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1. CHAPTER I INTRODUCTION 

The automotive industry is currently putting high focus on Advanced Driver Assistance 

Systems (ADAS) and automated driving vehicles. ADAS helps drivers by conducting 

complex driving tasks in different scenarios, even mitigating dangerous situations. 

Currently, ADAS is widely used in production and development vehicles. ADAS such as 

AutoPilot can achieve partial automation that allows the vehicle to drive by itself on 

highways, even under traffic jam. Companies such as Waymo and Uber already started to 

use their fleet as autonomous taxis [11].  

By sensing the surrounding environment and creating an up-to-date world model, the 

vehicle will be able to establish spatial and temporal relationship between the vehicle and 

environment. The world model created in real time consists of two parts: kinematic 

information of the ego vehicle, and the objects around the vehicle, such as velocity and 

location, etc. for both ego vehicle and objective vehicle. The information provided by the 

world model will be further used for path planning and by the control units to generate 

potential paths and maneuvering the vehicle. To create the world model using perception 

and sensor fusion, localization of the ego vehicle and object tracking are two of the most 

important tasks. Multiple sensors mounted on the vehicle are responsible for localizing 

the vehicle and detect/track objects. For example, Global Navigation Satellite System 

(GNSS) and Inertial Measurement Unit (IMU) acquire the location of the vehicle, and 

help define the start point and track the vehicle coordinates trajectory. While cameras, 

Radars and LiDAR are used for object detection and tracking. Sensor data fusion is also a 

crucial part of the world model realization. The sensor fusion algorithm collects data 

from multiple sensors mounted on the vehicle. By processing and fusing the data from 
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the sensors, the output of the sensor fusion algorithm is a list of moving objects to be 

displayed in the world model. In this thesis, the sensor fusion algorithm will not be 

processing raw sensor data. Instead, detected but untracked object list will be processed 

using the sensor fusion algorithm to generate an associated object list with a high 

confidence level. 

 

 

Figure 1 Automated parking system [1] 

Auto-parking system is a relatively new feature in ADAS. Auto-parking can be 
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generally divided into two categories: Auto Parking Assist and Auto Parking Valet. 

Currently the auto-parking system in an ADAS can only be considered as a partial Auto 

Parking Assist, such as perpendicular and parallel parking. The system is less automated 

than other features such as Adaptive Cruise Control, Traffic Jam Assist, etc. The reason 

is that an auto-parking system requires more a sophisticated sensing and data fusion 

process [2, 3]. In an auto-parking system, the world model usually gets an object list from 

perception sensors, such as surround-view cameras and ultrasonic sensors. Vehicle 

position and velocity are sent to the world model in real time, wheel encoders and IMU 

are usually responsible for localization and velocity measurement. Current sensor fusion 

algorithm cannot meet the requirement to fuse data in order to get accurate and precise 

location of the vehicle as well as the surrounding environment. For auto-parking 

application, vehicle equipped with cameras and ultrasonic sensor fusion has limited 

information about the location and speed of the ego vehicle. Accumulative errors will 

cause the vehicle to depart from the previous planned trajectory [4]. Thus, an improved 

method for eliminating the accumulative error in vehicle localization should be 

developed. 

Most of the luxury vehicles sold are equipped with multiple ADAS features. 

Regardless of the system performance, the common ADAS features of popular vehicles 

on the market are listed in the table below. Adaptive Cruise Control (ACC) and Lane 

Keeping Assist (LKA) have become standard on almost all luxury vehicles and some 

mid-class vehicles. Traffic Jam Assist/Pilot (TJA/YJP) are offered on limited models of 

luxury vehicles due to its performance stability as well as cost benefit issues. Even 

though all vehicle manufactures require drivers to pay attention to the road as a mandate 
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while these features are enabled, they still help drivers with great driving experiences and 

significantly increased driving safety, especially for long-distance driving. 

Sensor fusion is critical for ADAS features. The key of an ADAS is to detect the 

surrounding environment and make proper decisions to control the vehicle in order to 

achieve some specific functionalities. Sensors mounted on the vehicle acquire tons of 

data from the environment. These data from different sensors will not be useful unless 

processed by a sensor fusion algorithm. Automated Parking Assist (APA), requires the 

fusion of multiple sensors [24]. For example, APA feature needs all types of sensors used 

in other ADAS features. However, it requires much higher accuracy in order to control 

the vehicle in a relatively small area. APA is a very useful function that helps park or 

even take over the whole parking process. This functionality is relatively new and yet not 

many vehicles are equipped with it. 

Table 1 Luxury Vehicle ADAS Feature Summary [44] 

Test Vehicle ACC LKA/LDW TJA TJP HWA HWP APA 

Tesla Model 

X 

yes yes yes yes yes yes yes 

AUDI Q7 yes yes yes no yes no yes 

Volvo XC90 yes yes no no yes no no 

Jaguar I-pace yes yes no no yes no no 

BMW X5 yes yes yes no no no no 

Infiniti QX50 yes yes yes no yes no no 

Acura RLX yes yes yes no yes no no 

Cadillac CT6 yes yes no no no no no 
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MB AMG 

GLS63 

yes yes no no yes no no 

 

1.1. System architecture 

An ADAS consists of multiple layers of perception, decision making and control. 

Sensors and sensor data processors are to perceive the surrounding environment via 

object detection and tracking algorithms. The sensor fusion processor analyzes the data 

collected from sensor data processor and outputs a moving object list with robust 

detection and tracking, feeding to the world model. The world model is also built and 

updated in the fusion processor. The decision maker is responsible for generating an 

optimized path based on the world model information. The dynamics controller has all 

the vehicle dynamics information and controls the vehicle to move along the pre-defined 

trajectory. 
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Dynamics Controller

Actuator

Surrounding 
Environment

Supervisory Controller
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Health Monitoring System

E-Stop
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Figure 2 ADAS Architecture 

The whole system is designed to have two major parts: the nominal system and the 

health monitoring system. Each part has its own fusion processor, decision maker and 

vehicle controller. When a failure occurs anywhere within the nominal system, the health 

monitoring system will take over the vehicle control and alarm the driver. The health 

monitoring system runs concise but robust algorithms that have same functionalities with 
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the nominal system. Actuators are the parts that control the vehicle, such as VCU 

throttle/brake controller and steering wheel encoder, etc. 

1.1.1. Overall diagram of ADAS system 

As previously introduced, an ADAS is designed to have six different components, 

along with a redundant health monitoring system for safety concern. As shown in the 

diagram below, each component has its own specific functionalities. The functionalities 

of each component will be discussed in detail in the following. 

Cameras
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Corner 
Radar

LiDARs
Ultrason

ic 
Sensors

Vision 
Processor

CAN Bus
LiDAR 

Processor
US Data 

Processor

Supervisory Controller Layer I: Sensor Fusion
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Supervisory Controller Layer III: Motion Planning
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World Model

Target Trajectory
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Planning

Behavior 
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Local Feedback 
Control

Motion 
Planning

Steering Wheel Angle; Throttle Position; 
Brake Position, etc.

String of Object position, velocity, size;
Environment Terrain

Creating World Model

 

Figure 3 ADAS Architecture in details 

System mounting location is shown in Fig. 7. Sensors and processors are marked in the 

diagram with different color labels. Cameras mounted on the wind shield are for the front 

object detection and tracking. With calibrated stereo camera we can do simple distance 

estimation. Radars are good at object detecting and speed estimation. Four of the corner 

radars are responsible for cross traffic detection, while the front and rear radars are for 

preceding and following object detection. The LiDAR mounted on the roof is used for 
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creating a machine-readable environment map by outputting point clouds, which can be 

used for benchmarking and reference. Sensor specification and sensor selection criteria 

will be discussed in Chapter 2. 

Radar

Camera

Ultrasonic 
Sensor

Processor

12V 
Battery

R

R

Camera

Embedded PC

12V

US

12V

Embedded PC

US

US US
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LiDAR
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Figure 4 Sensor mount locations 

1.1.2. Function blocks 

1.1.2.1. Sensors 

Sensors perceive information from the surrounding environment and feed acquired 

information to other parts of the system. Cameras, radars, Lidars and ultrasonic sensors 

are common sensors seen on autonomous vehicles.  

1.1.2.2. Fusion Processor 
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The sensor fusion processor gets information from sensors and use sensor fusion 

algorithm to create a world model. The output of the sensor fusion processor is a list of 

moving objects. The objects on this list are fused based on sensor data and could be 

different from any object detected by sensors. 

1.1.2.3. Decision Maker 

The decision maker performs decision making and path planning based on the world 

model created by the fusion processor. 

1.1.2.4. Dynamics Controller 

The dynamics controller has all the information of the vehicle dynamics and inertial 

sensors. This controller is responsible for motion planning and vehicle dynamics control. 

1.1.2.5. Actuator 

Actuators are the mechanical or electrical parts controlled by the dynamics controller 

and maneuver the vehicle. Basically, actuators on autonomous vehicles are motors on 

steering wheel and brake pedals, and the ECU that controls throttle. 

1.1.2.6. Health Monitoring System 

Health monitoring system is a backup system of the nominal system. When an 

unexpected situation happens, such as sensor obscure, extreme weather, or nominal 

system malfunction, the health monitoring system is responsible for detecting errors and 

taking over control of the vehicle. Concise but robust ADAS algorithms run on the health 

monitoring system. 

In ideal situations, the safety requirement should be achieved by the system by defining 

some parameters. For example, for ACC, the cruise follow distance, autosteer 

enabled/disabled should be defined. The table below lists the parameters to be defined 
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either by the system or the driver that sets a performance threshold for the system. 

Table 2 List of functionalities needs to be achieved 

Parameter Name Options 

Cruise Follow Distance 1 to 7 (follow distance is speed dependent) 

Autosteer Enable, Disable 

Auto Lane Change Enable, Disable 

Speed Limit Warning Off, Display, Chime 

Speed Limit Relative, Absolute 

Speed Limit - Offset Offset [mph], 0 to 5mph 

Forward Collision Warning Off, Late, Medium, Early 

Lane Departure Warning Enable, Disable 

Automatic Emergency Braking Enable, Disable 

 

1.2. Literature Review 

1.2.1. Motivation 

Autonomous vehicles represent a fast-emerging technology to improve mobility as they 

offer a safer and more comfortable driving experience for users. The development of 

automated driving systems has focused on multiple features and the use of multiple 

sensors such as cameras, radars, LiDARs, ultrasonic devices, and combinations of sensor 

technologies to provide useful information from the environment to automate or assist 

various dynamic driving tasks, which are generally classified into mobility and safety. 

Automated driving spans a wide range of automation levels — from advanced driver 

assistance systems (ADAS) to fully autonomous driving being planned for the near 
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future.  

An important objective of ADAS is to provide essential information to assist drivers to 

ensure a safe driving experience. These preventive measures for both vehicle occupants 

and pedestrian protections must take place before the actual impact or accident occurs. 

Existing triggering and assistive systems such as the electronic stability program (ESP) 

use sensor data to identify vehicle instabilities and provide fast preventive actions. 

However, in some accidents the ESP is not able to indicate any abnormal driving 

dynamics [5]. A common scenario is when a driver is making a right turn and focusing 

his/her attention on on-coming vehicles from the left, while forgetting pedestrians who 

might be approaching the same intersection to cross the road. Other accidents may 

involve pedestrians being distracted while using smartphones and not paying full 

attention to on-coming traffic while crossing at intersections. Based on the traditional 

technologies, no signal will be triggered and sent to assistive systems such as the brake 

assist under these situations to prevent the accidents. A warning system to identify 

potential accidents early enough to allow the driver or an assist system to take appropriate 

actions would thus be desirable. The warnings can be either audio or by some LED 

display (e.g., green and red indicate potential and imminent accidents, respectively). 

For vehicles equipped with ADAS features, to deliver preventive safety applications as 

well as driver assist functionalities, it is required to have necessary information of ego 

vehicle status and surrounding environment. The development of perception and sensor 

fusion algorithms will be based on several ADAS features: APA, ACC, LKA and TJP. 

Perception and sensor fusion are critical parts of these ADAS features, as summarized in 

the table below. 
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Table 3 Perception and Sensor Fusion Algorithm in ADAS Features 

ADAS Features Realization Steps 

Steps involving 

perception and sensor 

fusion 

APA 

(Automated 

Parking Assist) 

1) Localization 

2) Detect parking spots 

3) Path planning 

4) Actuation 

5) Go back to 1 

1, 2 

ACC 

(Adaptive Cruise 

Control) 

1) Localization 

2) Detect lane, preceding and nearby 

vehicles 

3) Path planning and decision making 

4) Actuation 

5) Go back to 1 

1, 2 

LKA 

(Lane Keeping 

Assist) 

1) Detect lanes (bird-eye view 

algorithm) 

2) Calculate lane center 

3) Calculate position deviation 

4) Calculate steer angle (steer angle – 

yaw rate map) 

5) Apply steering wheel 

6) Go back to 1) 

1, 2, 3 
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TJA 

(Traffic Jam 

Assist) 

1) Localization 

2) Detect lane, preceding and nearby 

vehicles 

3) Path planning and decision making 

4) Actuation 

5) Go back to 1 

1, 2 

The objective of this research is to develop novel sensor fusion algorithms for auto-

parking application in autonomous vehicles. Sensor fusion algorithms can help improve 

the perception accuracy and vehicle localization accuracy. Incorporating motion planning 

algorithms and vehicle control methods, the auto-parking feature can be realized. 

1.2.2. Literature review 

Over the past few decades, autonomous driving has been an important research topic.  

Autonomous vehicle can be defined as vehicles that can move from a start point to a 

given destination, without the need of any interaction from the driver [6]. The 

autonomous vehicle is able to move in space with an environment model created by 

detecting information from the surrounding environment, as well as inside the vehicle 

cabin. According to the US National Highway Traffic Safety Administration (NHTSA) 

[7] and the SAE International standard, two main levels of autonomous classifications 

have been developed. As discussed in Chapter 1, the SAE defined classification method 

was accepted by NHTSA and became the publicly accepted [8].   

The SAE standard divides the automation into 6 levels, from Level 0 – no automation 

to Level 5 - Full self-driving automation. All vehicles, including vehicles being sold on 

the market and prototype vehicles in the development stage, could be classified into the 



   

14 

 

above 6 different levels of autonomous vehicles. 

 

Figure 5 SAE J3016 Levels 0 - 2 of Driving Automation [9] 

1.2.2.1. Level 0 – No automation 

Vehicles with no automation will be considered as Level 0 autonomous vehicles.  In 

this case, the driver has 100% responsibility of controlling the vehicle. The driver must 

monitor the surrounding environment and maneuver the vehicle any time during driving. 

However, some warning system can be added to the vehicle, such as blind spot detection, 

front collision warning, etc.  
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Nearly all vehicles on the road today are Level 0 autonomous vehicles. Although a lot 

of new vehicles are equipped with different kinds of warning systems, these warning 

systems cannot control the vehicle. For example, blind spot detection, detects if there is 

any vehicle in the blind spot of the vehicle, but does not provide any suggestions to the 

driver, such as keeping or changing lane. These systems work passively and merely 

provide drivers with assistive information to make better decisions.  

1.2.2.2. Level 1 – Driver-assistance 

Vehicles equipped with driver-assistance functionality will be considered as in Level 1. 

The driver is fully responsible for the control of the vehicle, similar to Level 0. However, 

the car can take partial control of the vehicle in some specific scenarios, such as highway 

with clear lane markers. The driver must pay attention to the surrounding environment 

and be ready to take over control of the vehicle at any time. 

Features such as Adaptive Cruise Control (ACC) and Lane Departure Warning (LDW) 

can be considered as Level 1 autonomous features. Level 1 autonomous vehicles already 

exist on market. 

1.2.2.3. Level 2 – Partial Automation 

Level 2 autonomous vehicles contains all Level 1 features, whereas Level 2 features 

contains more advanced automation, including Lane Keeping/Centering Assist, 

Automatic Emergency Braking, ACC with stop and go, etc. Similar to Level 1, these 

functions work only in specific conditions, such as well-illuminated highways and local 

roads. Level 2 vehicles will monitor the surrounding environment when certain features 

are turned on. When the vehicle detects obstacles or events that the system is not able to 

respond, the control of vehicle will be handed back to the driver immediately, with audio 
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or light signals. 

Even though the vehicle can self-drive in some certain conditions, the driver is still 

responsible for the overall control of the vehicle and should pay full attention to the 

traffic all the time. Tesla’s autopilot system was the first commercial Level 2 autonomous 

system on the market [10]. 

 

Figure 6 SAE J3016 Levels 3 - 5 of Driving Automation [9] 

1.2.2.4. Level 3 – Conditional Automation 

With more sophisticated functionalities, Level 3 vehicles can be considered as self-
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driving vehicles under more complicated conditions. A vehicle with Level 3 automation 

is capable of monitoring multiple objects in the surrounding environment, such as traffic 

lights, pedestrians and traffic signs, etc. The vehicle can drive in most highways and part 

of local roads without involving the driver. In industry, an important criterion for Level 3 

automation is that the vehicle can perform lane changing without the driver turning the 

blink signal [11]. 

The driver can rely on the vehicle in some scenarios; yet the driver should keep his/her 

hands on the steering wheel all the time as a safety protocol. Level 3 vehicles might still 

be affected by some extreme weather conditions. Some companies, such as Google and 

Uber [12] have already developed prototype vehicles that reach Level 3 automation in 

2013 and is aiming at production.  Automated Parking Valet (APA) is considered to be a 

Level 3 automation feature [11, 13]. 

1.2.2.5. Level 4 – High Automation 

In this case, Level 4 autonomous vehicles can be switched to self-driving mode by the 

driver and perform self-driving in most road and weather conditions. The driver is not 

required to pay full attention to the surrounding environment, meaning that the vehicle 

can take full control of the steering/throttle/brake of the vehicle. If the system determines 

that there is an emergency situation that it cannot handle, warnings will be given to the 

driver and the driver will take over the control of the vehicle. 

Tesla has claimed that the autopilot system is hardware ready for Level 4 automation 

[?]. However, due to legal issues, wireless software update for the autopilot system has 

not been released yet at this moment [?]. Auto Parking Valet (APV) is considered to be a 

Level 4 automation feature [11, 13].  
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1.2.2.6. Level 5 – Full self-driving Automation 

Vehicles with full self-driving capability will be classified as Level 5. In this case, the 

vehicle can be designed with no driver. Steering wheel, shift lever, throttle and brake 

pedal can be removed from vehicle. The vehicle is able to drive itself with or without 

human inside the vehicle cabin. The vehicle is equipped with redundant autonomous 

system with multiple sensors mounted on the vehicle. The sensors will be able to provide 

precise information of surrounding environment in different illumination and weather 

conditions. 

Furthermore, Level 5 automation vehicles support connected vehicle features, such as 

communicating with infrastructure and other vehicles using cloud. The vehicle will be 

connected to the cloud for traffic and road condition information, and HD maps. Software 

updates will also be downloaded from the cloud. 

Numerous competition projects related to topics of ADAS and autonomous vehicles 

have been conducted by universities and research institutes since the late 80’s. In 1988, 

Carnegie Mellon University’s NAVLAB project vehicle was among the first that 

demonstrated ADAS features [14]. The NAVLAB vehicle was able to perform a lane 

center keeping (LCK) feature using computer vision algorithms. Research on 

autonomous vehicles has become a hot topic since them. A few decades later, in 2004, a 

famous competition – DARPA Grand Challenges rolled out. The objective of this 

competition for each team was to develop a driverless vehicle that is able to travel 

through deserts. Seven teams attended this competition, yet none finished even 5% of the 

full length of the course [15]. In 2007, DARPA Urban Challenge aimed at developing a 

self-driving car that can travel on urban roads, adding more complexity and challenge to 
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this competition [16]. A heavily equipped Chevrolet Tahoe developed by Carnegie 

Mellon University and General Motors won the competition.  

 

Figure 7 2007 DARPA Urban Challenger Winner [17] 

Starting 2009, tech-companies begin to develop commercial self-driving cars. Google 

being the first, Uber, Lyft and Tesla started to develop prototype self-driving cars. 

Among all these companies, Google was the first company to start the project and has the 

most experience on it, with about 8 million miles of accumulative mileage by the year of 

2018. Tesla works more on marketing, as their 2016 Model S with Autopilot system 

became the first Level 2 autonomous vehicle on the market. 

Sensor fusion is a critical method in perception system of autonomous vehicles. The 

definition of sensor fusion has been changing over the decades [19]. Several terms such 

as “sensor fusion”, “data fusion”, “multi-sensor data fusion”, “multi-sensor integration”, 

etc. have been prevalently used in literature to refer to data that is obtained from multi-
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channel of information. Wald proposed the term “data fusion” in 1998 to be used as a 

summary of the terminologies listed above [20]. Dasarathy proposed to use a new term 

“information fusion”, which has not been used extensively before [21], as an overall 

terminology for fusion of any kind of data. Sensor fusion is a subset of information 

fusion, and the definition of sensor fusion is  

“the combining of sensory data or data derived from sensory data such that the 

resulting information is in some sense better than would be possible when these sources 

were used individually”. [19] 

Sensor fusion has been applied in autonomous driving systems and ADAS in multiple 

perspectives. Currently, autonomous driving systems use different levels of sensor fusion 

technology. For example, fusion architecture is divided in to 4 levels in a perception 

system of an autonomous vehicle: low level, map level, object detection level and track 

level [22]. 

• Low level: Raw data collected from sensors is converted into machine readable 

format. Detection provided by each sensor is fused in raw-data level to generate 

a map for further processing. 

• Map level: Simultaneous Localization And Mapping (SLAM) is done in the 

map level with each sensor output. The generated maps from each sensor are 

combined to get a fused map. Notice that the map created in the map level is not 

the predecessor for object detection level. Actually, they are processed in 

parallel. 

• Object detection level: In this level, specific objects will be detected from 

sensor outputs. Sensor will perceive the surrounding environment and provide a 
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list of moving objects. Combining lists from each sensor will increase object 

detection precision and accuracy. An enhanced list will be sent to track level for 

further processing. 

• Track level: After obtaining a list of moving objects from the object detection 

level, the track level fusion algorithms will extract time features from the list 

and produce a list of tracked objects. Track level increases track accuracy and 

helps prevent false tracks. 

An environment model is created after the four levels of fusion. A complete model 

contains two models from the four levels of fusion: one from low level/map level and one 

from object detection level/track level. The first one involves path planning and 

navigation functions, usually a HD map and a destination is required for this model [23]. 

Here we will only talk about the second model, which is the world model containing 

information of objects around the vehicle. 

A variety of sensors can be put onto a vehicle. Due to some limitations, we choose only 

cameras as sensors. Cameras mounted on different locations of the vehicle will be 

integrated into a sensory system for parking spot detection. 

Camera and ultrasonic sensor are the two major sensors that are widely used in 

automated parking assist systems. Ultrasonic sensors can evaluate distance from objects, 

while the video provided by cameras can be used for object detection [24].  

Auto parking technology has already been used in production vehicles. Several OEMs 

started to equip their luxury vehicles with auto parking assist system [25]. Being the first 

to put auto parking on a production vehicle, Ford’s auto parking assist system is 

convenient indeed, supporting both parallel and perpendicular parking. However, like 
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most APA systems on market, it still has limitations. Most APA systems on market 

require the driver to be engaged during the whole time, while the only automatic part is 

the control of the steering wheel. The driver needs to drive back and forth to find the 

parking spot, control brake and throttle of the vehicle and pay attention to the 

surrounding environment. 

During the recent years, many researches on improving the auto parking assist system 

were conducted. However, most auto-parking related systems are based solely on 

cameras. Cameras are used for parking spot detection and tracking during the parking 

process. The algorithm proposed were not robust enough for calculating some essential 

vehicle/environment states, such as the location of the vehicle, the location of the parking 

spot, the speed and heading of the vehicle, etc. C. Wang et al. proposed an auto parking 

system based on bird’s eye view computer vision system in 2013 [26]. A camera-based 

parking spot detection and vehicle localization method was developed in this paper. The 

vehicle states were estimated using the camera data, without other sensor data.  

 In 2015, J. K. Suhr et al. proposed an indoor and underground parking space detection 

method using AVM camera image processing [27]. S. Lee introduced slot context 

analysis method to available parking spot detection [28]. Histogram of Gradients (HOG) 

algorithms is used in this method to extract features. A machine learning based available 

parking spot detection method was proposed by L. Zhang et al. in 2018 [29]. The 

research goal of this thesis is to develop a multi-sensor fusion method for auto-parking 

application. 
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1.3. Objective and scope of thesis 

Research Question: 

How to use sensor fusion to improve auto parking technology? 

How to utilize path planning algorithms for auto parking? 

Sub Questions: 

What is the state-of-the-art of auto parking technology? 

How is sensor fusion used in auto parking technology?  

What does auto-parking system contain?  

The objective of this work is to develop a vehicle-to-environment (V2E) system that 

would provide accurate detection of parking spots in a parking lot and planning a 

potential path to park the vehicle. The innovation of this system is that it utilizes multi-

sensor with learning and recognition algorithms, including sensor fusion algorithms. 

Different sensors such as cameras, LiDAR, GNSS and ultrasonic sensors will be fused 

for better accuracy in terms of detection and localization. A series of road tests will be 

conducted to define an auto-parking assistance system and quantify the effectiveness of 

such a system in terms of successfully parking the vehicle into available parking spots.  

The goal of sensor fusion is to adopt combinations of sensor technologies to provide 

accurate parking spot detection and provide potential maneuvering path to the driver. The 

system will use a combination of sensor technologies mounted on the vehicle and 

learning/recognition algorithms. Sensor fusion algorithm will determine an object list 

from raw sensor data. Fused objects, including vehicles, pedestrians and parking spot 

lines, will be integrated to the world model for further motion planning. Motion planning 

will work with or without a pre-defined map. A suggested trajectory will be generated as 
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an output of motion planning. The trajectory contains the route planned by path planning 

algorithms, as well as the speed profile of the vehicle. Perception and sensor fusion 

algorithms will be tested with a series of on road tests. Motion planning algorithms and 

vehicle controller will be simulated with visualization in MATLAB and ROS. 
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2.  CHAPTER II SENSOR SELECTION AND SENSOR FUSION ALGORITHMS 

Sensors are one of the most important parts in an ADAS. For a human driver, eyes, ears 

and other sensory organs such as tactile feelings are “sensors” for driving. These human 

“sensors” will perceive the surrounding environment to provide information to the brain 

for further processing. The responsibility of sensors in an autonomous vehicle is to 

perceive the surrounding environment for sensor fusion, motion planning and vehicle 

control. In this chapter, the criteria for sensor selection and sensor fusion algorithms will 

be established.  

2.1. Criteria for sensor selection 

Performance Aspect Human Radar LiDAR Camera 

Object Detection Good Good Good Fair 

Object Classification Good Poor Fair Good 

Distance Estimate Fair Good Good Fair 

Edge Detection Poor Poor Good Good 

Lane Tracking Good Poor Poor Good 

Visibility Range Good Good Fair Fair 

Poor Weather Performance Fair Good Fair Poor 

Dark or low Illumination 

Performance 

Poor Good Good Fair 

Figure 8 ADAS sensor performance comparison [30] 

2.1.1. Environmental conditions 

• Extreme weather (heavy rain, snow, or fog): Reduces maximum range and 

signal quality (acuity, contrast, excessive visual clutter) for human vision, AV 
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visual systems (cameras, lidar). 

• Excessive dirt or physical obstructions (such as snow or ice) on the vehicle: 

Interferes with or reduces maximum range and signal quality (acuity, contrast, 

physical occlusion of field of view) for human vision and all basic AV sensors 

(cameras, lidar, radar).  

• Darkness or low illumination: Reduces maximum range and signal quality 

(acuity, contrast, possible glare from external light sources) for human vision 

and AV camera systems.  

• Large physical obstructions (buildings, terrain, heavy vegetation, etc.): 

Interferes with line of sight for human vision and all basic AV sensors 

(cameras, radar, lidar). 

• Dense traffic: Interferes with or reduces line of sight for human vision and all 

basic AV sensors (cameras, radar, lidar). 

2.1.2. Distance and Speed Tracking 

• Stereo cameras can detect distance, but detection accuracy isn’t as good as 

radars. 

• Radars were invented for speed tracking, especially acceleration, which 

cameras cannot easily detect. Even though speed information could be obtained 

using camera, speed sensor and IMU, more sensor fusion work is needed. The 

complexity of the system will also increase. 

2.1.3. Curve 

• Front radar is perfect for front object detection, but the performance of front 

corner will be reduced significantly when the vehicle enters a curve with quite 
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large curvature. In this case side sensors (either side camera or corner radar) are 

necessary. 

2.1.4. Efficiency and energy consumption 

• Energy consumption of radar could go as low as 5W each – according to Bosch 

MRR datasheet 

• Detection result sent from radars to vehicle CAN bus could go at a speed of 

least 20Hz. Yet to speed up the processing speed of camera, resolution, in other 

words detection accuracy, will be compromised. 

Sensors on autonomous vehicles are supposed to perceive information from the 

surrounding environment, mimicking human drivers. For autonomous vehicles, all areas 

around the vehicle are considered to be blind spots. Sensors such as cameras, Radars, 

LiDARs, etc. are to cover the blind spots and detect moving objects around the vehicle.  

As shown in the diagram below, we can see that different sensors have different 

coverage areas. The large circle in blue is coverage areas of corner radars. The pie area in 

orange and red on the right are to be covered by cameras and front radars. The irregular 

shape on the left is rear radar coverage area. We will go into each type of sensor for 

detailed discussion on their specifications. 

 

Figure 9 multiple sensor coverage diagram (in-scale) 
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2.2. Camera 

Camera is one of the most important sensors in ADAS. Computer vision and machine 

learning algorithms can be used on camera captured video data for object detection and 

tracking. In autonomous vehicles, usually multiple cameras are deployed on different 

locations of the vehicle, such as front wind shield and side mirror, mimicking human 

driver’s vision system. The vision system could be either mono- or stereo camera system.  

 

Figure 10 Spider chart of camera performance 

Cameras equipped with object detection are capable of detecting objects of 

surroundings of the vehicle, such as vehicles, pedestrians. Due to the limitations of radars 

and LiDARS, road lanes and traffic signs can only be detected by cameras. The table 

below shows some preferred requirements of camera systems on autonomous vehicles. 

Table 4 Specifications of front view camera on autonomous vehicles 

Parameters Preferred Value 
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Distance range 0.5…50 m 

Detectable objects Car/Truck/Bus/Motorcycle 

Range resolution objects 0.5 m (@ 10 m range) 

Range accuracy objects 0.2 m (@ 10 m range) 

Angle resolution objects 2° (@ 10 m range) 

Lateral object position accuracy 0.05 (@ 10 m range) 

Speed range ±25 m/s 

Speed resolution 1 m/s 

Speed accuracy 0.2 m/s 

Lateral line resolution 0.1 m (@ 10 m range) 

Lateral center-line accuracy 0.05 m (@ 10 m range) 

Azimuth angle field-of-view ±15° 

The camera should have a detection range from 0.5m to at least 50m, between which 

pedestrians and vehicles might appear. The resolution of the camera might vary, 

depending on the computational capability of the vision processor. The higher the 

resolution, the higher the detection accuracy but also higher power consumption. Typical 

resolution for vehicle cameras is 800 pixels by 600 pixels and 1280 pixels by 720 pixels 

on development vehicles. 

2.3. Radar 

Radars, excellent range and range rate measurement sensor, play a very important role 

in autonomous vehicles. Radar generate electromagnetic waves and detect the reflection 

from objects. Although radars are not good at classifying objects – meaning they cannot 

estimate the contour of the object, they can measure object range and range rate 
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accurately. In extreme weather or poor illumination conditions, cameras might get 

blocked by rain or snow or even unable to capture pictures, while radar works robustly in 

these situations. Radars are widely used for adaptive cruise control and blind spot 

detection features. 

 

Figure 11 Spider chart of Radar performance 

Table 5 Preferred front Radar specs [31] 

Parameters Preferred Values 

Frequency range 76 ~ 77GHz 

Azimuth Field of View ±7°; ±25° 

Distance Range 0.5 – 100m 

Distance accuracy (far range) 0.2m 

Distance resolution (far range) 1m 

Lateral object position accuracy  0.05m（@10m range） 

0

1

2

3

4

5
Object Detection

Object Classificaiton

Distance Estimation

Edge Detection

Lane Tracking

Visibility Range
Poor Weather
Performance

Poor Illumination
Performance

Sensor Size/Mounting

Power Consumption

Sensor Cost

Radar



   

31 

 

Angle accuracy (far range) 0.3° 

Angle resolution (far range) 1° 

Speed range -25m/s--+25m/s 

Speed accuracy (far range) 0.1m/s 

Speed resolution (far range) 1m/s 

Acceleration estimation 0.2m/s^2（delay<200ms) 

Objects detectable  Car/Truck/Bus/Motorcycle 

Object tracking ＞10 simultaneous tracked objects 

Object classification Type of object 

Object size estimation width 

Object standing Detection 

Cut-in Cut-out detection Left right 

Update rate 50ms 

Processing delay ＜100ms 

Pitch angle compensation -3°…+3°  

Auto-alignment in azimuth > 3° 

 
 In a typical ADAS system with front object tracking capability, a narrow FOV Mid-

Range front radar sensor will be mounted on the center of the front fascia, together with a 

large FOV tri-focal camera [32]. The radar system can return object position with dx and 

dy coordinates, azimuth angle as well as object tracking list through CAN bus. The sensor 

fusion processor will be able to read radar detection data on CAN bus, merging the 

information from radar system with the graphic data to form a significant portion of raw 
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data used for sensor fusion.  

Ideally, four wide-FOV short-range corner radar sensors will be mounted on the 

corners of the vehicle, are as follows.  

Two front corner radars will detect whether if there are any potentially dangerous 

objects in the blind spot of the vehicle. The radars would be able to return the distance to 

the objects detected, and if either of the front corner detects the object is too close to the 

vehicle, the system will notify the driver by using audio or visual warning signals. The 

frequency of the warning signal will be decided according to the distance to the obstacles.  

Two rear corner radars will be working on the rear object detection. When the vehicle 

is travelling at over 30mph (estimated), the two radars will detect rear objects. When 

objects are moving fast towards the vehicle, the system will notify the driver and 

potentially maneuver the vehicle to achieve safer driving conditions, such as releasing the 

brake or changing lanes. When vehicle is travelling under 30mph, the two radars will 

collaborate with ultrasonic sensor for rear-crossing traffic detection. For example, when 

the vehicle is parking, the radars will detect potential moving vehicles and pedestrians 

behind the vehicle. Warning will be given to the driver when distance between ego 

vehicle and object is too small. 

The radar will improve the degree of sensor fusion. The sensor fusion process will be 

able to combine the objects’ distance and position information from front radar system 

with the objects’ position information from the camera graphics together. Based on 

detection results coming from radars, we can fuse the coordinate system of radar and 

camera to define a specific Region of Interest (ROI) for the camera. The camera only 

needs to run detection algorithm on the pre-defined ROI, filtering out irrelevant objects 
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such as trees, etc. Hence saving considerable amount of computational power compared 

to running detection algorithm over the whole image. This will significantly reduce the 

amount of data that object detection algorithm need to be working on, which will result in 

a higher processing speed, and reducing the safety concern due to data processing delay. 

For example, mid-range radar systems usually include a relatively narrow FOV but a 

longer detection range [31, 33]. Short-range corner radars with a wider FOV to cover a 

wider but nearer area [33]. As shown in the following plots, the corner radar (left) 

detection area with a SNR over 40 is wider-spread while the front radar detection area 

with a SNR over 40 is narrower but longer. For the front radar, the estimated range limit 

would be around 100m. 

 

Figure 12 Bosch Mid-Range Radar SNR vs. Distance [31] 

For distance detection and estimation, radar sensors are more powerful and accurate 

than cameras. The radar emits electromagnetic waves and, after a certain time interval, 

receives target object reflected waves, thus calculating the distance from the radar to the 

target object. In this way, the radar sensor is getting a clean distance value calculated 

simply by speed and time. By contrast, distance calculation for camera is not as “clean” 

as that for radar, even stereo cameras. Since the prerequisite for cameras to detect 

distance from an object is to have algorithms that know where bounding boxes for object 
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is in the frame. Note that the bounding box is always a rectangle, which means that not 

all pixels in the bounding box are part of the target object. Yet the distance calculation is 

usually based on every pixel in the bounding box or the size of the bounding box, which 

could be inaccurate due to the variation in object detector performance. A hardware-

triggered stereo camera would definitely have a better performance in range and range 

rate detection but is still limited by the performance of object detector. In summary, the 

distance calculation of camera would always have some inaccuracies caused by the 

redundant pixels. As a result, we have expected our current temporary range and range 

rate detection approach, using a mono-camera for distance calculation, is not very 

accurate. 

Another advantage of radar is that the returned targets’ dimensions are more accurate 

than those from cameras, assuming a testing condition with relatively light interferences 

is provided. The targets’ dimension calculations rely on the bounding boxes. And due to 

the limitation of object detector performance, the target dimension accuracy could also be 

limited. Whereas for radars, only a valid object surface would return electromagnetic 

waves that are used for dimension calculation. What’s more, the cameras are vulnerable 

to bad weather conditions such as fog, heavy snow, rain, etc., whereas the radars are not 

as vulnerable.  

On the other hand, radar sensors cannot distinguish the colors and patterns such as the 

lane marks, traffic signs, traffic lights, etc. which are all useful and important information 

for driver assistance systems. 

2.4. LiDAR 

LiDAR stands for Light Detection and Raging, LiDAR is a less common sensor 
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comparing with cameras and radars. LiDAR has never been deployed in a production car 

but is usually a standard choice on development vehicles. Many autonomous vehicle 

developers, such as Google, Nvidia, Baidu, etc., use LiDAR as their primary perception 

sensor. LiDAR can emit laser beams to measure object distance, outputting a point cloud 

map describing the surrounding environment. LiDAR is good for benchmarking and 

works as a reference data source for object detection and tracking. 

 

Figure 13 Spider chart of LiDAR performance 

Currently there are three major types of LiDARs for autonomous vehicles: Flash 

LiDAR, Multi-beam LiDAR and Scanning Beam LiDAR. Each type has pros and cons, 

they are used in different ADAS applications and are usually mounted on different 

locations on the vehicle. Flash LiDAR and Multi-beam LiDAR are solid LiDARs. 

Table 6 Comparison among different types of LiDARs 

LiDAR Performance Flash LiDAR Multi-beam Scanning-beam 
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Criteria LiDAR LiDAR 

Resolution  High High, in Parallel Low, sequential 

Range Short   Far  Far  

Bad weather 

performance 

Scatter in fog 

Good in all weather 

conditions 

Scatter in fog 

Power consumption High Low High 

Others 

Confused by 

similar flashes 

Not confused and no 

steering 

Beam steering 

system needed 

 

Table 7 Preferred front LiDAR specs [31] 

Manufacturer Velodyne Velodyne 

Model VLP-16 Puck HDL-64E S3 

Radar Type Scanning beam Lidar Scanning beam Lidar 

Channel Numbers 16 64 

Measurement range 100m 120m 

Accuracy ± 3 cm ± 2 cm 

FoV (vertical) +15° to -15° +2.0° to -24.9° (26.9°) 

Angular resolution 

(vertical) 

2° 0.4° 

FoV 

(horizontal/azimuth) 

360° 360° 

Angular resolution 

(horizonal/azimuth) 

0.1° – 0.4° 0.08° – 0.35° 
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Rotation rate 5 - 20 Hz 5 - 20 Hz 

Point output Up to 0.3 million points/second 

3D LiDAR Data Points 

Generated:  

- Single Return Mode: 

~1,300,000 points per second  

- Dual Return Mode: 

~2,200,000 points per second 

Output Interface 100 Mbps Ethernet 100 Mbps Ethernet 

GPS receiver 

$GPRMC NMEA sentence 

from GPS receiver (GPS not 

included) 

$GPRMC NMEA sentence 

from GPS receiver (GPS not 

included) 

Power consumption 8 W 60 W 

Operating voltage 9 -32 V DC 12 V – 32 V 

Weight 

830 grams (w/o cabling) / 590 

gram (puck lite) 

28 lbs. (12.7 Kg) (w/o cabling) 

Vibration 5 Hz to 2000 Hz, 3G rms Not Specified 

Storage/Operating 

temperature 

-10° to +60° C/- 40° to +105° C -10° to +60° C/- 40° to +85° C 

 

2.5. Ultrasonic Sensors 
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Figure 14 Spider chart of ultrasonic sensor performance 

Ultrasonic sensors are commonly used in parking systems of vehicles. Similar to 

radars, ultrasonic sensors can detect object range by receiving and processing ultrasonic 

signal sent by itself. The frequency of each ultrasonic pulse is beyond human ear’s 

hearing range, between 25kHZ and 50kHz. The physical model of the ultrasonic sensors 

can be represented by  

p(x,w) =  −
𝑖𝑤𝑝

2𝜋
∫ 𝑣𝑧

1

𝑠

(𝑦, 𝑤)
 𝑒𝑖𝑘𝑟

𝑟
 𝑑𝑠(𝑦) 

where, in our case, p is the density of air, w is the angular frequency of the ultrasonic 

pulse transmitted by the sensor, vz  is the velocity of sound perpendicular to the 

transducer, r is the distance from the object to the transducer [34]. 

2.6. Driver Status Monitoring Sensors 
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Figure 15 Spider chart of Driver Status monitoring performance 

Development of a driver-status evaluation system is an important and popular topic in 

ADAS, in which the driver aggressiveness and drowsiness will be evaluated as a factor of 

deciding how much the ADAS system will become involved. An algorithm will monitor 

the acceleration and brake pedal signals and will generate an aggressiveness score every 

few seconds. Combining detection output of the sensor fusion algorithm, the ADAS will 

be provided with continuous reporting of front vehicle distance and speed, and the 

aggressiveness score on the driver, the decision on when to engage the driver alert will be 

made accordingly. Similarly, considering the distance and signal returned by the 

drowsiness detection module, the decision on when to engage the driver alert would be 

made. 

2.6.1. Required Hardware 

A decision-making system is needed to decide when and under what situations the 

driver need to be warned. The ADAS controller would be the decision maker. Some 
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driver feedbacks are realized using a display. The display should be small enough not to 

block driver’s view while big enough to provide clear information to driver. For front 

collision warning, the feedback would be a red bounding box on the display plus alarm 

beeping sound emitted by a beeper. A driver drowsiness monitor is also planned to be 

used, and the feedback for drowsiness being detected would be a blinking red LED. To 

activate the LED and the beeper mentioned above, an I/O module that can be controlled 

by the ADAS controller is also needed. 

2.6.2. Interfacing with Vehicle Systems and Current/Potential Issues 

Signals indicating vehicle steering angle, steering angle ratio, vehicle speed, vehicle 

yaw rate and shift lever position are needed for Bosch radar sensors to work properly and 

have an optimized tracking functionality. The signal that indicates turning blinker status 

will also be needed for the lane departure warning system, to indicate if it is a driver 

intended lane departure activity if detected. Sports mode indication signal is needed for 

our ADAS application. When the car is in sports mode, the ADAS system will get less 

involved in the driver feedback. 

2.6.3. Sensor Limitation Impact on Driver Feedback 

For the camera, the lane departure warning function is based on the road lane detection, 

and an accurate lane detection algorithm is the prerequisite for a stable lane departure 

warning system. The driver feedback for lane departure is invalid if an accurate lane 

detection cannot be achieved. Scenarios like the driver is warned lane departure but the 

car is actually in the middle of the lane could happen. Under a poor illumination 

condition, the accuracy for lane detection and vehicle detection could be worse. The fact 

that the camera does not have a high enough resolution will make the far object detection 
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difficult. This could result in no data being usable as a cross check with radar returned 

data, thus increase the probability of having an invalid bounding box position for the 

driver feedback. 

2.7. Localization sensor and IMU 

Localization sensor and IMU are not new to autonomous vehicles, even conventional 

vehicles. They are not used for perception or decision-making algorithm, but for 

localization purposes. Unlike conventional vehicles controlled by human drivers, 

autonomous vehicle relies strongly on localization sensors. The accuracy of the world 

model depends on the accuracy of localization sensor. GNSS and IMU can also be used 

to verify if the vehicle is travelling along the pre-generated path within error tolerance.  

The United States government currently claims 4-meter RMS (7.8-meter 95% 

Confidence Interval) horizontal accuracy for civilian (SPS) GPS. Vertical accuracy is 

worse. Autonomous vehicles usually require much higher accuracy. In this case, Real 

Time Kinematic is used for higher accuracy on most development vehicles [35]. 

2.8. Sensor fusion algorithm 

Sensor fusion algorithms will be applied to mono-cameras mounted around the vehicle 

and GNSS sensor. The cameras are responsible for lane detection and object detection. 

Sensor fusion algorithm would be carried out on an ADAS controller, in our case a 

powerful laptop, that connects all the sensors.  

Once the lanes are detected, lanes’ coordinates will be sent from the vision processor to 

the sensor fusion processor within the ADAS laptop, where the lanes’ coordinates will be 

transformed onto vehicle coordinate system. Meanwhile cameras will also send vehicle 

detection results to ADAS controller. Concurrently, vehicle detection results will also be 
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sent to the sensor fusion processor.  

One critical issue for sensor fusion is time synchronization. The synchronized time 

stamp would ensure that the detections from each camera are from the same moment, 

thus to make sure the cross check between the output data from each camera is accurate.  

There are two types of sensors, which we use for the ADAS, radars and the mono-

camera. They work at the same time, thus measurements need to be taken for combining 

the data from different sources and get fused data, to enhance the robustness as well as 

the variety of useful information. As shown below, our ADAS system is a star-shaped 

structure and the master node would be the ADAS controller. The sensor fusion process 

is carried out within the ADAS controller. 
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Figure 16 Planned ADAS System Structure 

Our ADAS system would be a star-structured network and the controller would be the 

central node of the network. The controller would receive the CAN signals from every 

sensor as well as vehicle CAN network and would generate the CRCs for the radars. In 

addition, it would gateway all the vehicle dynamic information needed for radars. We 
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choose this structure with the following several considerations: 

With this structure, we have more freedom of manipulating all the available signals that 

are currently needed for our ADAS system, as well as those are potentially needed for 

future algorithm modifications. A controller that supports model-based programming 

would greatly accelerate software development process for the following reasons: It gives 

us the convenience of choosing different programming method based on different 

applications. In addition, some algorithms are more suitable for State flow, which would 

give us a much more structured and intuitive UI. The ADAS controller would greatly 

help us in CAN communication. When the dbc file is loaded, the programming interface 

would give us the application level information directly and the user would know each 

signal name and routing straightforwardly. A dedicated ADAS controller would be 

responsible for all the sensor fusion algorithms and decision-making process, thus 

alleviate the calculation burden on the image processing unit, to which the frame rate and 

processing speed is a key factor. 

The HMI display is designed to let the driver control the vehicle before and during the 

parking. Qt creator software and an Android tablet are used for creating the HMI display. 
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Figure 17 HMI Display UI and Tablet 
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3. CHAPTER III CASE STUDY 

3.1. Automated perpendicular/horizontal parking 

 

Figure 18 Automated parking use case 

Auto parking system can be divided to 6 sub-systems. Perception, sensor fusion, route 

planning, behavior decision making, motion planning and vehicle control. A detailed 

illustration of each system will be conducted in this section. 

Since the vehicle usually moves slowly during a parking process, we will use simple 

vehicle dynamics model to represent the vehicle for motion planning. Suspension 

dynamics will be ignored, a 3-DOF bicycle model will be used in motion planning 

analysis as well as simulation. 
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Figure 19 Vehicle dynamics model 

The vehicle dynamics equation would be  

[
 
 
 
 
𝑥
𝑦
𝜓
𝑣
𝜓̇]
 
 
 
 

=  

[
 
 
 
 
 
 
 𝑥 +

𝑣

𝜓̇
(− sin𝜓 + sin (𝑇𝜓̇ + 𝜓))

𝑦 +
𝑣

𝜓̇
(cos𝜓 − 𝑐𝑜𝑠 (𝑇𝜓̇ + 𝜓))

𝑇𝜓̇ + 𝜓
𝑣
𝜓̇ ]

 
 
 
 
 
 
 

 

In the equations, x and y are the reference point of the vehicle coordinate system, 

which is located on the rear differential of the vehicle; 𝜓 is the heading angle of the 

vehicle; 𝜓̇  is the yaw rate of the vehicle; 𝑣  is the velocity of the vehicle; L is the 

wheelbase of the vehicle. 

3.1.1. Perception 

Perception is the first and one of the most important processes in auto-parking system. 
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In our case, we don’t have a HD map as a reference for available parking spot look-up. 

Therefore, sensors mounted on the vehicle detects other vehicles, available parking spots, 

as well as potential obstacles in the parking lot. Different types of sensors can be used in 

the auto parking system, such as cameras, ultrasonic sensors, LiDARs. Due to budget and 

technical issues, also in consideration of sensor fusion algorithm development, we choose 

to use multiple cameras as the major perception sensor.  

Perception system can also be divided into two parts, available parking spot detection 

and object detection/tracking. Object detection and tracking algorithms are discussed in 

Chapter 4.  

The core algorithm for parking spot detection is line detection. Similar to lane detection 

on public roads, parking spot detection algorithms will recognize geometric shapes such 

as lines and rectangles. Perspective transform, edge detection and line fitting are 

commonly used in lane detection algorithms [36]. Perspective transform will convert the 

camera image to a bird eye view image. The reason of perspective transform is to get a 

better view field of view of an image. The image below taken from a webcam will be 

used as an example for image processing. 
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Figure 20 Picture of commercial parking lot taken from webcam 

However, lines in parking spots are more complicated than road lanes. For example, as 

shown in the figure below, parking spots has different shapes, orientations. The margin of 

each parking spot could be dashed, solid, or even double lines. Therefore, the detection 

algorithm should have the ability to recognize different types of parking spots. 

 

Figure 21 Different types of parking spots 

The perception algorithm for cameras can be divided to six parts, as shown in the figure 

below. Note that camera calibration automatically calibrate distortion caused by camera 
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lens. Camera calibration is very important on cameras with wide field of view, such as 

fish eye cameras. 

 

Figure 22 Camera perception algorithm flow chart 

3.1.1.1. Perspective transform and color space conversion 

The math behind perspective transform is simply multiplying matrices to an image. An 

image is made of pixels, each pixel has its value between 0 and 255, representing the 

greyscale of the image. An image with resolution of 1024 × 768 is a 1024-by-768 matrix 

with pixels as each element in the matrix. We can rotate, scale, shear and stretch the 

image by applying matrices to it. 

Perspective transform can be considered as an orthographic projection. In computer 

graphics, the 6-tuple which defines the clipping planes, can be used as the orthographic 

transform matrix. 
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Figure 23 Left, right, top, bottom, near and far in computer graphics [37] 

The orthographic transform matrix to be applied to an image is  

𝑃 =

[
 
 
 
 
 
 
 

2

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡
0 0 −

𝑟𝑖𝑔ℎ𝑡 + 𝑙𝑒𝑓𝑡

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡

0
2

𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚
0 −

𝑡𝑜𝑝 + 𝑏𝑜𝑡𝑡𝑜𝑚

𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚

0 0 −
2

𝑓𝑎𝑟 − 𝑛𝑒𝑎𝑟
−
𝑓𝑎𝑟 + 𝑛𝑒𝑎𝑟

𝑓𝑎𝑟 − 𝑛𝑒𝑎𝑟
0 0 0 1 ]

 
 
 
 
 
 
 

  

 

Camera calibration can also be considered as a process of perspective transform. 

Distorted camera image should be calibrated before processing. The black and white 

shapes within the chessboard are considered perfect squares for reference. By calculating 

the distortion rate, we can compute a correction matrix to be applied to each image frame 

later. 

 



   

51 

 

 

Figure 24 Camera calibration results 

Color space conversion is also used in the perception algorithm. Parking spot lines 

painted on the ground are usually yellow and white. Conversion from RGB to HSV color 

space can distinguish these light colors from other colors. Similar to RGB, Hue 

Saturation Value (HSV) is a type of color space model.  

 

Figure 25 HSV Color space [38] 
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𝑉 ← max(𝑅, 𝐺, 𝐵) 

𝑆 ← {
𝑉 −min (𝑅, 𝐺, 𝐵)

𝑉
, 𝑖𝑓 𝑉 ≠ 0

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝐻 ←

{
  
 

  
 

60(𝐺 − 𝐵)

𝑉 −min(𝑅, 𝐺, 𝐵)
,   𝑖𝑓 𝑉 = 𝑅

120 +
60(𝐵 − 𝑅)

𝑉 −min(𝑅, 𝐺, 𝐵)
,   𝑖𝑓 𝑉 = 𝐺

240 +
60(𝑅 − 𝐺)

𝑉 −min(𝑅, 𝐺, 𝐵)
,   𝑖𝑓 𝑉 = 𝐵

 

If 𝐻 < 0 then 𝐻 ← 𝐻 + 360. The output of HSV color space is restricted to 

0 ≤ 𝑉 ≤ 1, 0 ≤ 𝑆 ≤ 1, 0 ≤ 𝐻 ≤ 360. 

After the perspective transform and color space conversion, we can see the yellow lines 

clearly even with human eyes.  

 

Figure 26 Image after perspective transform and color space conversion 

3.1.1.2. Canny Edge Detection 
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Canny edge detection is used to detect features in an image, especially edge features. 

John Canny developed this edge detector in 1986 [39]. In order to detect edges in an 

image, a Gaussian filter will be applied to the image to smooth the image. Noise and 

useless feature details will be filtered out. 

𝑔(𝑚, 𝑛) = 𝐺𝜎(𝑚, 𝑛) ∗ 𝑓(𝑚, 𝑛) 

Where  

𝐺𝜎 =
1

√2𝜋𝜎2
exp (−

𝑚2 + 𝑛2

2𝜎2
) 

We can get the gradient of each image by performing any of the gradient operators such 

as Roberts, Prewitt, Sobel, etc. 

𝑀(𝑛, 𝑛) = √𝑔𝑚2 (𝑚, 𝑛) + 𝑔𝑛2(𝑚, 𝑛) 

And  

𝜃(𝑚, 𝑛) = arctan [
𝑔𝑛(𝑚, 𝑛)

𝑔𝑚(𝑚, 𝑛)
] 

Then we can calculate the threshold M by 

MT(𝑚, 𝑛) = {
𝑀(𝑚, 𝑛)  𝑖𝑓 𝑀(𝑚, 𝑛) > 𝑇

0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Where T is chosen that all edge elements are kept while most of the noise is suppressed. 

3.1.1.3. Hough Line Transform 

After getting edge features from a canny edge detector, we need to fit lines in the image 

to visualize potential lanes. Lines in an image space can be defined as two parameters, 

either in Cartesian or Polar coordinate system. 

For Hough transform, the parameters of lines will be discussed in the Polar system, as 

following,  
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y = (−
cos 𝜃

sin 𝜃
) x +

𝑟

sin 𝜃
 

r = x cos 𝜃 + 𝑦 sin 𝜃 

For each pixel in the image (x0, 𝑦0), we can consider a group of lines that goes through 

that point as 

r𝜃 = 𝑥0 ⋅ cos 𝜃 + 𝑦0 ⋅ sin 𝜃 

And each pair of (rθ, θ) represents a unique line that has (x0, 𝑦0) on it. We can draw a 

group of lines on this point, each plot will add a sine wave to the graph. We will consider 

only points such that 𝑟 > 0 and 0 < 𝜃 < 2𝜋. 

For every point in the image, we can do similar iteration to find several sets of points 

that are on the same line. If more than one set of points were considered to be on one 

specific line, then there is high probability that we can declare a line detection. Hough 

transform tracks the intersection of each point set we found in the image. If the number of 

intersections goes over a pre-defined threshold, we consider there is a line. 

After getting lines from Hough transform, we can create a bounding box using the four 

coordinates of the two side lines of a detected parking spot. Before completing the 

parking spot detection, the last step after Hough line transform is to convert the 

coordinates of the lines back to the original image. This can simply be done by 

performing inverse perspective transform. 
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Figure 27 Picture after line detection 

3.1.2. Object Detection Algorithms – Convolutional Neural Networks 

The object detection and tracking algorithms are developed and applied on Nvidia GPU 

platform, which runs on a 16.04 Ubuntu OS, with a USB-webcam connected to laptop as 

a mono camera. The camera is mainly responsible for object detection and tracking. 

Object range and range rate measurement will also be part of its job, which will be 

discussed in the next section. 

YOLO (You Only Look Once) is a real-time object detector equipped with deep fully 

convolutional neural network to generate bounding boxes, class labels and confidence 

scores. YOLO-network were used as object detection algorithm. This single network is 

applied to the full image, by first dividing the image into several sub-regions to predict 

probabilities as well as confidence scores for each region. Then bounding boxes are 

added to the image according to the confidence score. We designed a 34-layer 

convolutional neural network with two classes for vehicle feature extraction and 
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detection. The weights file for the networks was trained using GTI and KITTI vehicle 

picture dataset by PC with Nvidia GPU. The speed of YOLO-network is boosted using 

NVidia CUDA toolbox, which utilizes GPU on embedded Jetson TX2, increasing 

detecting speed from 2~3 FPS (CPU only) to 15~18 FPS (GPU only). 

The coordinates of the bounding box are used for tracking objects. Kalman filter 

algorithm is used for vehicle tracking and labelling. We use OpenCV Kalman filter class 

and functions to predict the future position of the bounding box coordinates and reduce 

noise in the detected location. The tracking algorithm helps to associate multiple physical 

objects with their corresponding tracks. Different vehicles will be labeled with unique 

IDs throughout the whole detection period. 

Range and range rate measurement can also be realized by using mono cameras, though 

predicting accuracy and robustness are not as good as radars. However, with the neural 

network algorithm, our detecting- and tracking-algorithms are robust enough to predict 

relatively accurate values for slow moving objects. 

3.1.3. Another Object Detection Algorithm – HOG and SVM approach 

We tested both HOG and YOLO on PC. Compared to an average of 15 FPS on Jetson 

TX2, YOLO can reach 50 FPS on a PC with Nvidia GeForce GTX 1066 for vehicle 

detection with the same algorithms. 

For lane detection we improved our algorithm by adding perspective transform and 

creating a series of search windows over the lines.  For perspective transform, OpenCV 

function cv2.getPerspectiveTransform (Python) and cv2.warpPerspective to generate a 

linear matrix transform. For search windows, which is like sliding-window technique, but 

with an extra action of splitting the windows into left and right halves. 
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For vehicle detection, Histogram of Oriented Gradients (HOG), and Support vector 

machine (SVM) approach is used by classifying vehicle using the HOG feature and color 

space feature. By performing a HOG feature extraction on a labeled training set of 

images, a linear SVM classifier could be trained. Linear SVM is a linearly scalable 

routine meaning that it creates an SVM model in a CPU time which scales linearly with 

the size of the train data set. It should be noticed that our training data set was created 

from the images that our team member took for previous ADAS tasks. Normalization of 

differences in magnitude between the color-based and gradient-based feature and sliding-

window technique are used for trained classifier to search for vehicle in an image. This 

yields the result of images with adjacent boxes, as shown below. 
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Figure 28 Heat map of vehicles in picture 

However, the result is not satisfactory because there are many positives and multiple 

detections. Heatmap is a solution for this problem. By overlapping bounding boxes on the 

target image, calculating the accumulating rate of bounding boxes and create a heat map 

for vehicle detection. While the final results are satisfactory, yet the elapsed time for a 

vehicle detection is too long (0.2FPS). Furthermore, high contrast images would make 

our detector more accurate and robust. 

Table 8 Performance and processing speed of two algorithms 

Algorithms True positive rate (%) Processing speed (FPS) 
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On PC On Jetson TX2 

HOG + SVM ~90 0.191 <0.01 

Convolutional Neural Network 80.42 30-50 15-17 

 

True positive rate is calculated by comparing detection result and ground truth labeled 

in the footage video captured by webcam on Jetson. Note that our neural network has 

quite high true positive rate when the object is quite close to the camera. As shown in the 

pictures, neural network algorithms start to detect vehicles at the distance of ~40 meters 

form the object (distance between each cone is 10 meters. 



   

60 

 

 

 

Figure 29 Comparison between HOG+SVM and Neural Network algorithms vehicle 

detection results 
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Figure 30 On-road test of Neural Network algorithm 

We tested the neural network algorithm using pictures from Internet taken in different 

time and weather conditions. For example, sunny, snowy, foggy and rainy days, as well 

as daytime and nighttime traffic. Testing pictures have cars with different shapes and 

driving directions. Number of cars in each picture also varies. 
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Figure 31 Partial results for evaluating performance of vehicle detection algorithms 

The output of the camera image processing algorithms contains obstacle position and 

raw data of each available parking spots. Especially for parking spot detection, some 

features will be the input of sensor fusion algorithms, which will be discussed in the next 

section. 
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Figure 32 Image of parking lot after lane detection and object detection 

3.1.4. Sensor fusion 

Sensor fusion system is the critical part in the auto parking system. Sensor fusion 

algorithm collects objects list and parking spot features obtained from perception 

algorithms. GPS signal will also be fused to get the accurate location of the vehicle, i.e., 

the trajectory of the vehicle will be tracked when it starts to move. The information was 

used to build an environment model for localizing the car and identifying obstacles. Here 

we propose two approaches. 

The first approach starts with Around View Monitor (AVM). Fusion image of four 

surround view cameras mounted on the four sides of the vehicle, we can obtain an around 

view picture by performing perspective transform, feature matching, then connecting and 

stitching four images to a large AVM image. The perception algorithm such as object 

detection and tracking, lane detection algorithms are conducted in the AVM image. The 

detection result (typically an object list) of perception algorithms can be directly put into 
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the world model for further processing. 

The second approach is to do perception on each camera. Object detection/tracking and 

lane detection algorithms are performed by each camera and the detection results are put 

into the world model after perspective transform. This step requires the exact position of 

each camera. And the perception algorithm should have the ability to estimate the 

distance of the object. 

In this research project, we will use the second method. To get a around view 

monitoring image, at least four high resolution cameras are needed. The location 

accuracy of the camera and dimension of the vehicle are critical to calibrating the camera. 

After calibration, the stitched surround view image is too distorted for object detection, as 

shown in the figure below. 

 

Figure 33 Distorted vehicles in surround view camera system [40] 

In our case, we will use the second method to avoid complicated camera calibration. In 
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future work, we can mount high-resolution cameras permanently on a development 

vehicle to obtain the surround view and use other sensors to perform object detection. 

During the parking process, the location of the vehicle is critical for path planning and 

localization. In the auto parking system, we will use GPS and IMU for localization. GPS 

will be used both in experiment and simulation. However, hacking into the IMU of a 

vehicle is difficult, IMU will only be used in the simulation environment. 

As is discussed in the vehicle dynamics model earlier in this chapter, five parameters of 

the vehicle are used for describing the localization information of the vehicle. We will 

use a state vector to describe the vehicle model.  

xk = [𝑥 𝑦 𝜓 𝑣 𝜓̇] 

We will get readings of these five parameters from different sensors on the vehicle. X 

and Y are the position of the vehicle coming from the GPS, in Cartesian coordinate. 𝜓 

and 𝜓̇  are the yaw angle and yaw rate of the vehicle coming from IMU, in polar 

coordinate. 𝑣 is the speed of the vehicle. The value of speed comes from vehicle wheel 

encoder, and the heading of the vehicle comes from GPS.  

As is described in the vehicle dynamics model, these five parameters are constrained by 

nonlinear functions. We will use extended Kalman filter for estimating the state of the 

vehicle. The mathematical model of an extended Kalman filter can be written as [41] 

𝒙𝑘 = 𝑔(𝒙𝑘−1, 𝒖𝑘−1) + 𝒘𝑘−1 

𝒛𝑘 = ℎ(𝒙𝑘) + 𝒗𝑘 

Where 𝒘𝑘 and 𝒗𝑘 are noises occurred when processing and measuring the sensor data, 

respectively. They can be considered as mean Gaussian noises with Q and T covariance. 

Function g and h can be used to calculate the predicted state/measurement from the 
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previous estimate. At each step, a Jacobian matrix is applied between the prediction 

functions and the noise covariance.  

From the vehicle dynamics model we can get that  

[
 
 
 
 
𝑥
𝑦
𝜓
𝑣
𝜓̇]
 
 
 
 

=  

[
 
 
 
 
 
 
 𝑥 +

𝑣

𝜓̇
(− sin𝜓 + sin (𝑇𝜓̇ + 𝜓))

𝑦 +
𝑣

𝜓̇
(cos𝜓 − 𝑐𝑜𝑠 (𝑇𝜓̇ + 𝜓))

𝑇𝜓̇ + 𝜓
𝑣
𝜓̇ ]

 
 
 
 
 
 
 

 

Then we can take partial differential of the vehicle state matrix to get the Jacobian 

matrix of the vehicle state 

Jacobian(state)

=

[
 
 
 
 
 
 
 1 0

𝑣

𝜓̇(− cos𝜓 + cos(𝑇𝜓̇ + 𝜓))

1

𝜓̇(− sin𝜓 + sin(𝑇𝜓̇ + 𝜓))
…

0 1
𝑣

𝜓̇(− sin𝜓 + sin(𝑇𝜓̇ + 𝜓))

1

𝜓̇(cos𝜓 − cos(𝑇𝜓̇ + 𝜓))
…

0 0 1 0 …
0 0 0 1 …
0 0 0 0 …]

 
 
 
 
 
 
 

      

[
 
 
 
 
 
 
 …

𝑇𝑣

𝜓̇
cos(𝑇𝜓̇ + 𝜓) −

𝑣

𝜓2̇ (− sin𝜓 + sin(𝑇𝜓̇ + 𝜓))

…
𝑇𝑣

𝜓̇
sin(𝑇𝜓̇ + 𝜓) −

𝑣

𝜓2̇ (cos𝜓 − cos(𝑇𝜓̇ + 𝜓))

… 𝑇
… 0
… 1

 

]
 
 
 
 
 
 
 

  

Extended Kalman filter can handle synchronization of different sensors. For example, 

in our case, the sample rate of GPS is 10Hz, while other sensors have a sample rate of 

50Hz. Before we start fusing the data using extended Kalman filter, we will set up the 

initial environment, including initial uncertainty, noise covariance matrix, etc. Assuming 
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the initial parameters of the vehicle are 0, meaning when the driver activates auto-parking 

functionality, the vehicle is static, and the GPS is reset to the location where the driver 

stopped.  

The next step is to define the sensor measurement noise, as is pointed out by Kelly, A., 

etc., the uncertainty estimates take on the significance of relative weights of state 

estimates and measurements. So it is not so much important that uncertainty is absolutely 

correct as it is that it be relatively consistent across all models [42]. We will define the 

measurement noise covariance R as  

R =

[
 
 
 
 
𝑣𝑎𝑟(𝐺𝑃𝑆𝑥)

2 0 0 0

0 𝑣𝑎𝑟(𝐺𝑃𝑆𝑦)
2

0 0

0 0 𝑣𝑎𝑟(𝑆𝑝𝑒𝑒𝑑)2 0

0 0 0 𝑣𝑎𝑟(𝑌𝑎𝑤)2]
 
 
 
 

 

Where var()  is the standard deviation of sensor measurement. Here we define the 

standard deviation is 6, 1 and 0.1, for GPS, speed and yaw rate, respectively. 

The Process Noise Covariance Matrix Q is defined as 

Q =

[
 
 
 
 
𝑠(𝐺𝑃𝑆𝑥)

2 0 0 0

0 𝑠(𝐺𝑃𝑆𝑦)
2

0 0

0 0 𝑠(𝑆𝑝𝑒𝑒𝑑)2 0

0 0 0 𝑠(𝑌𝑎𝑤)2]
 
 
 
 

 

Where s() is the maximum value a sensor can measure. 

The extended Kalman filter has a loop that performs prediction and correction of the 

state parameters. Within each time-stamp in the loop, the prediction process will project 

the state and error covariance one time-stamp ahead, using the Jacobian matrix calculated 

each iteration.  

𝑥𝑘+1 = 𝑔(𝑥𝑘, 𝑢) 

𝑃𝑘+1 = 𝐽𝐴𝑃𝑘𝐽𝐴
𝑇 + 𝑄 
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The correction process will update the estimate via sensor measurement as well as the 

error covariance used in the prediction phase. 

𝐾𝑘 = 𝑃𝑘𝐽𝐻
𝑇(𝐽𝐻𝑃𝑘𝐽𝐻

𝑇 + 𝑅)−1 

𝑥𝑘 = 𝑥𝑘 + 𝐾𝑘(𝑧𝑘 − ℎ(𝑥𝑘)) 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐽𝐻)𝑃𝑘 

The output of the sensor fusion algorithm contains parking spot features, as well as the 

ego vehicle information, as shown in the table below. 

Table 9 Description of sensor fusion output parameters 

Sensor fusion output Description 

𝑖 Starting from zero, ID records the indices 

of all the parking spots found. 

𝑥𝑝, 𝑦𝑝 The orientation of the parking spot. The 

direction of the parking spot will determine 

vehicle motion planning. 

𝑑𝑖 Geometric feature of the parking spot 

𝑤𝑖 Geometric feature of the parking spot 

𝑚, 𝑛, 𝑝, 𝑞 Localize the parking lot in the frozen world 

coordinate. 

𝜁 Probability for the parking spot is available 

𝑡𝑦𝑝𝑒_𝑖 Different types of detected parking lot 

𝑣 Value of vehicle speed 

𝜓 Heading of vehicle speed 
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𝑥𝑣, 𝑦𝑣 Relative position to the original point, 

where auto-parking started 

𝜓̇ Yaw rate of vehicle 

 

Sensor fusion result will be integrated in the world model. These features listed in the 

table are essential for vehicle maneuvering such as motion planning and local feedback 

control. 

3.1.5. Route planning, behavior decision making and motion planning 

With the perception and sensor fusion information, we can plan a path from the start 

point to the desired destination. In our case, the start point is the location of the vehicle 

when it detected an available parking spot. The destination is the center of the available 

parking spot.  

Many path planning algorithms can be used in autonomous vehicle, such as Dijkstra 

algorithm, RRT algorithm, A* algorithm, etc. According to Reeds and Shepp [43], in a 

parking lot with obstacles, as long as there is a trajectory that can avoid all the obstacles 

between the initial and destination point, there is a Reeds-Shepp curve that allows the 

vehicle to move from start to end. To obtain a Reeds-Shepp curve, random searching 

algorithm are usually used to find a path for the vehicle. In our case, we will choose RRT 

as our path planning algorithm. RRT is the abbreviation for Rapid-exporting Random 

Trees.  

Below is the pseudo code for RRT algorithm. The advantage of RRT algorithm is fast 

speed. During the auto-parking process, every time the vehicle moves, the path planning 

algorithm will re-generate a path for the vehicle to follow. This requires the path planning 
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algorithm to be fast in terms of processing speed. 

Algorithm BuildRRT 

  Input: Initial configuration qinit, number of vertices in RRT K, incremental distance 

Δq) 

  Output: RRT graph G 

  G.init(qinit) 

  for k = 1 to K 

    qrand ← RAND_CONF() 

    qnear ← NEAREST_VERTEX(qrand, G) 

    qnew ← NEW_CONF(qnear, qrand, Δq) 

    G.add_vertex(qnew) 

    G.add_edge(qnear, qnew) 

  return G 
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Figure 34 Reference path generated by RRT 

3.1.6. Vehicle control 

Motion planning determines reference velocity and reference pose of the vehicle. In the 

simulation environment, the vehicle is controlled by steering wheel, throttle and brake, 

same as vehicles we drive daily. In our case, vehicle control is a path follower. Using 

feedback control, the vehicle will be driven with a pre-defined path and speed profile, as 

discussed in the last section. In order to control the vehicle to follow the path created by 

path planning algorithm, a simple PID controller will be applied to control the vehicle. 
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Figure 35 Diagram of the speed PID controller 

 

Figure 36 Diagram of the feed-forward steering PID controller 
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4. CHAPTER IV EXPERIMENTAL AND SIMULATION RESULTS 

A universal simulation tool for ADAS feature testing and validation is developed in 

this chapter. The simulation tool, especially for the auto-parking algorithm simulation, is 

conducted in Robot Operating System (ROS). ROS is an open source simulation 

environment for robotics research application. In this simulation environment, vehicle 

simulation tool such as Gazebo and visualization tool such as Rviz can be used as the 

main development platform. 

4.1. ROS Environment setup 

In Gazebo, a plug-in open source software for robot visualization and simulation, 

vehicles and obstacles are simulated. In our simulation, a Lincoln MKZ is used as the ego 

vehicle. Vehicle dynamics discussed in the previous chapter can be defined in Gazebo. In 

this vehicle model, vehicle mass, center of mass and Ackermann steering mechanism are 

also simulated to make the model more realistic.  

Multiple sensors are mounted on the vehicle, including a front view camera; a perfect 

GPS with Gaussian noise added; a surround view camera system with four fisheye 

cameras; an IMU; a mid-range Radar; 12 ultrasonic sensors and a Velodyne 32 beam 

scanning LiDAR. Although not all the simulated sensors are used in the auto-parking 

application, they can be reserved for future work. For example, the LiDAR and Radar can 

be used as major sensors for level 3 or level 4 feature development such as highway pilot. 

From the screenshots taken in Gazebo below, we can see how the vehicle is modeled and 

the two obstacles are for visualization purposes. 
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Figure 37 Vehicle model built in Gazebo with different view angle 

As is discussed in the previous chapter, the auto-parking process can be divided to six 

parts. Perception, sensor fusion, route planning, behavior decision making, motion 

planning and vehicle control. All these functionalities can be simulated in ROS 

environment. 
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Figure 38 Surround view camera simulation 

As is shown in the figure above, four surround view cameras are mounted on the 

simulation vehicle. A top-down view camera is deployed to monitor the status of the 

vehicle using a bird eye view. The image captured by the cameras can be used for image 

processing purpose, as discussed in previous chapters. GPS sensors can be setup on the 

vehicle, providing the speed, heading and position of the vehicle. In Gazebo, sensor data 

will be transmitted as a rostopic. Command $ rostopic echo /vehicle/* can be used to 

visualize sensor data. 

 

Figure 39 On-vehicle GPS data acquired from rostopic list 
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Figure 40 LiDAR detection result in simulation environment 

As is shown in the figures above, virtual sensors mounted on the vehicle can be used to 

perceive information from the virtual world in Gazebo. Sensor fusion, motion planning 

and vehicle control will be conducted within the work flow below. The work flow graph 

is generated by command $ rqt_graph. This command can help us visualize all the nodes 

and topics from the simulation environment. 

 

Figure 41 RQT Graph of the simulation environment 

4.2. MATLAB Simulation Environment 

Algorithm development in ROS can be performed in either C++ or Python. However, 
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we can also use MATLAB ROS Toolbox to communicate between ROS and MATLAB. 

In this case, we can develop all the algorithms in MATLAB Simulink and Simscape. In 

our case, the sensor fusion result processed in ROS will be transmitted to MATLAB as a 

ROS topic. Motion planning and vehicle control algorithm are conducted in Simulink. 

We can also visualize the parking process in MATLAB Simscape multi-body simulator.  
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Figure 42 Auto-parking Simulation result in different view angles 

Similarly, algorithm output from MATLAB, such as reference path and vehicle 

steering angle, can also be transmitted to ROS environment. In the following simulation 

experiment, lane detection result detected from ROS is transmitted to MATLAB, where 

path planning and vehicle control is performed. The generated path and steering angle are 

transmitted back to ROS, in order to control the vehicle to drive within the lane, as shown 

in the figure below. The whole system can reach a speed of 10 FPS, meaning 10 

messages transmitted to ROS per second. 
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Figure 43 Lane Keeping Assist simulation based on ROS and MATLAB 

4.3. Experimental results 

4.3.1. Surround view camera experiment 
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Figure 44 Camera mounted on the vehicle for experiment 

The experiment for surround view camera parking spot detection is conducted in an 

open US parking lot with yellow solid line markers. A webcam is mounted near the wing 

mirror on the side window. The videos recorded from the webcam was stored for post 

processing. Parking spot detection and object detection are performed on the video. 
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Figure 45 Parking spot and object detection in a parking lot 

Comparing with ground truth labeled by human drivers, the true positive rate for 

parking spot detection after sensor fusion is 73%. Most of the false negative detection are 

due to non-robust computer vision algorithms. The detection algorithm is sensitive to 

cracks on the ground and vehicle shade that partially covered lines on the ground.  

4.3.2. GNSS vehicle tracking experiment 

Normal GNSS (GPS) receivers usually have a few meters of positioning errors, and not 

accurate enough for use in ADAS applications. RTK GNSS can achieve a better 

positioning accuracy with positioning errors of a few centimeters, but they are very 

expensive. In our experiment, we used an embedded GNSS sensor with antenna, 

developed based on Arduino.  
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Figure 46 GNSS Sensor for vehicle localization 

The GNSS is using the RTK base station in the City of Warren, Michigan. The base 

station is located at 42° 32' 02.45507" N, 83° 01' 13.34816" W.  

 

Figure 47 RTK base station near Warren waste water treatment plant on Google Map 

With the GNSS sensor, we can get accurate position of the test vehicle, which is an 

essential assumption in the sensor fusion algorithm discussed in the previous chapters. 

During the experiment, the GNSS sensor is mounted on the top of the test vehicle. The 

vehicle was driven around in a parking lot. The GNSS has a 10Hz sample rate and after 



   

83 

 

applying Kalman filter to it, the trajectory is smooth. The trajectory of test vehicle is 

drawn on Google Map background. 

 

Figure 48 Vehicle location GNSS signal during experiment 

The GNSS sensor can be used to create an HD map for future work. The antenna was 

put on the parking spot lines, road curb and s light pole to create a scaled map for the 

parallel parking. 

 

Figure 49 Simple HD Map creation using GNSS sensor  
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5. CHAPTER V CONCLUSION AND FUTURE WORK 

5.1. Conclusions 

This thesis presents an integrated design of Auto-Parking Assist in an Advanced Driver 

Assistance System. The modified architecture of the ADAS, especially for auto-parking 

feature, is introduced in this thesis. The system was broken down to four major sub-

systems: sensor selection, perception and signal processing, motion planning and 

behavior decision making, and vehicle control and trajectory following. Each sub-system 

was discussed in detail in this thesis. A ROS based simulation environment has been 

developed to simulate the performance of the ADAS feature, based on individual tests on 

perception, sensor fusion, path planning, and vehicle control. Due to resource limitation, 

simple experiments such as camera image processing for available parking spot detection 

and GPS localization were conducted. More sophisticated experiment involving more 

sensors and processors are planned for future work. 

Sensor selection criteria for autonomous driving have been established in this thesis. 

Different types of sensors have pros and cons to be utilized in different use cases, in 

terms of ADAS features, traffic conditions and surrounding environments. Cameras and 

localization sensors such as GPS are used for auto-parking application. Sensor fusion 

between cameras and GPS using extended Kalman filter are discussed in the thesis. 

Cameras mounted around the vehicle are used for detecting available parking spots. GPS 

is used as a localization sensor in order to obtain the accurate location of ego vehicle for 

minimizing accumulative error. The fused sensors will provide more accurate parking 

spot detection result as well as vehicle localization information. Motion planning 

algorithms are based on Reeds-Shepp and Rapid-exploring Random Tree (RRT). Based 
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on the detection and fusion result from the perception and sensor fusion system, an initial 

point and a destination point will be defined in the vehicle coordinate system. The RRT 

algorithm was used as a path planning algorithm to plan a feasible path that guides the 

vehicle to the parking spot. A PID controller is used to control the steering angle of the 

vehicle to follow the trajectory. 

A simulation environment has been designed and setup up in Robot Operating System 

(ROS). Virtual vehicle, lane markers, parking lot and obstacles such as vehicles and 

pedestrians are defined in the simulation world. The simulation vehicle subjects to a 

bicycle vehicle dynamics model. Virtual sensors such as cameras, GPS receiver, LiDAR 

and ultrasonic sensors are simulated in ROS.  

5.2. Future work 

5.2.1. Algorithm improvement 

The sensor fusion algorithm is based on the constant velocity vehicle model, which 

limits the motion planning and vehicle control of the system. For example, the path 

planning algorithm will only be able to generate a geometric path without generating a 

speed profile for the trajectory. At the same time, a more sophisticated vehicle controller 

can be developed to handle real-world experiments, such as Model Predictive Control, 

Fuzzy Control, etc. 

5.2.2. Use cases in other ADAS feature scenarios  

The ADAS architecture design in this thesis can also be migrated to other ADAS 

functionalities to achieve a higher level of automation. For example, Adaptive Cruise 

Control (ACC), Traffic Jam Assis (TJA), High Way Assist (HWA), etc. can adopt the 

sensor fusion and motion planning algorithm. 
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Figure 50 Adaptive cruise control: use case scenario on local roads 
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Figure 51 Adaptive cruise control: use case scenario on highways 

Adaptive cruise control is commonly used as the primary ADAS feature on vehicles. 

When adaptive cruise control is enabled on highway or local express way, the ego vehicle 

will cruise at a pre-set speed and follow the preceding vehicle by automatically adjusting 

throttle and brake. If the preceding vehicle slows down or cut-in, the ego vehicle should 
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be able to detect the speed difference between itself and the preceding vehicle and adjust 

its speed accordingly. 

 

Figure 52 Traffic jam assist use case 

Traffic jam assist is another important ADAS feature yet not many vehicles have in 

their ADAS package. The system will automatically adjust steering, throttle and brake to 

navigate the vehicle in traffic jam situations. Normally the system will drive the vehicle 

in the host lane and will not change lane. When the driver turns on the turning lights, the 

system can provide necessary information to the driver (such as blind spot detection 

results, etc.), but the system will not have any physical operations.  
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APPENDIX 

Parking spot to world model coordinate transform 

#include <ros/ros.h> 

#include <geometry_msgs/PoseStamped.h> 

#include <tf/transform_listener.h> 

 

ros::Publisher parkingspot_publisher; 

 

void transformPose(const tf::TransformListener& listener){ 

  //we'll create a point in the base_laser frame that we'd like to transform to the base_link 

frame 

  geometry_msgs::PoseStamped parkingspot; 

  parkingspot.header.frame_id = "world"; 

 

  //we'll just use the most recent transform available for our simple example 

  parkingspot.header.stamp = ros::Time(); 

 

  //just an arbitrary point in space 

  parkingspot.pose.position.x = 0.0; 

  parkingspot.pose.position.y = 0.0; 

  parkingspot.pose.position.z = 0.0; 

  parkingspot.pose.orientation.x = 0.0; 

  parkingspot.pose.orientation.y = 0.0; 
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  parkingspot.pose.orientation.z = 0.3428978; 

  parkingspot.pose.orientation.w = 0.9393727; 

  try{ 

    geometry_msgs::PoseStamped base_point; 

    listener.transformPose("vehicle/base_footprint", parkingspot, base_point); 

    parkingspot_publisher.publish(base_point); 

    ROS_INFO("world: (%.2f, %.2f. %.2f) -----> base_footprint: (%.2f, %.2f, %.2f) at 

time %.2f", parkingspot.pose.position.x, parkingspot.pose.position.y, 

parkingspot.pose.position.z, base_point.pose.position.x, base_point.pose.position.y, 

base_point.pose.position.z, base_point.header.stamp.toSec()); 

  } 

  catch(tf::TransformException& ex){ 

    ROS_ERROR("Received an exception trying to transform a point from \"world\" to 

\"base_link\": %s", ex.what()); 

  } 

} 

 

int main(int argc, char** argv){ 

  ros::init(argc, argv, "parkingspot_tf_listener"); 

  ros::NodeHandle n; 

  parkingspot_publisher = 

n.advertise<geometry_msgs::PoseStamped>("parkingspot",1000); 

  tf::TransformListener listener(ros::Duration(10)); 
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  //we'll transform a point once every second 

  ros::Timer timer = n.createTimer(ros::Duration(0.1), boost::bind(&transformPose, 

boost::ref(listener))); 

 

  ros::spin(); 

 

} 

 

Transmit Brake Command from MATLAB to ROS 

#! /usr/bin/env python 

import rospy 

from dbw_mkz_msgs.msg import BrakeCmd 

 

class CmdKeeper: 

    def __init__(self): 

        rospy.init_node('BrakeCmd_Keeper') 

        rospy.Subscriber('/vehicle/SimulinkBrakeCmd', BrakeCmd, self.recv_brakecmd) 

        self.pub_brakecmd = rospy.Publisher('/vehicle/brake_cmd', BrakeCmd, 

queue_size=1) 

 self.start = False 

 self.cmd = BrakeCmd() 

 self.pubrate = rospy.Rate(50) 
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    def pub_cmd(self): 

 while not rospy.is_shutdown(): 

  if self.start: 

   self.pub_brakecmd.publish(self.cmd) 

  self.pubrate.sleep() 

    def recv_brakecmd(self, msg): 

         

 self.cmd.pedal_cmd = msg.pedal_cmd 

 self.cmd.pedal_cmd_type = msg.pedal_cmd_type 

 self.cmd.enable = msg.enable 

 self.cmd.clear = msg.clear 

 self.cmd.ignore = msg.ignore 

 self.cmd.count = msg.count 

 self.start = True  

     

if __name__ == '__main__': 

    node_instance = CmdKeeper() 

    node_instance.pub_cmd() 

rospy.spin() 

 

Steering Command 

#! /usr/bin/env python 
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import rospy 

from dbw_mkz_msgs.msg import SteeringCmd 

 

class CmdKeeper: 

    def __init__(self): 

        rospy.init_node('SteerCmd_Keeper') 

        rospy.Subscriber('/vehicle/SimulinkSteerCmd', SteeringCmd, self.recv_steeringcmd) 

        self.pub_steercmd = rospy.Publisher('/vehicle/steering_cmd', SteeringCmd, 

queue_size=1) 

 self.start = False 

 self.cmd = SteeringCmd() 

 self.pubrate = rospy.Rate(50) 

    def pub_cmd(self): 

 while not rospy.is_shutdown(): 

  if self.start: 

   self.pub_steercmd.publish(self.cmd) 

  self.pubrate.sleep() 

    def recv_steeringcmd(self, msg): 

         

 self.cmd.steering_wheel_angle_cmd = msg.steering_wheel_angle_cmd 

 self.cmd.steering_wheel_angle_velocity = msg.steering_wheel_angle_velocity 

 self.cmd.enable = msg.enable 

 self.cmd.clear = msg.clear 
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 self.cmd.ignore = msg.ignore 

 self.cmd.quiet = msg.quiet 

 self.cmd.count = msg.count 

 self.start = True  

     

if __name__ == '__main__': 

    node_instance = CmdKeeper() 

    node_instance.pub_cmd() 

rospy.spin() 

 

Throttle Command 

#! /usr/bin/env python 

import rospy 

from dbw_mkz_msgs.msg import ThrottleCmd 

 

class CmdKeeper: 

    def __init__(self): 

        rospy.init_node('ThrottleCmd_Keeper') 

        rospy.Subscriber('/vehicle/SimulinkThrottleCmd', ThrottleCmd, 

self.recv_throttlecmd) 

        self.pub_throttlecmd = rospy.Publisher('/vehicle/throttle_cmd', ThrottleCmd, 

queue_size=1) 

 self.start = False 
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 self.cmd = ThrottleCmd() 

 self.pubrate = rospy.Rate(50) 

    def pub_cmd(self): 

 while not rospy.is_shutdown(): 

  if self.start: 

   self.pub_throttlecmd.publish(self.cmd) 

  self.pubrate.sleep() 

    def recv_throttlecmd(self, msg): 

         

 self.cmd.pedal_cmd = msg.pedal_cmd 

 self.cmd.pedal_cmd_type = msg.pedal_cmd_type 

 self.cmd.enable = msg.enable 

 self.cmd.clear = msg.clear 

 self.cmd.ignore = msg.ignore 

 self.cmd.count = msg.count 

 self.start = True  

     

if __name__ == '__main__': 

    node_instance = CmdKeeper() 

    node_instance.pub_cmd() 

rospy.spin() 
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Research and development in autonomous vehicles are currently very active since these 

vehicles are expected to play an important role in future transportation.  During the past 

decade, numerous Advanced Driver Assistance Systems (ADAS) features have been 

developed and implemented on production vehicles, such as Adaptive Cruise Control and 

Lane Keeping Assist.  However, most ADAS features are aimed to assist driving on 

highways where the environments are usually more structured and decision making can 

be made more easily.  Non-highway environments, such as in the case of self-parking, are 

unstructured and require more complicated analysis of the image information, 

localization and path planning.  Most camera-based auto-parking features are limited to 

partial autonomy, not intelligent enough to park a vehicle automatically without the 

participation of a driver.  Camera-based auto-parking systems can detect parking spots 

but cannot accurately localize the vehicle as well as the parking spot.  ds.  These 

algorithms are specifically designed for ADAS under low velocity and requires high 
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precision vehicle maneuvering, by increasing the localization accuracy, in terms of 

vehicle and parking spot location.  The APA system will help the driver to search for 

available parking spots and self-drive the vehicle into the parking spot safely.  The 

strategic architecture of the auto-parking system includes environment perception, sensor 

data fusion, motion planning, and vehicle control.  Perception algorithms such as line 

detection and object detection are discussed in this thesis.  Sensor data fusion and data 

association using extended Kalman filter for parking spot and vehicle location tracking 

are developed in this thesis.  Rapidly-exploring Random Tree (RRT) motion planning 

algorithm is used to generate a path, leading the vehicle to park into the parking spot.  

Simulations for sensor data processing, data association and motion planning are 

conducted in a Robot Operating System (ROS) environment.  A versatile virtual 

environment with vehicle dynamics model and control algorithms are developed in the 

simulation environment.  Parking spot detection, vehicle behavior decision making, and 

motion planning are tested based on virtual sensor signals modelled in ROS.  Simulation 

results show that the vehicle can self-drive into the parking spot without the participation 

of a driver. Vehicle localization field experiments based on GPS sensor fusion has been 

conducted in an open parking lot. Localization accuracy of ego vehicle is improved.  
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