

iv

TABLE OF CONTENTS

DEDICATION___ ii

ACKNOWLEDGMENTS ___ iii

LIST OF TABLES ___ vi

LIST OF FIGURES ___ vii

CHAPTER 1 INTRODUCTION __ 1

1.1 Process Data Analytics Using Machine Learning Techniques ______________________ 3

1.2 Motivations and Objectives ___ 5

1.3 Thesis Outline ___ 6

CHAPTER 2 DEEP LEARNING: FOCOUS ON RECURRENT NEURAL _____________
NETWORKS __ 8

2.1 Recurrent Neural Networks (RNNs) ___ 11

2.2.1 Gated Recurrent Neural Networks _______________________________________ 13

2.3 Deep learning applications in manufacturing processes _______________________ 17

CHAPTER 3 ATTENTION-BASED RNN FOR MULTI-STEP-AHEAD PREDICTION 19

3.1 Problem Statement__ 19

3.2 Attention-Based Encoder-Decoder RNN Model________________________________ 20

3.2.1 Encoder RNN ___ 20

3.2.2 Decoder RNN ___ 22

3.2.3 Temporal Attention Model ___ 22

3.2.4 Computational procedure __ 23

3.3 Loss function and model training ___ 25

3.4 Summary __ 27

CHAPTER 4 CASE STUDY: CATALYST ACTIVITY PREDICTION ______________ 28

1

CHAPTER 1 INTRODUCTION

Because of the advances in smart manufacturing, Industrial Internet of Things (IIOT),

and data storage, large amount of data is created and collected at different levels in modern

chemical plants. They could be equipment data, process operational data (historical or real-

time), process design and product quality data, economic and environmental (including

process safety, waste emission and health impact) data. The process data hierarchy that starts

from equipment sensor measurements at the bottom level to the customer data at the top level

is shown in Figure 1 (Adopted from [1]). Also, different types of data including time series,

image, and spectral data (e.g. gas chromatography) are generated in a chemical manufacturing

plant. For example, Figure 2 shows the three types of data (time series, thermography, and

spectrum) that are usually generated in any chemical plants. Beside size and variety

characteristics of the data, process operational data might be (i) noisy, (ii) Dynamic, (iii)

different in terms of sampling time (e.g. online measurements and laboratory analysis), (iv)

Figure 1. Process data hierarchy.

2

Figure 2. Process data types: (a) time series (b) thermography, and (c) spectrum

incomplete or unlabeled, and (v) highly correlated [2]. Because of these characteristics,

effective knowledge extraction from process data is a very challenging task.

Machine learning is one of the fastest growing fields in in computer science. Based on

the Wikipedia definition, machine learning is a subset of artificial intelligence in the field of

computer science that evolved from the study of pattern recognition and computational

learning theory. Machine learning methods are used as data mining tools to extract useful

information from large database. They are also intelligent as they have the ability to learn and

adopt to changes in a changing environment [3]. Machine learning techniques are classified

in four categories as follows [3], [4]:

- Supervised learning: these techniques are used when training data that comprises

examples of the input vectors along with their corresponding targets are available. This

is called classification when the target is categorical (e.g. fault classification). If the

desired output consists of one or more continuous variables, then the task is called

regression.

- Unsupervised learning: these techniques are used for knowledge discovery when the

data doesn’t have label. Approaches to unsupervised learning include clustering when

the goal is to discover groups of similar examples within the data, density estimation

3

to determine the distribution of data within the input space, dimensionality reduction

for feature extraction and data visualization. A study by Thomas et al. [5] shows some

of the applications of these techniques in chemical processes.

- Semi-supervised learning (SSL): these techniques are used when a part of training data

doesn’t have label. They are useful when unlabeled data contains a lot of information

or cost of the labeling is expensive or time consuming.

- Reinforcement learning: this technique is concerned with the problem of finding best

policy (a sequence of actions that maximize the total reward) by a process of trial and

error. Here the output of the system is a sequence of actions that are unknown for the

learner, in contrast to supervised learning where the outputs are known.

1.1 Process Data Analytics Using Machine Learning Techniques

During the past decades, machine learning and data mining techniques have been

applied in process industry for different types of data analytics including descriptive analytics

(e.g. process monitoring, data visualization, outlier detection, etc.), diagnostic analytics (e.g.

process fault diagnosis), predictive analytics (e.g. fault classification, soft sensor modeling,

and key performance index prediction), and perspective analytics (e.g. control and decision

problems). For example, Figure 1 shows how data-driven modeling methods such as principal

component analysis (PCA) and projection to latent structures (PLS) can be used for

abnormality detection in the process.

A framework for process data analytics that includes all the necessary steps to build

an effective data-driven model is shown in Figure 3. These include data collection, data

preparation and preprocessing, and choosing an appropriate machine learning technique. In

the first step, data that could be historical and online data are collected from different

4

resources. In data preparation and data pre-processing step, most appropriate data samples

and variables are selected for modeling and different pre-processing techniques including data

normalization, removing outliers, and missing value estimation are carried out to improve the

quality of the data. In the next step, a machine learning algorithm is selected for data-driven

modeling based on the characteristics of the process data and the modeling task. These two

steps are highly related to each other for the modeling as the performance of the model is

dependent on selected features and the quality of the data. Note that although there are some

feature selection and extraction techniques, they all carried out separately and are not

embedded in the step of model training.

A list of supervised and unsupervised machine learning techniques is provided in the

framework that can be used for different applications. Applications of unsupervised learning

algorithms in process industries include process monitoring, data visualization, outlier

detection, and dimensionality reduction. Applications of supervised learning algorithms

include process monitoring, fault classification, soft sensor, and quality prediction. A very

comprehensive review on machine learning techniques and their applications in process

industry was provided by Ge et al. [6]. Semi-supervised learning that is a combination of

supervised and unsupervised learning can be used when appropriate.

The ability of conventional machine learning techniques to process raw data is limited.

They usually need careful engineering and considerable domain expertise to design a featu re

extractor that transformed the raw data into a suitable internal representation for model

construction. This process becomes more complicated with considering the characteristics of

the data mentioned above. To overcome these challenges, deep learning techniques have been

developed.

5

Deep learning is a class of machine learning techniques that has been developed based

on the representation learning that allows a machine to be fed with raw data and to

automatically discover the representations needed for detection or classification [7]. It has

gained more attention recently because of the availability of more powerful computers, larger

datasets and techniques to train deeper neural networks. In spite of the conventional machine

learning methods that use hand-designed features for training the model, deep learning-based

methods use a representation learning algorithm to extract the features automatically from the

data that result in much better performance.

Figure 3. A framework for process data analytics using machine learning techniques.

1.2 Motivations and Objectives

The goal of this research is two-fold. Firstly, we conduct a review on the recent

applications of different deep learning techniques in manufacturing systems. We focus on

6

recurrent neural networks (RNNs) as they are more appropriate for modeling because of the

characteristics of process data generated in the chemical plants. These types of neural

networks are very powerful dynamic systems for sequential data and time series modeling.

Secondly, we introduce an attention-based RNN for multi-step-ahead prediction that can have

many applications in chemical plants such as model predictive control system, fault diagnosis

system, process performance prediction, etc. This model consists of an RNN that encodes a

sequence of input time series data into a new representation (called context vector) and

another RNN that decodes the representation into output target sequence. An attention model

integrated to the encoder-decoder RNN model allows the network to focus on parts of the

input sequence that are relevant to predicting the target sequence. The attention model is

jointly trained with all other components of the model. By having a deep architecture, the

model can learn a very complex dynamic system. In order to show the effectiveness of the

proposed approach, an application on process performance prediction is presented. A

comparative study is performed to show the superior performance of the proposed approach

compared to conventional machine learning techniques such as support vector regression

(SVR).

1.3 Thesis Outline

In the next chapter, we give a brief introduction about deep learning techniques with

more focus on recurrent neural networks. We also review some applications of most common

deep learning methods in manufacturing processes. In chapter three, we propose an attention-

based recurrent neural networks model for multi-step-ahead prediction that has many potential

applications in chemical industry. The model consists of an encoder RNN, attention model,

and a decoder RNN that learns a complex mapping between input and output sequences. The

7

temporal attention mechanism allows the network to select relevant encoder hidden states

across all time steps for predicting the target sequence. To demonstrate the effectiveness of

the modeling approach, a comparative study on the problem of catalyst activity prediction is

illustrated.

8

CHAPTER 2 DEEP LEARNING: FOCOUS ON RECURRENT NEURAL

NETWORKS

Deep learning is a class of machine learning techniques that has gained much attention

in recent years. In spite of conventional machine learning techniques that require careful

engineering and considerable domain expertise to design a feature extractor, deep learning

techniques use representation learning methods to extract the relevant features from the raw

data and discover the representations needed for model building [7]. In this way, the machine

learning algorithm learns not only the mapping from the representation to output but also the

representation itself that result in much better performance [8]. Figure 4 shows that how

classic machine learning and deep learning that uses representation learning work. Deep

learning methods are representation learning methods with multiple levels of representation

obtained by transforming the less abstract features into a more abstract representation.

Figure 4. Relation between classic machine learning and representation learning. Shaded boxes

show the components that can learn from data.

9

A deep learning model consists of multiple layers of simple modules that many of which

perform a nonlinear mapping. For example, deep feedforward neural network models (also called

MLPs) with multiple layers are the most common deep learning models used for many

applications. This type of models has several layers including the first layer (also called input

layer), hidden layers, and output layer shown in Figure 5. Each hidden layer consists of a set of

computational units that are called neurons. Each neuron computes the weighted sum of its inputs

from the previous layer and pass it to the next layer after applying a nonlinear function.

Figure 5. Feedforward neural network

Deep feedforward neural networks have more power in function approximation and have

higher generalization capacity than the shallow ones (networks with one hidden layer). They can

learn a very high nonlinear function with fewer number of parameters and samples to achieve a

desired approximation. Mhaskar et al. [9] show that deep networks can approximate the class of

compositional functions (e.g. 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑑) = ℎ1 (ℎ2 ⋯ (ℎ𝑗(ℎ𝑖1(𝑥1, 𝑥2), ℎ𝑖2(𝑥3, 𝑥4)), ⋯))) as

well as shallow networks but with exponentially lower number of training parameters and sample

complexity. A simple example from this study (see Figure 6) shows that MLPs can learn a very

10

high nonlinear function with much fewer numbers of neurons and parameters. In other study, Liang

and Sirkant [10] show that the number of neurons needed by a shallow network to approximate a

large class of pricewise smooth functions is exponentially larger than the corresponding number

of neurons needed by a deep network for a given degree of function approximation. They show

that a multilayer neural network that uses Θ (log(1
ε⁄)) layers needs 𝒪 (poly log(1

ε⁄)) neurons,

while Ω (𝑝𝑜𝑙𝑦(1
𝜀⁄)) neurons are required by neural networks with 𝜊 (𝑙𝑜𝑔(1

𝜀⁄)) layers for

ε-approximation of functions with enough piecewise smoothness.

Figure 6. MLPs with different number of layers for function approximation (adopted from [9])

Convolutional Neural Networks (CNNs) are another type of deep feedforward network

that have gained many applications in different domains especially in computer vision. This

type of networks is designed to process data in the array form such as signals (1D arrays),

images or audio spectrograms (2D arrays), and videos (3D arrays). They use stacked of

11

convolution and pooling layers to build high level features from low-level features followed

by fully connected layers. They have received many successful applications in image

processing, Natural Language Processing (NLP), speech recognition, and drug discovery.

Although CNNs have many applications in manufacturing industry, we don’t provide the

details of this method as the main focus of this thesis is on Recurrent Neural Networks

(RNNs). In the next section, we discuss RNNs in detail and review some of its application in

manufacturing industry.

 2.1 Recurrent Neural Networks (RNNs)

RNNs are a class of artificial neural network models for processing time series data or

data that are generated sequentially. Inspired from cyclical connectivity of neurons in the

brain, they could have different architecture including recurrent connections in hidden units

or recurrent connections from output to the hidden units. For example, Figure 7(a) shows an

RNN with one hidden layer with connections between units in the hidden layer. This model

is parametrized with three matrices:

- Weight matrix W for connections between input and the hidden layer with bias vector

b0.

- Weight matrix R for recurrent connections in the hidden units.

- Weight matrix V for hidden to output connections with bias vector b1.

These parameters are shared across the time as shown in Figure 7(b) for four-time steps. At

time step t, the hidden units receive the sum of weighted input 𝒙𝒕 and the weighted hidden

state 𝒉𝒕−𝟏, and then pass it to the output layer after a nonlinear mapping 𝒇. Therefore, an

RNN model can be described as a nonlinear dynamical system as follows:

𝒉𝒕 = 𝒇(𝒉𝒕−𝟏, 𝒙𝒕, 𝜽) (2.1)

12

𝒚̂𝒕 = 𝒈(𝒉𝒕, 𝜽) (2.2)

where 𝜽 are the parameters that need to be learned through the training process; 𝒇 is a

nonlinear function (e.g. hyperbolic tangent activation function); 𝒈 is a linear function for

regression problems or a sigmoid function following by a SoftMax operation for classification

problems. Note that we only show one output in the figure. However, the formulation is

general, and the output can be a vector.

Figure 7. Recurrent Neural Network: (a) connections in hidden layer, and (b) equivalent unfolded

network through the time for four-time steps.

13

The parameters 𝜽 are obtained through optimizing an objective function. Different loss

functions are used for different applications. For example, the mean squared error (MSE) and mean

absolute error (MAE) objective functions are usually used for regression problems.

One solution for training the RNN model is to unroll the recurrent model to its equivalent

unrolled graph and the using any gradient-based optimization approach to find optimal values of

parameters. However, there are some difficulties such as vanishing and the exploding gradient

problems [11,12] with computing gradient in the backpropagation through time (BPTT) algorithm

that is very similar to the generalized back-propagation (BP) algorithm. Hopefully, there are some

approaches that reduce these difficulties and allow the network to learn long-term dependencies.

We discuss some of them in the following.

 2.2.1 Gated Recurrent Neural Networks

Gated RNNs are the most effective recurrent models used in practical applications. These

networks use special units in their architecture that allows them to create paths through the time

that neither vanish nor explode. These units have parameters that allow the network to decide when

to update the cell state based on the new information. We discuss two types of gated RNNs, long

short-term memory (LSTM) network and networks based on the gated recurrent unit (GRU), in

this section.

 The LSTM model was proposed by Hochreiter and Schmidhuber [13] as a novel recurrent

neural network in 1997. It has received many successful applications in speech recognition,

language modeling and translation, image captioning, and time series forecasting. As we

mentioned above, the LSTM networks use a special block in their hidden layers shown in Figure

8. The simple recurrent network (SRN) unit is also depicted for showing the differences between

computational units in two models. As we can see, the SRN unit has only a nonlinear activation

14

function with recurrent connections from the output (i.e., hidden state) of the unit to the input of

the unit. However, the LSTM block has a cell state that its state is controlled using different

parameters. It consists of three gates (input, forget, and output), block input, a single cell, and

recurrent connections from output to all gates and block input. The LSTM block is formulated by

equations 2.3-2.8 as follows:

𝒛𝑡 = 𝑔(𝑾𝑧𝒙𝑡 + 𝑹𝑧𝒉𝑡−1 + 𝒃𝑧) (2.3)

𝒊𝑡 = σ(𝑾𝑖𝒙𝑡 + 𝑹𝑖𝒉𝑡−1 + 𝒃𝑖) (2.4)

𝐟𝑡 = σ(𝑾𝑓𝑥𝑡 + 𝑹𝑓𝒉𝑡−1 + 𝒃𝑓) (2.5)

𝒄𝑡 = 𝒛𝑡⨀𝒊𝑡 + 𝒄𝑡−1⨀𝐟𝑡 (2.6)

𝒐𝑡 = σ(𝑾𝒐𝒙𝑡 + 𝑹𝒐𝒚𝑡−1 + 𝒃𝑜) (2.7)

𝒉𝑡 = 𝑔(𝒄𝑡) ⨀𝒐𝑡 (2.8)

where 𝜎 is logistic sigmoid activation function; it is used as gate activation function in equations

2.4, 2.5, and 2.7 that formulate the input gate, forget gate, and output gate respectively; hyperbolic

tangent (𝑔(𝑥) = tanh(𝑥)) is used as block input and output activation function; equation 2.6

shows the state of the cell at time 𝑡; operator ⊙ is used for point-wise multiplication.

15

Figure 8. (a) SRN unit, and (b) LSTM block.

Gated RNNs that use gated recurrent unit (GRU) in their hidden layers are called GRU

RNNs. The GRU unit proposed by Cho et al. [14] is another type of unit that can remember

and forget adaptively and update its memory content using reset and update gates. A graphical

representation of a GRU is shown in Figure 9. This unit has only two gates, reset gate 𝑟𝑡 and

update gate 𝑧𝑡 to update its memory. The update gate is computed based on the previous

hidden state ℎ𝑡−1 and the input 𝑥𝑡:

𝒛𝑡 = 𝜎(𝑾𝑧𝒙𝑡 + 𝑼𝑧𝒉𝑡−1) (2.9)

where 𝜎 is logistic sigmoid function. The forget gate 𝒓𝑡 is computed by equation 2.10:

𝒓𝑡 = 𝜎(𝑾𝑟𝒙𝑡 + 𝑼𝑟𝒉𝑡−1) (2.10)

The new content of the memory ℎ̅𝑡 is computed by equation 2.11:

𝒉̅𝑡 = tanh(𝑾𝑥𝑡 + 𝒓𝑡⨀𝑼𝒉𝑡−1) (2.11)

16

where ⨀ is a point-wise multiplication. Finally, the cell state is updated based on the new content

of the cell 𝒉̅𝑡 and cell state at time 𝑡 − 1:

𝒉𝑡 = 𝒛𝑡𝒉̅𝑡 + (1 − 𝒛𝑡)𝒉𝑡−1 (2.12)

All the parameters including weights and reset gate and update gate are learned through the training

process.

Figure 9. Gated recurrent unit (GRU)

 There are some other strategies to reduce the difficulties of learning long-term

dependencies such as adding skip connections through time, leaky units, and removing

connections that allow the network to learn multiple time scales [8]. There are also other recurrent

neural networks such as Nonlinear AutoRegressive models with exogenous (NARX) and Echo-

State Network (ESN) that we do not discuss them here. The readers are referred to [15], [16] for

more information about these models. In the next section we review the applications of CNNs and

RNNs in manufacturing processes.

17

2.3 Deep learning applications in manufacturing processes

It is known that deep learning techniques have received many successful applications

in different domains including computer vision (e.g. object recognition and detection), speech

recognition (e.g. speech to word), natural language processing (NLP), drug discovery, etc. In

this section, we review the applications of deep learning techniques in manufacturing

processes. These include descriptive analytics, diagnostic analytics, and predictive analytics

as we mentioned in the first chapter.

One of the applications of deep learning in manufacturing processes is fault detection

and diagnosis that is a very important problem in process systems engineering. The models

are built based on the process historical data and then used as a classifier to classify different

faults. Yu et al. [17] proposed a nonlinear Gaussian belief network fault diagnosis technique

for industrial processes. They showed that the proposed three-layer model outperforms the

classical techniques such as kernel PCA, statistical pattern analysis (SPA), and Moving

Window KPCA. In other study, Wu and Zhao [18] used a deep convolutional neural network

for fault diagnosis in chemical processes. Wang et al. [19] introduced a local feature-based

gated recurrent unit (LFGRU) networks for machine health monitoring tasks including tool

wear prediction, gear box fault diagnosis, and incipient fault diagnosis of rolling element

bearings. Haidong et al. [20] proposed a deep autoencoder feature learning model for rotating

machinery fault diagnosis. For the same task, Janssens et al. [21] proposed a CNN based

approach for automatic bearing fault detection; the proposed model achieves better

classification accuracy compared to support vector machine and random forest.

 Another application of deep learning technique is predictive analytics in

manufacturing systems. Wang et al. [22] proposed a data-driven predictive model based on

18

deep belief network for material removal rate prediction during chemical mechanical

polishing. Wu et al. [23] introduced an approach based on long short-term memory recurrent

neural network for remaining useful life estimation of engineered systems.

Deep learning techniques are also used for product quality control and surface

inspections. For example, Weimer et al. [24] introduce a CNN based approach for detecting

defects on the surface. For the product quality purpose, Wang et al. [25] use a CNN for defect

detection on the product surface. In other study, Ren et al. [26] proposed a generic approach

based on the CNN for automated surface inspection.

Attention-based neural networks is another type of deep networks that recently

received many successful applications in image processing [27], machine translation [28], etc.

However, their applications for time series modeling has not been investigated. In the next

chapter, we propose an attention-based RNN for multi-step-ahead prediction.

19

CHAPTER 3 ATTENTION-BASED RNN FOR MULTI-STEP-AHEAD PREDICTION

Building a data-driven model for Multi-step-ahead (MS) prediction of a dynamic

system is a challenging problem as the output target need to be predicted many time-steps

into future without having the measurements in the horizon of interest. Most of models that

proposed for this task use a single-step-ahead (SS) predictor recursively for MS prediction.

Using a SS predictor for MS prediction usually leads to a poor prediction accuracy as a small

prediction error at the beginning of the horizon is accumulated and propagated into future.

In this chapter, motivated by Cho et al. [14] and Bahdanau et al. [28] works, we

propose an attention-based recurrent neural network for multi-step-ahead prediction that can

have applications in model predictive controllers, fault diagnosis systems, process

performance prediction, etc. This model consists of one RNN encoder that encodes a sequence

of input time series into a new representation (called context vector) and one RNN decoder

that decodes the representation into output target sequence. The attention model integrated to

encoder-decoder RNN model allows the network to focus on parts of the input sequence that

are relevant to predicting the target sequence. Because of having a deep architecture, the

model can learn a very complex dynamics system and it is robust to noise. First, we give the

problem statement and the explain the methodology in detail.

3.1 Problem Statement

For an MS prediction problem, an RNN-based multi-step-ahead predictive model is to

be built to predict the target variable, 𝑦, for 𝑇′ steps into future, based on the last 𝑇

observations of the inputs (also called driving series or exogenous inputs) and output

observations. The model can be described by equation (3.1):

𝒀 = 𝐹(𝑿) (3.1)

20

Where 𝒀 = (𝑦𝑇+1, 𝑦𝑇+2, ⋯ , 𝑦𝑇+𝑇′) ∈ ℝ𝑇′
is a vector represents a sequence of target variable

𝑦 ∈ ℝ for the future 𝑇′ steps, and 𝑿 = (𝒙1, 𝒙2, ⋯ , 𝒙𝑞 , 𝒚)⏉ = (𝒙1, 𝒙2, ⋯ , 𝒙𝑇) ∈ ℝ(𝑞+1)×𝑇 is a

window (i.e., lookback window) contains past 𝑇 observations of q exogenous inputs and one

desired output; 𝒙𝑘 = (𝑥1
𝑘 , 𝑥2

𝑘 , ⋯ , 𝑥𝑇
𝑘) ∈ ℝ𝑇 and 𝒚 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑇) ∈ ℝ𝑇 indicate a driving

series and a target series respectively. We employ 𝒙𝑗 = (𝑥𝑗
1, 𝑥𝑗

2, ⋯ , 𝑥𝑗
𝑞 , 𝑦𝑗) ∈ 𝑅𝑞+1 to denote

a vector of q exogenous inputs and one desired output y at time step j (1 ≤ 𝑗 ≤ 𝑇). The model

uses the last T observations of the inputs and the desired output to predict the target output y

for next 𝑇′ steps.

3.2 Attention-Based Encoder-Decoder RNN Model

 The architecture of the model is shown in Figure 10. The model consists of an RNN that

encodes the input sequence into a new representation (called context vector) and another RNN

that decodes the representation into an output target sequence. An attention model integrated

to the encoder-decoder RNN model allows the network to focus on parts of the input sequence

that are relevant to predicting the target sequence. The attention model is jointly trained with

all other components of the model. Each component of the model is described below.

3.2.1 Encoder RNN

The encoder is an RNN that reads input 𝒙𝑗 at time step j until it reaches to the end of

the sequence. At each time step t, the hidden state of the encoder is updated using the equation

below:

𝒉𝑡 = 𝑓(𝒉𝑡−1, 𝒙𝑡) (3.2)

where 𝑓 is a nonlinear activation function that its parameters are shared across the time; it can

be a simple logistic sigmoid function, LSTM, or GRU explained in the previous chapter. In

21

this study, we use the LSTM network because of its superior performance in accurately

modeling both short- and long-term dependencies in time series data. Hidden state 𝒉𝑡 shows

the current state of the hidden layer that is a function of the previous hidden state 𝒉𝑡−1 and

input 𝒙𝑡. For example, if 𝑡 = 𝑗, we have 𝒉𝑗 = 𝑓(𝒉𝑗−1, 𝒙𝑗) as shown in Figure 10. Note that

hidden state 𝒉𝑡 is a vector that its size is equal to the size of the hidden layer.

At each time step that 𝒉𝑡 is updated, the hidden state contains a summary of the

previous time steps. When it reaches to end of the input sequence 𝑋, the final hidden state 𝒉𝑇

is a summary of the whole sequence. The final hidden state 𝒉𝑇 that is also called context

vector that can be used in two ways in the decoder RNN as we discussed in the previous

section; it can be used as the initial state of the decoder or it can be provided as an input to

the hidden units of the decoder at each time step.

Figure 10. Attention-based RNN model for MS prediction.

22

One of the drawbacks of this encoding strategy is that some of the information are lost

during the encoding process and only the last hidden state is used in the decoder RNN. An

attention mechanism introduced by Bahdanau et al. [28] to address this issue. Here we discuss

the RNN decoder and then the attention model is explained.

3.2.2 Decoder RNN

 The decoder RNN is another RNN that generate the target sequence

(𝑦̂𝑇+1, 𝑦̂𝑇+2, ⋯ , 𝑦̂𝑇+𝑇′) sequentially as shown in Figure 10. The hidden state of the decoder is

updated as follows:

𝒔𝑖 = 𝑔(𝒔𝑖−1, 𝑦̂𝑖−1, 𝒄𝑖) (3.3)

where 𝑔 is a nonlinear activation function (e.g. LSTM, or GRU) that its parameters are shared

across the time like function 𝑓. The hidden state of the decoder is updated based on the current

state of context vector 𝒄𝑖 that comes from the attention model, previous hidden state 𝒔𝑖−1, and

estimated target variable 𝑦̂𝑖−1 at the last time step 𝑖 − 1. The target variable is estimated using

equation (3.4) at each time step:

 𝑦̂𝑖 = 𝑜(𝒔𝑖) (3.4)

where 𝑜 is the linear activation function (𝑜(𝑥) = 𝑥). At each time step 𝑖 the target is estimated

based on the current hidden state 𝒔𝑖, previous output 𝑦̂𝑇+𝑖−1, and current context vector 𝒄𝑖.

We explain how attention model is used to generate 𝒄𝑖 in the next section.

3.2.3 Temporal Attention Model

 As we mentioned before, the bottleneck of improving the performance of an RNN

sequence to sequence model is using the fixed-length vector 𝒄. That is, it uses the fixed-length

23

vector 𝒄 that is set to the last hidden state of the encoder after processing the input sequence.

To address this issue, the attention model derives a context vector 𝒄𝑖 at each time step i in the

decoding phase to capture relevant input information for predicting 𝑦𝑖. As shown in Fig. 10,

the attention model receives encoder hidden states (𝒉1, 𝒉2, ⋯ , 𝒉𝑇) and the decoder’s hidden state

𝒔𝑖−1 to calculate the context vector 𝒄𝑖 at time step 𝑖. The context vector 𝒄𝑖 is computed as

follows:

𝒄𝑖 = ∑ 𝛼𝑖𝑗𝒉𝑗
𝑇
𝑗=1 (3.5)

where 𝛼𝑖𝑗 is the weight of hidden state 𝒉𝑗 at time step 𝑖 during the decoding process. It actually

shows the importance of hidden state 𝒉𝑗 respect to the previous hidden state 𝒔𝑖−1 in deciding

the next state 𝒔𝑖 and predicting 𝑦𝑇+𝑖. It is computed by equation (3.6).

𝛼𝑖𝑗 =
𝑒𝑥𝑝(𝑒𝑖𝑗)

∑ 𝑒𝑥𝑝(𝑒𝑖𝑘)
𝑇

𝑘=1

 (3.6)

where 𝑒𝑖𝑗 is computed by the alignment model 𝑒𝑖𝑗 = 𝑎𝑙𝑖𝑔𝑛(𝒔𝑖−1, 𝒉𝑗). This model is

parametrized as a feedforward neural network that is trained jointly with other components of

the model.

At each time step 𝑖, the scores 𝑒𝑖𝑗s that show the importance of the hidden state 𝑗 in

predicting the target 𝑦𝑇+𝑖 are computed using the alignment model and then normalized using

the SoftMax function (see equation (3.6)).

3.2.4 Computational procedure

The following steps are executed at each time step 𝑖 during the decoding process after

encoding the input sequence to a set of internal states (𝒉1, 𝒉2, ⋯ , 𝒉𝑇):

24

Step1. The alignment model that is a feedforward NN computes the scores 𝑒𝑖𝑗 based on the

hidden state of the decoder (𝒔𝑖−1), and hidden states (𝒉1, 𝒉2, ⋯ , 𝒉𝑇). For example, at time 𝑖 =

1, the scores (𝑒11, 𝑒12, ⋯ , 𝑒1𝑇) are evaluated based on the encoder’s hidden states and the

initial hidden state 𝒔0 of the decoder.

Step2. The scores are normalized using Eq. (3.6) to give the attention weights 𝛼𝑖𝑗. For

example, we have attention weights vector 𝛼 = (𝛼11, 𝛼12, ⋯ , 𝛼1𝑇) at the first-time step that its

elements show the importance of hidden states 𝒉1, 𝒉2, ⋯ , 𝒉𝑇 in predicting the 𝑦1 respectively.

Step3. Context vector 𝒄𝑖 is calculated using equation (3.5). Then, it is used for predicting the

target at time step 𝑖.

Step 4. The context vector, 𝒄𝑖, is concatenated with the output from the previous time step.

Step 5. The concatenated vector (𝒄𝑖, 𝑦̂𝑖−1) is used as the input to the decoder to predict the output

at time step 𝑖. Note that 𝑦0 is used as the start point at the first state, as there is no state before that.

The decoder hidden state is also updated based on equation (3.3).

 These five steps are executed at each time step sequentially until the end of the target sequence

to be reached. For example, the decoder hidden state 𝒔1 is used in the attention model to compute

new context vector 𝒄2 based on the new set of scores and attention weights. The context vector

𝒄2 and predicted output 𝑦̂1 are concatenated and used as input to the decoder to predict 𝑦̂2. This

process is repeated until the end of the target sequence.

 The application of the model is not limited to MS prediction of single output. It can be used

for MS prediction of the system’s performance with multiple outputs. In this case, the design of

the predictor model is same as that of the proposed model, except that the decoder RNN predicts

multiple outputs.

25

3.3 Loss function and model training

Mean Absolute Error (MAE) is used as a loss function in this study. Since the

parameters of the model are updated using a mini-batch of training samples, the objective

function is defined below:

 𝐽(𝜃) =
1

𝑚
∑ (𝑀𝐴𝐸)𝑘

𝑚
𝑘=1 (3.7)

where m is the batch size and 𝜃 are the model’s parameters; 𝑀𝐴𝐸 is the mean absolute error

between the predicted sequence and the target sequence:

𝑀𝐴𝐸 =
1

𝑇′
∑ |𝑦𝑇+𝑖 − 𝑦̂𝑇+𝑖|

𝑇′

𝑖=1 (3.8)

where y and 𝑦̂ are the actual (ground truth) and estimated target respectively.

Many optimization algorithms have been proposed for training deep neural network

models. All these methods are classified as gradient-based optimization approaches as they use the

gradient of the loss function to update the model’s parameters at each step. For example, the well-

known stochastic gradient descent (SGD) optimization approach used the following steps to find

the optimal value of the model’s parameters:

Step 1. A batch of training samples (x, y) are drawn randomly from the dataset. The stochastic term

refers to random selection of the samples.

Step 2. The network is run on input x to give predictions 𝑦̂

Step 3. The loss of the network on the batch is computed. This step is also called the forward pass)

Step 4. The gradient of the loss function respect to model’s parameters is computed using

backpropagation algorithm (backward pass)

26

Step 5. The model’s parameters are updated using equation below:

𝑊𝑖 = 𝑊𝑖−1 − 𝜂∇𝐹(𝑊) (3.9)

where 𝜂 is the learning rate that should be not be too small or too large.

There are several variants of SGD (e.g. SGD with momentum, Adagrad, RMSProb, Adam,

etc.) that differ in updating the model’s parameter (weights and biases). These optimizers use a

concept called momentum that controls the convergence speed of the algorithm and local minima.

In this study, we use Adam optimizer.

The detailed procedure of network optimization is presented in Algorithm 1. The

model is trained using Adam optimizer Kingma and Ba (2015) that is a mini-batch stochastic

gradient descent optimization algorithm. It uses an adaptive approach to compute the learning

rates from the estimates of the first and second moments of the gradients (𝑚𝑡, and 𝑣𝑡

respectively). Hyper-parameters 𝛽1, 𝛽2 ∈ [0, 1) control the exponential decay rates of these

moments. Hyper-parameter 𝛼 is the step size that is set to 0.001.

Two training procedure, non-teacher forcing (NTF) and teacher forcing (TF), can be

used to train the model. In NTF procedure, at each time step of decoding, the decoder RNN

uses the previous output prediction 𝑦̂𝑇+𝑖−1 to generate the next output prediction 𝑦̂𝑇+𝑖 during the

train time. However, in TF procedure, the actual output 𝑦𝑇+𝑖−1 is fed to the decoder to generate

the next output prediction 𝑦̂𝑇+𝑖 during the train time. Since the actual output is not available at the

test time, the predicted output value is fed back to the network.

27

Algorithm 1: Model training procedure: the model’s parameters are updated until they

converge. 𝑔𝑡
2 indicates the elementwise square 𝑔𝑡 ⊙ 𝑔𝑡. All operations on vectors are element-

wise. 𝛽1
𝑡and 𝛽2

𝑡 are 𝛽1and 𝛽2 to the power t. Good default settings for the tested machine learning

problems are 𝛼 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜀 = 10−8.

Randomly initialize model’s parameters 𝜃

for number of training iterations do

• 𝑡 ← 𝑡 + 1

• Sample minibatch of m examples {(𝐗𝑘 , 𝐲𝑘)}𝑘=1
𝑚

• Update 𝜃 at iteration t:

(1) 𝑔𝑡 ← 𝛻𝜃(𝐽(𝜃𝑡−1))

(2) 𝑚𝑡 ← 𝛽1. 𝑚𝑡−1 + (1 − 𝛽1). 𝑔𝑡 (Update biased first moment estimate)

(3) 𝑣𝑡 ← 𝛽2. 𝑣𝑡−1 + (1 − 𝛽2). 𝑔𝑡
2 (Update biased second raw moment estimate)

(4) 𝑚̂𝑡 ←
𝑚𝑡

(1−𝛽1
𝑡)

 (Compute bias-corrected first moment estimate)

(5) 𝑣𝑡 ←
𝑣𝑡

(1−𝛽2
𝑡)

 (Compute bias-corrected second raw moment estimate)

(6) 𝜃𝑡 ← 𝜃𝑡−1 −
𝛼.𝑚̂𝑡

(√𝑣̂𝑡+𝜀)
 (Update parameters)

 end for

3.4 Summary

In this chapter, we proposed attention-based RNN for multi-step-ahead (MS)

prediction. The model uses an attention mechanism to focus on parts of the inputs that most

relevant for predicting the output at each time step. In the next chapter, we will discuss the

application of the proposed method for the MS prediction of catalyst activation in liquid phase

methanol synthesis process. We will discuss the process, dataset in detail. We will also

conduct a comparative analysis with other methods for MS prediction.

28

CHAPTER 4 CASE STUDY: CATALYST ACTIVITY PREDICTION

 In this chapter, an application of the proposed methodology for MS prediction of catalyst

activity in the liquid phase methanol process is presented. First, the whole process including main

process units, flow streams, and measurements is explained briefly. Second, the dataset that was

obtained through different experiments on process parameters is discussed. Then, the results of the

proposed model for MS prediction of the catalyst activity is discussed. Finally, we have a

comparative analysis on the predictive performance of the proposed approach and with Support

Vector Regression (SVR).

4.1 Liquid Phase Methanol Process

The simplified process flow diagram (PFD) of the liquid phase methanol synthesis process

is shown in Figure 12. The process information and data were obtained from [30]. The process

consists of five main sections:

- The feed gas purification unit that includes feed gas supply tie-ins (streams 10, 20, and 30)

and a carbonyl guard bed. The stream 20 (H2 Gas) is used to adjust the H2/CO ratio.

- Compression section that includes the recycle gas compressor (C-1) and associated

systems.

- The reactor and catalyst reduction unit that includes a slurry reactor and associated

equipment for catalyst preparation and handling.

- The distillation unit that comprises of two distillation columns to reach the refined-grade

methanol.

- The storage and miscellaneous section that includes storage tanks with other components.

29

Figure 11. Simplified process flow diagram of the liquid phase methanol process.

Unlike conventional gas-phase reactors that use fixed beds of catalyst pellets, the liquid

phase methanol reactor is a slurry reactor with powder-size catalyst particles suspended in mineral

oil. The syngas (reactants) is entered the reactor through a gas sparger and then bubbles up through

the slurry where the reactants (CO and H2) dissolve in the oil and diffuse to the catalyst surface.

Three highly exothermic reactions occur on the catalyst surface:

 𝐶𝑂 + 2𝐻2 → 𝐶𝐻3𝑂𝐻 (4.1)

30

 𝐶𝑂2 + 3𝐻2 → 𝐶𝐻3𝑂𝐻 + 𝐻2𝑂 (4.2)

 𝐶𝑂 + 𝐻2𝑂 → 𝐶𝑂2 + 𝐻2 (4.3)

An internal heat exchanger is designed in the reactor to remove the heat of reaction and

control the reactor temperature that is very important to achieve optimum catalyst life and reaction

rate. Note that excessive temperatures reduce the catalyst life seriously. The recovered head is used

for steam generation. A simple schematic of the slurry reactor is shown in Figure 12.

The product gas leaving from top of the reactor (Stream 120) is cooled in the feed/product

heat exchanger, and any condensed oil is collected in the high-pressure oil separator and returned

to the reactor. The product gas is further cooled to condense the methanol product so it can be

separated in the methanol separator. Part of the unreacted syngas is recycled to the reactor through

stream 149 and the rest is sent to boiler.

The condensed methanol (Stream 204) is then sent to the distillation unit for removal of

higher alcohols, water, and other impurities. The recovered refined grade methanol from this unit

is sent to the storage tanks.

Figure 12. A simple schematic of LPMEOH slurry reactor.

31

4.3 Data Acquisition

The process parameters (temperature, pressure, flowrate, etc.) are measured using the

control and instrumentation systems located in the plant. The real-time plant data are accessible

by a distributed control system (DCS) that is used for automatic control, monitoring, etc. In order

to calculate some of the key parameters of the process, gas chromatographs were used to analyze

the syngas feed streams, the streams entering and exiting the reactor, purge streams leaving the

reactor loop and distillation columns, and also the methanol streams exiting the distillation unit.

To study the catalyst activation level, seventeen key process parameters are considered in the

commercial-scale demonstration of the liquid phase methanol process. Some of the parameters are

measured directly from the sensor located in the plant (e.g. reactor temperature and pressure) while

some of them are calculated indirectly from directly measured variables.

4.4 Dataset

According to Heydorn et al. (2003), in order to study catalyst performance in process

operation, four catalyst campaigns were made. In each campaign, a number of experiments were

conducted, and real-time plant data of 17 process parameters were collected (see Table 1). In the

report by Heydorn et al. (2003), a daily average of each parameter for the plant operation of 69

months is included. The definition of each parameter is provided below. The details of each

campaign is given in Appendix A.

1. Reactor temperature (℃): this parameter shows the reactor temperature during the

operation.

2. Reactor pressure (𝑝𝑠𝑖𝑔): this parameter shows the reactor pressure during the operation.

3. Fresh Feed (KSCFH): this parameter indicates the flow rate of the fresh feed that enters

the reactor. It is sum of the Balanced Feed Gas, H2 Feed Gas, and CO Feed Gas flow rates.

32

4. Recycle Gas (KSCFH): this parameter shows the flow rate of the recycle stream.

5. Reactor Feed H2/CO ratio: this parameter specifies the ratio of the H2 over CO at the inlet

(stream 109) of the reactor. It is adjusted using the Balanced Feed Gas, H2 Feed Gas, and

CO Feed Gas streams.

6. Purge Gas (KSCFH): this parameter shows the flow rate of the purge gas.

7. Inlet Superficial Velocity (ft/s): The ratio of the actual cubic feet of gas at the reactor inlet

(calculated at the reactor temperature and pressure) to the reactor cross-sectional area

(excluding the area contribution by the internal heat exchanger):

𝐼𝑛𝑙𝑒𝑡 𝑆𝑢𝑝𝑒𝑟𝑓𝑖𝑐𝑖𝑎𝑙 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝐹𝑒𝑒𝑑 𝐹𝑙𝑜𝑤 (𝐼𝑏𝑚𝑜𝑙𝑒/ℎ𝑟)×𝑣(

𝑓𝑡3

𝐼𝑏𝑚𝑜𝑙𝑒
)

3600(
𝑠

ℎ𝑟
)×𝐴(𝑓𝑡2)

 (4.4)

where 𝑣 is the molar volume of the reactor feed that is calculated at the reactor temperature

and pressure operating condition.

8. Space Velocity (l/hr-kg): this parameter is defined as the ratio of the volumetric flow rate

of the reactants to the catalyst weight.

9. Slurry Concentration (wt%): this parameter is the percentage of weight of slurry (solid plus

liquid) which is catalyst.

10. Gassed Slurry Height (ft): this parameter shows the height of gassed slurry in the reactor.

11. Gas Holdup: The percentage of reactor volume up to the Gassed Slurry Height which is

gas.

12. Catalyst Inventory (Ib): this parameter indicates the amount of catalyst in the reactor.

13. CO Conversion to Methanol (%): This parameter shows the percentage of CO consumed

across the reactor.

33

14. Overall Conversion (%): Percentage of energy (on a lower heating value (LHV) basis) in

the reactor feed converted to methanol. It is calculated using equation below:

𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑂 − 𝑇 − 𝑀 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =
𝐿𝐻𝑉 𝑜𝑓 𝑟𝑎𝑤 𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙

𝐻𝑉 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑜𝑟 𝑓𝑒𝑒𝑑
× 100 (4.5)

15. Syngas Utilization (SCF/lb Methanol): this parameter is defined as the number of standard

cubic feet of Balanced Feed Gas plus CO Feed Gas to the reactor required to produce one

pound of raw methanol

16. Raw Methanol Production (TPD): this parameter is sum of the refined grade methanol and

crude grade methanol.

Table 1. List of key process parameters.

No. Parameter

1 Reactor temperature (C)

2 Reactor pressure (psig)

3 Fresh feed flow rate (KSCFH)

4 Recycle stream flow rate (KSCFH)

5 Ratio of H2 over CO at the reactor inlet

6 Purge gas flow rate (KSCFH)

7 Superficial velocity at the reactor inlet ((ft/s)

8 Space velocity (1/hr-kg)

9 Slurry concentration (mass fraction)

10 Gassed slurry height (ft)

11 Gas holdup (%)

12 Catalyst inventory (Ib)

13 CO conversion to methanol (%)

14 Overall conversion (%)

15 Syngas utilization (SCF/Ib methanol)

16 Raw methanol production (tons/day)

17 Catalyst activity

Catalyst activity is a desired target that is to be predicted. It is defined as the ratio of the

rate constant at any point in time to the rate constant of a freshly reduced catalyst, i.e.,

 𝜂 =
𝑘0(𝑡)

𝑘0(𝑡=0)
 (4.6)

