed by supervised learning. In this research, we propose a predictive modeling approach

based on deep feature representations and word embedding techniques. Our method uses

different deep architectures (stacked sparse autoencoders, deep belief network, adversar-

ial autoencoders and variational autoencoders) for feature representation in higher-level

abstraction to obtain effective and robust features from EHRs, and then build prediction

models on top of them. Our approach is particularly useful when the unlabeled data is

abundant whereas labeled data is scarce. We investigate the performance of representation

learning through a supervised learning approach. Our focus is to present a comparative

study to evaluate the performance of different deep architectures through supervised learn-
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ing and provide insights for the choice of deep feature representation techniques. Our ex-

periments demonstrate that for small data sets, stacked sparse autoencoder demonstrates a

superior generality performance in prediction due to sparsity regularization whereas vari-

ational autoencoders outperform the competing approaches for large data sets due to its

capability of learning the representation distribution.
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