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CHAPTER 1: INTRODUCTION 

In Monte Carlo simulations in the grand canonical ensemble (GCMC), the chemical 

potential, volume and temperature are fixed (𝜇𝑉𝑇 = constant). Sampling of phase space is 

achieved through a variety of trial moves, such as displacement, and molecule insertion and 

deletion. For complex molecular typologies, additional trial moves, such as rigid body rotation 

and configurational-bias regrowth[1, 2], may be included to improve the sampling of 

conformational degrees of freedom. During the course of the simulation, the conjugate 

variables N (number of molecules) and E (potential energy) fluctuate. Because GCMC allows 

for the simulation of an open system, it has been used extensively to study the adsorption of 

gases in porous materials[3-6]. When combined with histogram-reweighting methods[7, 8], 

GCMC simulations provide precise predictions of vapor-liquid equilibria for pure fluids and 

mixtures[9, 10], and have been used to determine critical micelle concentrations for model 

surfactants[11]. 

1.1 Thesis Motivation 

Perhaps the greatest challenge with GCMC simulations, however, is achieving a 

sufficient number of accepted molecular insertion/deletion moves to ensure adequate sampling 

of phase space. Therefore, significant effort has been expended to develop algorithms that 

improve the acceptance rate for molecule insertions and deletions. Biasing methods, such as 

rotational, energy and cavity-bias, were used to improve the efficiency of simulations for the 

adsorption of benzene and p-xylene in silicalite[12]. The introduction of configurational-bias 

Monte Carlo enabled the successful simulation of chain molecule adsorption in zeolites[13], 

which was followed by the coupled-decoupled[14] and reservoir methods[15, 16], which 

extended the complexity of systems that could be simulated to include molecules with branch 

points and rings. 
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These aforementioned biasing methods have greatly extended the complexity of 

systems that may be simulated with GCMC simulations, however, at high densities and low 

temperatures, the acceptance rate for molecule transfers is still unacceptably low due to the 

difficulty in finding a favorably sized cavity to insert a molecule. For example, in simulations 

of branched alkanes acceptance rates for molecule transfers at 0.7𝑇𝑐 were approximately 

0.3%[9]. Others have sought to address these issues through the use of cavity-bias[17-19], to 

identify favorable locations to attempt molecule insertions, or continuous fractional component 

Monte Carlo[20, 21], and expanded ensembles[22, 23], where molecules are gradually inserted 

while the system is allowed to relax locally to minimize steric and energetic penalties due to 

molecule insertion. 

For mixtures, a straightforward approach is to introduce a trial move where the identity 

of one molecule is changed to that of another[24]. The benefit of such a move is that steric 

overlaps are reduced significantly, leading to enhanced acceptance for the particle exchange. 

The identity exchange move has been used in many simulations of single particles in various 

ensembles, such as semi-grand[25, 26], Gibbs[24, 27, 28] and grand canonical[29-31]. The 

methodology has been extended to allow for the exchange of multiple solvent molecules with 

a polymer chain composed of solvent monomers without changing the coordinates of either 

polymer or solvent[31]. For the simulation of mixtures of colloids and solvent, it is necessary 

to swap a large colloid particle for multiple smaller solvent particles. By swapping multiple 

solvent particles, it is possible to create large enough voids such that a reasonable acceptance 

rate may be obtained for the insertion of colloid particles[29, 30]. For the exchange of a large 

particle with multiple small ones, Vink et al. used simple random insertions to determine the 

coordinates for the solvent particles. When inserting a large number of solvent particles, the 

potential for overlap increases, reducing the efficiency of the method. To address this issue, 

Kindt introduced the idea of “solvent repacking” for two-dimensional hard-disk and size 
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asymmetric three-dimensional Lennard-Jones systems, where configurational-bias was used to 

determine the positions of solvent particles in the large-small particle identity exchange[29, 

32]. While a number of publications state that an identity exchange move was used for 

molecular systems[33-35], a detailed description of the algorithm and the acceptance criteria 

have not been published to date.  

The previously described methods for identity exchange were generally applicable to 

only the special cases for which they were developed, e.g. single particle exchanges[26], a 

polymer composed of solvent monomers[31], or large hard particles or disks in a solvent of 

smaller hard particles[29, 30]. These methods are difficult to generalize to molecular systems 

of arbitrary molecular topology, and their computational performance is expected to be highly 

correlated with the type of system for which the move was originally developed. To address 

these issues, a generalized identity exchange move for simulations in the grand canonical 

ensemble, referred to as Molecular Exchange Monte Carlo (MEMC), is presented that works 

for systems of any molecular topology. Three different approaches for the insertion of the large 

molecule are presented. The result of this work has been published in Journal of Chemical 

Physics[36]. 

1.2 Thesis Organization 

A derivation of acceptance criteria and the algorithms for performing the MEMC move 

is provided in chapter 2 for each of the three approaches. The simulation methodology is 

provided in chapter 3. The utility of the three methods and their computational efficiency is 

illustrated for selected binary mixtures in the chapter 4. The key findings of the work are 

summarized in chapter 5. The detailed computational procedure and mathematical calculations 

are included in the appendix A, and additional results are provided in the appendix B.  
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CHAPTER 2: METHODS 

To describe the MEMC move in the grand canonical ensemble, it is helpful to consider 

the case of a large molecule that is exchanged with multiple smaller molecules. However, the 

methods may be applied without modification to the exchange of molecules of similar size. 

The original state is called the 𝑜𝑙𝑑 state, while the state created by the attempted exchange 

move is called the 𝑛𝑒𝑤 state. For a given configuration, with 𝑁𝐿 large and 𝑁𝑆  small molecules, 

an ‘insertion move” is an attempt to exchange one large molecule with 𝑁𝐸𝑋 small molecules 

inside a predefined exchange sub-volume 𝑉𝐸𝑋, and a “deletion move” is an attempt to exchange 

𝑁𝐸𝑋 small molecules for a large one. The exchange sub-volume is defined as an orthogonal 

box, where the length of the box in the x and y dimensions are set to the same values for 

simplicity and the z dimension is set independently. If desired, all three sub-volume box 

dimensions could be set independently. An orthogonal sub-volume is used instead of a cube or 

sphere to accommodate large molecules with different aspect ratios. Depending on the method 

used, the orientation of the exchange sub-volume z-axis may also be varied. Although not used 

in this work, it is also possible to optimize 𝑁𝐸𝑋 and 𝑉𝐸𝑋 “on the fly” during a simulation to 

maximize the acceptance rate. 

The acceptance criterion for a molecular exchange move that satisfies the detailed 

balance equation is written as 

 

 Κ(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = Κ(𝑛𝑒𝑤 → 𝑜𝑙𝑑) (1) 

 

where Κ(𝑖 → 𝑗) is the flux of probability from state i to state j. The probability flux is 

equal to the product of the probability of finding the system in state i, the probability of 

generating a move that takes state i to state j, and the probability of accepting the move: 
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 Κ(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝒩(𝑜𝑙𝑑) × 𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤) × 𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤) (2) 

 

Based on the detailed balance Eq. (1), the ratio of the probability of accepting the move 

from 𝑜𝑙𝑑 → 𝑛𝑒𝑤 to that of its reverse move 𝑛𝑒𝑤 → 𝑜𝑙𝑑 is: 

 

 
𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤)

𝑎𝑐𝑐(𝑛𝑒𝑤 → 𝑜𝑙𝑑)
=

𝒩(𝑛𝑒𝑤)

𝒩(𝑜𝑙𝑑)
 ×

𝛼(𝑛𝑒𝑤 → 𝑜𝑙𝑑)

𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤)
 (3) 

 

In the deletion move, where one large molecule is exchanged for 𝑁𝐸𝑋 small molecules, 

the ratio of the probability of being in the 𝑛𝑒𝑤 configuration to the probability of being in the 

𝑜𝑙𝑑 configuration is 

 

 
𝒩(𝑛𝑒𝑤)

𝒩(𝑜𝑙𝑑)
=

𝑒−𝛽𝑈(𝑛𝑒𝑤)𝑒𝛽[𝜇𝐿(𝑁𝐿−1)+𝜇𝑆(𝑁𝑆+𝑁𝐸𝑋)]

𝑒−𝛽𝑈(𝑜𝑙𝑑)𝑒𝛽[𝑁𝐿𝜇𝐿+𝑁𝑆𝜇𝑆]
=

𝑒𝛽[𝑁𝐸𝑋𝜇𝑆−𝜇𝐿]

𝑒𝛽[𝑈(𝑛𝑒𝑤)−𝑈(𝑜𝑙𝑑)]
 (4) 

 

where 𝛽 = 1 𝑘𝐵𝑇⁄ , 𝜇𝐿 and 𝜇𝑆 are the imposed chemical potentials of large and small 

molecules, respectively. 𝑈(𝑜𝑙𝑑) and 𝑈(𝑛𝑒𝑤) are the potential energies of the system in 

configuration 𝑜𝑙𝑑 and configuration 𝑛𝑒𝑤, respectively.  

For the insertion move, where 𝑁𝐸𝑋 small molecules are exchanged for one large 

molecule, the ratio of the probability of being in the 𝑛𝑒𝑤 configuration to the probability of 

being in the 𝑜𝑙𝑑 configuration is 

 

 
𝒩(𝑛𝑒𝑤)

𝒩(𝑜𝑙𝑑)
=

𝑒−𝛽𝑈(𝑛𝑒𝑤)𝑒𝛽[𝜇𝐿(𝑁𝐿+1)+𝜇𝑆(𝑁𝑆−𝑁𝐸𝑋)]

𝑒−𝛽𝑈(𝑜𝑙𝑑)𝑒𝛽[𝑁𝐿𝜇𝐿+𝑁𝑆𝜇𝑆]
=

𝑒𝛽[𝜇𝐿−𝑁𝐸𝑋𝜇𝑆]

𝑒𝛽[𝑈(𝑛𝑒𝑤)−𝑈(𝑜𝑙𝑑)]
 (5) 
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The probability of generating the 𝑛𝑒𝑤 state, for both insertion and deletion of the large 

molecule, is given by the product of the probability of locating the center of the exchange sub-

volume at a particular point within the simulation box, the probability of choosing 𝑁𝐸𝑋 

particular small molecules, the probability of choosing a particular large molecule, the 

probability of generating trial configurations for 𝑁𝐸𝑋 small molecules, and the probability of 

generating trial configurations for the large molecule, 

 

 

𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝑃𝑠𝑢𝑏−𝑣(𝑜𝑙𝑑 → 𝑛𝑒𝑤) × 𝑃𝑝𝑖𝑐𝑘−𝑆(𝑜𝑙𝑑 → 𝑛𝑒𝑤) × 

𝑃𝑝𝑖𝑐𝑘−𝐿(𝑜𝑙𝑑 → 𝑛𝑒𝑤) × 𝑃𝑝𝑜𝑠−𝑆(𝑜𝑙𝑑 → 𝑛𝑒𝑤) × 𝑃𝑝𝑜𝑠−𝐿(𝑜𝑙𝑑 → 𝑛𝑒𝑤) 

(6) 

 

Depending on how the center of the exchange sub-volume is located, the molecules to 

be exchanged are chosen, and how trial positions are generated, different algorithms to perform 

the MEMC move may be devised. 

2.1 ME-1 

For the large molecule insertion move, the exchange sub-volume 𝑉𝐸𝑋 with a random 

geometric center and a random orientation is defined within the simulation box. For a large 

molecule deletion move, the geometric center of 𝑉𝐸𝑋 is located at the geometric center (GC) of 

the selected large molecule and its z-axis is aligned with the backbone of the large molecule. 

See Figure 1 for more details. 
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Figure 1: Schematic of the ME-1 algorithm. Selected or inserted molecule (green), trial position 

(light red), and actual position of the molecule (solid red). Top row, represents the exchange 

of two small molecules with one large molecule (insertion). The exchange sub-volume is 

defined as the orange box. (A) Identifying small molecules within the sub-volume with a 

random geometric center and orientation. (B) Generating CBMC trials (rotation and GC 

location) for one of the small molecules and then removing it. (C) Generating CBMC trials 

(rotation and GC location) for the second small molecule and then removing it. (D) Aligning 

the backbone of the large molecule with the sub-volume and performing CBMC rotational 

trials around its backbone. Bottom row, represents the exchange of a large molecule (deletion) 

with two small molecules. (A) Aligning the sub-volume with large molecule’s backbone with 

geometric center placed at GC of the large molecule, and identifying the small molecules 

within the sub-volume. (B) Generating CBMC rotational trials around large molecule backbone 

and then removing it. (C) Generating CBMC trials (rotation and GC location) for the first small 

molecule and then inserting it into the sub-volume. (D) Generating CBMC trials (rotation and 

GC location) for the second small molecule and then inserting it into the sub-volume. 

 

The algorithm for the insertion of a large molecule after deletion of small molecule(s) 

is as follows:  

1. Define an orthogonal exchange sub-volume 𝑉𝐸𝑋, with its geometric center located 

randomly within the simulation box of volume 𝑉 (with the probability proportional to 𝑉−1 ) 

and a random orientation. Determine the total number of small molecules within the 

exchange sub-volume (𝑁𝑆,𝑉𝐸𝑋) based on their geometric center. 

2. Reject move if 𝑁𝑆,𝑉𝐸𝑋 < 𝑁𝐸𝑋, otherwise continue. 
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3. Select 𝑁𝐸𝑋 small molecules out of 𝑁𝑆,𝑉𝐸𝑋 found in the exchange sub-volume with the 

probability of 𝑁𝐸𝑋! (𝑁𝑆,𝑉𝐸𝑋 − 𝑁𝐸𝑋)! 𝑁𝑆,𝑉𝐸𝑋!⁄ . 

4. Repeat steps a and b for 𝑁𝐸𝑋 cycles (𝑖 = 1, 2, … , 𝑁𝐸𝑋) to delete the selected small 

molecules. 

a. Generate 𝑗 − 1 random trial positions for the GC of the 𝑖𝑡ℎ small molecule within the 

exchange sub-volume 𝑉𝐸𝑋. The original position of the GC of the 𝑖𝑡ℎ small molecule 

will be included as the 𝑗𝑡ℎ term. 

b. For each trial GC position 𝑝, generate 𝑘 random trial orientations around the molecule’s 

GC (except the 𝑗𝑡ℎ GC, where 𝑘 − 1 random trial orientations are generated and the 

original orientation of the molecule will be included as the 𝑘𝑡ℎ term) and calculate the 

Rosenbluth weight 𝑊𝑖,𝑜𝑙𝑑 = ∑ ∑ 𝑒𝑥𝑝(−𝛽𝑈𝑖,𝑝,𝑟)𝑘
𝑟=1

𝑗
𝑝=1 , were 𝑈𝑖,𝑝,𝑟 is the interaction 

energy of the 𝑖𝑡ℎ molecule to be removed in position 𝑝 and orientation 𝑟 with all other 

molecules, excluding those removed in the earlier cycles of the move. Finally, remove 

the molecule from the simulation box. Calculate 𝑃𝑖,𝑜𝑙𝑑 =
𝑒𝑥𝑝(−𝛽𝑈𝑖,𝑗,𝑘)

 𝑊𝑖,𝑜𝑙𝑑
 , were 𝑈𝑖,𝑗,𝑘 is the 

interaction energy of the 𝑖𝑡ℎ small molecule at its original GC position and orientation 

with all other molecules remaining in the simulation box. 𝑃𝑖,𝑜𝑙𝑑 is the probability of 

inserting the 𝑖𝑡ℎ small molecule back in its original configuration in the reverse move 

(𝑛𝑒𝑤 → 𝑜𝑙𝑑). 

5. Insert the GC of the large molecule at the geometric center of the exchange sub-volume 

𝑉𝐸𝑋 and align the backbone of the large molecule with the z-axis of the exchange sub-

volume. Generate 𝑘 random trial orientations for the large molecule around its backbone 

(two-dimensional rotation). Calculate the Rosenbluth weight 𝑊𝑛𝑒𝑤 = ∑ 𝑒𝑥𝑝(−𝛽𝑈𝑟)𝑘
𝑟=1 , 
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where 𝑈𝑟 is the interaction energy of the inserted large molecule at orientation 𝑟 with all 

other molecules in the simulation box. 

6. Select one of the generated trial configurations with the probability 𝑃𝑛𝑒𝑤 =
𝑒𝑥𝑝(−𝛽𝑈𝑟)

 𝑊𝑛𝑒𝑤
 and 

insert the large molecule. 

 

The algorithm for the deletion of a large molecule and subsequent insertion of small 

molecule(s) is as follows: 

1. Select a large molecule out of 𝑁𝐿  large molecules within the simulation box with 

probability of 1 𝑁𝐿⁄ .  

2. Define an orthogonal exchange sub-volume with its geometric center placed at the GC of 

the selected large molecule, and its z-axis aligned with the backbone of the large molecule. 

Determine the number of small molecules 𝑁𝑆,𝑉𝐸𝑋 within the exchange sub-volume. 

3. Generate 𝑘 − 1 random trial orientations around the large molecule’s backbone. The 

original orientation will be included as the 𝑘𝑡ℎ term in the Rosenbluth weight. The 

Rosenbluth weight is calculated as  𝑊𝑜𝑙𝑑 = ∑ 𝑒𝑥𝑝(−𝛽𝑈𝑟)𝑘
𝑟=1  , where 𝑈𝑟 is the interaction 

energy of the large molecule in orientation 𝑟 with all other molecules in the simulation box. 

Calculate the probability 𝑃𝑜𝑙𝑑 =
𝑒𝑥𝑝(−𝛽𝑈𝑘)

 𝑊𝑜𝑙𝑑
, where 𝑈𝑘 is the interaction energy of the large 

molecule at the original orientation with all other molecules in the simulation box. 𝑃𝑜𝑙𝑑 is 

the probability of inserting the large molecule at its original configuration in the reverse 

move (𝑛𝑒𝑤 → 𝑜𝑙𝑑). Then remove the large molecule from the simulation box. 

4. Repeat the steps a→c for 𝑁𝐸𝑋 cycles (𝑖 = 1, 2, … , 𝑁𝐸𝑋) to insert the small molecules with 

the probability of 𝑁𝐸𝑋! 𝑉𝐸𝑋
𝑁𝐸𝑋⁄ . 

a. Generate 𝑗 random trial positions for the GC of the 𝑖𝑡ℎ small molecule within 𝑉𝐸𝑋. 
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b. For each trial position 𝑝, generate 𝑘 random trial orientations around the molecule’s GC 

(three-dimensional rotation) and calculate the Rosenbluth weight 𝑊𝑖,𝑛𝑒𝑤 =

∑ ∑ 𝑒𝑥𝑝(−𝛽𝑈𝑖,𝑝,𝑟)𝑘
𝑟=1

𝑗
𝑝=1 , where 𝑈𝑖,𝑝,𝑟 is the interaction energy of the 𝑖𝑡ℎ inserted 

small molecule at position 𝑝 and orientation 𝑟 with all the other molecules, including 

those added in the earlier cycles of the move. 

c. Pick one of the generated trial configurations with probability 𝑃𝑖,𝑛𝑒𝑤 =
𝑒𝑥𝑝(−𝛽𝑈𝑖,𝑝,𝑟)

 𝑊𝑖,𝑛𝑒𝑤
 and 

insert the small molecule. 

 

Based on the two algorithms described above, for the large molecule insertion, the ratio 

of the probability of generating the move 𝑛𝑒𝑤 (𝑁𝐿 + 1, 𝑁𝑆 − 𝑁𝐸𝑋) → 𝑜𝑙𝑑 (𝑁𝐿 , 𝑁𝑆) to that of 

the reverse move is:  

 

 
𝛼(𝑛𝑒𝑤 → 𝑜𝑙𝑑)

𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤)
=

1
𝑁𝐿 + 1

1
𝑉

×

𝑁𝐸𝑋!

𝑉𝐸𝑋
𝑁𝐸𝑋

𝑁𝐸𝑋! (𝑁𝑆,𝑉𝐸𝑋 − 𝑁𝐸𝑋)!
𝑁𝑆,𝑉𝐸𝑋!

×
∏ 𝑃𝑖,𝑜𝑙𝑑

𝑁𝐸𝑋
𝑖=1

𝑃𝑛𝑒𝑤
 (7) 

 

Simplifying Eq. 7 and substituting into Eq. 3, produces the acceptance criteria for the 

large molecule insertion. 

 

 𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝑚𝑖𝑛 { 1 ,
𝑉

 𝑁𝐿 + 1
×

𝑁𝑆,𝑉𝐸𝑋!

𝑉𝐸𝑋
𝑁𝐸𝑋(𝑁𝑆,𝑉𝐸𝑋 − 𝑁𝐸𝑋)!

×
 𝑊𝑛𝑒𝑤

∏  𝑊𝑖,𝑜𝑙𝑑
𝑁𝐸𝑋

𝑖=1

× 𝑒𝛽[𝜇𝐿−𝑁𝐸𝑋𝜇𝑆] } (8) 

 

For the large molecule deletion move, the ratio of the probability of generating the 

move 𝑛𝑒𝑤 (𝑁𝐿 − 1, 𝑁𝑆 + 𝑁𝐸𝑋) → 𝑜𝑙𝑑 (𝑁𝐿 , 𝑁𝑆) to that of the reverse move is: 
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𝛼(𝑛𝑒𝑤 → 𝑜𝑙𝑑)

𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤)
=

1
𝑉
1

𝑁𝐿

×

𝑁𝐸𝑋! 𝑁𝑆,𝑉𝐸𝑋!

(𝑁𝑆,𝑉𝐸𝑋 + 𝑁𝐸𝑋)!

𝑁𝐸𝑋!

𝑉𝐸𝑋
𝑁𝐸𝑋

×
∏ 𝑃𝑖,𝑛𝑒𝑤

𝑁𝐸𝑋
𝑖=1

𝑃𝑜𝑙𝑑
 (9) 

 

Simplifying Eq. 9 and substituting into Eq. 3, produces the acceptance criteria for the 

large molecule deletion move. 

 

 𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝑚𝑖𝑛 { 1 ,
 𝑁𝐿

𝑉
×

𝑉𝐸𝑋
𝑁𝐸𝑋 × 𝑁𝑆,𝑉𝐸𝑋!

(𝑁𝑆,𝑉𝐸𝑋 + 𝑁𝐸𝑋)!
×

∏  𝑊𝑖,𝑛𝑒𝑤
𝑁𝐸𝑋
𝑖=1

 𝑊𝑜𝑙𝑑
× 𝑒𝛽[𝑁𝐸𝑋𝜇𝑆−𝜇𝐿] } (10) 

 

The energy difference between configuration 𝑛𝑒𝑤 and 𝑜𝑙𝑑, 𝑈(𝑛𝑒𝑤) − 𝑈(𝑜𝑙𝑑), does 

not appear directly in the acceptance criteria because their Boltzmann weight is already 

included in the probabilities used for selecting the position of the molecules. 

The acceptance criterion derived for ME-1 is identical to the one introduced by Vink 

and Horbach[30]. This move performs well for binary mixtures with low concentrations of 

large molecules. However, the acceptance rate of the move decreases significantly as the 

concentration of large molecules increases, and the chance of finding 𝑁𝐸𝑋 small molecules in 

the exchange sub-volume becomes very low. To address this limitation, ME-2 was developed.  

2.2 ME-2  

In ME-1, for the insertion of a large molecule, the exchange sub-volume 𝑉𝐸𝑋 is defined 

with a random orientation and position. However, as the mole fraction of small molecules 

decreases, the required number of small molecules are frequently not available within the 

exchange sub-volume. Therefore, a large fraction of the attempted ME-1 moves will be 

rejected. In the ME-2 approach, the geometric center of 𝑉𝐸𝑋 is placed on the GC of a randomly 

selected small molecule. If the small molecule is monoatomic, the orientation of 𝑉𝐸𝑋 is assigned 

randomly, otherwise its z-axis is aligned with the backbone of the small molecule. The large 
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molecule deletion is identical to ME-1. An illustration of the ME-2 algorithm is provided in 

Figure 2. 

 

 

Figure 2: Schematic of the ME-2 algorithm. Selected or inserted molecule (green), trial position 

(light red), and actual position of the molecule (solid red). Top row, represents the exchange 

of two small molecules with one large molecule (insertion). The sub-volume is defined as the 

orange box. (A) Aligning the sub-volume with a randomly selected small molecule’s backbone 

with geometric center placed at GC of the selected small molecule, and identifying the small 

molecules within the sub-volume. (B) Generating CBMC trials (rotation and GC location) for 

one of the small molecules and then removing it. (C) Generating CBMC rotational trials around 

selected small molecule and then removing it. (D) Aligning the backbone of the large molecule 

with the sub-volume and performing CBMC rotational trials around its backbone. Bottom row 

represents the exchange of one large molecule with two small molecules (deletion). (A) 

Aligning the sub-volume with large molecule’s backbone with geometric center placed at GC 

of the large molecule, and identifying the small molecules within the sub-volume. (B) 

Generating CBMC rotational trials around large molecule backbone and then removing it. (C) 

Placing the GC of the first small molecule at the geometric center of the sub-volume and 

generate the CBMC rotational trials around its backbone and then inserting it into the sub-

volume. (D) Generating CBMC trials (rotation and GC location) for the second small molecule 

and then inserting it into the sub-volume.  

 

The algorithm for the insertion of a large molecule after deletion of small molecule(s) 

is as follows: 

1. Select one molecule out of 𝑁𝑆 small molecules in the simulation box with the probability 

of 1 𝑁𝑆 ⁄ . This molecule will be the last molecule to be removed from the system. 
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2. Define 𝑉𝐸𝑋 with its geometric center placed at the GC of the small molecule selected in 

step 1. The z-axis of the exchange sub-volume is aligned with the backbone of the small 

molecule. If the small molecule is monoatomic, the orientation of 𝑉𝐸𝑋 is assigned randomly. 

Determine the number of small molecules 𝑁𝑆,𝑉𝐸𝑋 within 𝑉𝐸𝑋 (𝑁𝑆,𝑉𝐸𝑋 includes the molecule 

selected in step 1). 

3. Reject the move if 𝑁𝑆,𝑉𝐸𝑋 < 𝑁𝐸𝑋, otherwise continue.  

4. Select 𝑁𝐸𝑋 − 1 small molecules out of 𝑁𝑆,𝑉𝐸𝑋 − 1, with probability 

(𝑁𝐸𝑋 − 1)! (𝑁𝑆,𝑉𝐸𝑋 − 𝑁𝐸𝑋)! (𝑁𝑆,𝑉𝐸𝑋 − 1)!⁄ . 

5. Repeat steps a and b of the large molecule insertion move of ME-1 for NEX − 1 cycles (i =

1, 2, … , NEX − 1) to delete the selected small molecules. 

6. For the last small molecule to be deleted, generate 𝑘 − 1 random trial orientations around 

its backbone. If the small molecule is monoatomic, orientations are generated around its 

GC. The original orientation will be included as the 𝑘𝑡ℎ term in the Rosenbluth weight. The 

Rosenbluth weight is calculated from  𝑊𝑁𝐸𝑋,𝑜𝑙𝑑 = ∑ 𝑒𝑥𝑝(−𝛽𝑈𝑁𝐸𝑋,𝑟)𝑘
𝑟=1  , where 𝑈𝑁𝐸𝑋,𝑟 is 

the interaction energy of the last small molecule in orientation 𝑟 with all other molecules 

in the simulation box. Finally, remove the last small molecule from the simulation box and 

calculate 𝑃𝑁𝐸𝑋,𝑜𝑙𝑑 =
𝑒𝑥𝑝(−𝛽𝑈𝑁𝐸𝑋,𝑘)

 𝑊𝑁𝐸𝑋,𝑜𝑙𝑑
 , where 𝑈𝑁𝐸𝑋,𝑘 is the interaction energy of the last small 

molecule at its original configuration with all other molecules remaining in the simulation 

box. 𝑃𝑖,𝑜𝑙𝑑 is the probability of inserting the 𝑖𝑡ℎ small molecule back at its original 

configuration in the reverse move (𝑛𝑒𝑤 → 𝑜𝑙𝑑). 

7. Insert the large molecule according to steps 5 and 6 of ME-1. 

 

The algorithm for the deletion of a large molecule and subsequent insertion of small 

molecule(s) is as follows: 
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1. Follow steps 1-4 of the ME-1 large molecule deletion move. 

2. Insert the GC of the first small molecule at the geometric center of  𝑉𝐸𝑋 and align its 

backbone with the z-axis of the exchange sub-volume. Generate 𝑘 random trial orientations 

around its backbone. If small molecules are monoatomic, the orientation is assigned 

randomly around its GC. Calculate the Rosenbluth weight 𝑊1,𝑛𝑒𝑤 = ∑ 𝑒𝑥𝑝(−𝛽𝑈1,𝑟)𝑘
𝑟=1 , 

where 𝑈1,𝑟 is the interaction energy of the first small molecule inserted at orientation r with 

all other molecules in the simulation box. 

3. Select one of the trial orientations with the probability 𝑃1,𝑛𝑒𝑤 =
𝑒𝑥𝑝(−𝛽𝑈1,𝑟)

 𝑊1,𝑛𝑒𝑤
. 

4. Repeat steps a→c of the large molecule deletion move of ME-1 for 𝑁𝐸𝑋 − 1 cycles (𝑖 =

2, … , 𝑁𝐸𝑋) to insert the small molecules with probability (𝑁𝐸𝑋 − 1)! 𝑉𝐸𝑋
(𝑁𝐸𝑋−1)

⁄ . 

 

Based on the two algorithms described above, for the large molecule insertion move, 

the ratio of the probability of generating move 𝑛𝑒𝑤 (𝑁𝐿 + 1, 𝑁𝑆 − 𝑁𝐸𝑋) → 𝑜𝑙𝑑 (𝑁𝐿 , 𝑁𝑆) to that 

of the reverse move is: 

 

 
𝛼(𝑛𝑒𝑤 → 𝑜𝑙𝑑)

𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤)
=

1
𝑁𝐿 + 1

1
𝑁𝑆

×

(𝑁𝐸𝑋 − 1)!

𝑉𝐸𝑋
(𝑁𝐸𝑋−1)

(𝑁𝐸𝑋 − 1)! (𝑁𝑆,𝑉𝐸𝑋 − 𝑁𝐸𝑋)!

(𝑁𝑆,𝑉𝐸𝑋 − 1)!

×
∏ 𝑃𝑖,𝑜𝑙𝑑

𝑁𝐸𝑋
𝑖=1

𝑃𝑛𝑒𝑤
 (11) 

 

Simplifying Eq. 11 and substituting into Eq. 3 results in the acceptance criterion for the 

large molecule insertion move: 

 

 𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝑚𝑖𝑛 { 1 ,
𝑁𝑆

 𝑁𝐿 + 1
×

(𝑁𝑆,𝑉𝐸𝑋 − 1)!

𝑉𝐸𝑋

(𝑁𝐸𝑋−1)
(𝑁𝑆,𝑉𝐸𝑋 − 𝑁𝐸𝑋)!

×
 𝑊𝑛𝑒𝑤

∏  𝑊𝑖,𝑜𝑙𝑑
𝑁𝐸𝑋
𝑖=1

× 𝑒𝛽[𝜇𝐿−𝑁𝐸𝑋𝜇𝑆] } (12) 
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For the large molecule deletion move, the ratio of the probability of generating 

configuration 𝑛𝑒𝑤 (𝑁𝐿 − 1, 𝑁𝑆 + 𝑁𝐸𝑋) → 𝑜𝑙𝑑 (𝑁𝐿 , 𝑁𝑆) to that of the reverse move is: 

 

 
𝛼(𝑛𝑒𝑤 → 𝑜𝑙𝑑)

𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤)
=

1
(𝑁𝑆 + 𝑁𝐸𝑋)

1
𝑁𝐿

×

(𝑁𝐸𝑋 − 1)! 𝑁𝑆,𝑉𝐸𝑋!

(𝑁𝑆,𝑉𝐸𝑋 + 𝑁𝐸𝑋 − 1)!

(𝑁𝐸𝑋 − 1)!

𝑉𝐸𝑋
(𝑁𝐸𝑋−1)

×
∏ 𝑃𝑖,𝑛𝑒𝑤

𝑁𝐸𝑋
𝑖=1

𝑃𝑜𝑙𝑑
 (13) 

 

Simplifying Eq. 13 and substituting into Eq. 3 results in the acceptance criterion for the 

large molecule deletion move. 

 

 𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝑚𝑖𝑛 { 1 ,
 𝑁𝐿

(𝑁𝑆 + 𝑁𝐸𝑋)
×

𝑉𝐸𝑋
(𝑁𝐸𝑋−1)

× 𝑁𝑆,𝑉𝐸𝑋!

(𝑁𝑆,𝑉𝐸𝑋 + 𝑁𝐸𝑋 − 1)!
×

∏  𝑊𝑖,𝑛𝑒𝑤
𝑁𝐸𝑋
𝑖=1

 𝑊𝑜𝑙𝑑

× 𝑒𝛽[𝑁𝐸𝑋𝜇𝑆−𝜇𝐿] } (14) 

 

If 𝑁𝐸𝑋 = 1, the acceptance criteria given in Eqs. 13 and 14 simplifies to that of the 

standard identity-exchange acceptance move[26]. 

 

 𝑎𝑐𝑐( 𝑁𝐿 →  𝑁𝐿 + 1) = 𝑚𝑖𝑛 { 1 ,
 𝑁𝑆

(𝑁𝐿 + 1)
×

 𝑊𝑛𝑒𝑤

 𝑊𝑜𝑙𝑑
× 𝑒𝛽[𝜇𝐿−𝜇𝑆] } (15) 

 𝑎𝑐𝑐( 𝑁𝐿 →  𝑁𝐿 − 1) = 𝑚𝑖𝑛 { 1 ,
 𝑁𝐿

(𝑁𝑆 + 1)
×

 𝑊𝑛𝑒𝑤

 𝑊𝑜𝑙𝑑
× 𝑒𝛽[𝜇𝑆−𝜇𝐿] } (16) 

2.3 ME-3 

For the large molecule insertion move in ME-2, the large molecule is inserted as a rigid 

body and its backbone is aligned with the z-axis of the 𝑉𝐸𝑋. This move performs well for large 

molecules with a straight backbone. However, the acceptance rate decreases for a large 

molecule with nonlinear geometry as it becomes significantly more difficult to fit a complex 
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rigid body into the void space created after deleting the small molecule(s). Therefore, a 

modification to ME-2 was developed to address this limitation. 

In the ME-3 algorithm, a predefined atom of the large molecule is first placed at the 

geometric center of 𝑉𝐸𝑋 and the molecule is built segment by segment using the coupled-

decoupled configurational-bias Monte Carlo (CBMC) algorithm[14]. For the large molecule 

deletion move, the exchange sub-volume is defined with a random orientation, with its 

geometric center placed at the same predefined atom of the large molecule to be deleted. Next, 

the Rosenbluth weight 𝑊𝑜𝑙𝑑 of the large molecule is calculated. Insertion and deletion of 𝑁𝐸𝑋 

small molecules are identical to the ME-2 method. Figure 3 illustrates the ME-3 algorithm. 

 

Figure 3: Schematic of the ME-3. Selected or inserted molecule (green), trial position (light 

red), and actual position of the molecule (solid red). Top row, represents the exchange of two 

small molecules with one large molecule (insertion). The sub-volume is defined as the orange 

box. (A) Defining the sub-volume with a random orientation, where its geometric center is 

placed at a randomly selected small molecule’s GC, and identifying the small molecules within 

the sub-volume. (B) Generating CBMC trials (rotation and GC location) for one of the small 

molecules and then removing it. (C) Generating CBMC rotational trials around its GC of the 

selected small molecule and then removing it. (D) Placing the predefined atom of the large 

molecule at the geometric center of the sub-volume and growing the large molecule using 

coupled-decoupled CBMC technique. Bottom row, represents the exchange of a large 

molecule with two small molecules (deletion). (A) Defining the sub-volume with a random 

orientation with geometric center placed at the predefined atom of the large molecule, and 

identifying the small molecules within the sub-volume. (B) Generating coupled-decoupled 

CBMC trials and then removing it. (C) Placing the GC of the first small molecule at the 

geometric center of the sub-volume, generating CBMC rotational trials around its GC and then 
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inserting it into the sub-volume. (D) Generating CBMC trials (rotation and GC location) for 

the second small molecule and then inserting it into the sub-volume. 

 

The algorithm for the insertion of a large molecule after deletion of small molecule(s) 

is as follows: 

1. Select one molecule out of 𝑁𝑆 small molecules in the simulation box with probability 1 𝑁𝑆 ⁄ . 

This molecule will be the last molecule to be removed from the system. 

2. Define an orthogonal exchange sub-volume 𝑉𝐸𝑋 with a random orientation and its 

geometric center placed at the GC of the small molecule selected above. Then determine 

the number of small molecules 𝑁𝑆,𝑉𝐸𝑋 within 𝑉𝐸𝑋 (𝑁𝑆,𝑉𝐸𝑋 includes the molecule selected in 

step 1). 

3. Repeat steps 3-6 of the ME-2 method to delete 𝑁𝐸𝑋 small molecules from simulation box. 

4. Insert the predefined atom of the large molecule at the center of 𝑉𝐸𝑋 and perform coupled-

decoupled configurational-bias Monte Carlo to grow the large molecule segment by 

segment. Calculate the Rosenbluth weight  𝑊𝑛𝑒𝑤.  

5. Insert the large molecule by selecting one of the generated trial configurations with the 

probability 𝑃𝑛𝑒𝑤. 

 

The algorithm for the deletion of a large molecule and subsequent insertion of small 

molecule(s) is as follows: 

1. Within the simulation box of volume 𝑉, pick one large molecule out of 𝑁𝐿  with probability 

of 1 𝑁𝐿⁄ .  

2. Define an orthogonal exchange sub-volume 𝑉𝐸𝑋 with a random orientation and place its 

geometric center at the predefined atom of the selected large molecule. Determine the 

number small molecules 𝑁𝑆,𝑉𝐸𝑋 within the exchange sub-volume. 
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3. Perform coupled-decoupled CBMC for the large molecule and calculate the Rosenbluth 

weight 𝑊𝑜𝑙𝑑 and 𝑃𝑜𝑙𝑑. 

4. Repeat steps 2-4 of ME-2 to insert 𝑁𝐸𝑋 small molecules within 𝑉𝐸𝑋. 

The forward to reverse probability ratios for generating the large molecule insertion 

and the large molecule deletion moves are identical to those given in Eq. 11 and 13, 

respectively. The acceptance criteria for the ME-3 algorithm is identical to that of ME-2 and 

are given by Eq. 12 and 14.  
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CHAPTER 3: SIMULATION METHODOLOGY 

The three molecular exchange algorithms described in Chapter 2 were implemented in 

the development version of GPU Optimized Monte Carlo[37] (GOMC), which is available to 

the public on GitHub[38]. GOMC is an object-oriented Monte Carlo simulation engine, capable 

of performing simulations in canonical, isobaric-isothermal, and grand canonical ensembles, 

as well as Gibbs ensemble Monte Carlo. GOMC is designed for the simulation of complex 

molecular topologies and supports a variety of potential functions, such as Lennard-Jones and 

Mie potentials. Coulomb interactions are also supported via the Ewald summation method[39]. 

GOMC is capable of parallel computation, either on multicore CPUs or GPUs. 

Phase diagrams were determined from histogram-reweighting Monte Carlo simulations 

in the grand-canonical ensemble[38]. A cubic box size of 25 Å × 25 Å × 25 Å was used for 

methane+ethane, methane+propane, methane+n-butane, and water+impurity. For 

perfluorobutane+n-butane and methane+n-pentane, a box size of 30 Å × 30 Å × 30 Å was used, 

while for 2,2,4-trimethylpentane+neopentane a box size of 40 Å × 40 Å × 40 Å was used. 

Initial configurations were generated with Packmol[40]. Psfgen was used to generate 

coordinate (*.pdb) and connectivity (*.psf) files[41]. Potentials were truncated at 10 Å and 

analytical tail corrections were applied[42]. To enhance the acceptance rate for molecule 

insertions, the coupled-decoupled configurational-bias Monte Carlo (CBMC) algorithm was 

used[14]. For all liquid phase simulations, unless otherwise noted in the Results and 

Discussion, configurational-bias parameters were: 100 angle trials, 100 dihedral trials, 10 trial 

locations for the first site, and 8 trial locations for secondary sites. For standard GCMC 

simulations, a move ratio of 20% displacements, 10% rotations, 10% regrowth, and 60% 

molecule transfers was used. For simulations that included the molecular exchange move, 30% 

molecular exchanges were performed with a corresponding reduction in the percentage of 

attempted molecule transfers.  
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Uncertainties used in the calculation of the statistical efficiency of the methods were 

calculated as the standard deviation determined from five unique simulation trajectories, each 

started from a unique initial configuration and random number seed. All simulations, except 

those used to generate phase diagrams, were run for 2x107 Monte Carlo steps (MCS), without 

equilibration period. Simulations used to generate phase diagrams were run for 5x107 MCS 

with a 5x106 MCS equilibration period.  Every 200-500 MCS, the instantaneous state of the 

system (N1, N2, E) was saved as a histogram. Every one million MCS, the natural log of 

distribution of large particle ln(𝑃𝑁) for each simulation was determined, and the standard 

deviation and efficiency were calculated for each binary system for a variety of compositions 

along the vapor-liquid coexistence curve. Calculations were performed on one core of an Intel 

Xeon E5-4627v4 2.6 GHz CPU. 

The efficiency was computed using the calculated standard deviation and the CPU time. 

 𝜂 = (𝜎2𝑠)−1 (17) 

where 𝜎 is average uncertainty in natural log of large particle distribution and 𝑠 is the CPU 

time in seconds.  
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CHAPTER 4: RESULTS AND DISCUSSION 

In this chapter, a number of examples are provided to illustrate the effect of molecular 

exchange moves on the statistical sampling in grand canonical histogram reweighting Monte 

Carlo simulations. Mixtures simulated include perfluorobutane+n-butane, and methane 

+ethane, +propane, +n-butane, and +n-pentane. Additional calculations were performed to 

generate pure fluid phase diagrams for water and 2,2,4-trimethylpentane to demonstrate the 

utility of the method and to provide comparisons to prior work[43-45]. For binary mixture 

phase diagrams, all calculations were performed at temperatures below 0.7𝑇𝑐. For pure fluid 

phase diagrams, calculations were performed from the critical temperature to 0.44𝑇𝑐 − 0.51𝑇𝑐. 

Performing grand canonical Monte Carlo simulations, using standard configurational-bias 

methods[14], below 0.7𝑇𝑐 is a challenging task, and therefore a good test to evaluate the 

improvement in sampling of phase space provided by the proposed algorithms.  

4.1 Methane+n-alkane 

Methane+n-alkane systems are well studied and extensive experimental data may be 

found in the literature[46-53]. In general, the determination of vapor-liquid coexistence for 

these systems at temperatures above 0.7𝑇𝑐 can be done using standard configurational-bias 

methods in grand canonical or Gibbs ensemble Monte Carlo simulations[9, 54-56]. However, 

below 0.7𝑇𝑐, acceptance rates for the insertion of n-alkanes into a liquid phase drops to 

approximately 0.1%, which necessitates long simulations to obtain convergence of the 

simulations. In this section, the effect of the three ME algorithms on the convergence of grand 

canonical Monte Carlo simulations is assessed for mixtures of methane +ethane, +propane, +n-

butane, and +n-pentane, and the effectiveness of performing a two for one exchange is 

evaluated.  

The methane+n-butane mixture is presented first as an example of the validation 

process used in the development of the molecular exchange methods. Grand canonical Monte 
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Carlo (GCMC) simulations were performed for a variety of temperatures, chemical potentials, 

and move ratios using both standard configurational-bias insertions/deletions and the ME-1, 

ME-2, and ME-3 methods. Probability distributions of states sampled during the simulation 

were collected and compared to reference distributions determined using standard 

configuration-bias insertions. An example of this is shown in Figure 4, for gas 

(𝜇𝑏𝑢𝑡𝑎𝑛𝑒 = −2960, 𝜇𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = −2000) and liquid (𝜇𝑏𝑢𝑡𝑎𝑛𝑒 = −2840, 𝜇𝑚𝑒𝑡ℎ𝑎𝑛𝑒 =

−2000 ) phase simulations at 277 K. As expected, the probability distributions produced by 

the ME-3 algorithm are an exact match to the reference distributions. Additional data for the 

ME-1 and ME-2 algorithms are presented in the Appendix B, Figures S1 and S2. 
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Figure 4: Probability distributions predicted from gas (𝜇𝑏𝑢𝑡𝑎𝑛𝑒 = −2960, 𝜇𝑚𝑒𝑡ℎ𝑎𝑛𝑒 =
−2000) and liquid (𝜇𝑏𝑢𝑡𝑎𝑛𝑒 = −2840, 𝜇𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = −2000 ) phase GCMC simulations of 

methane+n-butane at 277 K. Solid lines denote the probability distributions for n-butane 

(black) and methane (blue) using standard configurational-bias insertions and deletions. 

Dashed lines denote the probability distributions for n-butane (red) and methane (green) using 

the ME-3 algorithm. 

 

In Figure 5, the pressure vs. composition diagram for methane+n-butane at 277 K, 

predicted using both the coupled-decoupled configurational-bias method[14] and the ME-3 

algorithm, is shown. Interactions between molecules were described with Optimized Mie 

Potentials for Phase Equilibria[54]. In addition to showing excellent agreement with 

experimental data[53], the ME-3 algorithm produced results that are statistically 

indistinguishable from standard configurational-bias insertions, providing further validation of 

the method.   
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Figure 5: Pressure composition diagram for methane+n-butane at 277 K predicted from 

GCMC+histogram reweighting simulations using Mie potentials[54]. Experimental data 

(circles)[53], standard configurational-bias insertions (red lines), ME-3 algorithm (green lines). 

 

In Table 1, the acceptance rate for molecule transfers as a function of composition is 

presented for each methane+n-alkane binary mixture. Calculations were performed for liquid 

phase simulations along the coexistence curve at 186 K (methane+ethane), 213 K 

(methane+propane), 225 K (methane+n-butane), and 273 K (methane+n-pentane). The systems 

exhibit similar general trends, with acceptance rates climbing as the critical point of the mixture 

is reached. For 𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 < 0.5, acceptances rates for the insertion of the larger n-alkane using 

configurational-bias were less than 1%. When performing a one to one exchange, ME-3 was 

found to produce the largest improvement in acceptance rates for the large molecule, producing 

improvements of 2X for methane+n-pentane at 𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.7 to 70X for methane+ethane at 

𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.1. The ME-2 algorithm also produced significant enhancement in the 
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acceptances rates for the insertion of the longer n-alkane, while the ME-1 algorithm was found 

to yield significantly lower acceptance rates than traditional configurational-bias insertions. 

Because the ME-2 algorithm uses a rigid swap and the GC of the large molecule is placed at 

the geometric center of the exchange sub-volume, only a fraction of the sub-volume is 

guaranteed to be empty.  In most of the ME-2 exchanges, it is likely that some atoms from the 

large molecule will overlap with existing molecules, lowering acceptance rates compared to 

ME-3. The ME-3 algorithm uses the same initial placement for the central atom as ME-2, but 

grows the rest of the large molecule, allowing it to find more energetically favorable 

configurations than are possible through a rigid molecule insertion, leading to greater 

acceptance rates for the exchange move. As expected, the more similar the large and small 

molecule were in terms of excluded volume, the greater the success of the molecular exchange. 

It is also interesting to note that even for the highly asymmetric mixture of methane+n-pentane, 

acceptance rates for molecule transfers were improved substantially through the inclusion of 

the molecular exchange move.  

The molecular exchange algorithm allows for trial moves where any number of small 

molecules may be exchanged for one large molecule. An example of this is shown in Table 1, 

where acceptance rates are presented for exchange of two methanes with one n-butane or n-

pentane (𝑁𝐸𝑋 = 2). For the ME-3 algorithm, acceptance rates are always lower than the one 

for one exchange, although, this difference decreases as the chain length of the large molecule 

increases. Part of the decrease in the acceptance rate stems from the reduced probability of 

finding two methane molecules in the sub-volume to exchange at low methane concentrations. 

For ME-2, acceptance rates are slightly lower for the exchange of two methanes with one n-

butane, compared to the one for one exchange. However, for the exchange of two methanes 

with one n-pentane, slight improvements in the acceptance rates were observed. The ME-1 

algorithm shows a slight improvement in acceptance rates for the exchange of two methanes 
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with one n-butane or n-pentane, although in all cases, acceptance rates for the ME-1 algorithm 

are lower than configurational-bias insertions.  

While size of the sub-volume does not have an effect on the acceptance rates for the 

ME-2 and ME-3 algorithms for a one to one exchange, it was found to have an effect on the 

acceptance rates for the two to one exchange, as shown in Table 1. Increasing the size of the 

sub-volume increases the probability that a second small molecule will be found within the 

sub-volume, leading to an increased overall acceptance rate for the MEMC move. Therefore, 

it is possible to optimize acceptance rates for the two to one exchange ratio by performing a 

series of short simulations for a range of sub-volume box lengths, and by using a heuristic that 

the sub-volume should be large enough to contain the entire large molecule. For methane+n-

butane, the optimum exchange sub-volume size for a two for one exchange was found to be 

8.8 Å × 8.8 Å × 11.8 Å for ME-3 and ME-2, while for ME-1 it was 5 Å × 5 Å × 8 Å.  
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Table 1: n-alkane insertion/removal acceptance percentages in GCMC liquid phase simulations 

of methane+n-alkane mixtures for CBMC, ME-1, ME-2, and ME-3 methods. 
Binary system Sub-volume size (Å) 𝑁𝐸𝑋 𝑥𝐶𝐻4

 CBMC ME-1 ME-2 ME-3 

methane+ethane 5 × 5 × 6 1 0.1 0.33 0.11 11.68 23.62 

0.5 1.47 0.96 16.20 33.33 

0.9 8.3 4.18 24.09 47.84 

methane+propane 5 × 5 × 7 1 0.1 0.08 0.05 3.42 4.13 

0.4 0.38 0.40 5.67 7.21 

0.8 5.18 3.36 13.56 18.36 

methane+n-butane 5 × 5 × 8 1 0.1 0.14 0.025 0.835 2.373 

0.3 0.33 0.099 1.207 3.421 

0.6 2.52 0.948 3.378 8.128 

5 × 5 × 8 2 0.1 0.14 0.019 0.196 0.362 

0.3 0.33 0.144 0.557 0.928 

0.6 2.52 1.262 2.288 3.160 

8.8 × 8.8 × 11.8 2 0.1 0.14 0.022 0.398 0.984 

0.3 0.33 0.086 0.821 1.860 

0.6 2.52 0.621 2.682 5.252 

methane+n-pentane 

 

5 × 5 × 9 1 0.1 0.064 0.007 0.209 0.824 

0.5 0.397 0.116 0.638 2.163 

0.7 2.461 0.666 1.72 4.814 

5 × 5 × 9 2 0.1 0.639 0.006 0.086 0.189 

0.5 0.397 0.270 0.736 1.160 

0.7 2.461 1.332 2.389 3.170 

8.8 × 8.8 × 13 2 0.1 0.639 0.008 0.145 0.455 

0.5 0.397 0.102 0.675 1.806 

0.7 2.461 0.473 2.054 4.133 

 

A more detailed analysis of the statistical uncertainty and efficiency for an exchange 

ratio of one to one is provided in Figure 6 for the methane+n-butane mixture. A direct 
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comparison between the efficiencies obtained for the one to one and one to two exchange ratios 

are presented in the Appendix B, Figure S3. Uncertainties were determined from probability 

distributions collected from liquid phase grand canonical Monte Carlo simulations performed 

along the vapor-liquid coexistence curve. For all mole fractions investigated, the ME-3 

algorithm shows the fastest convergence of the n-particle probability distribution, converging 

in approximately half the number of Monte Carlo steps of ME-2. Both the ME-3 and ME-2 

algorithms produce similarly converged probability distributions after 2x107 MCS, with 

average uncertainties of approximately 0.05. The ME-1 algorithm and configurational-bias 

insertions show similar convergence properties. However, with 2x107 MCS each produced 

uncertainties that were approximately double those of the ME-3 and ME-2 methods. 
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Figure 6: Efficiency and standard deviation in methane+n-butane at 255 K. Lines represent the 

efficiency and average uncertainty in probability distributions generated from GCMC 

simulations. Standard configurational-bias insertions (black), ME-1 (red), ME-2 (green), and 

ME-3 (blue). The MEMC move was performed with the exchange ratio of one butane with one 

methane.  
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In Figure 7, the probability distributions resulting from GCMC simulations with the 

various ME methods using an exchange ratio of one to one are presented for 𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.3, 

while data for other mole fractions are given in Appendix B, Figures S4 and S5.  The 

probability distributions resulting from GCMC simulations with the various ME methods using 

an exchange ratio of one to two are presented in Figure S6-8 for a range of mole fractions. All 

MEMC methods converge to the same distribution. ME-3 shows rapid convergence, and within 

only 5x106 MCS the correct distribution is obtained. The ME-2 algorithm shows slightly slower 

convergence compared to ME-3, but is still more efficient that ME-1 or configurational-bias 

trial insertions.  

 

 

Figure 7: Probability distributions for methane+n-butane at 255 K and 𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.3. After 

simulations of: 1x106 MCS (magenta), 5x106 MCS (green), 1x107 MCS (blue), 1.5x107 MCS 

(red), and 2x107 MCS (black) (A) Standard configurational-bias insertions, (B) ME-1 (C) ME-

2 and (D) ME-3. 
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4.2 Perfluorobutane+n-butane 

The perfluorobutane+n-butane system is an interesting case study because of its large 

deviations from Raoult’s law, despite the fact that perfluorobutane and n-butane have very 

similar normal boiling points (270.96 K for C4F10 and 272.61 K for C4H10) and both are non-

polar with similar molecular geometries. This system has been modeled in the past with SAFT-

VR[57], PC-SAFT[58] and GC-SAFT-VR[59], which showed close agreement with 

experimental data[60]. Gibbs ensemble Monte Carlo simulations using an identity exchange 

move have been used to study liquid-liquid equilibria for n-heptane+perfluoheptane[61], 

otherwise, grand canonical and Gibbs ensemble methods have rarely been applied to these 

kinds of mixtures. This is due, in part, to the difficulty in achieving an adequate number of 

accepted molecule transfers. For example, at 260 K, acceptance rates for the insertion of 

perfluorobutane in the neat liquid phase was approximately 0.075%.   

In Figure 8, the pressure vs. composition diagram for perfluorobutane+n-butane at 260 

K, predicted using the ME-3 algorithm and the Mie potentials developed by our group[54], is 

shown. The force field for perfluorobutane was modified slightly from the original work to use 

a more accurate seven term cosine series, which is described in detail in the Appendix A. Using 

standard Lorentz-Berthelot combining rules[62, 63] and no adjustable parameters for the cross 

interaction, very good agreement was achieved with experiment. The largest deviation results 

from the limitation in the united-atom force field for perfluorobutane, which over-predicts the 

vapor pressure at 260 K by approximately 0.1 bar. 
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Figure 8: Pressure-composition diagram for perfluorobutane+n-butane at 259.95 K. The 

predictions from GCMC+histogram reweighting simulations using the ME-2 algorithm are 

given by (red line) while experiment data[60] are represented by (black circles). The line 

connecting the experimental data points is provided as a guide to the eye. 

 

To evaluate the effectiveness of the molecular exchange move with a one to one 

exchange ratio and an exchange sub-volume of 6 Å × 6 Å × 9 Å, acceptance rates, uncertainties 

in the probability distributions, and efficiencies produced from the grand canonical Monte 

Carlo simulations were determined for liquid phase simulations at selected points along the 

coexistence curve. The effect of various simulation parameters on the performance of the 

CBMC and MEMC acceptance rates and efficiencies were also evaluated for liquid phase 

simulations containing 50 mol% n-butane, and are shown in Figure S9. Using the coupled-

decoupled configurational-bias method[14], the probability of successfully inserting one 

perfluorobutane into a simulation box containing 10 mol%, 50 mol%, and 90 mol% of n-butane 
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was 0.073%, 0.026%, and 0.011%, respectively. The ME-1 algorithm increased acceptance 

rates approximately 4 times that of standard trial insertions for 𝑥𝑏𝑢𝑡𝑎𝑛𝑒 > 0.50, however, for 

lower concentrations of n-butane, no improvement was observed. For the ME-2 algorithm, 

acceptance rates of 4.92%, 4.17%, and 3.15% were obtained, while for ME-3, acceptance rates 

were 3.52%, 2.73 %, and 1.69%, respectively. For this system, the ME-2 algorithm produces 

the best acceptance rates because it works by aligning the backbone of perfluorobutane with 

the cavity left by the leaving n-butane. Acceptance rates were slightly lower for ME-3 since it 

grows the molecule using coupled-decoupled configurational-bias without requiring the 

backbone of the molecule to be aligned with the cavity created by the molecule that was 

removed. 

The efficiency of the various molecular exchange algorithms is shown in Figure 9 as a 

function of Monte Carlo step for 𝑥𝑏𝑢𝑡𝑎𝑛𝑒 = 0.1, 0.5, and 0.9. Uncertainties shown are the 

average over uncertainties for each histogram bin in the probability distribution. Both the ME-

2 and ME-3 algorithms show that convergence of the probability distributions was achieved 

within 10 million MCS, while for ME-1 and configurational-bias insertions, convergence was 

not achieved within 20 million MCS. Depending on composition, ME-3 provides efficiencies 

that are between 12 and 200 times greater than configurational-bias insertions for the insertion 

of perfluorobutane. Based on the trajectory of the uncertainties, it is unlikely that convergence 

of the probability distributions using standard Monte Carlo insertions would ever occur. 

Despite the fact that the ME-2 method provides slightly better acceptance rates for the 

molecular exchange move, at most compositions, ME-3 produces slightly faster convergence 

and better efficiencies. By growing the inserted molecule with coupled-decoupled 

configurational-bias[14], larger rearrangements take place in the system, even though more of 

the trial moves are rejected than in ME-2.  
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Figure 9: Efficiency and standard deviation in the perfluorobutane+n-butane binary mixture at 

259.95 K. Lines represent the efficiency and average uncertainty in the perfluorobutane 

probability distribution; standard configurational-bias insertions(black), ME-1 (red), ME-2 

(green), and ME-3 (blue). The MEMC moves were performed with an exchange ratio of one 

to one.   
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In Figure 10, the probability distributions resulting from GCMC simulations with the 

various ME methods are presented for 𝑥𝑏𝑢𝑡𝑎𝑛𝑒 = 0.5, while data for 𝑥𝑏𝑢𝑡𝑎𝑛𝑒 = 0.1 and 0.9 are 

given in Appendix B, Figures S10 and S11. The figure shows rapid convergence of the 

probability distributions for the ME-2 and ME-3 methods, while ME-1 and standard GCMC 

have not converged in 20 million MCS, although, the uncertainties calculated for ME-1 are 

approximately half those of standard GCMC. In Figure 11, heat maps are presented for the 

particle numbers and potential energies sampled during a liquid phase GCMC simulation. The 

heat maps illustrate how simulations with only configurational-bias insertions/deletions may 

become trapped in metastable states, resulting in poor sampling. Inclusion of the ME-3 

algorithm produced a short equilibration period and a much broader sampling of the N1, N2, E 

phase space.  
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Figure 10: Molecule probability distribution for perfluorobutane+n-butane at 𝑥𝑏𝑢𝑡𝑎𝑛𝑒 = 0.5 

and 259.95 K. After simulations of: 1x106 MCS (magenta), 5x106 MCS (green), 1x107 MCS 

(blue), 1.5x107 MCS (red), and 2x107 MCS (black) (A) Standard configurational-bias 

insertions, (B) ME-1 (C) ME-2 and (D) ME-3. 
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Figure 11: Heat maps of particle numbers (left panel) and potential energies (right panel) 

sampled during liquid phase grand canonical Monte Carlo simulations of perfluorobutane+n-

butane at 259.95 K. Upper figures correspond to GCMC simulations with standard 

configurational-bias insertions/deletions, while the bottom figures correction to GCMC 

simulations with the ME-3 algorithm. 

4.3 Water 

In order to compare the performance of the MEMC move with other advanced sampling 

techniques, such as CBMC swap + identity switch[43](IS), continuous fractional component 

Monte Carlo (CFCMC)[44, 45], and configurational-bias continuous fractional component 

Monte Carlo (CB-CFCMC)[44], the vapor-liquid coexistence curve for SPC/E water[64] was 

predicted from the critical temperature to 0.44𝑇𝑐. To enhance the acceptance rate for insertions 

and deletions of water and to provide a uniform basis for comparison, the strategy of Bai and 

Siepmann was used[43]. For regular CBMC swaps, oxygen is inserted first, followed by the 

two hydrogen atoms. 16 trials were used for the first atom and 8 trials for all remaining atoms. 
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Simulations were performed as a mixture that contained approximately 0-10 “impurity” 

molecules, where the impurity molecule had an identical geometry to the SPC/E water model, 

but with partial charges reduced by a factor of 2 and the oxygen atom Lennard-Jones epsilon 

reduced by a factor of 4 compared to SPC/E water. Swap moves were performed only for 

impurity molecules, while the MEMC move is performed to exchange the impurity with water 

and vice versa. Move frequencies were adjusted to yield approximately to the same number of 

accepted molecule transfers for the swap and MEMC moves. Due to the poor performance of 

the ME-1 method in prior calculations, only the performance of the ME-2 and ME-3 methods 

were evaluated. An exchange ratio of one to one was used for all calculations.  

The phase diagram for SPC/E water predicted from GCMC simulations using the ME-

2 or ME-3 algorithm is shown in Figure 12, with a comparison to prior simulations[65]. 

Additional information on vapor pressure is provided in Appendix B, Figure S12. Excellent 

agreement was observed, validating both the MEMC algorithms and the simulation code used 

to perform the calculations.  
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Figure 12: Vapor-liquid coexistence curve for SPC/E water predicted from GCMC+histogram 

reweighting simulations. NIST Chemistry WebBook[66] (solid lines), values obtained by 

Boulougouris et al.[65] (green circles), ME-2 algorithm (red squares), and ME-3 algorithm 

(blue triangles). 

 

To compare the performance of MEMC with other methods, the effective number of 

molecule transfers was calculated. The effective number of molecule transfers was defined as 



 

 

40 

the insertion of an impurity molecule by the swap move and its conversion to a regular water 

molecule by the MEMC move, or the conversion of regular water to impurity via MEMC and 

then deletion of impurity by the swap move. Exchanges of impurity to water and back to 

impurity were not counted. The effective acceptance rate was calculated from the effective 

number of molecule transfers divided by the sum of attempted swap and MEMC moves. The 

results of these calculations are summarized in Table 2, with comparisons to the work of Bai 

and Siepmann[43], and Torres-Knoop et al.[44]. At 283 K, the effective acceptance rates for 

the ME-2 and ME-3 algorithms are 7.6 and 1.4 times greater, respectively, than the IS 

algorithm[43]. While the S+IS method reuses atomic coordinates of the molecule to be 

removed, the MEMC methods perform multiple trial orientations to insert the water molecule. 

In ME-2, first the center of the sub-volume was placed at the geometric center of the impurity, 

second the z-axis of the sub-volume was aligned with the O-H bond of impurity, and then 

multiple rotational trials were performed around the z-axis of the sub-volume. Aligning the O-

H bond of water and the sub-volume allows some of the original hydrogen bonding to be 

maintained, while finding an energetically favorable position for the oxygen atom through 

rotational trials around the z-axis of the sub-volume, leading to significant improvements in 

the effective acceptance. In the ME-3 method, the oxygen atom of water was placed at the 

geometric center of the impurity molecule, and multiple rotational trials were performed on a 

sphere to find the most energetically favorable position. In order to maintain the hydrogen 

bonding formed by the impurity molecule, a large number of rotational trials are required, 

leading to a significant decrease in the acceptance efficiency compared to ME-2 method.  

Compared to the original CFCMC method of Shi and Maginn[45], at 280 K, the ME-2 

method exhibits twice the effective acceptance rate, while the ME-3 method is approximately 

40% lower. The continuous fractional component Monte Carlo (CFCMC) and configurational-

bias continuous fractional component Monte Carlo (CB-CFCMC) methods of Torres-Knoop 
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et al.[44] produced the largest acceptance rates of all methods. At 280 K, CFCMC and CB-

CFCMC had acceptance rates that were 2.25 and 3.6 times larger, respectively, than the ME-2 

method. 

 

Table 2: Comparison of Swap + MEMC move acceptance percentages with standard CBMC, 

S+IS[43], CFCMC[44, 45], and CB-CFCMC[44] for SPC/E water. 
T (K) %𝑃𝐼𝑚𝑝−𝑎𝑐𝑐 

(𝐶𝐵𝑀𝐶) 

%𝑃𝑆𝑤𝑖𝑡𝑐ℎ−𝑎𝑐𝑐  %𝑃𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒−𝑎𝑐𝑐  %𝑃𝑤𝑎𝑡𝑒𝑟−𝑎𝑐𝑐  

(𝐶𝐵𝑀𝐶) 

%𝑃𝑤𝑎𝑡𝑒𝑟−𝑎𝑐𝑐  

(𝐶𝐹𝐶𝑀𝐶) 

%𝑃𝑤𝑎𝑡𝑒𝑟−𝑎𝑐𝑐  

(𝐶𝐵

− 𝐶𝐹𝐶𝑀𝐶) 

 

 This 

work 

Bai 

et al. 

ME-2 ME-3 IS ME-2 ME-3 S+IS This 

work 

Bai 

et al. 

Torres-

Knoop 

et al. 

Shi. 

et al. 

Torres-

Knoop 

et al. 

Torres-

Knoop 

et al. 

280 5.7 - 5.70 0.59 - 2.73 0.51 - 0.063 - 0.027 1.38 6.16 9.86 

283 5.9 4.3 6.07 0.61 1.4 2.94 0.53 0.36 0.076 0.06

1 

- - - - 

313 6.3 - 6.74 0.98 - 3.35 0.83 - 0.167 - 0.068 1.00 7.49 11.7 

343 6.8 7.8 6.61 1.10 3.1 3.28 0.91 0.73 0.35 0.37 - - - - 

348 7.0 - 6.47 1.28 - 2.94 1.07 - 0.423 - 0.155 2.18 9.52 14.93 

375 9.8 - 8.67 2.11 - 4.55 1.71 - 0.761 - 0.286 - 10.14 16.53 

473 20.5 22 14.84 6.31 7.3 8.48 4.84 2.2 3.989 3.5 1.374 1.98 15.17 21.82 

500 23 - 15.95 7.49 - 9.29 5.62 - 5.556 - 1.964 - 15.23 21.5 

 

The acceptance efficiency was defined as the effective number of molecules 

transferred, divided by the total CPU time spent on swap and MEMC moves. In order to have 

a fair comparison between the acceptance efficiency of MEMC and S+IS, CFCMC, and CB-

CFCMC methods, this quantity was normalized with respect to the acceptance efficiency of 

the standard CBMC method, minimizing the impact of CPU choice on the relative performance 

of the algorithms. The results of these calculations are listed in Table 3.  At 280 K, the ME-2 

method outperformed S+IS by 3.8 times, while the S+IS method is 23.9% better than ME-3. 

The performance of CFCMC and CB-CFCMC is 5-6 times greater than ME-2, although, it 

should be noted that the acceptance rates reported by Torres-Knoop et al. for standard swaps 
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of water were approximately 2.4 times lower than those reported in this work, or Bai and 

Siepmann[43].  

 

Table 3: Comparison of relative acceptance efficiency for the MEMC, S+IS[43], CFCMC[44] 

and CB-CFCMC[44] methods. 
T (K) ME-2 ME-3 S+IS CFCMC[44] CB-CFCMC[44] 

280 38.8 7.61 - 243.47 195.28 

283 34.1 6.49 10 - - 

313 19.33 4.91 - 97.07 85.27 

343 11.04 3.32 3.45 - - 

348 7.97 3.02 - 52.18 42.69 

375 6.39 2.47 - 33.16 27.59 

473 2.08 1.25 1.23 7.74 6.85 

500 1.65 1.04 - 6.52 5.18 

4.4 2,2,4-Trimethylpentane 

As mentioned earlier, achieving a statistically valid number of molecule insertions in 

low temperature (𝑇 < 0.7𝑇𝑐) simulations of branched alkanes can be challenging. Here, 2,2,4-

trimethylpentane is used as an example to highlight how the MEMC move can significantly 

extend the range of temperatures where GCMC simulations may be used to predict vapor-liquid 

coexistence for a highly branched molecule. In this case, neopentane is used as the impurity 

molecule based on its similar structure to part of 2, 2, 4-trimethylpentane. This also illustrates 

the general nature of the MEMC algorithm, which does not require the molecules to be 

exchanged to be an integer numbers of each other. In Figure 13, the vapor-liquid coexistence 

curve for 2,2,4-trimethylpentane, using ME-2 algorithm and GCMC+histogram reweighting 

Monte Carlo simulations, is presented. Additional data for the ME-3 algorithms is presented in 

Appendix B, Figure S13. Using the ME-2 or ME-3 algorithms, it is possible to predict vapor-

liquid coexistence to 280 K (0.51𝑇𝑐), while prior simulations using only coupled-decoupled 
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configurational bias were limited to 390 K (0.7𝑇𝑐). In Table 4, a detailed comparison is 

presented for the acceptance rates for direct swaps of neopentane and 2,2,4-trimethylpentane, 

MEMC moves, effective acceptance rates and effective acceptance rates per CPU time. 

Effective acceptance rate and acceptance efficiency is calculated using a similar method 

explained in the water section. The results of additional calculations performed with different 

CBMC parameters are given in Appendix B, Table S6. At all temperatures, the combination of 

impurity swap plus ME-2 or ME-3 method outperforms standard configurational-bias Monte 

Carlo. At 280 K, the relative acceptance efficiency (impurity swap+MEMC/standard CBMC) 

was 409 for ME-2 and 154 for ME-3. ME-2 is more effective than ME-3 for branched 

molecules because it inserts the entire molecule at the same time and aligns the backbone of 

the molecule to be inserted with the backbone of the molecule to be removed. ME-3 regrows 

the entire molecule using coupled-decoupled CBMC, however, many of these regrowths fail 

because they are unable to satisfy the internal molecular constraints due to the bond bending 

and torsional potentials[67]. In future work, it may be possible to improve the performance of 

the ME-3 algorithm for branched molecules by inclusion of the Jacobian-Gaussian scheme[68] 

for generating bending angle trials in the CBMC growth.  

Table 4: Comparison of acceptance rates for swaps of the impurity molecule (neopentane), 

identity exchange via the MEMC algorithm, and swaps performed with standard 

configurational-bias Monte Carlo for 2,2,4-trimethylpentane. 
T (K) %𝑃𝐼𝑚𝑝−𝑎𝑐𝑐   %𝑃𝑆𝑤𝑖𝑡𝑐ℎ−𝑎𝑐𝑐 %𝑃𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒−𝑎𝑐𝑐 %𝑃𝑎𝑐𝑐 Effective acceptance 

per CPU time (s-1) 

Relative acceptance  

efficiency 

 swap ME-2 ME-3 ME-2 ME-3 CBMC CBMC ME-2 ME-3 ME-2 ME-3 

280 0.013 0.89 0.03 0.013 0.008 0.00008 0.0003 0.109 0.041 409.2 153.7 

330 0.10 2.21 0.15 0.096 0.057 0.0008 0.0026 0.917 0.288 356.9 112.0 

390 0.85 5.69 0.55 0.653 0.274 0.022 0.0769 5.727 1.135 74.5 14.8 

450 4.09 9.84 1.27 2.645 0.837 0.225 0.838 24.12 3.497 28.8 4.17 

510 13.50 21.07 2.89 6.613 1.894 1.026 4.120 55.74 7.210 13.5 1.75 
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Figure 13: Vapor-liquid coexistence curve for 2,2,4-trimethylpentane predicted from 

GCMC+histogram reweighting simulations using Mie potentials[9]. Experimental data (solid 

lines)[69], ME-2 algorithm (red circles), and prior calculations using only configurational-bias 

Monte Carlo (green circles)[9]. 
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CHAPTER 5: CONCLUSIONS 

In this work, three variants of the molecular exchange method were developed, which 

could be used to evaluate the efficiency of various aspects of the algorithms. Locating the 

exchange sub-volume randomly (ME-1) was found to have the lowest efficiency, since 

frequently, no small molecules were found in the sub-volume that could be used for the 

molecular exchange, resulting in immediate rejection of the move. The ME-1 method is 

suitable only for systems that are very dilute with respect to the concentration of the large 

molecule. By identifying a small molecule at random first, placing the center of the sub-volume 

at the geometric center of the small molecule (ME-2), and aligning the backbone of the large 

molecule to be inserted with the small molecule to be removed, acceptance rates for the 

exchange move increased substantially. For water, the acceptance efficiency of the ME-2 

method was found to be nearly 40 times greater than standard configurational-bias insertions, 

while for 2,2,4-trimethylpentane a 410 times improvement in acceptance efficiency was 

achieved. In the latter case, this was due to the use of a rigid-body insertion in ME-2, which 

eliminated the need to regrow the molecule in place. Finally, the inclusion of coupled-

decoupled configurational-bias methods[14] to grow sections of the molecule from a central 

atom (ME-3) placed at the center of the sub-volume resulted in the greatest improvement in 

statistical efficiency compared to standard configurational-bias insertions for linear molecules 

without strong directional interactions. Improvements in efficiency of up to 200 times were 

observed for the perfluorobutane+n-butane system.  

The algorithms presented in this work are notable because they were designed to work 

for any molecular topology over a wide range of compositions. Substantial performance gains 

were observed for ME-2 and ME-3 for all systems and compositions studied. As shown through 

the various case studies, however, each method has its strengths and weaknesses. For linear 

non-polar molecules, ME-3 is generally more efficient than ME-2, while ME-2 offers better 
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performance for small polar molecules, such as water, and highly branched molecules. Each 

algorithm has been implemented, and is now available, in the open-source Monte Carlo 

simulation engine GOMC, which is available to the public at GitHub[38]. 
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APPENDIX A 

In this section, the detailed computational procedures and mathematical methods of 

Molecular Exchange Monte Carlo (MEMC) move are provided.  

 

Defining the exchange sub-volume vectors and transformation matrix 𝑻𝑽𝑬𝑿: 

An exchange sub-volume is a rectangular cuboid defined by three mutually orthogonal 

vectors 𝒂, 𝒃, and 𝒄. Vector 𝒄 is either defined by the backbone orientation of the selected 

molecule or randomly defined according to a uniform distribution. For a given vector 𝒄, vectors 

𝒂 and 𝒃 are generated based on the following Gram-Schmidt algorithm. 

 

1- Set 𝒂 and 𝒃 to two independent vectors, such as 𝒊 and 𝒋. (if 𝒄 was in the same plane as 𝒂 

and 𝒃, set either of 𝒂 or 𝒃 to 𝒌). 

2- 𝒆𝟑 =
𝒄

|𝒄|
 

3- 𝒃 = 𝒃 − (𝒃. 𝒆𝟑)𝒆𝟑  

4- 𝒆𝟐 =
𝒃

|𝒃|
 

5- 𝒂 = 𝒂 − (𝒂. 𝒆𝟑)𝒆𝟑 − (𝒂. 𝒆𝟐)𝒆𝟐  

6- 𝒆𝟏 =
𝒂

|𝒂|
 

 

where |𝒂| is the norm of vector 𝒂, and (𝒂. 𝒃) represent scalar product of the two vectors. 

To perform MEMC operations such as, counting the number of small molecules in sub-volume 

𝑉𝐸𝑋, inserting small molecules in 𝑉𝐸𝑋, and aligning small and large molecules backbones with 

z-axis of the sub-volume, we need to define a new coordinate system based on the three unit 

vectors 𝒆𝟏, 𝒆𝟐, and 𝒆𝟑. To transform the coordinates from the simulation box reference frame 
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to the one defined by 𝒆𝟏, 𝒆𝟐, and 𝒆𝟑, we apply the transformation matrix 𝑻𝑽𝑬𝑿
−1 and for the 

inverse transformation we apply 𝑻𝑽𝑬𝑿 as defined below: 

 

 𝑻𝑽𝑬𝑿 =  [

𝑒11 𝑒21 𝑒31

𝑒12 𝑒22 𝑒32

𝑒13 𝑒23 𝑒33

]  (S1) 

 𝑻𝑽𝑬𝑿
−1 =  𝑻𝑽𝑬𝑿

𝑇  =  [

𝑒11 𝑒12 𝑒13

𝑒21 𝑒22 𝑒23

𝑒31 𝑒32 𝑒33

] (S2) 

 

Defining a 2D random rotation matrix 𝑹𝒛 about the backbone of the molecule: 

In an MEMC move, the backbone of the molecule is aligned with 𝒆𝟑. To perform 

random rotation around the backbone, a rotation matrix 𝑹𝒛 is defined according to the 

following procedure: 

 

1- Set 𝜃 to a random number between 0 and 1. 

2- 𝜃 = 𝜃 × 2 × 𝜋 

3- 𝜃 = 𝜃 − 𝜋 

 

 𝑹𝒛 =  [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] (S3) 

 

Defining a 3D random rotation matrix 𝑹𝒔: 

In the MEMC move, to perform rotation on a sphere uniformly, the fast random rotation 

matrices algorithm by Arvo is used. To construct the rotation matrix, perform the following 

steps. 

1- Set 𝜃 to a random number between 0 and 1. 
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2- 𝜃 = 𝜃 × 2 × 𝜋 

3- 𝜃 = 𝜃 − 𝜋 

4- Set 𝜑 to a random number between 0 and 1. 

5- 𝜑 = 𝜑 × 2 × 𝜋 

6- Set 𝑟 to a random number between 0 and 1. 

7- Construct the 2D rotation 𝑹𝒛, using 𝜃. 

8- Define 𝒗 as 

 

 𝒗 = [

√𝑟 sin 𝜑

√𝑟 cos 𝜑

√1 − 𝑟

]  (S4) 

 

9- Defining the Householder matrix 𝑯 = 𝑰 − 2 𝒗 𝒗𝑇 

10- The final rotation matrix can be expressed as 

 

 𝑹𝒔 = −𝑯 𝑹𝒛 = 2 𝒗 𝒗𝑇𝑹𝒛 − 𝑹𝒛 (S5) 

 

Defining the random orientation vector 𝒄 for the exchange sub-volume 𝑽𝑬𝑿: 

To generate a random orientation for the exchange sub-volume 𝑉𝐸𝑋, we generate the 

vector 𝒄 according to the following algorithm: 

1- 𝒄 =  𝒌  

2- Construct the 3D rotation matrix 𝑹𝒔 

3- 𝒄 = 𝑹𝒔 𝒄  
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Finding the number of small molecules within the sub-volume 𝑽𝑬𝑿: 

To count the number of small molecules inside the 𝑉𝐸𝑋, with the geometric center 

defined as vector 𝒓𝒄 and dimensions of 𝑤 × 𝑤 × 𝑙, the following steps are performed. Repeat 

steps 1-3 for all the small molecules within the simulation box. 

1- Calculate the minimum image distance between the geometric center of the sub-volume 

and GC of the molecule: 𝚫𝒓 = 𝒓𝒄 − 𝒓𝑮𝑪. 

2- Transform the vector to the sub-volume coordinate system: 𝚫𝒓′ = 𝑻𝑽𝑬𝑿
−1 𝚫𝒓 

3- If Δ𝑟1
′ < 0.5𝑤 and Δ𝑟2

′ < 0.5𝑤 and Δ𝑟3
′ < 0.5𝑙, the molecule is located within the sub-

volume. 

 

Finding a random location for GC of small molecule, within the sub-volume 𝑽𝑬𝑿: 

1- Set 𝑢1, 𝑢2, and 𝑢3 to a random number between 0 and 1, independently. 

2- 𝑥𝐺𝐶 = 𝑢1 × 𝑤 − 0.5 𝑤, 𝑦𝐺𝐶 = 𝑢2 × 𝑤 − 0.5 𝑤, 𝑧𝐺𝐶 = 𝑢3 × 𝑙 − 0.5 𝑙 

3- Transform the GC coordinate vector 𝒓𝑮𝑪, to the sub-volume coordinate system: 𝒓𝑮𝑪
′ =

𝑻𝑽𝑬𝑿 𝒓𝑮𝑪 

4- Shift the 𝒓𝑮𝑪
′  to the geometric center of the sub-volume 𝒓𝒄: 𝒓𝑮𝑪

′′ =  𝒓𝑮𝑪
′ + 𝒓𝒄 

 

Generate Rotational trial around GC: 

1- Construct the 3D rotation matrix 𝑹𝒔 

2- Repeat the following steps, for all atoms in the molecule (𝑖 = 0, 1, … , 𝑛) 

a. Shift the atom 𝑖 to the origin with respect of its GC: 𝒓𝒊
′ = 𝒓𝒊 − 𝒓𝑮𝑪 

b. Rotate the atom 𝑖 around origin: 𝒓𝒊
′′ = 𝑹𝒔 𝒓𝒊

′ 

c. Shift the atom 𝑖 back to its location: 𝒓𝒊
′′′ = 𝒓𝒊

′′ + 𝒓𝑮𝑪  
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Generate Rotational trial around the molecule’s backbone: 

To generate the rotational trial around backbone of the molecule, the molecule’s 

backbone must be aligned with the predefined sub-volume 𝑉𝐸𝑋 system coordinate, 𝑻𝑽𝑬𝑿. To 

align the molecule with the 𝑉𝐸𝑋, the transformation matrix of molecule system coordinate 𝑻𝑴 

is defined as follow: 

1- Shift the molecule coordinates to the origin with respect to its GC. 

2- Calculate the minimum image vector of two specific atoms of the molecule 𝚫𝒓 that 

represent the orientation of the molecule’s backbone. 

3- Set 𝒄 to this vector: 𝒄 =  𝚫𝒓 

4- Construct transformation matrix 𝑻𝑴 of the molecule using the Gram-Schmidt algorithm. 

5- Transform the molecule coordinates to the simulation box coordinate system, where 𝒄 is 

aligned with the z-axis. Repeat the following step for all atoms in the molecule (𝑖 =

0, 1, … , 𝑛) 

a. 𝒓𝒊
′ = 𝑻𝑴

−1 𝒓𝒊 

 

Once the molecule coordinates are transformed, rotational trials around the z-axis are 

generated, molecule coordinates are transformed to 𝑉𝐸𝑋 system coordinate, and shifted to the 

geometric center of the sub-volume 𝒓𝒄, as follows: 

 

6- Construct the 2D rotational matrix 𝑹𝒁. 

7- Repeat the following step for all atoms in the molecule (𝑖 = 0, 1, … , 𝑛) 

a. 𝒓𝒊
′′ =  𝑹𝒁 𝒓𝒊

′ 

b. 𝒓𝒊
′′′ = 𝑻𝑽𝑬𝑿 𝒓𝒊

′′ 

c. 𝒓𝒊
′′′ =  𝒓𝒊

′′′ + 𝒓𝒄 
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Forcefield: 

The Mie potential is defined as: 

 𝑈(𝑟𝑖𝑗) = 𝐶𝑛𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

𝑛𝑖𝑗

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] (S6) 

where 𝑟𝑖𝑗, 𝜀𝑖𝑗, and 𝜎𝑖𝑗 are the separation, well depth, and collision diameter, respectively, for 

the pair of interaction sites i and j. The constant 𝐶𝑛 is a normalization factor used such that the 

minimum of the potential remains at −𝜀𝑖𝑗 for all 𝑛𝑖𝑗.  

 𝐶𝑛 = (
𝑛𝑖𝑗

𝑛𝑖𝑗 − 6
) (

𝑛𝑖𝑗

6
)

6 (𝑛𝑖𝑗−6)⁄

 (S7) 

For the 12-6 potential, 𝐶𝑛 reduces to the familiar value of 4. Parameters governing 

interactions between unlike interaction sites were determined using the Lorentz-Berthelot 

combining rules[70, 71]. 

 𝜎𝑖𝑗 = (𝜎𝑖𝑖 + 𝜎𝑗𝑗) 2⁄  (S8) 

 𝜀𝑖𝑗 = √𝜀𝑖𝑖𝜀𝑗𝑗  (S9) 

To determine repulsion exponents for cross interactions, an arithmetic average was 

used. 

 𝑛𝑖𝑗 = (𝑛𝑖𝑖 + 𝑛𝑗𝑗) 2⁄  (S10) 

 

Mie potential has been optimized for noble gases[72, 73], linear and branched alkane[9, 

54], n-alkyne[74]. All non-bonded parameters used in this work are listed in Table S1.  
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Table S1: Non-bonded parameters for n-alkanes, perfluoro-alkanes[54], branched alkanes[9], 

and SPC/E water[64]. 

Pseudo-atom 𝜀𝑖/𝑘𝑏(𝐾) 𝜎𝑖 (Å) 𝑛𝑖 𝑞𝑖 

CH4 161.00 3.740 14 0.00 

CH3 121.25 3.783 16 0.00 

CH2 61.00 3.990 16 0.00 

CH (CN > 4, S/L) 14.00 4.700 16 0.00 

C (CN ≤ 4, S/L) 1.45 6.100 16 0.00 

C (CN > 4, S/L) 1.20 6.200 16 0.00 

CF3 155.75 4.475 36 0.00 

CF2 72.20 4.750 44 0.00 

O 78.21 3.167 12 -0.8476 

H 0.00 0.00 0.00 0.4238 

 

Fixed bond lengths for n-alkanes, perfluoro-alkane[54], branched alkanes[9], and 

SPC/E water[64] were used to connect pseudo-atoms and are listed in Table S2. Angle bending 

was described using a harmonic potential 

 𝑈𝑏𝑒𝑛𝑑 =
𝑘𝜃

2
(𝜃 − 𝜃0)2 (S11) 

where 𝜃0 is the measured bond angle, 𝜃0 is the equilibrium bond angle, and 𝑘𝜃 is the force 

constant. Equilibrium bond angles and force constants are listed in Table S2.  
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Table S2: Bonded parameters for n-alkanes, perfluoro-alkane[54], branched alkanes[9], and 

SPC/E water[64]. 

Bond type Bond length/ Å Angle type 𝜃0/degree 𝐾𝜃/ K.rad-2 

CH2−CH3 1.54 CH3−CH2−CH2 114 62500 

CH2−CH2 1.54 CH2−CH2−CH2 114 62500 

CH2−CH2 1.54 C−CH2−CH 114 62500 

CH−CH3 1.54 CH3−CH−CH3 112 62500 

CH−CH2 1.54 CH3−CH−CH2 112 62500 

C−CH3 1.54 CH3−C−CH3 109.47 62500 

C−CH2 1.54 CH3−C−CH2 109.47 62500 

CF2−CF3 1.54 CF3−CF2−CF2 114 62500 

CF2−CF2 1.54 CF2−CF2−CF2 114 62500 

O−H 1.00 H−O−H 109.47 Fixed 

 

Dihedral energies were governed by a cosine series 

 𝑈𝑡𝑜𝑟𝑠 = ∑ 𝑐𝑛[1 + 𝑐𝑜𝑠(𝑛𝜑 − 𝛿𝑛)]

𝑁

𝑛=0

 (12) 

where 𝜑 is the dihedral angle, 𝑐𝑛 are dihedral force constants, n is the multiplicity, and 𝛿𝑛 is 

the phase shift. These constants are listed in Table S3. Fourier constants for alkanes were taken 

from OPLS-UA[75, 76] and for perfluoroalkanes, more accurate seven term cosine series were 

used.   
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Table S3: Torsional parameters for n-alkanes, perfluoro-alkane[54], branched alkanes[9], and 

SPC/E water[64]. 

torsion 𝒏 𝒄𝒏/ (K) 𝜹𝒏 

CHx—(CH2)—(CH2)—CH2 1 335.03 0 

2 -68.19 π 

3 791.32 0 

CHx—(CH2)—(CH)—CHy 0 -251.06 0 

 1 428.73 0 

 2 -111.85 π 

 3 441.27 0 

CHx—(CH2)—(C)—CHy 3 461.29 0 

CFx—(CF2)—(CF2)—CFy 0 -1577.68 0 

1 791.61 0 

2 333.65 0 

3 854.01 0 

4 349.25 0 

5 211.51 0 

6 117.66 0 

7 -83.44 0 
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APPENDIX B 

In this section, the numerical results and additional data are provided.  

 

Table S4: Selected phase coexistence data for perfluorobutane(1)+n-butane(2) predicted by 

grand canonical Monte Carlo simulations using Mie potentials[54]. Uncertainty in data are 

presented by the numbers in parenthesis.  

P (bar) x1 y1 

0.68(3) 0.02(1) 0.10(5) 

0.87(2) 0.12(1) 0.34(2) 

0.92(1) 0.20(2) 0.40(1) 

0.97(1) 0.36(2) 0.472(8) 

0.981(5) 0.50(3) 0.517(5) 

0.980(3) 0.59(3) 0.553(3) 

0.963(5) 0.709(7) 0.610(1) 

0.928(6) 0.802(2) 0.680(1) 

0.855(4) 0.908(3) 0.806(1) 

0.747(3) 1.000 1.000 
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Table S5: Vapor-liquid coexistence data predicted from GCMC+histogram reweighting 

simulations using ME-2 method for SPC/E water. 

T (K) ρ
l
 (kg/m3) ρ

v
 (kg/m3) P (bar) ΔH

v
 (kJ/mol) 

600 535(3) 90(2) 102.7(7) 15.6(2) 

580 615(2) 52.1(8) 74.7(2) 21.4(2) 

560 675(2) 33.0(1) 53.54(9) 25.76(3) 

540 720(1) 21.51(6) 37.54(6) 29.09(3) 

520 756(1) 14.11(5) 25.71(5) 31.77(4) 

500 787(1) 9.17(4) 17.12(4) 34.01(3) 

480 818(1) 5.86(2) 11.04(2) 36.01(6) 

460 846(2) 3.64(1) 6.84(2) 37.97(8) 

440 871(1) 2.173(5) 4.05(2) 39.69(4) 

420 896(2) 1.241(3) 2.26(1) 41.31(6) 

400 917(2) 0.669(4) 1.19(1) 42.92(4) 

380 935(1) 0.336(3) 0.576(5) 44.29(5) 

360 953(2) 0.155(1) 0.255(3) 45.59(3) 

340 969(1) 0.065(1) 0.101(1) 46.74(4) 

320 984(1) 0.024 0.035 47.94(4) 

300 996(2) 0.007 0.010 49.19(5) 

280 1007(5) 0.002 0.003 50.4(1) 
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The acceptance rate of inserting or removing neopentane was 68 times lower than the 

acceptance rate for exchanging neopentane with 2,2,4-trimethylpentane and vice versa via the 

ME-2 algorithm. This shows that insertion of neopentane is the rate limiting step in the process. 

In order to improve the acceptance rate for insertions of neopentane, CBMC angle and dihedral 

trials were increased to 500, and the number of CBMC trials for the first atom and remaining 

atoms were increased to 16 and 10, respectively. In Table S6, a detailed comparison is 

presented for the acceptance rates for direct swaps of neopentane and 2,2,4-trimethylpentane, 

MEMC moves, effective acceptance rates and effective acceptance rates per CPU time. 

 

Table S6: Comparison of acceptance rates for swaps of the impurity molecule (neopentane), 

identity exchange via the MEMC algorithm, and swaps performed with standard 

configurational-bias Monte Carlo for 2,2,4-trimethylpentane.  
T (K) %𝑃𝐼𝑚𝑝−𝑎𝑐𝑐  %𝑃𝑆𝑤𝑖𝑡𝑐ℎ−𝑎𝑐𝑐 %𝑃𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒−𝑎𝑐𝑐 %𝑃𝑎𝑐𝑐 Effective acceptance 

per CPU time (1/s) 

Relative acceptance  

efficiency 

 swap ME-2 ME-3 ME-2 ME-3 CBMC CBMC ME-2 ME-3 ME-2 ME-3 

280 0.017 1.19 0.05 0.039 0.099 0.0002 0.0005 0.244 0.042 520.2 90.0 

330 0.168 2.60 0.18 0.183 0.077 0.0023 0.0047 1.312 0.250 278.7 53.3 

390 1.30 5.89 0.71 0.878 0.393 0.036 0.0745 5.504 1.023 73.9 13.7 

450 6.05 10.26 1.56 3.466 1.067 0.338 0.745 22.40 2.779 30.1 3.73 

510 18.0 21.76 3.43 7.887 2.337 1.510 3.520 49.02 5.576 13.9 1.58 
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Figure S1: Probability distributions predicted from gas (𝜇𝑏𝑢𝑡𝑎𝑛𝑒 = −2960, 𝜇𝑚𝑒𝑡ℎ𝑎𝑛𝑒 =
−2000) and liquid (𝜇𝑏𝑢𝑡𝑎𝑛𝑒 = −2840, 𝜇𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = −2000 ) phase GCMC simulations of 

methane+n-butane at 277 K. Solid lines denote the probability distributions for n-butane 

(black) and methane (blue) using standard configurational-bias insertions and deletions. 

Dashed lines denote the probability distributions for n-butane (red) and methane (green) using 

the ME-1 algorithm. 
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Figure S2: Probability distributions predicted from gas (𝜇𝑏𝑢𝑡𝑎𝑛𝑒 = −2960, 𝜇𝑚𝑒𝑡ℎ𝑎𝑛𝑒 =
−2000) and liquid (𝜇𝑏𝑢𝑡𝑎𝑛𝑒 = −2840, 𝜇𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = −2000 ) phase GCMC simulations of 

methane+n-butane at 277 K. Solid lines denote the probability distributions for n-butane 

(black) and methane (blue) using standard configurational-bias insertions and deletions. 

Dashed lines denote the probability distributions for n-butane (red) and methane (green) using 

the ME-2 algorithm. 
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Figure S3: Efficiency and standard deviation in methane+n-butane binary mixture at 255 K. 

Lines represent the efficiency and uncertainty in n-butane distribution probability; standard 

CBMC method (black), ME-1 (red), ME-2 (green), and ME-3 (blue). MEMC move with 

exchanging one n-butane with one methane represented by solid lines, exchanging one n-

butane with two methane molecules represented by dashed lines.    
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Figure S4: Molecule probability distribution in methane+n-butane binary mixture system at 

𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.1 and 255 K. Lines in magenta, green, blue, red, and black represent the 

probability distribution of n-butane after 1, 5, 10, 15, and 20 million MC steps, respectively. 

(A) represent probability distribution using standard insertion and deletion with coupled-

decoupled CBMC technique, (B), (C), and (D) represent probability distribution using ME-1, 

ME-2, and ME-3 method with exchanging ratio of one methane with one n-butane, 

respectively. 
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Figure S5: Molecule probability distribution in methane+n-butane binary mixture system at 

𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.6 and 255 K. Lines in magenta, green, blue, red, and black represent the 

probability distribution of n-butane after 1, 5, 10, 15, and 20 million MC steps, respectively. 

(A) represent probability distribution using standard insertion and deletion with coupled-

decoupled CBMC technique, (B), (C), and (D) represent probability distribution using ME-1, 

ME-2, and ME-3 method with exchanging ratio of one methane with one n-butane, 

respectively. 
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Figure S6: Molecule probability distribution in methane+n-butane binary mixture system at 

𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.1 and 255 K. Lines in magenta, green, blue, red, and black represent the 

probability distribution of n-butane after 1, 5, 10, 15, and 20 million MC steps, respectively. 

(A) represent probability distribution using standard insertion and deletion with coupled-

decoupled CBMC technique, (B), (C), and (D) represent probability distribution using ME-1, 

ME-2, and ME-3 method with exchanging ratio of two methane molecules with one n-butane, 

respectively. 
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Figure S7: Molecule probability distribution in methane+n-butane binary mixture system at 

𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.3 and 255 K. Lines in magenta, green, blue, red, and black represent the 

probability distribution of n-butane after 1, 5, 10, 15, and 20 million MC steps, respectively. 

(A) represent probability distribution using standard insertion and deletion with coupled-

decoupled CBMC technique, (B), (C), and (D) represent probability distribution using ME-1, 

ME-2, and ME-3 method with exchanging ratio of two methane molecules with one n-butane, 

respectively. 
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Figure S8: Molecule probability distribution in methane+n-butane binary mixture system at 

𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.6 and 255 K. Lines in magenta, green, blue, red, and black represent the 

probability distribution of n-butane after 1, 5, 10, 15, and 20 million MC steps, respectively. 

(A) represent probability distribution using standard insertion and deletion with coupled-

decoupled CBMC technique, (B), (C), and (D) represent probability distribution using ME-1, 

ME-2, and ME-3 method with exchanging ratio of two methane molecules with one n-butane, 

respectively. 

 

In Figure S9, the effect of CBMC parameters on perfluorobutane insertion/deletion 

acceptance and acceptance efficiency of standard CBMC and ME methods are provided. For 

perfluorobutane+butane with an exchange ratio of 1, both ME-2 and ME-3 are independent 

from first site atom trials, while ME-1 and standard CBMC are dependent to this variable. The 

maximum acceptance 0.09% and acceptance efficiency 0.91 (1/sec) for standard CBMC is 

achieved at 18 trials for the first atom site and 12 trials for remaining atoms. In the ME-1 

method, increasing both variables would lead to increases in acceptance but decreases in the 

acceptance efficiency. Using 2 trials for the GC position and 1 trial for molecular rotation 
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results in an acceptance rate of 0.008% and acceptance efficiency of 0.45 (1/sec). In the case 

of ME-2, by increasing the number of secondary site trials, the acceptance increases while 

acceptance efficiency decreases. The maximum acceptance efficiency of 114 (1/sec) is 

achieved by using 1 trial for molecular rotation, which leads to 1.65% acceptance. The behavior 

of the ME-3 method is similar to the standard CBMC method, where the maximum acceptance 

of 3.85% and acceptance efficiency of 26.3 (1/sec) was achieved by using 18 trials for the first 

atom and 12 trials for the remaining atoms. Comparing acceptance efficiency of ME methods 

with standard CBMC using the optimum CBMC parameters, ME-2 and ME-3 are 120 and 28 

more efficient, respectively. For ME-1, acceptance efficiency decreases by a factor of 2. 

 



 

 

68 

 

Figure S9: Acceptance and acceptance efficiency in perfluorobutane+n-butane binary mixture 

at 259.95 K and composition of 0.5. Lines represents acceptance and acceptance efficiency of 

perfluorobutane insertion in various CBMC trials for the site. Standard CBMC (black), ME-1 

(red), ME-2 (green), and ME-3 (blue), 2 trials(circle), 6 trials (squares), 12 trials (triangles), 18 

trials (diamonds). MEMC moves were performed with an exchange ratio of one to one.   
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Figure S10: Molecule probability distribution in perfluorobutane+n-butane binary mixture 

system at 𝑥𝑏𝑢𝑡𝑎𝑛𝑒 = 0.1 and 259.95 K. Lines in magenta, green, blue, red, and black represent 

the probability distribution of perfluorobutane after 1, 5, 10, 15, and 20 million MC steps, 

respectively. (A) represent probability distribution using standard insertion and deletion with 

coupled-decoupled CBMC technique, (B), (C), and (D) represent probability distribution using 

the ME-1, ME-2, and ME-3 method with exchanging ratio of one n-butane with one 

perfluorobutane, respectively.  
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Figure S11: Molecule probability distribution in perfluorobutane+n-butane binary mixture 

system at 𝑥𝑏𝑢𝑡𝑎𝑛𝑒 = 0.9 and 259.95 K. Lines in magenta, green, blue, red, and black represent 

the probability distribution of perfluorobutane after 1, 5, 10, 15, and 20 million MC steps, 

respectively. (A) represent probability distribution using standard insertion and deletion with 

coupled-decoupled CBMC technique, (B), (C), and (D) represent probability distribution using 

ME-1, ME-2, and ME-3 method with exchanging ratio of one n-butane with one 

perfluorobutane, respectively. 
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Figure S12: Clausius-Clapeyron plot for SPC/E water predicted from GCMC+histogram 

reweighting simulations. NIST Chemistry WebBook[66] (solid lines), values obtained by 

Boulougouris et. al.[65], (green circles) ME-2 algorithm (red squares), and ME-3 algorithm 

(blue triangles). 
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Figure S13: Vapor-liquid coexistence curve for 2,2,4-trimethylpentane predicted from 

GCMC+histogram reweighting simulations using Mie potentials[9]. Experimental data (solid 

lines)[69], ME-3 algorithm (red circles), and prior calculations using only configurational-bias 

Monte Carlo (green circles)[9]. 
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Figure S14: Standard deviation (left panel) and efficiency (right panel) for GCMC simulations 

for 2,2,4-trimethylpentane in the liquid phase. Configurational-bias insertions (black), ME-2 

(red) and ME-3 (green). 
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ABSTRACT 

MOLECULAR EXCHANGE MONTE CARLO. A GENERALIZED METHOD FOR 

IDENTITY EXCHANGES IN GRAND CANONICAL MONTE CARLO 

SIMULATIONS 

by 

MOHAMMAD SOROUSH BARHAGHI 

August 2019 

 

Advisor:  Dr. Loren Schwiebert 

Major:  Computer Science 

Degree: Master of Science 

 

A generalized identity exchange algorithm is presented for Monte Carlo simulations in 

the grand canonical ensemble. The algorithm, referred to as Molecular Exchange Monte Carlo 

(MEMC), may be applied to multicomponent systems of arbitrary molecular topology, and 

provides significant enhancements in the sampling of phase space over a wide range of 

compositions and temperatures. Three different approaches are presented for the insertion of 

large molecules, and the pros and cons of each method are discussed. The performance of the 

algorithms is highlighted through grand canonical Monte Carlo histogram-reweighting 

simulations performed on several systems, including 2,2,4-trimethylpentane+neopentane, 

butane+perfluorobutane, methane+n-alkanes, and water+impurity. Relative acceptance 

efficiencies of up to 400 times that of standard configurational-bias Monte Carlo are obtained 

for molecule transfers.  
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