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CHAPTER 1. BACKGROUND AND MOTIVATIONS OF RESEARCH  

1.1) Lithium-ion Batteries: State-of-the-art 

A battery is a device that stores electrical energy in the form of chemical energy. There 

are two types of batteries: primary and secondary batteries. Primary batteries are non-

rechargeable batteries, such as alkaline batteries and zinc-carbon batteries, while secondary 

batteries are rechargeable batteries, such as lithium-ion (Li-ion) batteries, lead-acid (PbA) 

batteries, nickel metal hydride (NiMH) batteries, and nickel cadmium (NiCd) batteries. Among 

these secondary batteries, Li-ion batteries have been attracting much attention as a power source 

in the past few decades. They are dominantly used in portable electronic devices, such as laptops, 

cell phones, and digital cameras due to high energy density, excellent cyclability, low weight, 

and no memory effect. A conventional Li-ion battery cell consists of four major components: 

negative and positive electrodes, referred to as anode and cathode, respectively, a separator, and 

an electrolyte. The electrochemical performance of a Li-ion battery cell is mainly determined by 

electrochemical reactions between two electrode materials. These two electrodes are connected 

to an external electrical supply, but physically separated by a separator, which enables the free 

ionic flux through its microporous structure. An electrolyte used in commercially available Li-

ion batteries is typically a mixture of organic carbonates that contain lithium (Li) ions. The basic 

operational principle of a Li-ion battery is illustrated in Figure 1. During the discharging process, 

the electrons are forced to be released at the anode and move to the cathode through the external 

load. Simultaneously, Li ions internally move in the same direction, from the anode to the 

cathode, via the electrolyte. In this way, the external energy is electrochemically stored in the 

battery cell in the form of the chemical energy. During the charging process, the opposite  
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Figure 1. Schematic illustration to show the basic components and the operation principle of a Li-ion 

battery. Reproduced with permission [1]. 

happens.  

For anode active materials, graphitic carbons are dominantly used in commercial Li-ion 

batteries owing to their layered structure, which facilitates Li intercalation and deintercalation. 

However, the maximum theoretical capacity of the graphitic anodes is 372 mAh/g, which is not 

sufficient to meet the requirements of future energy storage applications. For cathode active 

materials, LiFePO4 and LiCoO2 are widely used. LiCoO2 is characterized by its facile large 

production and stability under ambient conditions. However, LiCoO2 experiences significant 

structural changes and capacity fade induced by a series of phase transitions at charging voltages 
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greater than 4.2 V, lowering its practical capacity to ~140 mAh/g [2]. Moreover, the issues of 

high material cost and toxicity of the LiCoO2 still remain unsolved. Using LiFePO4 as a cathode 

active material provides benefits of the improved stability, cyclability, temperature tolerance 

(−20 ℃ to 70 ℃), and environmental benignity. Nevertheless, due to the crystal structure of 

LiFePO4, which is characterized by one-dimensional channels along [010] direction, impurities 

can be easily stuck in the channels and interrupt the diffusion of Li ions. 

Electrolytes should be electrochemically stable in an operating voltage and temperature 

ranges with the ability to sufficiently form a passivation layer with two electrodes without 

degradation or decomposition. Electrolytes used in commercial Li-ion batteries are mostly 

mixtures of alkyl carbonates owing to several features, such as low toxicity and relatively wide 

temperature and voltage ranges. The alkyl carbonates include ethylene, dimethyl, diethyl and 

ethyl-methyl carbonates (EC, DMC, DEC, EMC, respectively), and LiPF6 is used as a salt [3]. 

The selection of electrolyte solutions should be carefully made with consideration of safety 

features, operating temperature ranges, the electrochemical stability, and the ability to transport 

ionic charge carriers. Besides liquid electrolytes, solid-state electrolytes, solid-state electrolytes, 

and gel polymer electrolytes (GPEs) have gained much attention because these types of 

electrolytes can effectively mitigate undesirable Li dendritic growth for Li metal batteries. The 

Li dendritic growth is specifically discussed in Chapter 2. Specific features of these electrolytes 

are not covered in this thesis, but have been reviewed and discussed elsewhere [3-9]. 

A separator must be appropriately selected with consideration of their essential properties 

clarified below:  

1) Sufficient porosity to absorb a liquid electrolyte for high ionic conductivity 
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2) Uniformly distributed pores that are smaller than particle sizes of electrode 

components to achieve a uniform charge distribution 

3) Uniform permeability that does not significantly increase the electrical resistance 

4) Ample wettability to retain electrolytes 

5) High mechanical robustness to withstand high pressure during the battery assembly 

Since these features are typically in a trade-off relationship, the trade-off should be well 

adjusted depending on an application. Separators can be typically classified into three types: 

1) Microporous membranes 

2) Non-woven fabric mats 

3) Inorganic composite membranes 

Most of the microporous membranes, which are dominantly used in the commercial Li-

ion batteries, are based on semi-crystalline polyolefin materials, such as polyethylene (PE), 

polypropylene (PE), their blends, and high-density PE [10]. Microporous polyolefin membranes 

are characterized by their thinness and thermal shutdown operation. For the thermal shutdown 

operation, membranes with a different boiling point are multi-layered. If one layer starts melting, 

the melted membrane fills the pores of other membranes, efficiently shutting down further ionic 

transport. A non-woven separator is a fibrous mat synthesized by chemically, physically, or 

mechanically combining numerous fibers. Non-woven separators are often featured by their high 

mechanical robustness, which allows them to be utilized as a supporting framework for GPEs 

[11]. Inorganic composite separators, often referred to as ceramic separators, are a porous mat 

composed of inorganic nanoparticles bonded with a binder, typically polyvinylidene fluoride-co-

hexafluoropropylene (PVDF-HFP). These separators show an exceptional wettability with all 
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non-aqueous liquid electrolytes due to their high hydrophilicity and tremendous surface area 

provided by inorganic nanoparticles. Moreover, inorganic composite separators show a 

substantial thermal stability that is a favorable characteristic for large-scale Li-ion battery 

applications, such as battery electric vehicles (BEVs).  

Despite the high electrochemical performance of Li-ion batteries, the limited theoretical 

capacity of commercially used graphitic anodes hinders the utilization of Li-ion batteries for 

newly emerging energy storage applications. Intensive research efforts have been made in search 

of an alternative anode material to develop higher-energy-density batteries. Among various 

potential candidates, Li metal has been considered as one of the most promising alternative 

anode materials. However, the problematic Li dendritic growth during the discharging process 

and the infinite volume expansion resulted from the host-less nature of the Li metal hinder the 

commercialization of the Li metal anode. In Chapter 2, the fundamentals of Li metal dendritic 

growth and common research strategies to tackle down this issue are discussed.  

1.2) Scope of this Thesis 

 This thesis is written with an objective to provide general and advanced knowledge of Li-

based energy storages. Not only are nano-scale strategies to improve the electrochemical 

performance of Li-ion batteries included, but system-scale solutions for efficient and safe Li-ion 

battery operation are included in this thesis. Discussion starts from designs of nanomaterials to 

enhance the performance of a Li-ion battery cell and moves on to the systematic solutions to 

achieve stable thermal behavior of large-scale Li-ion batteries.   
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CHAPTER 2. BEYOND LITHIUM-ION BATTERIES: LITHIUM METAL BATTERIES 

Li metal is considered as a promising anode material due to its superior specific capacity 

(3860 mAh/g), and the lowest electrochemical potential (−3.040 V versus standard hydrogen 

electrode) [12-18]. Li metal is also a very favorable anode material for beyond Li-ion batteries, 

such as Li-Sulfur and Li-Air batteries. However, the undesirable Li dendritic growth hampers 

practical applications of the Li metal, causing severe safety concerns and poor cycling behavior. 

During Li plating, the discharging process, a solid electrolyte interface (SEI) layer spontaneously 

forms onto the surface of the Li metal due to the highly reactive nature of Li metal. To be 

specific, in case of commercially available Li-ion batteries in which organic carbonates are used 

as an electrolyte, the initial SEI layer is mainly the product of Li alkyl carbonates (ROCOOLi) as 

a result of one electron reduction reaction. These ROCOOLi can be further converted to Li2CO3 

with a trace amount of water. Depending on electrolytes used, Li2O and Li halides can be also 

present in the SEI layer [20]. Since the electrochemical properties of each component is different, 

the SEI layer shows inhomogeneity in composition: inner layer is dominated by relatively stable 

components, such as Li2CO3, Li2O, Li halides, while metastable ROCOOLi tend to be located at 

the outer layer [21-22]. Due to the inhomogeneity of the composition, the SEI layer exhibits 

inhomogeneous conductivity, which eventually leads to heterogeneous Li electrodeposition. As a 

result, volumetric fluctuations induced by the host-less nature of the Li metal are accelerated at 

particular sites, introducing curves and kinks on the SEI layer. Since the SEI layer is not 

mechanically rigid enough to withstand the infinite volume expansion of the Li metal, cracks 

form onto the SEI layer, exposing fresh Li underneath. The exposed fresh Li becomes 

preferential Li nucleation sites due to its low energy barrier, further accelerating local Li 

dendritic growth [23-24]. Furthermore, unlike the flat SEI surface, the dendritic protrusions  
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Figure 2. Schematic illustration of Li plating process on the Li metal. As Li plating proceeds, cracks 

formed in the SEI layer by volumetric fluctuations of Li expose fresh Li underneath. Li dendrites further 

grow as Li plating continues. Mechanically fragile Li dendrites become isolated during Li plating. 

Continuous cycling eventually results in a thick and unstable SEI with the porous electrode underneath. 

enable the three-dimensional Li-ion diffusion, leading to faster Li dendritic growth. The 

existence of Li dendrites can damage the separator by penetration. This causes the electric short 

circuit, which could potentially lead to thermal runaway and cell explosion. Moreover, Li 

dendrites get destroyed during Li stripping, the charging process, because of their physical 

fragility. As a result, the broken Li dendrites, often referred to as dead Li, are accumulated on the 

SEI layer, increasing the interfacial resistance [25-26]. Continuous cycling results in an unstable 

and thick SEI layer with the accumulated dead Li on the surface, eventually leading to a failure 

of a battery cell. The step-by-step Li dendritic growth is illustrated in Figure 2. Despite a 

tremendous amount of research work to understand the fundamentals of Li dendritic growth, the 

exact mechanism remains elusive due to its highly complex nature. To obtain a deeper insight 
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into the principles of the Li dendrite formation, researchers have devoted to theoretical 

investigations by numerical simulations. In Chapter 3, the phase-field method, which is a 

powerful tool to study highly non-linear microstructural evolutions, is introduced. Moreover, a 

two-dimensional Li electrodeposition model developed by Ely et al. [48] is introduced to obtain 

a deeper grasp of formulation of the phase field method.  
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CHAPTER 3. THEORETICAL INVESTIGATIONS ON LITHIUM DENDRITIC 

GROWTH 

3.1) The Phase Field Method 

Although many experimental studies on the fundamentals of Li dendritic growth have 

provided valuable contributions, theoretical studies are often preferred due to the highly complex 

mechanism of Li dendritic growth, which is influenced by many internal and external factors, for 

example, structure and composition of the SEI layer, and the electrolyte used, the nucleus-

substrate contact angle, the current density, and so on. Among various theoretical approaches, a 

phase-field model (PFM) has been attracting much attention as a versatile tool to study structural 

changes of materials. One of the biggest advantages of the PFM is the utilization of the diffuse 

interface model. Although the sharp interface model conventionally used in free boundary 

problems, such as phase transformations and microstructural evolutions, can be efficient to study 

the evolution of simple microstructural geometries, it induces a discontinuity into the simulation 

model due to the difficulty of tracking a moving interface. In contrast, the diffuse interface 

model used in the PFM avoids this issue by continuous variations of an order parameter, often 

referred to as phase-field variable (Figure 3). The continuity obtained from this approach 

captures the position of the interfaces by values of the phase-field variables, and thus provides 

the predictability of complex and arbitrary microstructural evolutions. In the PFM, the governing 

equations of the microstructural evolution are represented by means of a set of partial differential 

equations expressed by the phase-field variables, which are functions of time and spatial 

coordinates. There are two types of phase-field variables: non-conserved and conserved variables. 

The evolution of the non-conserved variables is determined by the Allen-Cahn equation, which  
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Figure 3. The sharp interface (left) and the diffuse interface (right) models.  

describes the microstructural evolution. The evolution of the locally conserved variables is 

determined by the Cahn-Hilliard equation, which contains the information of the local charge 

distribution. Since the equations that represent the evolution of the phase-field variables are 

derived based on general thermodynamic and kinetic principles, the kinetics of individual atoms 

are not explicitly included. As a result, empirical parameters of material properties should be 

included in the simulation [27]. The enhanced computer technology has allowed for the intensive 

development of the PFMs to investigate 1) solidification [28-33], 2) precipitation [34-38], 3) 

epitaxial growth [39-40], 4) electromigration [41-42], and 5) solid-state sintering [43-44]. The 

PFMs have also been applied to a vast range of electrochemical phenomena. Guyer et al. [45-46] 

developed the first one-dimensional electrochemical PFM that describes equilibrium and kinetic 

behaviors of electrochemistry. The inspiration was obtained from the physical analogy between 
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the governing equations of solidification and electrodeposition dynamics: analogies between 1) 

the varying overpotentials of the electrochemistry and the supercooling of the alloy solidification, 

2) the interfaces of solid-melt and electrode-electrolyte, and 3) the dendrite formation during the 

solidification and the electrodeposition.  

Among various electrochemical PFMs, Li electrodeposition models have been intensively 

studied to investigate the fundamentals of the undesirable Li dendritic growth dynamics. The 

first PFM of the electrodeposition was proposed by Shibuta et al. [47] by coupling two different 

driving forces: an electrostatic potential described by the Cahn-Hilliard equation and a 

thermodynamic potential formulated from a variation of the Ginzburg-Landau free energy 

functional. In their work, the morphological evolution driven by the electrodeposition of copper 

as functions of the applied voltage and concentration of the copper ion was successfully 

simulated. Ely et al. [48] presented a PFM of Li electrodeposits, which includes the contribution 

of the heterogeneous nucleation energy to the free energy of transformation of the system by the 

implementation of the contact angle. Chen et al. [49] introduced a thermodynamically consistent 

PFM that accounts for the non-linear nature of Li dendritic patterns. Recently, Yurkiv et al. [50] 

closely monitored the effect of the SEI layer and the anisotropic diffusion behavior of Li ions on 

Li dendritic growth. In their work, both filamentous and mossy Li dendritic growth were 

explicitly visualized in the simulation results by including the contributions of the elastic 

deformation energy to the free energy transformation of the system. In the following section, a 

PFM from Ely et al. [48] is introduced to provide a deeper understanding of formulations of the 

PFM. To avoid confusion, same symbols are used as presented in the paper.  
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3.2) Framework & Formulations 

The total Gibbs free energy of transformation, ∆GT, for an isothermal, isobaric system is 

defined as: 

∆𝐺𝑇[𝜉, 𝜌; 𝑃, 𝑇] = ∫ [∆𝑔𝑣 𝑝(𝜉) + 𝜌𝜙]
𝑉

𝑑𝑉 + ∫ [𝑊𝜉𝑔(𝜉) +
𝜀𝜉

2

2
|∇𝜉|2]𝑑𝑉]

𝑉

𝑑𝑉 

+ ∫ 𝑍(𝜉)𝑑𝐴
𝐴

 

(1) 

where ∆𝑔𝑣 is the empirical volumetric free energy of the transformation, 𝜉 is the non-conserved 

phase field variable, which is equal to zero in the liquid (electrolyte) phase and one in the solid 

(deposited lithium on the electrode) phase. 𝜌  is the charge density expressed as:

𝜌 ≡ 𝐹 ∑ 𝑧𝑗𝐶𝑗

𝑛

𝑗=1

 (2) 

where 𝐹 is the Faraday’s constant, 𝑧𝑗 is the valence and Cj is the mole per volume concentration. 

The subscript j represents the number of electrochemical components in the system. 𝜙 is the 

electrostatic potential, 𝜀𝜉
2 is the gradient energy coefficient, which penalizes interfaces that are 

too narrow, 𝑝(𝜉) is an interpolating function that needs to be implemented due to the multi-phase 

nature of the system. The interpolating function, 𝑝(𝜉), is typically designed to be simple for an 

efficient numerical simulation. 𝑔(𝜉) is the double well function that determines the equilibrium 

profile and the interfacial energy. Figure 4 shows the graphs of 𝑝(𝜉)  and 𝑔(𝜉) , which are 

expressed as:  

𝑝(𝜉) = 𝜉3(6𝜉2 − 15𝜉 + 10) (3) 
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Figure 4. The interpolating function (left) and double well function (right) plots. It is clearly shown that 

𝑝(0) = 0, 𝑝(1) = 1, 𝑝′(0) = 𝑝′(1) = 0 and 𝑔(0) = 𝑔(1) = 0, 𝑔′(0) = 𝑔′(1) = 0. 

𝑔(𝜉) = 𝜉2(1 − 𝜉)2 (4) 

where W𝜉 is the energy barrier of the double well function, which penalizes interfaces that are 

too broad. 𝑍(𝜉) is the work of adhesion imposed by the contact angle between a substrate and a 

lithium nucleus, and 𝐴 is the interfacial surface boundary. The local equilibrium is then given by: 

𝛿∆𝐺𝑇

𝛿𝜉
= ∆𝑔𝑣

𝜕𝑝(𝜉)

𝜕𝜉
+ 𝑊𝜉

𝜕𝑔(𝜉)

𝜕𝜉
− 𝜀𝜉

2∇2𝜉 = 0 (5) 

𝛿∆𝐺𝑇

𝛿𝜌
= 𝜙 = 𝜙0 (6) 

with the surficial boundary condition on 𝐴: 

𝑛̂ ∙ ∇𝜉 = 𝑐𝑜𝑠𝜃 ∗ 𝜉0(1 − 𝜉0) ∗ (√2𝛿𝜉)
−1

 (7) 

phase field value at the substrate, 𝜃 is the contact angle between a substrate and a lithium nucleus,  
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and 𝑛̂ is the unit normal vector. Equation 5 and 6 indicate the spatial uniformity of voltage of the 

system and the balance between the surface tension and the chemical free energy driving force. 

Away from the equilibrium state, the value of Equation 5 becomes non-zero, and the electrostatic 

potential of Equation 6, which is a function of the interfacial gradient of the composition, shifts. 

Therefore, the time-dependent phase evolution governed by the locally non-conserved phase 

field variable, 𝜉, is described by the Allen-Cahn equation:  

𝜕𝜉

𝜕𝑡
= −𝑀𝜉 (

𝛿∆𝐺𝑇

𝛿𝜉
) − 𝜓̇ (∇𝜉,

𝛿∆𝐺𝑇

𝛿𝜉
,
𝛿∆𝐺𝑇

𝛿𝜌
) (8) 

where 𝜓̇ = 𝜓̇ (∇𝜉,
𝛿∆GT

𝛿𝜉
,

𝛿∆GT

𝛿𝜌
) is the interfacial plating rate, which is only active at the SEI in the 

numerical simulation. 𝑀𝜉  is the phase field mobility that specifies the rate of change during the 

electrodeposition. In case of no plating, Equation 8 should reduce to the classic Allen-Cahn 

equation. In this case, according to Boettinger and Warren [29]: 

𝜀𝜉
2 = 6γNE𝛿𝜉  (9) 

W𝜉 = 3γNE/𝛿𝜉 (10) 

where γNE  is the interfacial energy between the lithium nucleus and the electrolyte. 

Fundamentally, an increase in γNE will induce an increase in 𝜃 as well as the energy height, W𝜉. 

Similarly, 
𝜕𝜉

𝜕𝑡
 is replaced by −𝑣

𝜕𝜉

𝜕𝑥
, where 𝑣 is the normal velocity, in case of the homogeneous 

electrodeposition in which the contact angle, 𝜃 , is zero. For small variances away from the 

equilibrium state, 𝑣⃗ ∙ ∇𝜉 = 𝜓̇. As a result, the evolution of the non-conserved phase field variable, 

𝜉, is described by Equation 11: 
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𝜕𝜉

𝜕𝑡
= −𝑀𝜉 (∆𝑔𝑣

𝜕𝑝(𝜉)

𝜕𝜉
+ 𝑊𝜉

𝜕𝑔(𝜉)

𝜕𝜉
− 𝜀𝜉

2∇2𝜉) + 𝛺𝛤⃗ ∙ ∇𝜉  (11) 

where 𝛺 is the solid-phase lithium molar volume. The electrodeposition rate 𝛤⃗ is described by 

the Butler-Volmer equation with modifications:  

𝛤⃗ = 𝑗0(𝑒(1−α)Κ − 𝑒−αΚ)𝑛̂ (12) 

Κ =
𝑧𝐹𝜂

𝑅𝑇
+

𝛾𝑁𝐸𝑘𝛺

𝑅𝑇
 (13) 

𝑘 = −∇ ∙ (∇𝜉/|∇𝜉|) (14) 

where 𝑗0 is the exchange current density, α is the charge transfer coefficient that describes the 

electrochemical kinetics of the system. 𝜂  is the local overpotential, which is the shift in the 

potential difference across the interface, which causes current to pass, and 𝑘  describes the 

curvature of the interface. The local overpotential is then defined as: 

𝜂 = −𝛿𝜉𝑛̂ ∙ ∇
𝛿∆𝐺𝑇

𝛿𝜌
= (𝛿𝜉𝑛̂) ∙ (−∇𝜙) (15) 

where 𝑛̂ =
∇𝜉

|∇𝜉|
 for |∇𝜉| ≠ 0, and zero otherwise. In case that current densities are smaller than 

the limiting current, K ≪ 1, Equation 12 reduces to: 

 

𝛤⃗ = 𝑗0K𝑛̂ (16) 

where the flat interface velocity is defined as 𝑣 = 𝛺𝛤⃗ ∙ 𝑛̂ = 𝑗0𝛺𝑧𝐹𝜂/𝑅𝑇 . According to 

Boettinger and Warren [29], the phase mobility is then defined as: 
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𝑀𝜉 = −
𝑗0𝛺2

6𝛿𝜉𝑅𝑇
 (17) 

In analogy to Equation 11, the distribution of the locally conserved charge density, 𝜌 , is 

determined by the Cahn-Hilliard equation:  

𝜕𝜌

𝜕𝑡
= ∇ ∙ 𝑀𝜌∇

𝛿∆𝐺𝑇

𝛿𝜌
+ 𝑧𝐹𝛺𝛤⃗ ∙ ∇𝜉 = ∇ ∙ 𝑀𝜌∇𝜙 + 𝑧𝐹𝛺𝛤⃗ ∙ ∇𝜉 (18) 

where 𝑀𝜌 is the electric conductivity defined as: 

𝑀𝜌 = 𝜎𝜉𝑝(𝜉) + 𝜎𝐿(1 − 𝑝(𝜉)) (19) 

where 𝜎𝜉  and 𝜎𝐿  are the electrical conductivity in the solid-lithium phase and the electrolyte 

phase, respectively.  

Equations (11) to (19), which include the bulk electrochemical contribution term, the 

interfacial energy term, and the surface tension term, were then finally coupled to simulate two-

dimensional Li dendritic growth. Simulation results indicate that Li nuclei larger than the critical 

size, 𝑟 > 𝑟∗ = −
2𝛾𝑁𝐸

∆𝑔𝑣
, where r is the radius, evolve in a way that follows their minimum energy 

configuration, while Li dendrites tend to shrink in case of Li nuclei being smaller than the critical 

size. The electric field exhibited the highest value in the vicinity of the dendrite tips, accelerating 

further Li dendritic growth. It is well known that Gibbs transformation energy decreases when 

the heterogeneous nucleation sites created by the substrate-nucleus contact angle, 𝜃, are present 

[51-55]. The simulation results provide a deeper grasp of the dependency of Li dendrites on 𝜃, 

suggesting that small values of 𝜃 result in high Coulombic efficiencies as well as a relatively 

uniform Li deposition throughout the substrate, while larger values of 𝜃  engage the local 
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evolution of Li dendrites, causing the ununiform distribution of the Li deposition. Such a 

theoretical approach can provide a great-depth insight into the fundamentals of Li dendrites, 

enabling researchers to conduct studies on the effects of various parameters on Li dendritic 

growth. Our ongoing research effort is to prove the functionality of various novel-structured 

nanomaterials to guide the uniform Li electrodeposition without Li dendrites by using the 

specified PFM with modifications. In the following section, strategies to mitigate the undesirable 

Li dendritic growth are proposed. Furthermore, I present porous metallic titanium (Ti) nanorods 

on a metal Ti substrate as a current collector for a dendrite-free lithium metal anode. The porous 

Ti nanorods successfully provided superior cell stability as well as outstanding Coulombic 

efficiencies, all of which were further confirmed by a series of electrochemical tests. 
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CHAPTER 4. TITANIUM NANORODS FOR A STABLE LITHIUM METAL ANODE 

4.1) Introduction 

Tremendous experimental research efforts have been made to circumvent the problematic 

Li dendritic growth. Major strategies include: 

1) The introduction of electrolyte additives 

2) Solid-state electrolytes 

3) Artificial SEI coatings 

4) Novel-structured current collectors 

The SEI stabilization has been achieved by introducing electrolyte additives, such as 

fluoroethylene carbonates [56-57], Li polysulfides [58], vinylene carbonates [59], and even a 

trace amount of water [60]. These electrolyte additives actively react with Li and create a stable 

passive layer on the Li metal anode, contributing to the stabilization of the SEI layer. However, 

the lack of sustainability of these additives and the low mechanical robustness of the SEI layer 

are still hurdles to the complete suppression of Li dendritic growth. The solid-state electrolytes 

have also gained much attention due to their ability to physically suppress the Li dendrite 

formation [61-64]. Nevertheless, the limited ionic conductivity and increased interfacial 

impedance remain as challenges for meeting the desirable power requirements at ambient 

conditions. The protective SEI coating can effectively facilitate the uniform Li electrodeposition 

and avoid Li dendritic growth by preventing the physical contact between the Li metal anode and 

the electrolyte. However, they cannot address the infinite volume fluctuation of the Li metal 

during cycling, which is another major issue to overcome to commercialize the Li metal anode. 

Therefore, researchers have devoted to developing novel-structured current collectors to 
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efficiently guide the uniform Li deposition and minimize the volume expansion of the Li metal 

anode. For example, Zhao et al. [65] fabricated a 3D porous copper current collector via a novel 

linear sweep voltammetry electrochemical etching method and achieved an improvement in 

cyclability and stability of a half cell and a full cell. Liu et al. [66] developed a Li-coated porous 

polyimide matrix and successfully achieved low voltage hysteresis. Lin et al. [67] designed a 

layered Li-reduced graphene oxide composite, which exhibited excellent flexibility and small 

volume expansion during cycling, all of which contributed to the stabilization of the SEI layer. 

Although these materials have significantly expanded the scope of approaches to avoiding Li 

dendritic growth, the use of various materials in a fabrication process is not favorable in practical 

battery manufacturing processes. Herein, I introduce highly porous metallic Ti nanorods on a Ti 

substrate as a novel current collector that guides the uniform Li electrodeposition without Li 

dendrites. The metallic Ti nanorods are featured by several advantages as a Li metal current 

collector: 

1) The presence of Ti provides high electrode conductivity 

2) The high level of porosity facilitates Li electro-crystallization 

3) Multi-directional nanorods arrays provide tremendous surface area 

4) Mechanical robustness provided by high Young’s modulus of Ti is favorable in a 

battery manufacturing process 

Tremendously porous Ti nanorods provide numerous heterogeneous nucleation sites, 

attracting Li ions at the initial Li plating. After the initial Li nucleation, the lithiated Ti nanorods 

further engage Li electrodeposition on bodies of the nanorods, leading to the morphology I refer 

to ‘fat-nanorods’. Figure 5 illustrates the Li plating process on a flat metal surface and Ti  



20 
 

 

Figure 5. Schematic illustration of the Li plating process. (a) Li plating on a pure metal substrate: 

unstable SEI, dead Li, and Li dendrites are present. (b) Li plating on the porous Ti nanorods: Li 

preferentially deposits on Ti nanorods, further attracting lateral Li growth on the bodies of the nanorods 

due to low energy cost. The stabilization of SEI is achieved with no dendrites. (c) a cross-sectional view 

of the lithiated Ti nanorods. 

nanorods. The lithiated Ti nanorods, as a dendrite-free Li metal anode, demonstrated its superior 

cell stability and cyclability, and the Coulombic efficiency, which remained 100 % over 1,400 

cycles at a current density of 1 mA/cm2 and a capacity of 1 mAh/cm2. Moreover, other potential 

engineering applications of black metallic Ti covered with nanorod arrays are discussed. 
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4.2) Material Synthesis 

Deng et al. [13] previously reported a simple fabrication method of porous Ti nanorods 

on a metallic Ti substrate. First, to grow TiO2 nanorods on a metallic Ti substrate, the 

hydrothermal synthesis was employed with a NaOH solution (0.25 M) and a piece of metallic Ti 

foil (0.5 x 0.5 cm2) as a mineralizer and a substrate, respectively. The hydrothermal synthesis is a 

powerful technique to prepare a variety of nano-structured materials, such as nanorods, 

nanowires, nanobelts, and so on. The main advantage of this technique is the controllability of 

nanostructures by simply adjusting a set temperature, reaction time, and the amount of an 

aqueous solution used for the reaction. A Teflon-lined autoclave was used as a reactor, which 

was heated to 220 °C. The reaction lasted for 24 hours, and the sample was then naturally cooled 

down to the room temperature. After the hydrothermal reaction, the sample was rinsed with 

deionized water, immersed in an HCl solution (0.6 M) for 1 hour to exchange Na ions with 

protons, rinsed with deionized water again, and dried under the ambient conditions. The samples 

were then calcinated at 600 °C for 2 hours with the presence of the air. After the calcination, as 

shown in Figure 6, TiO2 nanorods were successfully grown on a metallic Ti substrate. It should 

be noted that the physical properties of the TiO2 nanorods vary with the amount of the 

mineralizer, NaOH, and its concentration. It has been widely confirmed that the percent of filling 

level of the solvent affects the vapor pressure above the liquid phase boundary. Moreover, small 

variances from the targeted concentration of the NaOH solution, which is 0.6 M, can affect the 

kinetics of crystal growth: a low concentration of the NaOH solution can increase the growth rate 

of crystal faces (Figure 6b). Since the optimization of material properties is not the focus, TiO2 

nanorods with a greater thickness (Figure 6a) were simply used for experiments to obtain more 

surface area and better visualization for the morphology study discussed in the next section. 
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Figure 6. Morphologies of the TiO2 nanorods on a metallic Ti substrate. (a) TiO2 nanorods and (b) TiO2 

nano-needles. 

 

 

 

Figure 7. Schematic illustration of the magnesiothermic reduction of TiO2 nanorods. 

Figure 7 explains the magnesiothermic reduction of TiO2 nanorods. The sample was completely 

covered with 25 mg of magnesium (Mg) powder inside a clean crucible, which was put into a 

tube furnace. The crucible was then heated to 650 °C in 1 hour and maintained at the set 
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Figure 8. Porous Ti nanorods on a metallic Ti substrate (a) after HCl etching and (b) before HCl etching  

 

 

 

 

 

 

 

Figure 9. XRD patterns of the Ti nanorods (blue) and the TiO2 nanorods (green). TiO2 successfully 

reduced to Ti via the magnesiothermic reduction. 
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temperature for 4 hours under the protection of argon flowing rate at a 100 sccm. The set 

temperature of 650 °C was wisely selected based on melting points of Mg and Ti. Since the 

melting points of Mg and Ti are 650 °C and 1668 °C, respectively, Ti nanorods arrays were still 

preserved during the reduction. A possible reaction stoichiometry is shown in Equation 20: 

2Mg + TiO2 → 2MgO + Ti (20) 

The sample was then etched by an HCl solution (0.5 M) to remove Mg and MgO and dried in a 

vacuum oven to prevent further undesirable reactions. By reducing TiO2 to metallic Ti, not to 

mention the high porosity of the Ti nanorods (Figure 8), a drastic improvement in the electrode 

conductivity was achieved [68-69]. The X-ray diffraction (XRD) analysis confirmed that TiO2 

was successfully reduced to Ti (Figure 9). The porous Ti nanorods sample showed a black color, 

suggesting the ability of Ti nanorods to absorb nearly all the incident light (Figure 10a). The low 

reflectance of the sample was further confirmed by the diffuse reflectance measured by the 

JASCO V-570 spectrophotometer in the wavelength range from 200 to 2,000 nm (Figure 10b). 

As shown in the spectral reflectance measurement (Figure 10b), reflectivity of the black Ti 

sample is substantially low: less than 4% of most visible light and less than 5% of most infra-red 

lights. This is because of the multi-directional and porous nature of the Ti nanorods. The 

amplitude of forced vibration decreases as light is transmitted and absorbed due to high porosity 

of the nanorods (Figure 10c). The outstanding ability to absorb light can be also potentially used 

for the applications in which the heat localization is required, such as the solar energy harvesting 

and thermoplasmonics [70]. The porous Ti nanorods sample was then finally incorporated into a 

2032 coin cell with a polished Li metal foil, 1 M solution of LiPF6 in a 50:50 (v/v) mixture of EC 

and DEC, and polypropylene/polyethylene/polypropylene (PP/PE/PP) tri-layer membranes  
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Figure 10. (a) Comparison of colors between the Ti nanorods and the pure Ti samples. While the pure Ti 

sample exhibits a shiny metal color, the Ti nanorods exhibits a block color. (b) Diffuse reflectance 

measurement of the Ti nanorods sample with the wavelength range from 200 to 2,000 nm. (c) Schematic 

illustration of the behavior of incoming light on the metallic Ti nanorods. 

(Celgard 2320) as a counter electrode, an electrolyte, and a separator, respectively. For control 

experiments, a planar metallic Ti substrate was incorporated in a cell as a working electrode 

instead of the Ti nanorods sample. The cell assembly was carried out in an argon-filled glovebox. 

In the following section, the morphological evolution of the Ti nanorods as a function of Li 
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electrodeposition time is proposed.  

4.3) Morphology Study 

The analysis of the morphological changes as a function of the lithiation time proceeded 

by the field emission scanning electron microscopy (FESEM; JEOL 7600 coupled with energy-

dispersive X-ray spectroscopy, EDX), with the accelerating voltage of 15 kV before the 

galvanostatic cycling of coin cells. Li plating was performed at a current density of 1 mAh/cm2. 

As discussed, it has been confirmed that Gibbs transformation energy of a nucleus becomes low 

at the heterogeneous nucleation sites [51-55]. As Abyaneh [51] descried electrochemical 

heterogeneous nucleation models as a conical-shaped cavity, similarly, given the highly porous 

nature, the Ti nanorods provide such preferential nucleation sites for Li. At the initial stage of the 

lithiation, it is clearly shown that Li tends to deposit on the surface of the Ti nanorods rather than 

a flat Ti substrate due to substantial surface area provided by the Ti nanorods (Figure 11a). It is 

noteworthy that multi-directional nanorods arrays engage the lateral Li electrodeposition on the 

nanorods. Therefore, after the initial Li electro-crystallization on the nanorods, local Li ion flux 

is accelerated on the bodies of the nanorods due to low energy barrier, leading to the morphology 

change I refer to ‘fat nanorods’ (Figure 11b). Continuous lateral Li growth on the bodies of the 

nanorods results in the physical contact between adjacent nanorods, resulting in the coalescence 

of nanorods (Figure 11c). As a result, as Li plating proceeds, the Ti nanorods become fully 

covered by Li without Li dendrites (Figure 11d-11e). Figure 11f shows the top image of the Ti 

nanorods after 24 hours of Li electrodeposition. A smooth surface shown in Figure 11f suggests 

that the undesirable Li dendrite formation was completely avoided even after 24 hours of Li 

plating, implying that the stabilization of the SEI layer and homogeneously distributed electric 
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Figure 11. Morphological changes of the Ti nanorods as a function of Li plating time, starting from (a). 

(a) Li deposits on the porous Ti nanorods due to high surface area, (b) Li laterally grows on the bodies of 

the nanorods, resulting in the formation of ‘fat nanorods’, and (c)~(e) continuous Li plating results in the 

complete immersion of Ti nanorods with no Li dendrite formation. As a result, (f) even after 24 hours of 

Li plating, Li dendritic growth was successfully avoided. 

 

 

 

 

 

Figure 12. Top images of a pure Ti substrate after 24 hours of Li deposition. Dendrite formation found. 
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Figure 13. The Coulombic efficiency of Li stripping/plating after 24 hours of Li plating. The red square 

indicates the pure Ti | Li coin cell, while the blue square indicates the Ti nanorods | Li cell.  

field were achieved. In contrast, due to the unstable SEI layer and infinite volume changes of the 

Li metal, sharp Li dendrites were observed on a flat Ti substrate after 24 hours of Li 

electrodeposition (Figure 12). 

4.4) Results & Discussion 

It should be noted that before evaluating the electrochemical performance of the cells, the 

lithiation of both Ti nanorods and pure Ti samples were electrochemically preceded. The 

lithiation, as discussed in the section 4.3, was simply achieved by discharging Li on both Ti 

samples on the MTI BST8-WA battery tester. The lithiation proceeded for 24 hours at a current 

density of 1 mAh/cm2. After the lithiation process, both Ti nanorods | Li and pure Ti | Li cells 

were galvanostatically discharged and charged at a current density of 1 mAh/cm2 and a capacity 

of 0.5 mAh/cm2 under ambient conditions. As shown in Figure 13, the Coulombic efficiency of 
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Li stripping and plating of the pure Ti | Li cell, which describes the reversibility of the cell by the 

ratio of the amount of Li stripping to Li plating, substantially decreased below 60 % in less than 

200 cycles. It must be noted that unlike the Coulombic efficiency presented in many science 

articles, which is typically obtained by specifying a charge/discharge voltage range and current 

density, the Coulombic efficiency obtained in this experiment is not a capacity-based parameter: 

it is simply obtained from the raw data of the galvanostatic cycling test. In other words, since the 

capacity and current density were fixed in the test, the Coulombic efficiency, which is simply the 

amount of Li participated in charge/discharge processes, should remain 100 % throughout the 

whole cycle for both coin cells. However, the electrical disconnection caused by Li dendrites, 

accumulated dead Li on the anode, and high interfacial impedance hampered the free ionic flux 

during charging, resulting in poor reversibility. In contrast, the Ti nanorods | Li cell exhibited an 

exceptional improvement in reversibility with 100 % of the Coulombic efficiency more than 

1,400 cycles, indicating that the stable SEI layer and the uniform Li electrodeposition were 

achieved with no dendrites. The exceptional electrochemical performance of the Ti nanorods | Li 

cell was further proved by a long-term galvanostatic cycling behavior (Figure 14). The voltage 

polarization of Li plating/stripping of the Ti nanorods | Li cell was maintained at ~8 mV for than 

1,400 cycles as shown in Figure 15. Although voltage fluctuation was observed at the 97 cycle, 

discharge and charge voltages were −30 mV and 35 mV, respectively, which are negligibly 

small. This temporal voltage fluctuation could be attributed to an external disturbance that 

occurred in a laboratory. On the other hand, the pure Ti | Li coin cell showed a significantly high 

voltage hysteresis throughout the whole testing (Figure 14a). The stripping/plating overpotential 

of the pure Ti | Li coin cell was reached to 120 mV in 100 cycles and rapidly diverged, reaching 

to 300 mV in 200 cycles (Figure 14a). Such considerably large voltage polarizations imply an 
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Figure 14. Galvanostatic discharge/charge voltage profiles. The red line indicates the pure Ti | Li coin 

cell, while the blue line indicates the Ti nanorods | Li cell. The voltage hysteresis of the Ti nanorods | Li 

cell was maintained at ~8 mV for more than 1,400 hours. 

an increased interfacial resistance as well as capacity decay caused by Li dendrites. The entire 

discharge/charge voltage profiles of both pure Ti | Li and Ti nanorods | Li coin cells after 24
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Figure 15. Galvanostatic discharge/charge voltage profiles after 24 hours of Li electrodeposition. The red 

line indicates the pure Ti | Li coin cell, while the blue line indicates the Ti nanorods | Li cell. The voltage 

hysteresis of the Ti nanorods | Li cell was maintained at ~8 mV for more than 1,400 hours. 

hours of Li electrodeposition is shown in Figure 15. To investigate the effect of lithiation time on 

the functionality of the Ti nanorods, long-term galvanostatic cycling behaviors of the Ti 

nanorods | Li coin cells after 12, 18, and 24 hours of lithiation are obtained (Figure 16a). The 

coin cell after 12 hours of lithiation exhibited the largest voltage hysteresis with an initial 

discharge and charge voltage of ~60 mV. Overall, the coin cell after 18 hours of lithiation 

showed a relatively smaller voltage polarization compared to that after 12 hours of lithiation. 

However, after 180 cycles, the charge/discharge overpotential started diverging rapidly, and the 

discharge overpotential of the coin cell after 18 hours lithiation became greater than that after 12 

hours of lithiation. This could be attributed to poor conditions of a sample, such as the low 

density of Ti nanorods throughout the substrate due to the excessive amount of Mg powder used 

in the magesiothermic reduction or a damage obtained while assembling the coin cell. The coin 

cell after 24 hours of lithiation, as expected, showed the narrowest voltage hysteresis throughout 
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Figure 16. The electrochemical cycling performance of Ti nanorods | Li and pure Ti | Li coin cells. (a) 

Galvanostatic discharge/charge voltage profiles of the pure Ti | Li cell (red) and the Ti nanorods | Li cells 

after 12 (green), 18 (blue) and 24 (black) hours of Li electrodeposition. Galvanostatic discharge/charge 

voltage profile after (b) 12 hours and (c) 18 hours of lithiation, and the Coulombic efficiency after (d) 12 

hours and (e) 18 hours of lithiation. 
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the whole cycle, which leads to a conclusion that the lithiation time contributes to the stability of 

the Ti nanorods | Li coin cell. This behavior is theoretically explainable: as Li continuously 

deposits on the Ti nanorods, the electrochemical potential difference between the Li metal and 

the lithiated Ti nanorods becomes smaller, lowering the energy cost. More importantly, it should 

be noted that regardless of the amount of lithiation time, the Ti nanorods significantly 

contributed to the enhancement in the electrochemical performance. To prove this point, the 

electrochemical stability of the Ti nanorods | Li coin cells after 12 and 18 hours of lithiation were 

compared to that of the pure Ti | Li cells after 12 and 18 hours of lithiation as shown in Figure 

16b and 16c, respectively. Both pure Ti | Li cells after 12 and 18 hours of lithiation exhibited 

unstable voltage profiles, rapidly fluctuating after 80 cycles. On the other hand, the Ti nanorods | 

Li cells exhibited a substantial improvement in the stability. The improved electrochemical 

performance of the Ti nanorods | Li cells after 12 and 18 hours of lithiation was further 

confirmed by the outstanding Coulombic efficiency that remained 100 % throughout the whole 

cycle as shown in Figure 16d and 16e, respectively. The superior functionality of the multi-

directional Ti nanorods to guide the uniform Li electrodeposition was demonstrated. The pre-

lithiated Ti nanorods before the cycling provides potential applications of fully charged-state 

batteries as a stably lithiated anode material when incorporated with a Li-free cathode. Potential 

candidates for a Li-free cathode material include transition metal oxyfluorides, such as VO2F and 

BiOF [71]. 
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CHAPTER 5. BMS: LITHIUM-ION BATTERY MANAGEMENT SYSTEM 

To fully take advantage of the high power, energy density and cyclability of Li-ion 

batteries, attempts to use Li-ion batteries for automobile applications, such as electric vehicles 

(EVs) and hybrid electric vehicles (HEVs), have been intensely made. Since the electrochemistry 

of Li-ion batteries is very sensitive, abusive battery operations negatively affect the performance 

of Li-ion batteries. For example, during over-discharging, the decomposition of the SEI layer 

caused by the over-deintercalation of Li-ions engages the formation of new SEI layers on the 

anode during the following charging process, increasing the interfacial impedance. Moreover, 

undesirable side reactions caused by an abnormal increase in the anode potential lead to capacity 

degradation [72]. The consequences of the over-discharging of a battery cell are not ignorable as 

it can eventually induce the internal short circuit and thermal runaway. Such an abusive battery 

operation often occurs in a battery module and pack because it is highly challenging to keep 

track of parameters that are crucial to the operation of Li-ion batteries due to the highly complex 

nature of the large-scale battery system. For this reason, continuous monitoring of critical 

parameters of each battery cell, such as voltage and temperature, and accurate estimations of the 

state of charge (SOC) and the state of health (SOH) are imperative. This can be achieved by a 

proper battery management system (BMS). A successful BMS can maximize the electrochemical 

performance and the cycle life of battery cells under various operating conditions. Main 

functions of a BMS are as follows: 

1) Monitoring voltage, current and temperature of a cell 

2) Estimation of the SOC and the SOH 

3) Cell balancing 
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4) Isolation of the battery pack  

5) Control of the battery charging profile and parameters, such as input and output 

power 

Typically, measured voltages of individual cells are used to estimate the SOC. However, 

the cell voltage is not sophisticated enough to capture the highly non-linear dynamics of the 

battery aging mechanism. Although intensive research work to obtain a better estimability of the 

SOC by modeling and studying Li-ion battery behaviors has been reported [73-76], since the 

complexity of a BMS can increase the cost when building it physically or computational efforts 

when simulating, challenges remain. Measured current profiles are generally used to obtain the 

internal resistance of each battery cell. The internal resistance is a critical parameter since it 

governs the rapid initial voltage drop during discharging. Temperature is also a necessary 

parameter to measure and control since it can affect the SOH as well as the SOC. Moreover, an 

imbalance in temperature between battery cells cause severe safety concerns. The effect of the 

operating temperature on the performance of a battery cell is specifically discussed in Chapter 6. 

Since a direct SOC measurement method is currently non-existent, the SOC can be only 

estimated. Although traditional methods to estimate the SOC, such as the open circuit voltage 

(OCV) method and the Coulomb counting method, show moderate accuracy in some cases, these 

traditional approaches are not based on the Li-ion battery chemistries that have a highly non-

linear OCV-SOC behavior. Thus, a battery model-based SOC estimation method becomes a 

popular strategy. Existing battery models that can capture the Li-ion battery chemistries can be 

classified into three major categories: 

1) Mathematical models 
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Figure 17. A general equivalent circuit model. 

2) Electrochemical models 

3) Equivalent circuit models (ECMs) 

The mathematical models predict the battery runtime, efficiency, and capacity by using 

empirical relations. However, most of the mathematical models provide inaccurate results, and 

these models are only applicable to limited applications. The electrochemical models are 

developed based on the underlying physics of electrochemical reactions occurred in a battery cell. 

Even though these models are highly accurate, such highly complicated models require 

significant computational efforts. In system-level simulations, such as BMSs for EVs or HEVs, 

ECMs are considered to be the most suitable model due to its high accuracy and reasonable 

computation efforts [77]. In ECMs, battery components are represented by a voltage source, 

resistors and capacitors, which collectively reflect the open circuit potential, the internal 

resistance, and the relaxation time of a Li-ion battery cell to capture the electrochemical 

behaviors. The typical ECM is depicted in Figure 17. The voltage circuit included is associated 

with the open circuit potential. The Rs, which is related to the ionic conductivity of the separator 

and the electrolyte, is the internal resistance that causes the rapid terminal voltage drop once a 
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load is connected. The resistor-capacitor (RC) branches, which capture the intercalation and 

deintercalation dynamics of Li ions, account for the time constants and the frequency response of 

the battery. These elements of an ECM are typically dependent on the operating temperature and 

the SOC. For the parameterization of the equivalent circuit elements, two methods are 

traditionally used. The first method uses the Thévenin theorem to measure the voltage of a 

battery cell generated by a DC pulse. Because of the temperature and SOC dependencies of the 

equivalent circuit elements, the DC pulses must be applied at different SOC and temperature 

values for an accurate parameterization. However, this method is not capable of a full 

parameterization of the equivalent circuit elements. Moreover, this method cannot capture the 

underlying physics inside a battery cell, such as the charge transfer and the diffusion. 

Alternatively, the electrochemical impedance spectroscopy (EIS) method has gained much 

attention for the parameterization of Li-ion batteries. One of the advantages of this method is that 

it is generally non-destructive to the investigated electrochemical system, which allows for 

further measurements and investigations. Typically, an alternative current (AC) response caused 

by an applied sinusoidal AC potential with varying frequencies is measured. Using a Fourier 

series, the AC response can be analyzed as a sum of sinusoidal functions, further allowing for the 

calculation of the impedance, often denoted as Z. The calculated impedance is generally 

represented by the Nyquist and the Bode plots. The EIS method can capture the underlying 

physics of a battery cell. Furthermore, a full parameterization is possible with this method. 

However, the EIS measurements also suffer from its own disadvantage: it can be only performed 

at low C-rates since the SOC of a Li-ion battery cell can be changed during the highly time-

consuming EIS measurements [77]. For this reason, developing new parameterization methods 

has become one of the most in-demands research areas. As for the estimation of the SOH, since 
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degradation of Li-ion batteries causes capacity decay and an increase in the internal resistance, 

complete full charge and discharge profiles for each cell are required. The updated profiles are 

used for calculations of the capacity lost. The SOH can be estimated by Equation 21: 

SOH [%] =
𝐶𝑚

𝐶𝑟𝑎𝑡𝑒𝑑
∗ 100 (21) 

where 𝐶𝑚 [Ah] is the maximum capacity and 𝐶𝑟𝑎𝑡𝑒𝑑 [Ah] is the rated capacity. Cell balancing is 

very important in a BMS since an imbalance in critical parameters, such as temperature and SOC, 

can lead to abusive battery operations, causing severe capacity deterioration and more 

importantly, safety issues. The balancing approaches can be classified into two categories: 

passive and active balancing. The passive balancing approach extracts extra charges from 

overcharged cells and remove them through an external resistor until the charge balance is 

achieved. In contrast, the active balancing approach distributes the extra energy to other cells. 

Isolation of the battery pack is typically achieved by shutting down the current when values of 

certain parameters, such as temperature and voltage, go beyond their limits. For all these BMS 

tasks, the controllability of the battery discharging/charging profiles and parameters is necessary. 

Many software programs commercially available provide the capability to develop a BMS. 

Among them, the MATLAB/Simulink provides exceptional modeling and simulation capabilities 

that allow for the development of a proper BMS. Using the MATLAB/Simulink, an online 

estimation of the SOC and the SOH, a validation of a BMS model by real-time simulations, and 

a parameterization of the ECM elements can be efficiently achieved. As discussed, developing a 

proper BMS is necessary for the safe and efficient operation of Li-ion batteries. Besides the main 

functions of a BMS, maintaining the optimal operating temperature of Li-ion batteries is also 
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imperative due to the poor heat tolerance of Li-ion batteries. For this reason, in Chapter 6, a Li-

ion battery thermal management system is discussed.  
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CHAPTER 6. BTMS: LITHIUM-ION BATTERY THERMAL MANAGEMENT 

SYSTEM 

6.1) Introduction 

A battery thermal management system is a must technology for large-scale Li-ion battery 

applications, such as EVs and HEVs. Since a single Li-ion battery cell provides low power and 

voltage, Li-ion battery modules and packs in which Li-ion battery cells are connected in series 

and parallel are used to meet the high-power requirements of these applications. The heat 

generated from electrochemical reactions and resistances in a Li-ion battery cell during charging 

and discharging must be appropriately dissipated as the operating temperature has significant 

impacts on the battery cell: 

1) Cycle life 

2) Safety 

3) Power and energy capability 

4) Functionality of the electrochemical system 

The optimal operating temperate range for Li-ion batteries is between 15 °C and 35 °C 

[78], and the maximum temperature difference between cells and modules should be within 5 °C. 

The low temperature operation can cause an increase in the internal resistance and decelerate the 

free ionic flux, which can eventually lead to a decrease in a unit cell voltage. The high-

temperature operation raises safety concerns, which can eventually lead to thermal runaway and 

cell explosion. Moreover, the non-uniform distribution of temperature in a battery cell, module, 

and pack can accelerate the aging mechanism and capacity deterioration. To maximize the 

electrochemical performance of Li-ion batteries, the optimal temperature operation as well as the 
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uniform temperature distribution throughout the battery system must be achieved by the 

implementation of a proper battery thermal management system (BTMS). BTMSs can be mainly 

classified into three types: passive cooling systems [79-80], active cooling systems [81-84], and 

hybrid active-passive cooling systems [85]. The passive cooling systems use latent heat of phase 

change materials (PCMs) to decrease the operating temperature. In contrast, the active cooling 

systems simply use sensible heat of fluids, such as air and water, to cool down the operating 

temperature. The hybrid cooling systems, as expected, use both latent and sensible heat of 

cooling medium. A tremendous amount of theoretical and experimental research on Li-ion 

BTMSs has been previously reported [79-85]. Although experimental research work may 

provide a great insight into the development of BTMSs, numerical investigations are attracting 

much attention due to its cost effectiveness and visualization effect. Many commercial software 

products, such as ANSYS Fluent, COMSOL Multiphysics, and MATLAB/Simulink, provide 

useful and versatile simulation tools to model a BTMS. Among them, the ANSYS Fluent has 

become one of the most popular computational fluid dynamics (CFD) simulation tools owing to 

its broad physical modeling capabilities and outstanding ability for the visualization. Among 

various physical models provided by the ANSYS Fluent, the multi-scale multi-domain (MSMD) 

battery model is suitable for the CFD analysis of Li-ion batteries due to its capability to handle 

multi-physics in different solution domains. In the MSMD model, various electrochemical sub-

models are also provided: 

1) Newman, Tiedemann, Gu, and Kim (NTGK) model 

2) ECM 

3) Newman Pseudo-two-dimensional (P2D) model 

4) User defined E-model 
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The NTGK model, a semi-empirical electrochemical model, has been intensively used for 

the 3D thermal modeling of Li-ion batteries because of its simplicity and high accuracy. In the 

NTGK model, the volumetric current transfer rate is assumed to be a function of the potential 

difference between two electrodes. Two parameters, U and Y, are calculated based on an 

empirical function that has a polynomial form with a specified depth of discharge (DOD) value 

as a variable. To be specific, the polarization curves are generated based on experimental results, 

and U and Y are obtained by performing curve-fitting on the experimental data [86]. The ECM 

model, as discussed in Chapter 5, uses an electric circuit form to describe the electrochemical 

dynamic response of Li-ion batteries. In the ECM, the open circuit voltage, resistances, and 

capacitances are functions of the SOC. Since these functions are expressed by a high order 

polynomial form, relatively high computational efforts are required. The Newman P2D model is 

a physics-based model that captures Li-ion transport phenomena and other electrochemical 

reactions. Although the P2D model exhibits a high level of accuracy, the high complexity of this 

model induces the difficulty of adjusting parameters to exactly describe modern Li-ion battery 

chemistries. In the following section, BTMSs for both prismatic and cylindrical Li-ion batteries 

are presented. The BTMSs were modeled by using the ANSYS Fluent. Since the ANSYS Fluent 

provides a limited CFD capability for the student license, the 3D thermal analysis of a large 

cylindrical Li-ion battery pack is not included in this paper; a prismatic Li-ion battery cell and 

module are only simulated. Instead, a 3D thermal design of a cylindrical Li-ion battery pack is 

presented. First, a single prismatic Li-ion polymer cell was simulated, and the accuracy of the 

simulation results was evaluated by using experimental data obtained from Liu et al. [88]. An 

active cooling system was then incorporated into the cell to efficiently cool down the operating 

temperature. A BTMS for a prismatic Li-ion battery module in which five Li-ion battery cells are 
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connected in series was then developed. With the developed battery module, the influences of the 

inlet velocity and temperature of a coolant were closely monitored. Subsequently, a BTMS for a 

cylindrical Li-ion battery pack was developed.  

6.2) Thermal Modeling of Lithium-ion Batteries (ANSYS Fluent) 

The thermal behavior of Li-ion batteries can be analyzed in the ANSYS Fluent. The 

MSMD battery model and NTGK model are used as a battery model and an electrochemical sub-

model, respectively. In the MSMD battery model, battery thermal and electric fields are solved 

by the following differential equations: 

∂(𝜌𝐶𝑝𝑇)

∂t
− ∇ ∙ (𝑘T∇𝑇) = σ+|∇ϕ+|2 + σ−|∇ϕ−|2 + 𝑞̇ECh + 𝑞̇short + 𝑞̇abuse (22) 

∇ ∙ (σ+∇ϕ+) = −(𝑗𝐸𝐶ℎ − 𝑗𝑠ℎ𝑜𝑟𝑡) (23) 

∇ ∙ (σ−∇ϕ−) = 𝑗𝐸𝐶ℎ − 𝑗𝑠ℎ𝑜𝑟𝑡 (24) 

where 𝜌 is the density, 𝐶𝑝 is the specific heat capacity, 𝑘𝑇 is the thermal conductivity, and T is 

temperature, respectively. The σ+ and σ− are the temperature-dependent electric conductivities, 

and ϕ+ and ϕ− are phase potentials for the positive and negative electrodes, respectively. 𝑗𝐸𝐶ℎ 

and 𝑞̇ECh  are the volumetric current transfer rate and the heat generated by electrochemical 

reactions, respectively. The source terms 𝑗𝐸𝐶ℎ  and 𝑞̇ECh  are calculated by using an 

electrochemical sub-model. The 𝑗𝑠ℎ𝑜𝑟𝑡 and 𝑞̇short, which represent the current transfer rate and 

the heat generation due to the battery short-circuit, respectively, are equal to zero unless the 

internal short-circuit is present. The 𝑞̇abuse, which is normally set to zero, is the heat generated 

by thermally abusive battery operations. Although the internal short circuit and abusive 
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operations of Li-ion batteries are not considered in this simulation, more information regarding 

these source terms can be found [87]. The NTGK electrochemical sub-model then calculates the 

volumetric transfer current density with the following equation: 

𝑗𝐸𝐶ℎ = 𝑎𝑌[𝑈 − (ϕ+ − ϕ−)] (25) 

where 𝑎  denotes the specific area of the electrode sandwich sheet, 𝑌  and 𝑈  are the model 

parameters that are a function of the battery depth of discharge (DOD) expressed by: 

DOD =
V

3600QAh
∫ 𝑗 𝑑𝑡

𝑡

0

 (26) 

where V denotes the volume of the battery, and QAh is the total electric capacity of the battery in 

ampere hours, respectively. In this simulation, the voltage-current response curves are obtained 

through experiments, and 𝑌 and 𝑈 values are obtained by curve fitting the simulation data. The 𝑌 

and 𝑈 values are calculated by the following formulations: 

𝑌 = ∑ 𝑎𝑛(𝐷𝑂𝐷)𝑛 ∗ 𝑒
−𝐶1(

1
𝑇

−
1

𝑇𝑟𝑒𝑓
)

𝑛=0

5

 (27) 

𝑈 = ∑ 𝑏𝑛(𝐷𝑂𝐷)𝑛 ∗ 𝐶2(𝑇𝑟𝑒𝑓 − 𝑇)

𝑛=0

3

 (28) 

where 𝐶1  and 𝐶2  are the battery-specific NTGK model constants, and 𝑇𝑟𝑒𝑓  is the reference 

temperature. The 𝑎𝑛  and 𝑏𝑛  coefficients are used for calculating 𝑌  and 𝑈  values. Finally, the 

𝑞̇ECh, the heat generated due to electrochemical reactions, is then calculated as: 

𝑞̇ECh = 𝑗𝐸𝐶ℎ ∗ [𝑈 − (ϕ+ − ϕ−) − 𝑇
𝑑𝑈

𝑑𝑇
] (29) 
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The first term, 𝑗𝐸𝐶ℎ[𝑈 − (ϕ+ − ϕ−)], denotes the irreversible heat generated by the overpotential, 

while the second term, 𝑗𝐸𝐶ℎ𝑇
𝑑𝑈

𝑑𝑇
 is the reversible heat generated by entropic heating. 

6.3) Prismatic Lithium-ion Battery Cell 

The prismatic Li-ion battery cell modeled in this work is the ePLB-C020 Li-ion polymer 

battery cell with LiNiCoMnO2 as the cathode material. The characteristics of the cell are shown 

in Table 1. 

 

 

 

 

 

 

Table 1. Parameters of the cell characteristics and the geometry. 

The temperature profile of this cell measured by experiments is provided by Liu et al. 

[88]. In their experiment, the temperature of nine different locations of a battery cell was 

measured during full discharging under 25 °C at varying C-rates. A C-rate is a measure of 

battery charging/discharging rate used to scale the charge/discharge current of a battery cell. For 

example, a 1C discharge rate describes that the battery will be fully discharged in 1 hour. To be 

able to compare simulation results with the experimental results, a single Li-ion battery cell was 

modeled by using the same dimensions shown in Table 1. The modeled battery cell was then 
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Figure 18. The 3D geometry of the prismatic Li-ion battery cell. The Tab (+) and Tab (-) are positive and 

negative tabs, respectively. 

simulated under the same conditions that the experiments were conducted under. The 3D 

geometry of the ePLB-C020 Li-ion polymer cell was built in the DesignModeler, which was 

further imported to the Mesh (Figure 18). Subsequently, in the Mesh, 189,237 nodes and 93,420 

elements were generated. The level of the mesh refinement was chosen with consideration of the 

trade-off relationship between computational efforts and the accuracy of the simulation results. 

The simulation was conducted based on the experimental setup: the prismatic Li-ion battery cell 

was set to be fully discharged with the initial DOD value of 0. The operating voltage range was 

set from 2.5 V to 4.2 V. Copper was assigned for positive and negative tab materials, while the 

property of active materials in the battery cell was customized to have 2092 kg/m3, 678 J/kg∙K, 

18.4 W/m∙K, 3.541e+07 siemens/m as the density, specific heat, thermal conductivity, and 

electrical conductivity, respectively. The User-Defined Scalar Diffusion Coefficients were then 
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Figure 19. The maximum temperature comparison between experimental (red) and simulation (blue) 

results. Tmax is the maximum temperature, and Tdif is the maximum temperature difference between the 

experimental and simulation results. 

set to 1,190,000 kg/m∙s and 983,000 kg/m∙s for uds-0 and uds-1, respectively. For boundary 

conditions, the heat convection was turned on with 8 W/m2∙K and 298K as the heat transfer 

coefficient and the free stream temperature, respectively. The boundary conditions of the inlet 

and the outlet were set as velocity-inlet and pressure-outlet. No slip boundary condition was used 

for the fluid zones, and a time step of 10.0 s was used for the simulation. First, to validate the 

simulation model, the transient analysis of Li-ion battery cell was conducted at varying C-rates: 

1C, 2C, 3C, and 4C. Experimental results were then compared with simulation results as shown 

in Figure 19. For the experimental maximum temperature, the highest temperature values 

measured at each C-rate were selected regardless of their locations. Overall, locations close to 
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Figure 20. Simulation results of the single prismatic cell at the 1C discharge rate. The contour of (a) 

temperature, (b) negative potential, (c) positive potential, and (d) vectors of current density. 

positive and negative tabs, which connect the current collectors of two electrodes to the external 

circuits, exhibited higher temperature. As shown in Figure 19, simulation results were in good 

agreement with experimental results, remaining the maximum temperature difference between 

the simulation and experimental results less than 1.5 °C throughout the simulations. The 

simulation results at higher C-rates exhibited relatively high errors from experimental results, 

which could be attributed to the complex multi-physics nature of the cell. The accuracy of the 

simulation results can be enhanced by refining the mesh, which is not considered in this paper to 

avoid the increase in computational efforts. As shown in Figure 19, the operating temperature of
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Figure 21. The 3D geometry of the prismatic battery cell sandwiched between cold plates. A coolant 

flows from the left-hand side to the right-hand side. 

battery cells rapidly increases as a C-rate increases, exceeding the recommended maximum 

operating temperature, which is 35 °C. The temperature contour of the battery cell at the 1C 

discharge rate is shown in Figure 20a. As confirmed by the experiment, the positive and negative 

tab areas showed the highest temperature in the cell due to the high current density in the tab 

areas (Figure 20d). Since the ANSYS Fluent provides outstanding capabilities for the post-

processing, contours of other parameters, such as positive and negative potentials, voltage, and 

electrochemical sources, can be also obtained. For example, the negative and positive potential 

contours of the battery cell at the 1C discharge rate are shown in Figure 20b and 20c, 

respectively. The negative and positive potential values were the highest at negative and positive 

tab areas, respectively. To maximize the electrochemical performance, the single prismatic Li-

ion battery cell was sandwiched between cold plates in which coolants flowed from the right-
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hand side to the left-hand side with the inlet temperature of 20 °C. The 3D geometry of the 

battery cell sandwiched between the cold plates is shown in Figure 21. The thickness of the cold 

plates was 3.5 mm, and copper was used for the cold plate materials. The coolants used in this 

simulation were the air and water. The inlet velocity of coolants was set to 0.5 m/s. The coolants 

must satisfy the mass, momentum, and energy conservation equations in the simulation. The 

governing equations of the coolants are given as follows: 

Continuity Equation: 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑣⃗) = 0 (30) 

Momentum Equation: 

𝜕

𝜕𝑡
(𝜌𝑣⃗) + ∇ ∙ (𝜌𝑣⃗𝑣⃗) = −∇𝑃 + ∇(𝜏) + 𝜌𝑔 (31) 

Energy Equation: 

𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
+ ∇ ∙ (𝜌𝐶𝑝𝑣⃗𝑇) = ∇ ∙ (𝑘𝑇∇T) (32) 

where 𝑣⃗ is the velocity vector, P is the pressure, 𝑔 is the gravitational acceleration, and 𝜏 is the 

viscous stress tensor. The incorporated cooling system targeted the optimal operating 

temperature of Li-ion batteries, 15 ℃ to 35 ℃, suggested by [78]. The maximum temperature of 

the three battery models at varying C-rates is plotted in Figure 22. As a C-rate increases, the 

operating temperature of the three battery models, the prismatic battery cell with 1) no cooling, 2) 

air-cooling, and 3) water-cooling, also increased due to the ohmic and entropic heating. The 

battery cell with no cooling exhibited the highest maximum temperature throughout the whole  
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Figure 22. The maximum temperature of the prismatic battery cell with no cooling, air-cooling and 

water-cooing at varying C-rates: 1C, 2C, 3C, and 4C.  

simulations. Although the operating temperature of the battery model with no cooling was in the 

optimal temperature range at the 1C discharge rate, the temperature of the battery cell 

significantly increased at the 2C, 3C, and 4C discharge rate, eventually exceeding the maximum 

optimal temperature of 35 ℃. Such high temperature induced by high C-rates can cause severe 

safety issues. In contrast, it is clearly shown that the air and the liquid cooling systems 

effectively dissipated the heat generated in the battery cell. Although the air-cooling battery 

model successfully remained the maximum operating temperature less than 35 ℃ at the 1C, 2C, 

and 3C discharge rate, the maximum temperature exceeded 40 ℃ at the 4C discharge rate, which 

could lead to abusive operations of the battery cell. Overall, the water-cooling battery model 

exhibited the lowest operating temperature throughout the whole simulations: the maximum 

operating temperature of the water-cooling battery model successfully remained within the  
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Figure 23. The temperature contours of the prismatic battery cell with air-cooling (left) and water-cooling 

(right) at (a) 1C rate, (b) 2C rate, (c) 3C rate, and (d) 4C rate. 

optimal temperature range at the 1C, 2C, 3C, and 4C discharge rate. To compare the cooling 

performance between the air-cooling and the water-cooling systems, the temperature contours of 

the battery models with air-cooling and water-cooling at varying C-rates are obtained in Figure 

23. As expected, locations close to negative and positive tabs exhibited the highest temperature. 

In the air-cooling battery model, the air with the inlet temperature of 20 ℃ was gradually heated 

as it flowed downstream due to the decrease in the temperature gradient. Therefore, temperature 

of the outlet area was higher than that of the inlet area. The water-cooling battery model 

successfully maintained the operating temperature within the optimal range even at the 4C 

discharge rate with the uniform temperature distribution throughout the battery cell. It should be 

noted that unlike the air-cooling battery model, the inlet area exhibited higher temperature than 
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the outlet area. This is because of the relatively high water inlet velocity of 0.5 m/s: although the 

air does not show this thermal behavior due to tis low density, for a liquid coolant, such as water, 

the inlet velocity of 0.5 m/s causes rapid flows of the water, making it difficult to cool down the 

upstream area in time. In case of a low inlet velocity, in contrast, the upstream area should be 

cooled down first. Generally, a liquid is a more suitable coolant than the air in terms of the 

cooling performance. However, other components that need to be incorporated into the system, 

such as pipes and pumps, can increase the manufacturing cost as well as the size of the battery 

system. Therefore, although the cooling effect is only considered in this paper, the trade-off 

relationship should be carefully considered depending on a specific application of a battery 

system.  

6.4) Prismatic Lithium-ion Battery Module 

To investigate the thermal behavior of a large-scale Li-ion battery system, a Li-ion 

battery module in which five battery cells with cold plates are connected in series was developed. 

The 3D geometry of the 5s (five serially connected batteries in a stage) battery module was built 

in the DesignModeler, which was further imported to the Mesh (Figure 24). The 5s battery 

module has a total six cold plates. Each battery cell was sandwiched between two cold plates.  

Subsequently, in the Mesh, 548,696 nodes and 101,868 elements were generated. The effects of 

the inlet velocity and temperature of a coolant on the thermal behavior of the 5s battery module 

were then closely monitored. Other parameters, such as the initial DOD, the operating voltage 

range, and material properties remained the same. The previously used MSMD battery model 

and NTGK electrochemical sub-model were also used in this simulation. Boundary conditions 

also remained unchanged.  
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Figure 24. The 3D geometry of the 5s battery module. 

6.4.1) Effects of the Inlet Velocity of a Coolant 

The thermal response of the 5s battery module was evaluated at different inlet velocities. 

The air was chosen as a coolant to obtain more distinct temperature variations with the inlet 

temperature of 20, and velocities of 0.5 m/s, 1 m/s, 1.5 m/s, and 2 m/s were evaluated at the 2C 

discharge rate. The maximum temperature and the maximum temperature difference, which is 

described as the difference between the maximum and minimum temperature, of each battery 

cell in the 5s battery module are shown in Figure 25. As previously demonstrated, cold plates 

successfully dissipated the heat generated by electrochemical reactions, remaining the maximum 

temperature of each battery cell in the optimal temperature range. The cell 3 located in the 

middle of the 5s battery module exhibited the highest temperature throughout the whole 

simulations. This is because of the sandwiched structure: the temperature of cold plates that 

sandwich the cell 3 is also affected by the heat conduction from cell 2 and 4. Similarly, the 

temperature of other intermediate cells, cell 2 and cell 4, was higher than that of the non- 
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Figure 25. The maximum temperature (Tmax) and the maximum temperature difference (Tmax – Tmin) of 

each battery cell in the 5s battery module. 

intermediate cells, cell 1 and cell 5, which were placed at both sides of the 5s battery module. 

Although the maximum temperatures of all simulation models were in the optimal temperature 

range, the 5s battery module with the inlet velocities of 0.5 m/s and 1 m/s exhibited the highly 

non-uniform cell-to-cell temperature distribution. Moreover, the maximum temperature 

difference in each battery cell was high. Such a temperature imbalance induces a short cycle life 

and serious safety concerns. The high inlet velocities of 1.5 m/s and 2 m/s mitigated this issue, 

maintaining the maximum temperature difference between five battery cells within 5 ℃. Also, 

the maximum temperature difference in each battery cell remained within 2 ℃. The contours of 

temperature of the 5s battery module at different inlet velocities are shown in Figure 26. As the 

inlet velocity increases, the uniform temperature distribution as well as a decrease in the 

operating temperature were achieved. By simple numerical simulations, it is demonstrated that 

the coolant velocity significantly affects the cooling effect of a BTMS. Thus, the inlet velocity of 
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Figure 26. The temperature distribution of the 5s battery module at a coolant velocity of (a) 0.5 m/s, (b) 1 

m/s, (c) 1.5 m/s, and (d) 2 m/s. 

 a coolant must be appropriately chosen depending on a specific application.  

6.4.2) Effects of the Inlet Temperature of a Coolant under a Fast Discharging Condition

Heat transfer is mainly affected by three important factors: the thermal conductivity of a 

heat transfer medium, the temperature gradient, and the amount of contact area between the heat 

transfer medium and an object. Although the enormous heat generated in a battery module can be 

dissipated by simply increasing the inlet velocity of a coolant, as confirmed in the previous 

section, high inlet velocities of a coolant require a high pump power. Therefore, other factors, 

such as the amount of the contact area and the inlet temperature, should be considered to achieve 

high cooling performance as well as a reasonable manufacturing cost. In general, fins are used to 

enhance the cooling performance by substantially increasing the contact area, however, due to 

cost and space limitations, it is challenging to incorporate fins in each battery cell. Instead, an 

appropriate selection of the inlet temperature can significantly increase the cooling performance. 

To gain a deeper insight into the influence of the inlet temperature on the cooling performance,  
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Figure 27. The maximum temperature (Tmax) and the maximum temperature difference (Tmax – Tmin) of 

each battery cell with the inlet temperature of 5 ℃ and 20 ℃.  

 

 

 

 

 

 

 

 

Figure 28. The temperature distribution of the 5s battery module with the inlet temperatures of (a) 5 ℃ 

and (b) 20 ℃ under the 5C fast discharging condition. The inlet velocity was set to 1 m/s. 
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the 5s battery module with different inlet temperatures under a fast discharging condition was 

simulated. The air was used as a coolant, and the inlet velocity was set to 1 m/s. The inlet 

temperatures of 5 ℃ and 20 ℃ were chosen in this simulation. The rest of the simulation 

conditions remained consistent. The battery module was then discharged at the 5C discharge rate. 

Figure 27 shows the maximum temperature and the maximum temperature difference obtained 

from the simulation. As discussed before, intermediate cells, cell 2, cell 3, and cell 4, exhibited 

higher temperature than non-intermediate cells due to the heat conduction from the adjacent 

battery cells. The inlet temperature of 20 ℃ was adequate to maintain the operating temperature 

in the optimal range with the uniform cell-to-cell temperature distribution at the 5C discharge 

rate. However, the maximum temperature difference was an average of 4.72 ℃, which is quite 

close to 5 ℃, the maximum acceptable imbalance in temperature between battery cells. This 

issue was successfully resolved in the battery model with the inlet temperature of 5 ℃. The low 

inlet temperature successfully cooled down the 5s battery module with a significant improvement 

in temperature distribution as shown in Figure 28. The maximum temperature difference in each 

cell was an average of 1.52 ℃. In other words, a decrease in the inlet temperature of a coolant 

enhances the cooling effect as well as the uniformity of the temperature distribution. Therefore, 

the inlet temperature must be properly chosen with consideration of other critical parameters, for 

example, the velocity of a coolant and the ambient temperature, depending on a specific 

application. 
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6.5) Thermal Design of a Cylindrical Lithium-ion Battery Pack 

Figure 29. The 3D geometry of the 6s4p battery pack: (a) 3D view, (b) top view, (c) front view, and (d) 

side view. 

Typically, the geometries of a battery cell can be classified into two categories: prismatic 

and cylindrical configurations. As previously demonstrated, cold plates can efficiently cool down 

a prismatic Li-ion battery cell. Since the amount of contact area is an imperative factor in heat 

transfer, a BTMS should be properly designed depending on a configuration of a battery cell. In 

this section, a 3D thermal design for a cylindrical Li-ion battery pack is presented. Due to the 
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Figure 30. The mesh generated for the 3D 6s4p battery pack. A total 6,664,800 nodes and 1,507,424 

elements are generated. 

limited simulation capability provided by the ANSYS Fluent student license, simulations did not 

proceed. The Li-ion battery pack consists of 24 cylindrical cells connected in series and parallel: 

the 6s4p (6 serial and 4 parallel batteries in a stage) Li-ion battery pack. Such a large-scale 

battery pack, which is usually incorporated into EVs and HEVs to provide the essential power 

and energy, must have a proper BTMS during the operation since a slight un-uniformity in 

temperature distribution can result in a severe imbalance in the cell-to-cell SOH, SOC, and 

operating temperature, leading to a localized capacity deterioration as well as poor 

electrochemical performance of the battery system. Since the 6s4p battery pack generates a 

tremendous amount of heat, a liquid-cooling system is preferred to effectively dissipate the heat. 

The 3D geometry of BTMS for the 6s4p battery pack was built in the DesignModeler (Figure 29). 
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Under subsonic conditions, the cross-sectional area is inversely proportional to velocity of a fluid. 

Therefore, diameter of the cylindrical channels should be small, for example, 2 mm or 2.5 mm, 

to achieve high cooling effect. Materials used for the metal block should have high thermal 

conductivity to maximize the cooling performance. Candidates include copper, aluminum, and 

brass. Although 3D thermal analysis for the 6s4p battery pack is not provided in this section 

because the number of mesh nodes and elements exceeds the simulation capability supported by 

the student license (Figure 30), studies on a BTMS for cylindrical Li-ion batteries have been 

reported elsewhere [90-91].  



62 
 

 

CHAPTER 7. CONCLUSION & FUTURE WORK 

In this thesis, characterization, modeling, and BMS/BTMS for high-performance Li 

batteries are proposed. State-of-the-art of commercial Li-ion batteries and research efforts to 

improve the electrochemical performance are first proposed in Chapter 1. The fundamentals of 

the problematic Li dendritic growth, which hinders the practical applications of the Li metal 

anode, are then discussed in Chapter 2. In Chapter 3, the phase-field method, a powerful tool to 

theoretically study the fundamentals of Li dendritic growth, is introduced. The PFM developed 

by Ely et al. [48] and their simulation results are also proposed to obtain a deeper understanding 

of formulation and framework of the phase-field method. Finally, in Chapter 4, multi-directional 

porous Ti nanorods are presented as a solution to achieve the dendrite-free Li metal anode. At 

the initial Li electrodeposition process, the high level of porosity of the Ti nanorods provided 

preferential nucleation sites for Li, facilitating Li electro-crystallization on the surface of the 

nanorods. After the initial Li crystallization, the multi-directional nature of the Ti nanorods 

further engages lateral Li growth on their body due to low energy cost, resulting in the structural 

evolution I refer to ‘fat nanorods’. As Li plating proceeds, adjacent nanorods covered with Li 

became physically in contact, eventually forming a smooth layer on the top of the Ti nanorods. 

As a result, the undesirable Li dendrite formation was completely avoided even after 24 hours of 

Li electrodeposition. The Ti nanorods significantly improved cell stability and the Coulombic 

efficiency: the discharge/charge overpotential of ~8 mV and the Coulombic efficiency of 100 %, 

all of which remained for 1,400 cycles at a current density of 1 mA/cm2 and a capacity of 1 

mAh/cm2. In Chapter 5, the fundamentals of a BMS is briefly introduced. Furthermore, the 3D 

thermal analysis of Li-ion batteries is proposed in Chapter 6. The BTMSs built in the ANSYS 

Fluent used an active cooling system to effectively dissipate the heat generated in Li-ion batteries. 
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Simulation results showed that the optimal operating temperature and the uniform temperature 

distribution were achieved by the implementation of the developed BTMSs. The effect of fluid 

properties on the cooling effect is also studied by using the air and water as a coolant. Simulation 

results showed that water provides more cooling effect than the air. Moreover, the influences of 

the inlet velocity and temperature of a coolant are investigated. Although high inlet velocities 

contributed to an improvement in the cooling performance, the corresponding high-power 

requirements are not desirable. The low inlet temperature significantly improved the cooling 

effect as well as the uniformity of the temperature distribution under the 5C fast discharging 

condition.  

Ongoing and future research work includes designs of a BMS with consideration of 

temperature variations, modeling of advanced thermal control systems for EVs and HEVs, and 

numerical simulations of Li electrodeposition on the Ti nanorods to study the interface-

dependent behavior of Li dendrites. 
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Lithium-ion (Li-ion) batteries, as one of the most advanced commercial rechargeable 

batteries, play a crucial role in modern society as they are extensivelyused in portable electronic 

devices. Nevertheless, the limited electrochemical performance and poor thermal management 

systems of Li-ion batteries have hindered the expansion of their future applications. In search of 

alternative electrode materials to develop a battery with higher electrochemical performance, 

lithium (Li) metal has attracted much attention as an ideal alternative anode material due to its 

high specific capacity and lowest redox potential. However, needle-like Li dendritic growth 

causes severe safety concerns and thus prohibits practical applications of the Li metal anode. 

Furthermore, the high sensitivity of Li-ion batteries to abusive operations requires a sophisticated 

battery management system (BMS) as well as a battery thermal management system (BTMS), 

especially for automobile applications. In this thesis, the fundamentals of Li-ion batteries and 

common research strategies to enhance the electrochemical performance of Li-ion batteries are 

first introduced. The challenges of next-generation Li metal batteries, namely the undesirable Li 
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dendritic growth, is then discussed, followed by introduction of an efficient theoretical model to 

investigate the fundamentals of Li dendritic growth, the phase-field method (PFM). Black 

metallic titanium (Ti) foils covered with porous nanorod arrays are proposed as a dendrite-free Li 

metal anode. The porous Ti nanorod arrays provided numerous heterogeneous nucleation sites, 

significantly contributing to cycling stability and reversibility: discharge/charge voltage 

overpotentials of ~8 mV and a Coulombic efficiency of 100 % successfully remained for 1,400 

cycles at a current density of 1 mA/cm2 and a capacity of 1 mAh/cm2. Furthermore, the black 

metallic Ti can be potentially used in aerospace and solar industries owing to its outstanding 

ability to absorb light, mechanical robustness, and high corrosion resistance. After the 

introduction of the Ti nanorods, common methods to model a proper BMS are discussed. 

Moreover, BTMSs for large-scale Li-ion batteries were designed and simulated by using the 

ANSYS Fluent. An active cooling system was incorporated into the BTMSs to successfully 

dissipate the enormous amount of heat generated in a battery cell and maintain the operating 

temperature within the optimal temperature range. It was shown that the uniform temperature 

distribution was also achieved by modulations of the inlet temperature and velocity. This thesis 

provides a deep insight into characterization, modeling, and thermal managementmethods to 

improve the electrochemical performance of Li batteries. 



78 
 

 

AUTOBIOGRAPHICAL STATEMENT 

I earned a Bachelor of Science in HVAC (heating, ventilation, and air-conditioning) 

engineering from Pukyong National University (PKNU) in South Korea. Experiences and 

knowledge obtained from PKNU allowed me to be a versatile engineer. 

In August 2018, after I graduated from PKNU, I came back to Wayne State University to 

pursue a Master of Science in mechanical engineering. I have joined a materials science and 

chemical engineering laboratory, which Dr. Da Deng is in charge of, since the beginning of my 

maser’s journey. In Dr. Da Deng’s laboratory, I have mainly worked on the development of 

nanomaterials for a negative electrode and a separator that can enhance the electrochemical 

performance of Li batteries. By completing various projects, I have obtained a tremendous 

amount of knowledge in Li-ion batteries, material characterization skills, and electrochemical 

testing techniques.  

To obtain a wide range of knowledge, I have also been directed by Dr. Chin-An Tan in 

terms of the computational electrochemistry that could theoretically validate the functionality of 

nanomaterials that I have developed. By modeling Li electrodeposition kinetics, I have gained a 

great-depth knowledge in electrochemistry as well as the proficiency in MATLAB.  

Having two different advisors has brought me an opportunity to obtain a versatile 

engineering skillset in Li-ion batteries. The weekly presentations and meetings we have had 

significantly contributed to my academic accomplishments. Thanks to them, I have been able to 

learn, grow, and become a better academic researcher.  

As I am graduating, my goal is to apply my knowledge I obtained from school on actual 

industrial projects. I am ready to work, learn, and face new challenges outside the school.  


	Characterization, Modeling, And Thermal Management Of High-Performance Lithium Batteries
	Recommended Citation

	tmp.1611251283.pdf.01UA3

