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CHAPTER 1 INTRODUCTION 

Because of the advances in smart manufacturing, Industrial Internet of Things (IIOT), 

and data storage, large amount of data is created and collected at different levels in modern 

chemical plants. They could be equipment data, process operational data (historical or real-

time), process design and product quality data, economic and environmental (including 

process safety, waste emission and health impact) data. The process data hierarchy that starts 

from equipment sensor measurements at the bottom level to the customer data at the top level 

is shown in Figure 1 (Adopted from [1]). Also, different types of data including time series, 

image, and spectral data (e.g. gas chromatography) are generated in a chemical manufacturing 

plant. For example, Figure 2 shows the three types of data (time series, thermography, and 

spectrum) that are usually generated in any chemical plants. Beside size and variety 

characteristics of the data, process operational data might be (i) noisy, (ii) Dynamic, (iii) 

different in terms of sampling time (e.g. online measurements and laboratory analysis), (iv) 

  

 
Figure 1. Process data hierarchy. 
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Figure 2. Process data types: (a) time series (b) thermography, and (c) spectrum 

 

incomplete or unlabeled, and (v) highly correlated [2]. Because of these characteristics, 

effective knowledge extraction from process data is a very challenging task. 

Machine learning is one of the fastest growing fields in in computer science. Based on 

the Wikipedia definition, machine learning is a subset of artificial intelligence in the field of 

computer science that evolved from the study of pattern recognition and computational 

learning theory.  Machine learning methods are used as data mining tools to extract useful 

information from large database. They are also intelligent as they have the ability to learn and 

adopt to changes in a changing environment [3]. Machine learning techniques are classified 

in four categories as follows [3], [4]: 

- Supervised learning: these techniques are used when training data that comprises 

examples of the input vectors along with their corresponding targets are available. This 

is called classification when the target is categorical (e.g. fault classification). If the 

desired output consists of one or more continuous variables, then the task is called 

regression.  

- Unsupervised learning: these techniques are used for knowledge discovery when the 

data doesn’t have label. Approaches to unsupervised learning include clustering when 

the goal is to discover groups of similar examples within the data, density estimation 
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to determine the distribution of data within the input space, dimensionality reduction 

for feature extraction and data visualization. A study by Thomas et al. [5] shows some 

of the applications of these techniques in chemical processes. 

- Semi-supervised learning (SSL): these techniques are used when a part of training data 

doesn’t have label. They are useful when unlabeled data contains a lot of information 

or cost of the labeling is expensive or time consuming. 

- Reinforcement learning: this technique is concerned with the problem of finding best 

policy (a sequence of actions that maximize the total reward) by a process of trial and 

error. Here the output of the system is a sequence of actions that are unknown for the 

learner, in contrast to supervised learning where the outputs are known. 

1.1 Process Data Analytics Using Machine Learning Techniques 

During the past decades, machine learning and data mining techniques have been 

applied in process industry for different types of data analytics including descriptive analytics 

(e.g. process monitoring, data visualization, outlier detection, etc. ), diagnostic analytics (e.g. 

process fault diagnosis), predictive analytics (e.g. fault classification, soft sensor modeling, 

and key performance index prediction), and perspective analytics (e.g. control and decision 

problems). For example, Figure 1 shows how data-driven modeling methods such as principal 

component analysis (PCA) and projection to latent structures (PLS) can be used for 

abnormality detection in the process.   

A framework for process data analytics that includes all the necessary steps to build 

an effective data-driven model is shown in Figure 3. These include data collection, data 

preparation and preprocessing, and choosing an appropriate machine learning technique. In 

the first step, data that could be historical and online data are collected from different 
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resources. In data preparation and data pre-processing step, most appropriate data samples 

and variables are selected for modeling and different pre-processing techniques including data 

normalization, removing outliers, and missing value estimation are carried out to improve the 

quality of the data. In the next step, a machine learning algorithm is selected for data-driven 

modeling based on the characteristics of the process data and the modeling task. These two 

steps are highly related to each other for the modeling as the performance of the model is 

dependent on selected features and the quality of the data. Note that although there are some 

feature selection and extraction techniques, they all carried out separately and are not 

embedded in the step of model training. 

A list of supervised and unsupervised machine learning techniques is provided in the 

framework that can be used for different applications. Applications of unsupervised learning 

algorithms in process industries include process monitoring, data visualization, outlier 

detection, and dimensionality reduction. Applications of supervised learning algorithms 

include process monitoring, fault classification, soft sensor, and quality prediction. A very 

comprehensive review on machine learning techniques and their applications in process 

industry was provided by Ge et al. [6]. Semi-supervised learning that is a combination of 

supervised and unsupervised learning can be used when appropriate.  

The ability of conventional machine learning techniques to process raw data is limited. 

They usually need careful engineering and considerable domain expertise to design a featu re 

extractor that transformed the raw data into a suitable internal representation for model 

construction. This process becomes more complicated with considering the characteristics of 

the data mentioned above. To overcome these challenges, deep learning techniques have been 

developed. 
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Deep learning is a class of machine learning techniques that has been developed based 

on the representation learning that allows a machine to be fed with raw data and to 

automatically discover the representations needed for detection or classification [7]. It has 

gained more attention recently because of the availability of more powerful computers, larger 

datasets and techniques to train deeper neural networks. In spite of the conventional machine 

learning methods that use hand-designed features for training the model, deep learning-based 

methods use a representation learning algorithm to extract the features automatically from the 

data that result in much better performance. 

 

 

Figure 3.  A framework for process data analytics using machine learning techniques.  

1.2 Motivations and Objectives 

The goal of this research is two-fold. Firstly, we conduct a review on the recent 

applications of different deep learning techniques in manufacturing systems. We focus on 



6 
 

 

recurrent neural networks (RNNs) as they are more appropriate for modeling because of the 

characteristics of process data generated in the chemical plants. These types of neural 

networks are very powerful dynamic systems for sequential data and time series modeling. 

Secondly, we introduce an attention-based RNN for multi-step-ahead prediction that can have 

many applications in chemical plants such as model predictive control system, fault diagnosis 

system, process performance prediction, etc. This model consists of an RNN that encodes a 

sequence of input time series data into a new representation (called context vector) and 

another RNN that decodes the representation into output target sequence. An attention model 

integrated to the encoder-decoder RNN model allows the network to focus on parts of the 

input sequence that are relevant to predicting the target sequence. The attention model is 

jointly trained with all other components of the model. By having a deep architecture, the 

model can learn a very complex dynamic system. In order to show the effectiveness of the 

proposed approach, an application on process performance prediction is presented. A 

comparative study is performed to show the superior performance of the proposed approach 

compared to conventional machine learning techniques such as support vector regression 

(SVR). 

1.3 Thesis Outline 

In the next chapter, we give a brief introduction about deep learning techniques with 

more focus on recurrent neural networks. We also review some applications of most common 

deep learning methods in manufacturing processes. In chapter three, we propose an attention-

based recurrent neural networks model for multi-step-ahead prediction that has many potential 

applications in chemical industry. The model consists of an encoder RNN, attention model, 

and a decoder RNN that learns a complex mapping between input and output sequences. The 
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temporal attention mechanism allows the network to select relevant encoder hidden states 

across all time steps for predicting the target sequence. To demonstrate the effectiveness of 

the modeling approach, a comparative study on the problem of catalyst activity prediction is 

illustrated. 
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CHAPTER 2 DEEP LEARNING: FOCOUS ON RECURRENT NEURAL  

NETWORKS 

Deep learning is a class of machine learning techniques that has gained much attention 

in recent years. In spite of conventional machine learning techniques that require careful 

engineering and considerable domain expertise to design a feature extractor, deep learning 

techniques use representation learning methods to extract the relevant features from the raw 

data and discover the representations needed for model building [7]. In this way, the machine 

learning algorithm learns not only the mapping from the representation to output but also the 

representation itself that result in much better performance [8]. Figure 4 shows that how 

classic machine learning and deep learning that uses representation learning work. Deep 

learning methods are representation learning methods with multiple levels of representation 

obtained by transforming the less abstract features into a more abstract representation.   

 

 

Figure 4.  Relation between classic machine learning and representation learning. Shaded boxes 

show the components that can learn from data. 
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A deep learning model consists of multiple layers of simple modules that many of which 

perform a nonlinear mapping. For example, deep feedforward neural network models (also called 

MLPs) with multiple layers are the most common deep learning models used for many 

applications. This type of models has several layers including the first layer (also called input 

layer), hidden layers, and output layer shown in Figure 5. Each hidden layer consists of a set of 

computational units that are called neurons. Each neuron computes the weighted sum of its inputs 

from the previous layer and pass it to the next layer after applying a nonlinear function.  

 

Figure 5. Feedforward neural network 

 

Deep feedforward neural networks have more power in function approximation and have 

higher generalization capacity than the shallow ones (networks with one hidden layer). They can 

learn a very high nonlinear function with fewer number of parameters and samples to achieve a 

desired approximation. Mhaskar et al. [9] show that deep networks can approximate the class of 

compositional functions (e.g. 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑑) = ℎ1 (ℎ2 ⋯ (ℎ𝑗(ℎ𝑖1(𝑥1, 𝑥2), ℎ𝑖2(𝑥3, 𝑥4) ), ⋯ ))) as 

well as shallow networks but with exponentially lower number of training parameters and sample 

complexity. A simple example from this study (see Figure 6) shows that MLPs can learn a very 
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high nonlinear function with much fewer numbers of neurons and parameters. In other study, Liang 

and Sirkant [10] show that the number of neurons needed by a shallow network to approximate a 

large class of pricewise smooth functions is exponentially larger than the corresponding number 

of neurons needed by a deep network for a given degree of function approximation. They show 

that a multilayer neural network that uses Θ (log(1
ε⁄ )) layers needs 𝒪 (poly log(1

ε⁄ )) neurons, 

while Ω (𝑝𝑜𝑙𝑦(1
𝜀⁄ )) neurons are required by neural networks with 𝜊 (𝑙𝑜𝑔(1

𝜀⁄ )) layers for 

ε-approximation of functions with enough piecewise smoothness. 

 

Figure 6. MLPs with different number of layers for function approximation (adopted from [9]) 

 

Convolutional Neural Networks (CNNs) are another type of deep feedforward network 

that have gained many applications in different domains especially in computer vision. This 

type of networks is designed to process data in the array form such as signals (1D arrays), 

images or audio spectrograms (2D arrays), and videos (3D arrays). They use stacked of 
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convolution and pooling layers to build high level features from low-level features followed 

by fully connected layers. They have received many successful applications in image 

processing, Natural Language Processing (NLP), speech recognition,  and drug discovery. 

Although CNNs have many applications in manufacturing industry, we don’t provide the 

details of this method as the main focus of this thesis is on Recurrent Neural Networks 

(RNNs). In the next section, we discuss RNNs in detail and review some of its application in 

manufacturing industry. 

 2.1 Recurrent Neural Networks (RNNs) 

RNNs are a class of artificial neural network models for processing time series data or 

data that are generated sequentially. Inspired from cyclical connectivity of neurons in the 

brain, they could have different architecture including recurrent connections in hidden units  

or recurrent connections from output to the hidden units. For example, Figure 7(a) shows an 

RNN with one hidden layer with connections between units in the hidden layer. This model 

is parametrized with three matrices: 

- Weight matrix W for connections between input and the hidden layer with bias vector 

b0. 

- Weight matrix R for recurrent connections in the hidden units. 

- Weight matrix V for hidden to output connections with bias vector b1. 

These parameters are shared across the time as shown in Figure 7(b) for four-time steps. At 

time step t, the hidden units receive the sum of weighted input 𝒙𝒕 and the weighted hidden 

state 𝒉𝒕−𝟏, and then pass it to the output layer after a nonlinear mapping 𝒇.  Therefore, an 

RNN model can be described as a nonlinear dynamical system as follows: 

𝒉𝒕 = 𝒇(𝒉𝒕−𝟏, 𝒙𝒕, 𝜽)         (2.1) 
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𝒚̂𝒕 = 𝒈(𝒉𝒕, 𝜽)          (2.2) 

where 𝜽 are the parameters that need to be learned through the training process; 𝒇 is a 

nonlinear function (e.g. hyperbolic tangent activation function); 𝒈 is a linear function for 

regression problems or a sigmoid function following by a SoftMax operation for classification 

problems. Note that we only show one output in the figure. However, the formulation is 

general, and the output can be a vector. 

 

 

Figure 7. Recurrent Neural Network: (a) connections in hidden layer, and (b) equivalent unfolded 

network through the time for four-time steps. 
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The parameters 𝜽 are obtained through optimizing an objective function. Different loss 

functions are used for different applications. For example, the mean squared error (MSE) and mean 

absolute error (MAE) objective functions are usually used for regression problems. 

One solution for training the RNN model is to unroll the recurrent model to its equivalent 

unrolled graph and the using any gradient-based optimization approach to find optimal values of 

parameters. However, there are some difficulties such as vanishing and the exploding gradient 

problems [11,12]   with computing gradient in the backpropagation through time (BPTT) algorithm 

that is very similar to the generalized back-propagation (BP) algorithm. Hopefully, there are some 

approaches that reduce these difficulties and allow the network to learn long-term dependencies. 

We discuss some of them in the following. 

 2.2.1 Gated Recurrent Neural Networks 

Gated RNNs are the most effective recurrent models used in practical applications. These 

networks use special units in their architecture that allows them to create paths through the time 

that neither vanish nor explode. These units have parameters that allow the network to decide when 

to update the cell state based on the new information. We discuss two types of gated RNNs, long 

short-term memory (LSTM) network and networks based on the gated recurrent unit (GRU), in 

this section. 

 The LSTM model was proposed by Hochreiter and Schmidhuber [13] as a novel recurrent 

neural network in 1997. It has received many successful applications in speech recognition, 

language modeling and translation, image captioning, and time series forecasting. As we 

mentioned above, the LSTM networks use a special block in their hidden layers shown in Figure 

8. The simple recurrent network (SRN) unit is also depicted for showing the differences between 

computational units in two models. As we can see, the SRN unit has only a nonlinear activation 
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function with recurrent connections from the output (i.e., hidden state) of the unit to the input of 

the unit. However, the LSTM block has a cell state that its state is controlled using different 

parameters. It consists of three gates (input, forget, and output), block input, a single cell, and 

recurrent connections from output to all gates and block input. The LSTM block is formulated by 

equations 2.3-2.8 as follows: 

𝒛𝑡 = 𝑔(𝑾𝑧𝒙𝑡 + 𝑹𝑧𝒉𝑡−1 + 𝒃𝑧)        (2.3) 

𝒊𝑡 = σ(𝑾𝑖𝒙𝑡 + 𝑹𝑖𝒉𝑡−1 + 𝒃𝑖)        (2.4) 

𝐟𝑡 = σ(𝑾𝑓𝑥𝑡 + 𝑹𝑓𝒉𝑡−1 + 𝒃𝑓)        (2.5) 

𝒄𝑡 = 𝒛𝑡⨀𝒊𝑡 + 𝒄𝑡−1⨀𝐟𝑡          (2.6) 

𝒐𝑡 = σ(𝑾𝒐𝒙𝑡 + 𝑹𝒐𝒚𝑡−1 + 𝒃𝑜)        (2.7) 

𝒉𝑡 = 𝑔(𝒄𝑡) ⨀𝒐𝑡          (2.8) 

where 𝜎 is logistic sigmoid activation function; it is used as gate activation function in equations 

2.4, 2.5, and 2.7 that formulate the input gate, forget gate, and output gate respectively; hyperbolic 

tangent (𝑔(𝑥) = tanh(𝑥)) is used as block input and output activation function; equation 2.6 

shows the state of the cell at time 𝑡; operator ⊙ is used for point-wise multiplication.  
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Figure 8. (a) SRN unit, and (b) LSTM block. 

 

Gated RNNs that use gated recurrent unit (GRU) in their hidden layers are called GRU 

RNNs. The GRU unit proposed by Cho et al. [14] is another type of unit that can remember 

and forget adaptively and update its memory content using reset and update gates. A graphical 

representation of a GRU is shown in Figure 9. This unit has only two gates, reset gate 𝑟𝑡 and 

update gate 𝑧𝑡 to update its memory. The update gate is computed based on the previous 

hidden state ℎ𝑡−1 and the input 𝑥𝑡: 

𝒛𝑡 =  𝜎(𝑾𝑧𝒙𝑡 + 𝑼𝑧𝒉𝑡−1)        (2.9) 

where 𝜎 is logistic sigmoid function. The forget gate 𝒓𝑡 is computed by equation 2.10: 

𝒓𝑡 =  𝜎(𝑾𝑟𝒙𝑡 + 𝑼𝑟𝒉𝑡−1)        (2.10) 

The new content of the memory ℎ̅𝑡 is computed by equation 2.11: 

𝒉̅𝑡 =  tanh(𝑾𝑥𝑡 + 𝒓𝑡⨀𝑼𝒉𝑡−1)       (2.11) 
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where ⨀ is a point-wise multiplication. Finally, the cell state is updated based on the new content 

of the cell 𝒉̅𝑡 and cell state at time 𝑡 − 1: 

𝒉𝑡 =  𝒛𝑡𝒉̅𝑡 + (1 − 𝒛𝑡)𝒉𝑡−1        (2.12) 

All the parameters including weights and reset gate and update gate are learned through the training 

process. 

 

Figure 9. Gated recurrent unit (GRU) 

 

 There are some other strategies to reduce the difficulties of learning long-term 

dependencies such as adding skip connections through time, leaky units, and removing 

connections that allow the network to learn multiple time scales [8]. There are also other recurrent 

neural networks such as Nonlinear AutoRegressive models with exogenous (NARX) and Echo-

State Network (ESN) that we do not discuss them here. The readers are referred to [15], [16] for 

more information about these models. In the next section we review the applications of CNNs and 

RNNs in manufacturing processes. 
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2.3 Deep learning applications in manufacturing processes 

It is known that deep learning techniques have received many successful applications 

in different domains including computer vision (e.g. object recognition and detection), speech 

recognition (e.g. speech to word), natural language processing (NLP), drug discovery, etc. In 

this section, we review the applications of deep learning techniques in manufacturing 

processes. These include descriptive analytics, diagnostic analytics, and predictive analytics  

as we mentioned in the first chapter. 

One of the applications of deep learning in manufacturing processes is fault detection 

and diagnosis that is a very important problem in process systems engineering. The models 

are built based on the process historical data and then used as a classifier to classify different 

faults. Yu et al. [17]  proposed a nonlinear Gaussian belief network fault diagnosis technique 

for industrial processes. They showed that the proposed three-layer model outperforms the 

classical techniques such as kernel PCA, statistical pattern analysis (SPA), and Moving 

Window KPCA. In other study, Wu and Zhao [18]  used a deep convolutional neural network 

for fault diagnosis in chemical processes. Wang et al. [19] introduced a local feature-based 

gated recurrent unit (LFGRU) networks for machine health monitoring tasks including tool 

wear prediction, gear box fault diagnosis, and incipient fault diagnosis of rolling element 

bearings. Haidong et al. [20] proposed a deep autoencoder feature learning model for rotating 

machinery fault diagnosis. For the same task, Janssens et al. [21] proposed a CNN based 

approach for automatic bearing fault detection; the proposed model achieves better 

classification accuracy compared to  support vector machine and random forest. 

 Another application of deep learning technique is predictive analytics in 

manufacturing systems. Wang et al. [22] proposed a data-driven predictive model based on 
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deep belief network for material removal rate prediction during chemical mechanical 

polishing. Wu et al. [23] introduced an approach based on long short-term memory recurrent 

neural network for remaining useful life estimation of engineered systems.  

Deep learning techniques are also used for product quality control and surface 

inspections. For example, Weimer et al. [24] introduce a CNN based approach for detecting 

defects on the surface. For the product quality purpose, Wang et al. [25] use a CNN for defect 

detection on the product surface. In other study, Ren et al. [26] proposed a generic approach 

based on the CNN for automated surface inspection. 

Attention-based neural networks is another type of deep networks that recently 

received many successful applications in image processing [27], machine translation [28], etc. 

However, their applications for time series modeling has not been investigated. In the next 

chapter, we propose an attention-based RNN for multi-step-ahead prediction.   
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CHAPTER 3 ATTENTION-BASED RNN FOR MULTI-STEP-AHEAD PREDICTION 

Building a data-driven model for Multi-step-ahead (MS) prediction of a dynamic 

system is a challenging problem as the output target need to be predicted many time-steps 

into future without having the measurements in the horizon of interest. Most of models that 

proposed for this task use a single-step-ahead (SS) predictor recursively for MS prediction. 

Using a SS predictor for MS prediction usually leads to a poor prediction accuracy as a small 

prediction error at the beginning of the horizon is accumulated and propagated into future.  

In this chapter, motivated by Cho et al. [14] and Bahdanau et al. [28] works, we 

propose an attention-based recurrent neural network for multi-step-ahead prediction that can 

have applications in model predictive controllers, fault diagnosis systems, process 

performance prediction, etc. This model consists of one RNN encoder that encodes a sequence 

of input time series into a new representation (called context vector) and one RNN decoder 

that decodes the representation into output target sequence. The attention model integrated to 

encoder-decoder RNN model allows the network to focus on parts of the input sequence that 

are relevant to predicting the target sequence. Because of having a deep architecture, the 

model can learn a very complex dynamics system and it is robust to noise.  First, we give the 

problem statement and the explain the methodology in detail. 

3.1 Problem Statement 

For an MS prediction problem, an RNN-based multi-step-ahead predictive model is to 

be built to predict the target variable, 𝑦, for 𝑇′ steps into future, based on the last 𝑇 

observations of the inputs (also called driving series or exogenous inputs) and output 

observations. The model can be described by equation (3.1): 

𝒀 = 𝐹(𝑿)           (3.1) 
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Where 𝒀 = (𝑦𝑇+1, 𝑦𝑇+2, ⋯ , 𝑦𝑇+𝑇′) ∈ ℝ𝑇′
is a vector represents a sequence of target variable 

𝑦 ∈ ℝ for the future 𝑇′ steps, and 𝑿 = (𝒙1,  𝒙2, ⋯ , 𝒙𝑞 , 𝒚)⏉ = (𝒙1, 𝒙2, ⋯ , 𝒙𝑇) ∈ ℝ(𝑞+1)×𝑇 is a 

window (i.e., lookback window) contains past 𝑇 observations of q exogenous inputs and one 

desired output; 𝒙𝑘 = (𝑥1
𝑘 , 𝑥2

𝑘 , ⋯ , 𝑥𝑇
𝑘) ∈ ℝ𝑇 and 𝒚 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑇) ∈ ℝ𝑇 indicate a driving 

series and a target series respectively. We employ 𝒙𝑗 = (𝑥𝑗
1, 𝑥𝑗

2, ⋯ ,  𝑥𝑗
𝑞 ,  𝑦𝑗) ∈ 𝑅𝑞+1 to denote 

a vector of q exogenous inputs and one desired output y at time step j (1 ≤ 𝑗 ≤ 𝑇).  The model 

uses the last T observations of the inputs and the desired output to predict the target output y 

for next 𝑇′ steps. 

3.2 Attention-Based Encoder-Decoder RNN Model 

 The architecture of the model is shown in Figure 10. The model consists of an RNN that 

encodes the input sequence into a new representation (called context vector) and another RNN 

that decodes the representation into an output target sequence. An attention model integrated 

to the encoder-decoder RNN model allows the network to focus on parts of the input sequence 

that are relevant to predicting the target sequence. The attention model is jointly trained with 

all other components of the model. Each component of the model is described below. 

3.2.1 Encoder RNN 

The encoder is an RNN that reads input 𝒙𝑗 at time step j until it reaches to the end of 

the sequence. At each time step t, the hidden state of the encoder is updated using the equation 

below: 

𝒉𝑡 = 𝑓(𝒉𝑡−1, 𝒙𝑡)        (3.2) 

where 𝑓 is a nonlinear activation function that its parameters are shared across the time; it can 

be a simple logistic sigmoid function, LSTM, or GRU explained in the previous chapter. In 
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this study, we use the LSTM network because of its superior performance in accurately 

modeling both short- and long-term dependencies in time series data.  Hidden state 𝒉𝑡 shows 

the current state of the hidden layer that is a function of the previous hidden state 𝒉𝑡−1 and 

input 𝒙𝑡. For example, if 𝑡 = 𝑗, we have 𝒉𝑗 = 𝑓(𝒉𝑗−1, 𝒙𝑗) as shown in Figure 10. Note that 

hidden state 𝒉𝑡 is a vector that its size is equal to the size of the hidden layer.  

At each time step that 𝒉𝑡 is updated, the hidden state contains a summary of the 

previous time steps. When it reaches to end of the input sequence  𝑋, the final hidden state 𝒉𝑇 

is a summary of the whole sequence. The final hidden state 𝒉𝑇 that is also called context 

vector that can be used in two ways in the decoder RNN as we discussed in the previous 

section; it can be used as the initial state of the decoder or it can be provided as an input to 

the hidden units of the decoder at each time step. 

 

Figure 10. Attention-based RNN model for MS prediction. 
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One of the drawbacks of this encoding strategy is that some of the information are lost 

during the encoding process and only the last hidden state is used in the decoder RNN.  An 

attention mechanism introduced by Bahdanau et al. [28] to address this issue. Here we discuss 

the RNN decoder and then the attention model is explained. 

3.2.2 Decoder RNN 

  The decoder RNN is another RNN that generate the target sequence 

(𝑦̂𝑇+1, 𝑦̂𝑇+2, ⋯ , 𝑦̂𝑇+𝑇′) sequentially as shown in Figure 10. The hidden state of the decoder is 

updated as follows: 

𝒔𝑖 = 𝑔(𝒔𝑖−1, 𝑦̂𝑖−1, 𝒄𝑖)        (3.3) 

where 𝑔 is a nonlinear activation function (e.g. LSTM, or GRU) that its parameters are shared 

across the time like function 𝑓. The hidden state of the decoder is updated based on the current 

state of context vector 𝒄𝑖 that comes from the attention model, previous hidden state 𝒔𝑖−1, and 

estimated target variable 𝑦̂𝑖−1 at the last time step 𝑖 − 1. The target variable is estimated using 

equation (3.4) at each time step: 

 𝑦̂𝑖 = 𝑜(𝒔𝑖)         (3.4) 

where 𝑜 is the linear activation function (𝑜(𝑥) = 𝑥). At each time step 𝑖 the target is estimated 

based on the current hidden state 𝒔𝑖, previous output 𝑦̂𝑇+𝑖−1, and current context vector 𝒄𝑖. 

We explain how attention model is used to generate 𝒄𝑖 in the next section. 

3.2.3 Temporal Attention Model 

  As we mentioned before, the bottleneck of improving the performance of an RNN 

sequence to sequence model is using the fixed-length vector 𝒄. That is, it uses the fixed-length 
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vector 𝒄 that is set to the last hidden state of the encoder after processing the input sequence. 

To address this issue, the attention model derives a context vector 𝒄𝑖 at each time step i in the 

decoding phase to capture relevant input information for predicting 𝑦𝑖. As shown in Fig. 10, 

the attention model receives encoder hidden states (𝒉1, 𝒉2, ⋯ , 𝒉𝑇) and the decoder’s hidden state 

𝒔𝑖−1 to calculate the context vector 𝒄𝑖 at time step 𝑖. The context vector 𝒄𝑖 is computed as 

follows: 

𝒄𝑖 = ∑ 𝛼𝑖𝑗𝒉𝑗
𝑇
𝑗=1           (3.5) 

where 𝛼𝑖𝑗 is the weight of hidden state 𝒉𝑗 at time step 𝑖 during the decoding process. It actually 

shows the importance of hidden state 𝒉𝑗 respect to the previous hidden state 𝒔𝑖−1 in deciding 

the next state 𝒔𝑖 and predicting 𝑦𝑇+𝑖. It is computed by equation (3.6).  

𝛼𝑖𝑗 =
𝑒𝑥𝑝(𝑒𝑖𝑗)

∑ 𝑒𝑥𝑝(𝑒𝑖𝑘)
𝑇

𝑘=1

         (3.6)  

where 𝑒𝑖𝑗 is computed by the alignment model 𝑒𝑖𝑗 = 𝑎𝑙𝑖𝑔𝑛(𝒔𝑖−1, 𝒉𝑗). This model is 

parametrized as a feedforward neural network that is trained jointly with other components of 

the model. 

At each time step 𝑖, the scores 𝑒𝑖𝑗s that show the importance of the hidden state 𝑗 in 

predicting the target 𝑦𝑇+𝑖 are computed using the alignment model and then normalized using 

the SoftMax function (see equation (3.6)). 

3.2.4 Computational procedure  

The following steps are executed at each time step 𝑖 during the decoding process after 

encoding the input sequence to a set of internal states (𝒉1, 𝒉2, ⋯ , 𝒉𝑇): 
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Step1. The alignment model that is a feedforward NN computes the scores 𝑒𝑖𝑗 based on the 

hidden state of the decoder (𝒔𝑖−1), and hidden states (𝒉1, 𝒉2, ⋯ , 𝒉𝑇). For example, at time 𝑖 =

1, the scores (𝑒11, 𝑒12, ⋯ , 𝑒1𝑇) are evaluated based on the encoder’s hidden states and the 

initial hidden state 𝒔0 of the decoder.  

Step2. The scores are normalized using Eq. (3.6) to give the attention weights 𝛼𝑖𝑗. For 

example, we have attention weights vector 𝛼 = (𝛼11, 𝛼12, ⋯ , 𝛼1𝑇) at the first-time step that its 

elements show the importance of hidden states 𝒉1, 𝒉2, ⋯ , 𝒉𝑇 in predicting the 𝑦1 respectively. 

Step3. Context vector 𝒄𝑖 is calculated using equation (3.5). Then, it is used for predicting the 

target at time step 𝑖. 

Step 4. The context vector, 𝒄𝑖, is concatenated with the output from the previous time step.  

Step 5. The concatenated vector (𝒄𝑖, 𝑦̂𝑖−1) is used as the input to the decoder to predict the output 

at time step 𝑖. Note that 𝑦0 is used as the start point at the first state, as there is no state before that. 

The decoder hidden state is also updated based on equation (3.3). 

 These five steps are executed at each time step sequentially until the end of the target sequence 

to be reached. For example, the decoder hidden state 𝒔1 is used in the attention model to compute 

new context vector 𝒄2 based on the new set of scores and attention weights. The context vector 

𝒄2 and predicted output 𝑦̂1 are concatenated and used as input to the decoder to predict 𝑦̂2. This 

process is repeated until the end of the target sequence. 

 The application of the model is not limited to MS prediction of single output. It can be used 

for MS prediction of the system’s performance with multiple outputs. In this case, the design of 

the predictor model is same as that of the proposed model, except that the decoder RNN predicts 

multiple outputs. 
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3.3 Loss function and model training 

Mean Absolute Error (MAE) is used as a loss function in this study. Since the 

parameters of the model are updated using a mini-batch of training samples, the objective 

function is defined below: 

  𝐽(𝜃) =
1

𝑚
∑ (𝑀𝐴𝐸)𝑘

𝑚
𝑘=1         (3.7) 

where m is the batch size and 𝜃 are the model’s parameters; 𝑀𝐴𝐸 is the mean absolute error 

between the predicted sequence and the target sequence: 

𝑀𝐴𝐸 =
1

𝑇′
∑ |𝑦𝑇+𝑖 − 𝑦̂𝑇+𝑖|

𝑇′

𝑖=1         (3.8) 

where y and 𝑦̂ are the actual (ground truth) and estimated target respectively. 

Many optimization algorithms have been proposed for training deep neural network 

models. All these methods are classified as gradient-based optimization approaches as they use the 

gradient of the loss function to update the model’s parameters at each step. For example, the well-

known stochastic gradient descent (SGD) optimization approach used the following steps to find 

the optimal value of the model’s parameters: 

Step 1. A batch of training samples (x, y) are drawn randomly from the dataset. The stochastic term 

refers to random selection of the samples. 

Step 2. The network is run on input x to give predictions 𝑦̂ 

Step 3. The loss of the network on the batch is computed. This step is also called the forward pass) 

Step 4. The gradient of the loss function respect to model’s parameters is computed using 

backpropagation algorithm (backward pass) 
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Step 5. The model’s parameters are updated using equation below: 

𝑊𝑖 = 𝑊𝑖−1 − 𝜂∇𝐹(𝑊)        (3.9)  

where 𝜂 is the learning rate that should be not be too small or too large. 

There are several variants of SGD (e.g. SGD with momentum, Adagrad, RMSProb, Adam,  

etc.) that differ in updating the model’s parameter (weights and biases). These optimizers use a 

concept called momentum that controls the convergence speed of the algorithm and local minima. 

In this study, we use Adam optimizer. 

The detailed procedure of network optimization is presented in Algorithm 1. The 

model is trained using Adam optimizer Kingma and Ba (2015) that is a mini-batch stochastic 

gradient descent optimization algorithm. It uses an adaptive approach to compute the learning 

rates from the estimates of the first and second moments of the gradients (𝑚𝑡, and 𝑣𝑡 

respectively). Hyper-parameters 𝛽1, 𝛽2 ∈ [0, 1) control the exponential decay rates of these 

moments. Hyper-parameter 𝛼 is the step size that is set to 0.001. 

Two training procedure, non-teacher forcing (NTF) and teacher forcing (TF), can be 

used to train the model. In NTF procedure, at each time step of decoding, the decoder RNN 

uses the previous output prediction 𝑦̂𝑇+𝑖−1 to generate the next output prediction 𝑦̂𝑇+𝑖 during the 

train time. However, in TF procedure, the actual output 𝑦𝑇+𝑖−1 is fed to the decoder to generate 

the next output prediction 𝑦̂𝑇+𝑖 during the train time. Since the actual output is not available at the 

test time, the predicted output value is fed back to the network. 
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Algorithm 1: Model training procedure: the model’s parameters are updated until they 

converge. 𝑔𝑡
2 indicates the elementwise square 𝑔𝑡 ⊙ 𝑔𝑡. All operations on vectors are element-

wise.  𝛽1
𝑡and 𝛽2

𝑡 are 𝛽1and 𝛽2 to the power t. Good default settings for the tested machine learning 

problems are 𝛼 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜀 = 10−8.   

Randomly initialize model’s parameters 𝜃 

for number of training iterations do 

• 𝑡 ← 𝑡 + 1 

• Sample minibatch of m examples {(𝐗𝑘 , 𝐲𝑘)}𝑘=1
𝑚  

• Update 𝜃 at iteration t: 

(1) 𝑔𝑡 ← 𝛻𝜃(𝐽(𝜃𝑡−1)) 

(2) 𝑚𝑡 ← 𝛽1. 𝑚𝑡−1 + (1 − 𝛽1). 𝑔𝑡 (Update biased first moment estimate) 

(3) 𝑣𝑡 ← 𝛽2. 𝑣𝑡−1 + (1 − 𝛽2). 𝑔𝑡
2 (Update biased second raw moment estimate) 

(4) 𝑚̂𝑡 ←
𝑚𝑡

(1−𝛽1
𝑡)

 (Compute bias-corrected first moment estimate) 

(5) 𝑣𝑡 ←
𝑣𝑡

(1−𝛽2
𝑡)

 (Compute bias-corrected second raw moment estimate) 

(6)  𝜃𝑡 ← 𝜃𝑡−1 −
𝛼.𝑚̂𝑡

(√𝑣̂𝑡+𝜀)
 (Update parameters) 

 end for 

 

 

3.4 Summary 

In this chapter, we proposed attention-based RNN for multi-step-ahead (MS) 

prediction. The model uses an attention mechanism to focus on parts of the inputs that most 

relevant for predicting the output at each time step. In the next chapter, we will discuss the 

application of the proposed method for the MS prediction of catalyst activation in liquid phase 

methanol synthesis process. We will discuss the process, dataset in detail. We will also 

conduct a comparative analysis with other methods for MS prediction. 
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CHAPTER 4 CASE STUDY: CATALYST ACTIVITY PREDICTION 

 In this chapter, an application of the proposed methodology for MS prediction of catalyst 

activity in the liquid phase methanol process is presented. First, the whole process including main 

process units, flow streams, and measurements is explained briefly. Second, the dataset that was 

obtained through different experiments on process parameters is discussed. Then, the results of the 

proposed model for MS prediction of the catalyst activity is discussed. Finally, we have a 

comparative analysis on the predictive performance of the proposed approach and with Support 

Vector Regression (SVR). 

4.1 Liquid Phase Methanol Process 

The simplified process flow diagram (PFD) of the liquid phase methanol synthesis process 

is shown in Figure 12. The process information and data were obtained from [30]. The process 

consists of five main sections: 

- The feed gas purification unit that includes feed gas supply tie-ins (streams 10, 20, and 30) 

and a carbonyl guard bed. The stream 20 (H2 Gas) is used to adjust the H2/CO ratio. 

- Compression section that includes the recycle gas compressor (C-1) and associated 

systems. 

- The reactor and catalyst reduction unit that includes a slurry reactor and associated 

equipment for catalyst preparation and handling.  

- The distillation unit that comprises of two distillation columns to reach the refined-grade 

methanol. 

- The storage and miscellaneous section that includes storage tanks with other components. 
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Figure 11. Simplified process flow diagram of the liquid phase methanol process. 

 

Unlike conventional gas-phase reactors that use fixed beds of catalyst pellets, the liquid 

phase methanol reactor is a slurry reactor with powder-size catalyst particles suspended in mineral 

oil. The syngas (reactants) is entered the reactor through a gas sparger and then bubbles up through 

the slurry where the reactants (CO and H2) dissolve in the oil and diffuse to the catalyst surface. 

Three highly exothermic reactions occur on the catalyst surface: 

  𝐶𝑂 + 2𝐻2 → 𝐶𝐻3𝑂𝐻         (4.1) 
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  𝐶𝑂2 + 3𝐻2 → 𝐶𝐻3𝑂𝐻 + 𝐻2𝑂       (4.2) 

  𝐶𝑂 + 𝐻2𝑂 → 𝐶𝑂2 + 𝐻2        (4.3) 

An internal heat exchanger is designed in the reactor to remove the heat of reaction and 

control the reactor temperature that is very important to achieve optimum catalyst life and reaction 

rate. Note that excessive temperatures reduce the catalyst life seriously. The recovered head is used 

for steam generation. A simple schematic of the slurry reactor is shown in Figure 12.  

The product gas leaving from top of the reactor (Stream 120) is cooled in the feed/product 

heat exchanger, and any condensed oil is collected in the high-pressure oil separator and returned 

to the reactor. The product gas is further cooled to condense the methanol product so it can be 

separated in the methanol separator. Part of the unreacted syngas is recycled to the reactor through 

stream 149 and the rest is sent to boiler. 

The condensed methanol (Stream 204) is then sent to the distillation unit for removal of 

higher alcohols, water, and other impurities. The recovered refined grade methanol from this unit 

is sent to the storage tanks. 

 

 

Figure 12.  A simple schematic of LPMEOH slurry reactor. 
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4.3 Data Acquisition 

The process parameters (temperature, pressure, flowrate, etc.) are measured using the 

control and instrumentation systems located in the plant. The real-time plant data are accessible 

by a distributed control system (DCS) that is used for automatic control, monitoring, etc. In order 

to calculate some of the key parameters of the process, gas chromatographs were used to analyze 

the syngas feed streams, the streams entering and exiting the reactor, purge streams leaving the 

reactor loop and distillation columns, and also the methanol streams exiting the distillation unit. 

To study the catalyst activation level, seventeen key process parameters are considered in the 

commercial-scale demonstration of the liquid phase methanol process. Some of the parameters are 

measured directly from the sensor located in the plant (e.g. reactor temperature and pressure) while 

some of them are calculated indirectly from directly measured variables.  

4.4 Dataset 

According to Heydorn et al. (2003), in order to study catalyst performance in process 

operation, four catalyst campaigns were made. In each campaign, a number of experiments were 

conducted, and real-time plant data of 17 process parameters were collected (see Table 1). In the 

report by Heydorn et al. (2003), a daily average of each parameter for the plant operation of 69 

months is included. The definition of each parameter is provided below. The details of each 

campaign is given in Appendix A. 

1. Reactor temperature (℃ ): this parameter shows the reactor temperature during the 

operation. 

2. Reactor pressure (𝑝𝑠𝑖𝑔 ): this parameter shows the reactor pressure during the operation. 

3. Fresh Feed (KSCFH): this parameter indicates the flow rate of the fresh feed that enters 

the reactor. It is sum of the Balanced Feed Gas, H2 Feed Gas, and CO Feed Gas flow rates. 
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4. Recycle Gas (KSCFH): this parameter shows the flow rate of the recycle stream. 

5. Reactor Feed H2/CO ratio: this parameter specifies the ratio of the H2 over CO at the inlet 

(stream 109) of the reactor. It is adjusted using the Balanced Feed Gas, H2 Feed Gas, and 

CO Feed Gas streams. 

6. Purge Gas (KSCFH): this parameter shows the flow rate of the purge gas. 

7. Inlet Superficial Velocity (ft/s): The ratio of the actual cubic feet of gas at the reactor inlet 

(calculated at the reactor temperature and pressure) to the reactor cross-sectional area 

(excluding the area contribution by the internal heat exchanger): 

𝐼𝑛𝑙𝑒𝑡 𝑆𝑢𝑝𝑒𝑟𝑓𝑖𝑐𝑖𝑎𝑙 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝐹𝑒𝑒𝑑 𝐹𝑙𝑜𝑤 (𝐼𝑏𝑚𝑜𝑙𝑒/ℎ𝑟)×𝑣(

𝑓𝑡3

𝐼𝑏𝑚𝑜𝑙𝑒
)

3600(
𝑠

ℎ𝑟
)×𝐴(𝑓𝑡2)

  (4.4) 

where 𝑣 is the molar volume of the reactor feed that is calculated at the reactor temperature 

and pressure operating condition. 

8. Space Velocity (l/hr-kg): this parameter is defined as the ratio of the volumetric flow rate 

of the reactants to the catalyst weight.  

9. Slurry Concentration (wt%): this parameter is the percentage of weight of slurry (solid plus 

liquid) which is catalyst. 

10. Gassed Slurry Height (ft): this parameter shows the height of gassed slurry in the reactor. 

11. Gas Holdup: The percentage of reactor volume up to the Gassed Slurry Height which is 

gas. 

12. Catalyst Inventory (Ib): this parameter indicates the amount of catalyst in the reactor. 

13. CO Conversion to Methanol (%): This parameter shows the percentage of CO consumed 

across the reactor.  
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14. Overall Conversion (%): Percentage of energy (on a lower heating value (LHV) basis) in 

the reactor feed converted to methanol. It is calculated using equation below: 

𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑂 − 𝑇 − 𝑀 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =
𝐿𝐻𝑉 𝑜𝑓 𝑟𝑎𝑤 𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙

𝐻𝑉 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑜𝑟 𝑓𝑒𝑒𝑑
× 100   (4.5) 

15. Syngas Utilization (SCF/lb Methanol): this parameter is defined as the number of standard 

cubic feet of Balanced Feed Gas plus CO Feed Gas to the reactor required to produce one 

pound of raw methanol 

16. Raw Methanol Production (TPD): this parameter is sum of the refined grade methanol and 

crude grade methanol. 

  

Table 1. List of key process parameters. 

No. Parameter 

1 Reactor temperature (C) 

2 Reactor pressure (psig) 

3 Fresh feed flow rate (KSCFH) 

4 Recycle stream flow rate (KSCFH) 

5 Ratio of H2 over CO at the reactor inlet 

6 Purge gas flow rate (KSCFH) 

7 Superficial velocity at the reactor inlet ((ft/s) 

8 Space velocity (1/hr-kg) 

9 Slurry concentration (mass fraction) 

10 Gassed slurry height (ft) 

11 Gas holdup (%) 

12 Catalyst inventory (Ib) 

13 CO conversion to methanol (%) 

14 Overall conversion (%) 

15 Syngas utilization (SCF/Ib methanol) 

16 Raw methanol production (tons/day) 

17 Catalyst activity 

 

Catalyst activity is a desired target that is to be predicted. It is defined as the ratio of the 

rate constant at any point in time to the rate constant of a freshly reduced catalyst, i.e., 

 𝜂 =
𝑘0(𝑡)

𝑘0(𝑡=0)
          (4.6) 


