
Wayne State University Wayne State University

Wayne State University Theses

January 2019

Ros-Based Sensor Fusion And Motion Planning For Autonomous Ros-Based Sensor Fusion And Motion Planning For Autonomous

Vehicles: Application To Automated Parkinig System Vehicles: Application To Automated Parkinig System

Yuanzhe Li
Wayne State University, lyzkevin96@gmail.com

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_theses

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Li, Yuanzhe, "Ros-Based Sensor Fusion And Motion Planning For Autonomous Vehicles: Application To
Automated Parkinig System" (2019). Wayne State University Theses. 710.
https://digitalcommons.wayne.edu/oa_theses/710

This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been
accepted for inclusion in Wayne State University Theses by an authorized administrator of
DigitalCommons@WayneState.

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/oa_theses
https://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_theses/710?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages

ROS-BASED SENSOR FUSION AND MOTION PLANNING FOR

AUTONOMOUS VEHICLES: APPLICATION TO AUTOMATED PARKINIG

SYSTEM

by

YUANZHE LI

THESIS

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

2019

MAJOR: ELECTRICAL ENGINEERING

Approved By:

Advisor Date

Co-Advisor Date

ii

ACKNOWLEDGEMENTS

I would like to thank everyone who has supported me during the time I worked on my

thesis.

I would like to express gratefulness to Dr. Caisheng Wang, Dr. Chin-An Tan and Dr.

Hao Ying for serving as my committee.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF FIGURES ... vi

LIST OF TABLES ... ix

1. CHAPTER I INTRODUCTION .. 1

1.1. System architecture .. 5

1.1.1. Overall diagram of ADAS system .. 7

1.1.2. Function blocks... 8

1.2. Literature Review ... 10

1.2.1. Motivation .. 10

1.2.2. Literature review ... 13

1.3. Objective and scope of thesis ... 23

2. CHAPTER II SENSOR SELECTION AND SENSOR FUSION ALGORITHMS .. 25

2.1. Criteria for sensor selection.. 25

2.1.1. Environmental conditions ... 25

2.1.2. Distance and Speed Tracking ... 26

2.1.3. Curve .. 26

2.1.4. Efficiency and energy consumption ... 27

2.2. Camera ... 28

2.3. Radar .. 29

iv

2.4. LiDAR .. 34

2.5. Ultrasonic Sensors .. 37

2.6. Driver Status Monitoring Sensors .. 38

2.6.1. Required Hardware ... 39

2.6.2. Interfacing with Vehicle Systems and Current/Potential Issues 40

2.6.3. Sensor Limitation Impact on Driver Feedback ... 40

2.7. Localization sensor and IMU ... 41

2.8. Sensor fusion algorithm ... 41

3. CHAPTER III CASE STUDY ... 45

3.1. Automated perpendicular/horizontal parking... 45

3.1.1. Perception ... 46

3.1.2. Object Detection Algorithms – Convolutional Neural Networks 55

3.1.3. Another Object Detection Algorithm – HOG and SVM approach 56

3.1.4. Sensor fusion .. 63

3.1.5. Route planning, behavior decision making and motion planning 69

3.1.6. Vehicle control ... 71

4. CHAPTER IV EXPERIMENTAL AND SIMULATION RESULTS 73

4.1. ROS Environment setup ... 73

4.2. MATLAB Simulation Environment... 76

4.3. Experimental results ... 79

v

4.3.1. Surround view camera experiment ... 79

4.3.2. GNSS vehicle tracking experiment .. 81

5. CHAPTER V CONCLUSION AND FUTURE WORK.. 84

5.1. Conclusions .. 84

5.2. Future work .. 85

5.2.1. Algorithm improvement ... 85

5.2.2. Use cases in other ADAS feature scenarios ... 85

REFERENCES ... 95

ABSTRACT .. 101

AUTOBIOGRAPHICAL STATEMENT ... 103

vi

LIST OF FIGURES

Figure 1 Automated parking system [1] ... 2

Figure 2 ADAS Architecture .. 6

Figure 3 ADAS Architecture in details ... 7

Figure 4 Sensor mount locations... 8

Figure 5 SAE J3016 Levels 0 - 2 of Driving Automation [9] .. 14

Figure 6 SAE J3016 Levels 3 - 5 of Driving Automation [9] .. 16

Figure 7 2007 DARPA Urban Challenger Winner [17] ... 19

Figure 8 ADAS sensor performance comparison [30] ... 25

Figure 9 multiple sensor coverage diagram (in-scale) .. 27

Figure 10 Spider chart of camera performance ... 28

Figure 11 Spider chart of Radar performance ... 30

Figure 12 Bosch Mid-Range Radar SNR vs. Distance [31] ... 33

Figure 13 Spider chart of LiDAR performance .. 35

Figure 14 Spider chart of ultrasonic sensor performance ... 38

Figure 15 Spider chart of Driver Status monitoring performance 39

Figure 16 Planned ADAS System Structure ... 42

Figure 17 HMI Display UI and Tablet .. 44

Figure 18 Automated parking use case ... 45

Figure 19 Vehicle dynamics model .. 46

vii

Figure 20 Picture of commercial parking lot taken from webcam 48

Figure 21 Different types of parking spots ... 48

Figure 22 Camera perception algorithm flow chart .. 49

Figure 23 Left, right, top, bottom, near and far in computer graphics [37] 50

Figure 24 Camera calibration results .. 51

Figure 25 HSV Color space [38] .. 51

Figure 26 Image after perspective transform and color space conversion 52

Figure 27 Picture after line detection .. 55

Figure 28 Heat map of vehicles in picture .. 58

Figure 29 Comparison between HOG+SVM and Neural Network algorithms vehicle

detection results .. 60

Figure 30 On-road test of Neural Network algorithm .. 61

Figure 31 Partial results for evaluating performance of vehicle detection algorithms 62

Figure 32 Image of parking lot after lane detection and object detection 63

Figure 33 Distorted vehicles in surround view camera system [40] 64

Figure 34 Reference path generated by RRT .. 71

Figure 35 Diagram of the speed PID controller .. 72

Figure 36 Diagram of the feed-forward steering PID controller 72

Figure 37 Vehicle model built in Gazebo with different view angle 74

Figure 38 Surround view camera simulation .. 75

viii

Figure 39 On-vehicle GPS data acquired from rostopic list ... 75

Figure 40 LiDAR detection result in simulation environment ... 76

Figure 41 RQT Graph of the simulation environment .. 76

Figure 42 Auto-parking Simulation result in different view angles 78

Figure 43 Lane Keeping Assist simulation based on ROS and MATLAB 79

Figure 44 Camera mounted on the vehicle for experiment ... 80

Figure 45 Parking spot and object detection in a parking lot ... 81

Figure 46 GNSS Sensor for vehicle localization .. 82

Figure 47 RTK base station near Warren waste water treatment plant on Google Map .. 82

Figure 48 Vehicle location GNSS signal during experiment .. 83

Figure 49 Simple HD Map creation using GNSS sensor .. 83

Figure 50 Adaptive cruise control: use case scenario on local roads 86

Figure 51 Adaptive cruise control: use case scenario on highways 86

Figure 52 Traffic jam assist use case ...87

ix

LIST OF TABLES

Table 1 Luxury Vehicle ADAS Feature Summary [44] ... 4

Table 2 List of functionalities needs to be achieved ... 10

Table 3 Perception and Sensor Fusion Algorithm in ADAS Features 12

Table 4 Specifications of front view camera on autonomous vehicles 28

Table 5 Preferred front Radar specs [31] .. 30

Table 6 Comparison among different types of LiDARs ... 35

Table 7 Preferred front LiDAR specs [31] ... 36

Table 8 Performance and processing speed of two algorithms... 58

Table 9 Description of sensor fusion output parameters .. 68

1

1. CHAPTER I INTRODUCTION

The automotive industry is currently putting high focus on Advanced Driver Assistance

Systems (ADAS) and automated driving vehicles. ADAS helps drivers by conducting

complex driving tasks in different scenarios, even mitigating dangerous situations.

Currently, ADAS is widely used in production and development vehicles. ADAS such as

AutoPilot can achieve partial automation that allows the vehicle to drive by itself on

highways, even under traffic jam. Companies such as Waymo and Uber already started to

use their fleet as autonomous taxis [11].

By sensing the surrounding environment and creating an up-to-date world model, the

vehicle will be able to establish spatial and temporal relationship between the vehicle and

environment. The world model created in real time consists of two parts: kinematic

information of the ego vehicle, and the objects around the vehicle, such as velocity and

location, etc. for both ego vehicle and objective vehicle. The information provided by the

world model will be further used for path planning and by the control units to generate

potential paths and maneuvering the vehicle. To create the world model using perception

and sensor fusion, localization of the ego vehicle and object tracking are two of the most

important tasks. Multiple sensors mounted on the vehicle are responsible for localizing

the vehicle and detect/track objects. For example, Global Navigation Satellite System

(GNSS) and Inertial Measurement Unit (IMU) acquire the location of the vehicle, and

help define the start point and track the vehicle coordinates trajectory. While cameras,

Radars and LiDAR are used for object detection and tracking. Sensor data fusion is also a

crucial part of the world model realization. The sensor fusion algorithm collects data

from multiple sensors mounted on the vehicle. By processing and fusing the data from

2

the sensors, the output of the sensor fusion algorithm is a list of moving objects to be

displayed in the world model. In this thesis, the sensor fusion algorithm will not be

processing raw sensor data. Instead, detected but untracked object list will be processed

using the sensor fusion algorithm to generate an associated object list with a high

confidence level.

Figure 1 Automated parking system [1]

Auto-parking system is a relatively new feature in ADAS. Auto-parking can be

3

generally divided into two categories: Auto Parking Assist and Auto Parking Valet.

Currently the auto-parking system in an ADAS can only be considered as a partial Auto

Parking Assist, such as perpendicular and parallel parking. The system is less automated

than other features such as Adaptive Cruise Control, Traffic Jam Assist, etc. The reason

is that an auto-parking system requires more a sophisticated sensing and data fusion

process [2, 3]. In an auto-parking system, the world model usually gets an object list from

perception sensors, such as surround-view cameras and ultrasonic sensors. Vehicle

position and velocity are sent to the world model in real time, wheel encoders and IMU

are usually responsible for localization and velocity measurement. Current sensor fusion

algorithm cannot meet the requirement to fuse data in order to get accurate and precise

location of the vehicle as well as the surrounding environment. For auto-parking

application, vehicle equipped with cameras and ultrasonic sensor fusion has limited

information about the location and speed of the ego vehicle. Accumulative errors will

cause the vehicle to depart from the previous planned trajectory [4]. Thus, an improved

method for eliminating the accumulative error in vehicle localization should be

developed.

Most of the luxury vehicles sold are equipped with multiple ADAS features.

Regardless of the system performance, the common ADAS features of popular vehicles

on the market are listed in the table below. Adaptive Cruise Control (ACC) and Lane

Keeping Assist (LKA) have become standard on almost all luxury vehicles and some

mid-class vehicles. Traffic Jam Assist/Pilot (TJA/YJP) are offered on limited models of

luxury vehicles due to its performance stability as well as cost benefit issues. Even

though all vehicle manufactures require drivers to pay attention to the road as a mandate

4

while these features are enabled, they still help drivers with great driving experiences and

significantly increased driving safety, especially for long-distance driving.

Sensor fusion is critical for ADAS features. The key of an ADAS is to detect the

surrounding environment and make proper decisions to control the vehicle in order to

achieve some specific functionalities. Sensors mounted on the vehicle acquire tons of

data from the environment. These data from different sensors will not be useful unless

processed by a sensor fusion algorithm. Automated Parking Assist (APA), requires the

fusion of multiple sensors [24]. For example, APA feature needs all types of sensors used

in other ADAS features. However, it requires much higher accuracy in order to control

the vehicle in a relatively small area. APA is a very useful function that helps park or

even take over the whole parking process. This functionality is relatively new and yet not

many vehicles are equipped with it.

Table 1 Luxury Vehicle ADAS Feature Summary [44]

Test Vehicle ACC LKA/LDW TJA TJP HWA HWP APA

Tesla Model

X

yes yes yes yes yes yes yes

AUDI Q7 yes yes yes no yes no yes

Volvo XC90 yes yes no no yes no no

Jaguar I-pace yes yes no no yes no no

BMW X5 yes yes yes no no no no

Infiniti QX50 yes yes yes no yes no no

Acura RLX yes yes yes no yes no no

Cadillac CT6 yes yes no no no no no

5

MB AMG

GLS63

yes yes no no yes no no

1.1. System architecture

An ADAS consists of multiple layers of perception, decision making and control.

Sensors and sensor data processors are to perceive the surrounding environment via

object detection and tracking algorithms. The sensor fusion processor analyzes the data

collected from sensor data processor and outputs a moving object list with robust

detection and tracking, feeding to the world model. The world model is also built and

updated in the fusion processor. The decision maker is responsible for generating an

optimized path based on the world model information. The dynamics controller has all

the vehicle dynamics information and controls the vehicle to move along the pre-defined

trajectory.

6

Sensors

Fusion Processor

Decision Maker

Dynamics Controller

Actuator

Surrounding
Environment

Supervisory Controller

Fusion Processor

Decision Maker

Dynamics Controller

Health Monitoring System

E-Stop

Sensor Data Processor

Figure 2 ADAS Architecture

The whole system is designed to have two major parts: the nominal system and the

health monitoring system. Each part has its own fusion processor, decision maker and

vehicle controller. When a failure occurs anywhere within the nominal system, the health

monitoring system will take over the vehicle control and alarm the driver. The health

monitoring system runs concise but robust algorithms that have same functionalities with

7

the nominal system. Actuators are the parts that control the vehicle, such as VCU

throttle/brake controller and steering wheel encoder, etc.

1.1.1. Overall diagram of ADAS system

As previously introduced, an ADAS is designed to have six different components,

along with a redundant health monitoring system for safety concern. As shown in the

diagram below, each component has its own specific functionalities. The functionalities

of each component will be discussed in detail in the following.

Cameras
Front/
Rear

Radar

Corner
Radar

LiDARs
Ultrason

ic
Sensors

Vision
Processor

CAN Bus
LiDAR

Processor
US Data

Processor

Supervisory Controller Layer I: Sensor Fusion

Supervisory Controller Layer II: Path Planning

Supervisory Controller Layer III: Motion Planning

Steering, Throttle, Brake, Shift

World Model

Target Trajectory

Actuation Parameters

Route
Planning

Behavior
Layer

Local Feedback
Control

Motion
Planning

Steering Wheel Angle; Throttle Position;
Brake Position, etc.

String of Object position, velocity, size;
Environment Terrain

Creating World Model

Figure 3 ADAS Architecture in details

System mounting location is shown in Fig. 7. Sensors and processors are marked in the

diagram with different color labels. Cameras mounted on the wind shield are for the front

object detection and tracking. With calibrated stereo camera we can do simple distance

estimation. Radars are good at object detecting and speed estimation. Four of the corner

radars are responsible for cross traffic detection, while the front and rear radars are for

preceding and following object detection. The LiDAR mounted on the roof is used for

8

creating a machine-readable environment map by outputting point clouds, which can be

used for benchmarking and reference. Sensor specification and sensor selection criteria

will be discussed in Chapter 2.

Radar

Camera

Ultrasonic
Sensor

Processor

12V
Battery

R

R

Camera

Embedded PC

12V

US

12V

Embedded PC

US

US US

LiDAR

GPS

LiDAR

GPS

Figure 4 Sensor mount locations

1.1.2. Function blocks

1.1.2.1. Sensors

Sensors perceive information from the surrounding environment and feed acquired

information to other parts of the system. Cameras, radars, Lidars and ultrasonic sensors

are common sensors seen on autonomous vehicles.

1.1.2.2. Fusion Processor

9

The sensor fusion processor gets information from sensors and use sensor fusion

algorithm to create a world model. The output of the sensor fusion processor is a list of

moving objects. The objects on this list are fused based on sensor data and could be

different from any object detected by sensors.

1.1.2.3. Decision Maker

The decision maker performs decision making and path planning based on the world

model created by the fusion processor.

1.1.2.4. Dynamics Controller

The dynamics controller has all the information of the vehicle dynamics and inertial

sensors. This controller is responsible for motion planning and vehicle dynamics control.

1.1.2.5. Actuator

Actuators are the mechanical or electrical parts controlled by the dynamics controller

and maneuver the vehicle. Basically, actuators on autonomous vehicles are motors on

steering wheel and brake pedals, and the ECU that controls throttle.

1.1.2.6. Health Monitoring System

Health monitoring system is a backup system of the nominal system. When an

unexpected situation happens, such as sensor obscure, extreme weather, or nominal

system malfunction, the health monitoring system is responsible for detecting errors and

taking over control of the vehicle. Concise but robust ADAS algorithms run on the health

monitoring system.

In ideal situations, the safety requirement should be achieved by the system by defining

some parameters. For example, for ACC, the cruise follow distance, autosteer

enabled/disabled should be defined. The table below lists the parameters to be defined

10

either by the system or the driver that sets a performance threshold for the system.

Table 2 List of functionalities needs to be achieved

Parameter Name Options

Cruise Follow Distance 1 to 7 (follow distance is speed dependent)

Autosteer Enable, Disable

Auto Lane Change Enable, Disable

Speed Limit Warning Off, Display, Chime

Speed Limit Relative, Absolute

Speed Limit - Offset Offset [mph], 0 to 5mph

Forward Collision Warning Off, Late, Medium, Early

Lane Departure Warning Enable, Disable

Automatic Emergency Braking Enable, Disable

1.2. Literature Review

1.2.1. Motivation

Autonomous vehicles represent a fast-emerging technology to improve mobility as they

offer a safer and more comfortable driving experience for users. The development of

automated driving systems has focused on multiple features and the use of multiple

sensors such as cameras, radars, LiDARs, ultrasonic devices, and combinations of sensor

technologies to provide useful information from the environment to automate or assist

various dynamic driving tasks, which are generally classified into mobility and safety.

Automated driving spans a wide range of automation levels — from advanced driver

assistance systems (ADAS) to fully autonomous driving being planned for the near

11

future.

An important objective of ADAS is to provide essential information to assist drivers to

ensure a safe driving experience. These preventive measures for both vehicle occupants

and pedestrian protections must take place before the actual impact or accident occurs.

Existing triggering and assistive systems such as the electronic stability program (ESP)

use sensor data to identify vehicle instabilities and provide fast preventive actions.

However, in some accidents the ESP is not able to indicate any abnormal driving

dynamics [5]. A common scenario is when a driver is making a right turn and focusing

his/her attention on on-coming vehicles from the left, while forgetting pedestrians who

might be approaching the same intersection to cross the road. Other accidents may

involve pedestrians being distracted while using smartphones and not paying full

attention to on-coming traffic while crossing at intersections. Based on the traditional

technologies, no signal will be triggered and sent to assistive systems such as the brake

assist under these situations to prevent the accidents. A warning system to identify

potential accidents early enough to allow the driver or an assist system to take appropriate

actions would thus be desirable. The warnings can be either audio or by some LED

display (e.g., green and red indicate potential and imminent accidents, respectively).

For vehicles equipped with ADAS features, to deliver preventive safety applications as

well as driver assist functionalities, it is required to have necessary information of ego

vehicle status and surrounding environment. The development of perception and sensor

fusion algorithms will be based on several ADAS features: APA, ACC, LKA and TJP.

Perception and sensor fusion are critical parts of these ADAS features, as summarized in

the table below.

12

Table 3 Perception and Sensor Fusion Algorithm in ADAS Features

ADAS Features Realization Steps

Steps involving

perception and sensor

fusion

APA

(Automated

Parking Assist)

1) Localization

2) Detect parking spots

3) Path planning

4) Actuation

5) Go back to 1

1, 2

ACC

(Adaptive Cruise

Control)

1) Localization

2) Detect lane, preceding and nearby

vehicles

3) Path planning and decision making

4) Actuation

5) Go back to 1

1, 2

LKA

(Lane Keeping

Assist)

1) Detect lanes (bird-eye view

algorithm)

2) Calculate lane center

3) Calculate position deviation

4) Calculate steer angle (steer angle –

yaw rate map)

5) Apply steering wheel

6) Go back to 1)

1, 2, 3

13

TJA

(Traffic Jam

Assist)

1) Localization

2) Detect lane, preceding and nearby

vehicles

3) Path planning and decision making

4) Actuation

5) Go back to 1

1, 2

The objective of this research is to develop novel sensor fusion algorithms for auto-

parking application in autonomous vehicles. Sensor fusion algorithms can help improve

the perception accuracy and vehicle localization accuracy. Incorporating motion planning

algorithms and vehicle control methods, the auto-parking feature can be realized.

1.2.2. Literature review

Over the past few decades, autonomous driving has been an important research topic.

Autonomous vehicle can be defined as vehicles that can move from a start point to a

given destination, without the need of any interaction from the driver [6]. The

autonomous vehicle is able to move in space with an environment model created by

detecting information from the surrounding environment, as well as inside the vehicle

cabin. According to the US National Highway Traffic Safety Administration (NHTSA)

[7] and the SAE International standard, two main levels of autonomous classifications

have been developed. As discussed in Chapter 1, the SAE defined classification method

was accepted by NHTSA and became the publicly accepted [8].

The SAE standard divides the automation into 6 levels, from Level 0 – no automation

to Level 5 - Full self-driving automation. All vehicles, including vehicles being sold on

the market and prototype vehicles in the development stage, could be classified into the

14

above 6 different levels of autonomous vehicles.

Figure 5 SAE J3016 Levels 0 - 2 of Driving Automation [9]

1.2.2.1. Level 0 – No automation

Vehicles with no automation will be considered as Level 0 autonomous vehicles. In

this case, the driver has 100% responsibility of controlling the vehicle. The driver must

monitor the surrounding environment and maneuver the vehicle any time during driving.

However, some warning system can be added to the vehicle, such as blind spot detection,

front collision warning, etc.

15

Nearly all vehicles on the road today are Level 0 autonomous vehicles. Although a lot

of new vehicles are equipped with different kinds of warning systems, these warning

systems cannot control the vehicle. For example, blind spot detection, detects if there is

any vehicle in the blind spot of the vehicle, but does not provide any suggestions to the

driver, such as keeping or changing lane. These systems work passively and merely

provide drivers with assistive information to make better decisions.

1.2.2.2. Level 1 – Driver-assistance

Vehicles equipped with driver-assistance functionality will be considered as in Level 1.

The driver is fully responsible for the control of the vehicle, similar to Level 0. However,

the car can take partial control of the vehicle in some specific scenarios, such as highway

with clear lane markers. The driver must pay attention to the surrounding environment

and be ready to take over control of the vehicle at any time.

Features such as Adaptive Cruise Control (ACC) and Lane Departure Warning (LDW)

can be considered as Level 1 autonomous features. Level 1 autonomous vehicles already

exist on market.

1.2.2.3. Level 2 – Partial Automation

Level 2 autonomous vehicles contains all Level 1 features, whereas Level 2 features

contains more advanced automation, including Lane Keeping/Centering Assist,

Automatic Emergency Braking, ACC with stop and go, etc. Similar to Level 1, these

functions work only in specific conditions, such as well-illuminated highways and local

roads. Level 2 vehicles will monitor the surrounding environment when certain features

are turned on. When the vehicle detects obstacles or events that the system is not able to

respond, the control of vehicle will be handed back to the driver immediately, with audio

16

or light signals.

Even though the vehicle can self-drive in some certain conditions, the driver is still

responsible for the overall control of the vehicle and should pay full attention to the

traffic all the time. Tesla’s autopilot system was the first commercial Level 2 autonomous

system on the market [10].

Figure 6 SAE J3016 Levels 3 - 5 of Driving Automation [9]

1.2.2.4. Level 3 – Conditional Automation

With more sophisticated functionalities, Level 3 vehicles can be considered as self-

17

driving vehicles under more complicated conditions. A vehicle with Level 3 automation

is capable of monitoring multiple objects in the surrounding environment, such as traffic

lights, pedestrians and traffic signs, etc. The vehicle can drive in most highways and part

of local roads without involving the driver. In industry, an important criterion for Level 3

automation is that the vehicle can perform lane changing without the driver turning the

blink signal [11].

The driver can rely on the vehicle in some scenarios; yet the driver should keep his/her

hands on the steering wheel all the time as a safety protocol. Level 3 vehicles might still

be affected by some extreme weather conditions. Some companies, such as Google and

Uber [12] have already developed prototype vehicles that reach Level 3 automation in

2013 and is aiming at production. Automated Parking Valet (APA) is considered to be a

Level 3 automation feature [11, 13].

1.2.2.5. Level 4 – High Automation

In this case, Level 4 autonomous vehicles can be switched to self-driving mode by the

driver and perform self-driving in most road and weather conditions. The driver is not

required to pay full attention to the surrounding environment, meaning that the vehicle

can take full control of the steering/throttle/brake of the vehicle. If the system determines

that there is an emergency situation that it cannot handle, warnings will be given to the

driver and the driver will take over the control of the vehicle.

Tesla has claimed that the autopilot system is hardware ready for Level 4 automation

[?]. However, due to legal issues, wireless software update for the autopilot system has

not been released yet at this moment [?]. Auto Parking Valet (APV) is considered to be a

Level 4 automation feature [11, 13].

18

1.2.2.6. Level 5 – Full self-driving Automation

Vehicles with full self-driving capability will be classified as Level 5. In this case, the

vehicle can be designed with no driver. Steering wheel, shift lever, throttle and brake

pedal can be removed from vehicle. The vehicle is able to drive itself with or without

human inside the vehicle cabin. The vehicle is equipped with redundant autonomous

system with multiple sensors mounted on the vehicle. The sensors will be able to provide

precise information of surrounding environment in different illumination and weather

conditions.

Furthermore, Level 5 automation vehicles support connected vehicle features, such as

communicating with infrastructure and other vehicles using cloud. The vehicle will be

connected to the cloud for traffic and road condition information, and HD maps. Software

updates will also be downloaded from the cloud.

Numerous competition projects related to topics of ADAS and autonomous vehicles

have been conducted by universities and research institutes since the late 80’s. In 1988,

Carnegie Mellon University’s NAVLAB project vehicle was among the first that

demonstrated ADAS features [14]. The NAVLAB vehicle was able to perform a lane

center keeping (LCK) feature using computer vision algorithms. Research on

autonomous vehicles has become a hot topic since them. A few decades later, in 2004, a

famous competition – DARPA Grand Challenges rolled out. The objective of this

competition for each team was to develop a driverless vehicle that is able to travel

through deserts. Seven teams attended this competition, yet none finished even 5% of the

full length of the course [15]. In 2007, DARPA Urban Challenge aimed at developing a

self-driving car that can travel on urban roads, adding more complexity and challenge to

19

this competition [16]. A heavily equipped Chevrolet Tahoe developed by Carnegie

Mellon University and General Motors won the competition.

Figure 7 2007 DARPA Urban Challenger Winner [17]

Starting 2009, tech-companies begin to develop commercial self-driving cars. Google

being the first, Uber, Lyft and Tesla started to develop prototype self-driving cars.

Among all these companies, Google was the first company to start the project and has the

most experience on it, with about 8 million miles of accumulative mileage by the year of

2018. Tesla works more on marketing, as their 2016 Model S with Autopilot system

became the first Level 2 autonomous vehicle on the market.

Sensor fusion is a critical method in perception system of autonomous vehicles. The

definition of sensor fusion has been changing over the decades [19]. Several terms such

as “sensor fusion”, “data fusion”, “multi-sensor data fusion”, “multi-sensor integration”,

etc. have been prevalently used in literature to refer to data that is obtained from multi-

20

channel of information. Wald proposed the term “data fusion” in 1998 to be used as a

summary of the terminologies listed above [20]. Dasarathy proposed to use a new term

“information fusion”, which has not been used extensively before [21], as an overall

terminology for fusion of any kind of data. Sensor fusion is a subset of information

fusion, and the definition of sensor fusion is

“the combining of sensory data or data derived from sensory data such that the

resulting information is in some sense better than would be possible when these sources

were used individually”. [19]

Sensor fusion has been applied in autonomous driving systems and ADAS in multiple

perspectives. Currently, autonomous driving systems use different levels of sensor fusion

technology. For example, fusion architecture is divided in to 4 levels in a perception

system of an autonomous vehicle: low level, map level, object detection level and track

level [22].

• Low level: Raw data collected from sensors is converted into machine readable

format. Detection provided by each sensor is fused in raw-data level to generate

a map for further processing.

• Map level: Simultaneous Localization And Mapping (SLAM) is done in the

map level with each sensor output. The generated maps from each sensor are

combined to get a fused map. Notice that the map created in the map level is not

the predecessor for object detection level. Actually, they are processed in

parallel.

• Object detection level: In this level, specific objects will be detected from

sensor outputs. Sensor will perceive the surrounding environment and provide a

21

list of moving objects. Combining lists from each sensor will increase object

detection precision and accuracy. An enhanced list will be sent to track level for

further processing.

• Track level: After obtaining a list of moving objects from the object detection

level, the track level fusion algorithms will extract time features from the list

and produce a list of tracked objects. Track level increases track accuracy and

helps prevent false tracks.

An environment model is created after the four levels of fusion. A complete model

contains two models from the four levels of fusion: one from low level/map level and one

from object detection level/track level. The first one involves path planning and

navigation functions, usually a HD map and a destination is required for this model [23].

Here we will only talk about the second model, which is the world model containing

information of objects around the vehicle.

A variety of sensors can be put onto a vehicle. Due to some limitations, we choose only

cameras as sensors. Cameras mounted on different locations of the vehicle will be

integrated into a sensory system for parking spot detection.

Camera and ultrasonic sensor are the two major sensors that are widely used in

automated parking assist systems. Ultrasonic sensors can evaluate distance from objects,

while the video provided by cameras can be used for object detection [24].

Auto parking technology has already been used in production vehicles. Several OEMs

started to equip their luxury vehicles with auto parking assist system [25]. Being the first

to put auto parking on a production vehicle, Ford’s auto parking assist system is

convenient indeed, supporting both parallel and perpendicular parking. However, like

22

most APA systems on market, it still has limitations. Most APA systems on market

require the driver to be engaged during the whole time, while the only automatic part is

the control of the steering wheel. The driver needs to drive back and forth to find the

parking spot, control brake and throttle of the vehicle and pay attention to the

surrounding environment.

During the recent years, many researches on improving the auto parking assist system

were conducted. However, most auto-parking related systems are based solely on

cameras. Cameras are used for parking spot detection and tracking during the parking

process. The algorithm proposed were not robust enough for calculating some essential

vehicle/environment states, such as the location of the vehicle, the location of the parking

spot, the speed and heading of the vehicle, etc. C. Wang et al. proposed an auto parking

system based on bird’s eye view computer vision system in 2013 [26]. A camera-based

parking spot detection and vehicle localization method was developed in this paper. The

vehicle states were estimated using the camera data, without other sensor data.

 In 2015, J. K. Suhr et al. proposed an indoor and underground parking space detection

method using AVM camera image processing [27]. S. Lee introduced slot context

analysis method to available parking spot detection [28]. Histogram of Gradients (HOG)

algorithms is used in this method to extract features. A machine learning based available

parking spot detection method was proposed by L. Zhang et al. in 2018 [29]. The

research goal of this thesis is to develop a multi-sensor fusion method for auto-parking

application.

23

1.3. Objective and scope of thesis

Research Question:

How to use sensor fusion to improve auto parking technology?

How to utilize path planning algorithms for auto parking?

Sub Questions:

What is the state-of-the-art of auto parking technology?

How is sensor fusion used in auto parking technology?

What does auto-parking system contain?

The objective of this work is to develop a vehicle-to-environment (V2E) system that

would provide accurate detection of parking spots in a parking lot and planning a

potential path to park the vehicle. The innovation of this system is that it utilizes multi-

sensor with learning and recognition algorithms, including sensor fusion algorithms.

Different sensors such as cameras, LiDAR, GNSS and ultrasonic sensors will be fused

for better accuracy in terms of detection and localization. A series of road tests will be

conducted to define an auto-parking assistance system and quantify the effectiveness of

such a system in terms of successfully parking the vehicle into available parking spots.

The goal of sensor fusion is to adopt combinations of sensor technologies to provide

accurate parking spot detection and provide potential maneuvering path to the driver. The

system will use a combination of sensor technologies mounted on the vehicle and

learning/recognition algorithms. Sensor fusion algorithm will determine an object list

from raw sensor data. Fused objects, including vehicles, pedestrians and parking spot

lines, will be integrated to the world model for further motion planning. Motion planning

will work with or without a pre-defined map. A suggested trajectory will be generated as

24

an output of motion planning. The trajectory contains the route planned by path planning

algorithms, as well as the speed profile of the vehicle. Perception and sensor fusion

algorithms will be tested with a series of on road tests. Motion planning algorithms and

vehicle controller will be simulated with visualization in MATLAB and ROS.

25

2. CHAPTER II SENSOR SELECTION AND SENSOR FUSION ALGORITHMS

Sensors are one of the most important parts in an ADAS. For a human driver, eyes, ears

and other sensory organs such as tactile feelings are “sensors” for driving. These human

“sensors” will perceive the surrounding environment to provide information to the brain

for further processing. The responsibility of sensors in an autonomous vehicle is to

perceive the surrounding environment for sensor fusion, motion planning and vehicle

control. In this chapter, the criteria for sensor selection and sensor fusion algorithms will

be established.

2.1. Criteria for sensor selection

Performance Aspect Human Radar LiDAR Camera

Object Detection Good Good Good Fair

Object Classification Good Poor Fair Good

Distance Estimate Fair Good Good Fair

Edge Detection Poor Poor Good Good

Lane Tracking Good Poor Poor Good

Visibility Range Good Good Fair Fair

Poor Weather Performance Fair Good Fair Poor

Dark or low Illumination

Performance

Poor Good Good Fair

Figure 8 ADAS sensor performance comparison [30]

2.1.1. Environmental conditions

• Extreme weather (heavy rain, snow, or fog): Reduces maximum range and

signal quality (acuity, contrast, excessive visual clutter) for human vision, AV

26

visual systems (cameras, lidar).

• Excessive dirt or physical obstructions (such as snow or ice) on the vehicle:

Interferes with or reduces maximum range and signal quality (acuity, contrast,

physical occlusion of field of view) for human vision and all basic AV sensors

(cameras, lidar, radar).

• Darkness or low illumination: Reduces maximum range and signal quality

(acuity, contrast, possible glare from external light sources) for human vision

and AV camera systems.

• Large physical obstructions (buildings, terrain, heavy vegetation, etc.):

Interferes with line of sight for human vision and all basic AV sensors

(cameras, radar, lidar).

• Dense traffic: Interferes with or reduces line of sight for human vision and all

basic AV sensors (cameras, radar, lidar).

2.1.2. Distance and Speed Tracking

• Stereo cameras can detect distance, but detection accuracy isn’t as good as

radars.

• Radars were invented for speed tracking, especially acceleration, which

cameras cannot easily detect. Even though speed information could be obtained

using camera, speed sensor and IMU, more sensor fusion work is needed. The

complexity of the system will also increase.

2.1.3. Curve

• Front radar is perfect for front object detection, but the performance of front

corner will be reduced significantly when the vehicle enters a curve with quite

27

large curvature. In this case side sensors (either side camera or corner radar) are

necessary.

2.1.4. Efficiency and energy consumption

• Energy consumption of radar could go as low as 5W each – according to Bosch

MRR datasheet

• Detection result sent from radars to vehicle CAN bus could go at a speed of

least 20Hz. Yet to speed up the processing speed of camera, resolution, in other

words detection accuracy, will be compromised.

Sensors on autonomous vehicles are supposed to perceive information from the

surrounding environment, mimicking human drivers. For autonomous vehicles, all areas

around the vehicle are considered to be blind spots. Sensors such as cameras, Radars,

LiDARs, etc. are to cover the blind spots and detect moving objects around the vehicle.

As shown in the diagram below, we can see that different sensors have different

coverage areas. The large circle in blue is coverage areas of corner radars. The pie area in

orange and red on the right are to be covered by cameras and front radars. The irregular

shape on the left is rear radar coverage area. We will go into each type of sensor for

detailed discussion on their specifications.

Figure 9 multiple sensor coverage diagram (in-scale)

28

2.2. Camera

Camera is one of the most important sensors in ADAS. Computer vision and machine

learning algorithms can be used on camera captured video data for object detection and

tracking. In autonomous vehicles, usually multiple cameras are deployed on different

locations of the vehicle, such as front wind shield and side mirror, mimicking human

driver’s vision system. The vision system could be either mono- or stereo camera system.

Figure 10 Spider chart of camera performance

Cameras equipped with object detection are capable of detecting objects of

surroundings of the vehicle, such as vehicles, pedestrians. Due to the limitations of radars

and LiDARS, road lanes and traffic signs can only be detected by cameras. The table

below shows some preferred requirements of camera systems on autonomous vehicles.

Table 4 Specifications of front view camera on autonomous vehicles

Parameters Preferred Value

0

1

2

3

4

5
Object Detection

Object Classificaiton

Distance Estimation

Edge Detection

Lane Tracking

Visibility Range
Poor Weather
Performance

Poor Illumination
Performance

Sensor Size/Mounting

Power Consumption

Sensor Cost

Camera

29

Distance range 0.5…50 m

Detectable objects Car/Truck/Bus/Motorcycle

Range resolution objects 0.5 m (@ 10 m range)

Range accuracy objects 0.2 m (@ 10 m range)

Angle resolution objects 2° (@ 10 m range)

Lateral object position accuracy 0.05 (@ 10 m range)

Speed range ±25 m/s

Speed resolution 1 m/s

Speed accuracy 0.2 m/s

Lateral line resolution 0.1 m (@ 10 m range)

Lateral center-line accuracy 0.05 m (@ 10 m range)

Azimuth angle field-of-view ±15°

The camera should have a detection range from 0.5m to at least 50m, between which

pedestrians and vehicles might appear. The resolution of the camera might vary,

depending on the computational capability of the vision processor. The higher the

resolution, the higher the detection accuracy but also higher power consumption. Typical

resolution for vehicle cameras is 800 pixels by 600 pixels and 1280 pixels by 720 pixels

on development vehicles.

2.3. Radar

Radars, excellent range and range rate measurement sensor, play a very important role

in autonomous vehicles. Radar generate electromagnetic waves and detect the reflection

from objects. Although radars are not good at classifying objects – meaning they cannot

estimate the contour of the object, they can measure object range and range rate

30

accurately. In extreme weather or poor illumination conditions, cameras might get

blocked by rain or snow or even unable to capture pictures, while radar works robustly in

these situations. Radars are widely used for adaptive cruise control and blind spot

detection features.

Figure 11 Spider chart of Radar performance

Table 5 Preferred front Radar specs [31]

Parameters Preferred Values

Frequency range 76 ~ 77GHz

Azimuth Field of View ±7°; ±25°

Distance Range 0.5 – 100m

Distance accuracy (far range) 0.2m

Distance resolution (far range) 1m

Lateral object position accuracy 0.05m（@10m range）

0

1

2

3

4

5
Object Detection

Object Classificaiton

Distance Estimation

Edge Detection

Lane Tracking

Visibility Range
Poor Weather
Performance

Poor Illumination
Performance

Sensor Size/Mounting

Power Consumption

Sensor Cost

Radar

31

Angle accuracy (far range) 0.3°

Angle resolution (far range) 1°

Speed range -25m/s--+25m/s

Speed accuracy (far range) 0.1m/s

Speed resolution (far range) 1m/s

Acceleration estimation 0.2m/s^2（delay<200ms)

Objects detectable Car/Truck/Bus/Motorcycle

Object tracking ＞10 simultaneous tracked objects

Object classification Type of object

Object size estimation width

Object standing Detection

Cut-in Cut-out detection Left right

Update rate 50ms

Processing delay ＜100ms

Pitch angle compensation -3°…+3°

Auto-alignment in azimuth > 3°

 In a typical ADAS system with front object tracking capability, a narrow FOV Mid-

Range front radar sensor will be mounted on the center of the front fascia, together with a

large FOV tri-focal camera [32]. The radar system can return object position with dx and

dy coordinates, azimuth angle as well as object tracking list through CAN bus. The sensor

fusion processor will be able to read radar detection data on CAN bus, merging the

information from radar system with the graphic data to form a significant portion of raw

32

data used for sensor fusion.

Ideally, four wide-FOV short-range corner radar sensors will be mounted on the

corners of the vehicle, are as follows.

Two front corner radars will detect whether if there are any potentially dangerous

objects in the blind spot of the vehicle. The radars would be able to return the distance to

the objects detected, and if either of the front corner detects the object is too close to the

vehicle, the system will notify the driver by using audio or visual warning signals. The

frequency of the warning signal will be decided according to the distance to the obstacles.

Two rear corner radars will be working on the rear object detection. When the vehicle

is travelling at over 30mph (estimated), the two radars will detect rear objects. When

objects are moving fast towards the vehicle, the system will notify the driver and

potentially maneuver the vehicle to achieve safer driving conditions, such as releasing the

brake or changing lanes. When vehicle is travelling under 30mph, the two radars will

collaborate with ultrasonic sensor for rear-crossing traffic detection. For example, when

the vehicle is parking, the radars will detect potential moving vehicles and pedestrians

behind the vehicle. Warning will be given to the driver when distance between ego

vehicle and object is too small.

The radar will improve the degree of sensor fusion. The sensor fusion process will be

able to combine the objects’ distance and position information from front radar system

with the objects’ position information from the camera graphics together. Based on

detection results coming from radars, we can fuse the coordinate system of radar and

camera to define a specific Region of Interest (ROI) for the camera. The camera only

needs to run detection algorithm on the pre-defined ROI, filtering out irrelevant objects

33

such as trees, etc. Hence saving considerable amount of computational power compared

to running detection algorithm over the whole image. This will significantly reduce the

amount of data that object detection algorithm need to be working on, which will result in

a higher processing speed, and reducing the safety concern due to data processing delay.

For example, mid-range radar systems usually include a relatively narrow FOV but a

longer detection range [31, 33]. Short-range corner radars with a wider FOV to cover a

wider but nearer area [33]. As shown in the following plots, the corner radar (left)

detection area with a SNR over 40 is wider-spread while the front radar detection area

with a SNR over 40 is narrower but longer. For the front radar, the estimated range limit

would be around 100m.

Figure 12 Bosch Mid-Range Radar SNR vs. Distance [31]

For distance detection and estimation, radar sensors are more powerful and accurate

than cameras. The radar emits electromagnetic waves and, after a certain time interval,

receives target object reflected waves, thus calculating the distance from the radar to the

target object. In this way, the radar sensor is getting a clean distance value calculated

simply by speed and time. By contrast, distance calculation for camera is not as “clean”

as that for radar, even stereo cameras. Since the prerequisite for cameras to detect

distance from an object is to have algorithms that know where bounding boxes for object

34

is in the frame. Note that the bounding box is always a rectangle, which means that not

all pixels in the bounding box are part of the target object. Yet the distance calculation is

usually based on every pixel in the bounding box or the size of the bounding box, which

could be inaccurate due to the variation in object detector performance. A hardware-

triggered stereo camera would definitely have a better performance in range and range

rate detection but is still limited by the performance of object detector. In summary, the

distance calculation of camera would always have some inaccuracies caused by the

redundant pixels. As a result, we have expected our current temporary range and range

rate detection approach, using a mono-camera for distance calculation, is not very

accurate.

Another advantage of radar is that the returned targets’ dimensions are more accurate

than those from cameras, assuming a testing condition with relatively light interferences

is provided. The targets’ dimension calculations rely on the bounding boxes. And due to

the limitation of object detector performance, the target dimension accuracy could also be

limited. Whereas for radars, only a valid object surface would return electromagnetic

waves that are used for dimension calculation. What’s more, the cameras are vulnerable

to bad weather conditions such as fog, heavy snow, rain, etc., whereas the radars are not

as vulnerable.

On the other hand, radar sensors cannot distinguish the colors and patterns such as the

lane marks, traffic signs, traffic lights, etc. which are all useful and important information

for driver assistance systems.

2.4. LiDAR

LiDAR stands for Light Detection and Raging, LiDAR is a less common sensor

35

comparing with cameras and radars. LiDAR has never been deployed in a production car

but is usually a standard choice on development vehicles. Many autonomous vehicle

developers, such as Google, Nvidia, Baidu, etc., use LiDAR as their primary perception

sensor. LiDAR can emit laser beams to measure object distance, outputting a point cloud

map describing the surrounding environment. LiDAR is good for benchmarking and

works as a reference data source for object detection and tracking.

Figure 13 Spider chart of LiDAR performance

Currently there are three major types of LiDARs for autonomous vehicles: Flash

LiDAR, Multi-beam LiDAR and Scanning Beam LiDAR. Each type has pros and cons,

they are used in different ADAS applications and are usually mounted on different

locations on the vehicle. Flash LiDAR and Multi-beam LiDAR are solid LiDARs.

Table 6 Comparison among different types of LiDARs

LiDAR Performance Flash LiDAR Multi-beam Scanning-beam

0

1

2

3

4

5
Object Detection

Object Classificaiton

Distance Estimation

Edge Detection

Lane Tracking

Visibility Range
Poor Weather
Performance

Poor Illumination
Performance

Sensor Size/Mounting

Power Consumption

Sensor Cost

LiDAR

36

Criteria LiDAR LiDAR

Resolution High High, in Parallel Low, sequential

Range Short Far Far

Bad weather

performance

Scatter in fog

Good in all weather

conditions

Scatter in fog

Power consumption High Low High

Others

Confused by

similar flashes

Not confused and no

steering

Beam steering

system needed

Table 7 Preferred front LiDAR specs [31]

Manufacturer Velodyne Velodyne

Model VLP-16 Puck HDL-64E S3

Radar Type Scanning beam Lidar Scanning beam Lidar

Channel Numbers 16 64

Measurement range 100m 120m

Accuracy ± 3 cm ± 2 cm

FoV (vertical) +15° to -15° +2.0° to -24.9° (26.9°)

Angular resolution

(vertical)

2° 0.4°

FoV

(horizontal/azimuth)

360° 360°

Angular resolution

(horizonal/azimuth)

0.1° – 0.4° 0.08° – 0.35°

37

Rotation rate 5 - 20 Hz 5 - 20 Hz

Point output Up to 0.3 million points/second

3D LiDAR Data Points

Generated:

- Single Return Mode:

~1,300,000 points per second

- Dual Return Mode:

~2,200,000 points per second

Output Interface 100 Mbps Ethernet 100 Mbps Ethernet

GPS receiver

$GPRMC NMEA sentence

from GPS receiver (GPS not

included)

$GPRMC NMEA sentence

from GPS receiver (GPS not

included)

Power consumption 8 W 60 W

Operating voltage 9 -32 V DC 12 V – 32 V

Weight

830 grams (w/o cabling) / 590

gram (puck lite)

28 lbs. (12.7 Kg) (w/o cabling)

Vibration 5 Hz to 2000 Hz, 3G rms Not Specified

Storage/Operating

temperature

-10° to +60° C/- 40° to +105° C -10° to +60° C/- 40° to +85° C

2.5. Ultrasonic Sensors

38

Figure 14 Spider chart of ultrasonic sensor performance

Ultrasonic sensors are commonly used in parking systems of vehicles. Similar to

radars, ultrasonic sensors can detect object range by receiving and processing ultrasonic

signal sent by itself. The frequency of each ultrasonic pulse is beyond human ear’s

hearing range, between 25kHZ and 50kHz. The physical model of the ultrasonic sensors

can be represented by

p(x,w) = −
𝑖𝑤𝑝

2𝜋
∫ 𝑣𝑧

1

𝑠

(𝑦, 𝑤)
 𝑒𝑖𝑘𝑟

𝑟
 𝑑𝑠(𝑦)

where, in our case, p is the density of air, w is the angular frequency of the ultrasonic

pulse transmitted by the sensor, vz is the velocity of sound perpendicular to the

transducer, r is the distance from the object to the transducer [34].

2.6. Driver Status Monitoring Sensors

0

1

2

3

4

5
Object Detection

Object Classificaiton

Distance Estimation

Edge Detection

Lane Tracking

Visibility Range
Poor Weather
Performance

Poor Illumination
Performance

Sensor Size/Mounting

Power Consumption

Sensor Cost

Ultrasonic Sensor

39

Figure 15 Spider chart of Driver Status monitoring performance

Development of a driver-status evaluation system is an important and popular topic in

ADAS, in which the driver aggressiveness and drowsiness will be evaluated as a factor of

deciding how much the ADAS system will become involved. An algorithm will monitor

the acceleration and brake pedal signals and will generate an aggressiveness score every

few seconds. Combining detection output of the sensor fusion algorithm, the ADAS will

be provided with continuous reporting of front vehicle distance and speed, and the

aggressiveness score on the driver, the decision on when to engage the driver alert will be

made accordingly. Similarly, considering the distance and signal returned by the

drowsiness detection module, the decision on when to engage the driver alert would be

made.

2.6.1. Required Hardware

A decision-making system is needed to decide when and under what situations the

driver need to be warned. The ADAS controller would be the decision maker. Some

0

1

2

3

4

5
Object Detection

Object Classificaiton

Distance Estimation

Edge Detection

Lane Tracking

Visibility Range
Poor Weather
Performance

Poor Illumination
Performance

Sensor Size/Mounting

Power Consumption

Sensor Cost

Human

40

driver feedbacks are realized using a display. The display should be small enough not to

block driver’s view while big enough to provide clear information to driver. For front

collision warning, the feedback would be a red bounding box on the display plus alarm

beeping sound emitted by a beeper. A driver drowsiness monitor is also planned to be

used, and the feedback for drowsiness being detected would be a blinking red LED. To

activate the LED and the beeper mentioned above, an I/O module that can be controlled

by the ADAS controller is also needed.

2.6.2. Interfacing with Vehicle Systems and Current/Potential Issues

Signals indicating vehicle steering angle, steering angle ratio, vehicle speed, vehicle

yaw rate and shift lever position are needed for Bosch radar sensors to work properly and

have an optimized tracking functionality. The signal that indicates turning blinker status

will also be needed for the lane departure warning system, to indicate if it is a driver

intended lane departure activity if detected. Sports mode indication signal is needed for

our ADAS application. When the car is in sports mode, the ADAS system will get less

involved in the driver feedback.

2.6.3. Sensor Limitation Impact on Driver Feedback

For the camera, the lane departure warning function is based on the road lane detection,

and an accurate lane detection algorithm is the prerequisite for a stable lane departure

warning system. The driver feedback for lane departure is invalid if an accurate lane

detection cannot be achieved. Scenarios like the driver is warned lane departure but the

car is actually in the middle of the lane could happen. Under a poor illumination

condition, the accuracy for lane detection and vehicle detection could be worse. The fact

that the camera does not have a high enough resolution will make the far object detection

41

difficult. This could result in no data being usable as a cross check with radar returned

data, thus increase the probability of having an invalid bounding box position for the

driver feedback.

2.7. Localization sensor and IMU

Localization sensor and IMU are not new to autonomous vehicles, even conventional

vehicles. They are not used for perception or decision-making algorithm, but for

localization purposes. Unlike conventional vehicles controlled by human drivers,

autonomous vehicle relies strongly on localization sensors. The accuracy of the world

model depends on the accuracy of localization sensor. GNSS and IMU can also be used

to verify if the vehicle is travelling along the pre-generated path within error tolerance.

The United States government currently claims 4-meter RMS (7.8-meter 95%

Confidence Interval) horizontal accuracy for civilian (SPS) GPS. Vertical accuracy is

worse. Autonomous vehicles usually require much higher accuracy. In this case, Real

Time Kinematic is used for higher accuracy on most development vehicles [35].

2.8. Sensor fusion algorithm

Sensor fusion algorithms will be applied to mono-cameras mounted around the vehicle

and GNSS sensor. The cameras are responsible for lane detection and object detection.

Sensor fusion algorithm would be carried out on an ADAS controller, in our case a

powerful laptop, that connects all the sensors.

Once the lanes are detected, lanes’ coordinates will be sent from the vision processor to

the sensor fusion processor within the ADAS laptop, where the lanes’ coordinates will be

transformed onto vehicle coordinate system. Meanwhile cameras will also send vehicle

detection results to ADAS controller. Concurrently, vehicle detection results will also be

42

sent to the sensor fusion processor.

One critical issue for sensor fusion is time synchronization. The synchronized time

stamp would ensure that the detections from each camera are from the same moment,

thus to make sure the cross check between the output data from each camera is accurate.

There are two types of sensors, which we use for the ADAS, radars and the mono-

camera. They work at the same time, thus measurements need to be taken for combining

the data from different sources and get fused data, to enhance the robustness as well as

the variety of useful information. As shown below, our ADAS system is a star-shaped

structure and the master node would be the ADAS controller. The sensor fusion process

is carried out within the ADAS controller.

Video Data
Processor

(Computer Vision)

Front Radar

Rear Radar

Corner
Radar 1

Corner
Radar 2WebCam 1

WebCam 2

WebCam 3

WebCam 4

WebCam 5

WebCam 6

Sensor Fusion
Processor

CAN
Transceiver

HMI Display

USB
Multiplexer

CAN Bus

Laptop/PC

Tentative Radar SystemCamera System

Figure 16 Planned ADAS System Structure

Our ADAS system would be a star-structured network and the controller would be the

central node of the network. The controller would receive the CAN signals from every

sensor as well as vehicle CAN network and would generate the CRCs for the radars. In

addition, it would gateway all the vehicle dynamic information needed for radars. We

43

choose this structure with the following several considerations:

With this structure, we have more freedom of manipulating all the available signals that

are currently needed for our ADAS system, as well as those are potentially needed for

future algorithm modifications. A controller that supports model-based programming

would greatly accelerate software development process for the following reasons: It gives

us the convenience of choosing different programming method based on different

applications. In addition, some algorithms are more suitable for State flow, which would

give us a much more structured and intuitive UI. The ADAS controller would greatly

help us in CAN communication. When the dbc file is loaded, the programming interface

would give us the application level information directly and the user would know each

signal name and routing straightforwardly. A dedicated ADAS controller would be

responsible for all the sensor fusion algorithms and decision-making process, thus

alleviate the calculation burden on the image processing unit, to which the frame rate and

processing speed is a key factor.

The HMI display is designed to let the driver control the vehicle before and during the

parking. Qt creator software and an Android tablet are used for creating the HMI display.

44

Figure 17 HMI Display UI and Tablet

45

3. CHAPTER III CASE STUDY

3.1. Automated perpendicular/horizontal parking

Figure 18 Automated parking use case

Auto parking system can be divided to 6 sub-systems. Perception, sensor fusion, route

planning, behavior decision making, motion planning and vehicle control. A detailed

illustration of each system will be conducted in this section.

Since the vehicle usually moves slowly during a parking process, we will use simple

vehicle dynamics model to represent the vehicle for motion planning. Suspension

dynamics will be ignored, a 3-DOF bicycle model will be used in motion planning

analysis as well as simulation.

46

Figure 19 Vehicle dynamics model

The vehicle dynamics equation would be

[

𝑥
𝑦
𝜓
𝑣
𝜓̇]

=

[

 𝑥 +

𝑣

𝜓̇
(− sin𝜓 + sin (𝑇𝜓̇ + 𝜓))

𝑦 +
𝑣

𝜓̇
(cos𝜓 − 𝑐𝑜𝑠 (𝑇𝜓̇ + 𝜓))

𝑇𝜓̇ + 𝜓
𝑣
𝜓̇]

In the equations, x and y are the reference point of the vehicle coordinate system,

which is located on the rear differential of the vehicle; 𝜓 is the heading angle of the

vehicle; 𝜓̇ is the yaw rate of the vehicle; 𝑣 is the velocity of the vehicle; L is the

wheelbase of the vehicle.

3.1.1. Perception

Perception is the first and one of the most important processes in auto-parking system.

47

In our case, we don’t have a HD map as a reference for available parking spot look-up.

Therefore, sensors mounted on the vehicle detects other vehicles, available parking spots,

as well as potential obstacles in the parking lot. Different types of sensors can be used in

the auto parking system, such as cameras, ultrasonic sensors, LiDARs. Due to budget and

technical issues, also in consideration of sensor fusion algorithm development, we choose

to use multiple cameras as the major perception sensor.

Perception system can also be divided into two parts, available parking spot detection

and object detection/tracking. Object detection and tracking algorithms are discussed in

Chapter 4.

The core algorithm for parking spot detection is line detection. Similar to lane detection

on public roads, parking spot detection algorithms will recognize geometric shapes such

as lines and rectangles. Perspective transform, edge detection and line fitting are

commonly used in lane detection algorithms [36]. Perspective transform will convert the

camera image to a bird eye view image. The reason of perspective transform is to get a

better view field of view of an image. The image below taken from a webcam will be

used as an example for image processing.

48

Figure 20 Picture of commercial parking lot taken from webcam

However, lines in parking spots are more complicated than road lanes. For example, as

shown in the figure below, parking spots has different shapes, orientations. The margin of

each parking spot could be dashed, solid, or even double lines. Therefore, the detection

algorithm should have the ability to recognize different types of parking spots.

Figure 21 Different types of parking spots

The perception algorithm for cameras can be divided to six parts, as shown in the figure

below. Note that camera calibration automatically calibrate distortion caused by camera

49

lens. Camera calibration is very important on cameras with wide field of view, such as

fish eye cameras.

Figure 22 Camera perception algorithm flow chart

3.1.1.1. Perspective transform and color space conversion

The math behind perspective transform is simply multiplying matrices to an image. An

image is made of pixels, each pixel has its value between 0 and 255, representing the

greyscale of the image. An image with resolution of 1024 × 768 is a 1024-by-768 matrix

with pixels as each element in the matrix. We can rotate, scale, shear and stretch the

image by applying matrices to it.

Perspective transform can be considered as an orthographic projection. In computer

graphics, the 6-tuple which defines the clipping planes, can be used as the orthographic

transform matrix.

50

Figure 23 Left, right, top, bottom, near and far in computer graphics [37]

The orthographic transform matrix to be applied to an image is

𝑃 =

[

2

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡
0 0 −

𝑟𝑖𝑔ℎ𝑡 + 𝑙𝑒𝑓𝑡

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡

0
2

𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚
0 −

𝑡𝑜𝑝 + 𝑏𝑜𝑡𝑡𝑜𝑚

𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚

0 0 −
2

𝑓𝑎𝑟 − 𝑛𝑒𝑎𝑟
−
𝑓𝑎𝑟 + 𝑛𝑒𝑎𝑟

𝑓𝑎𝑟 − 𝑛𝑒𝑎𝑟
0 0 0 1]

Camera calibration can also be considered as a process of perspective transform.

Distorted camera image should be calibrated before processing. The black and white

shapes within the chessboard are considered perfect squares for reference. By calculating

the distortion rate, we can compute a correction matrix to be applied to each image frame

later.

51

Figure 24 Camera calibration results

Color space conversion is also used in the perception algorithm. Parking spot lines

painted on the ground are usually yellow and white. Conversion from RGB to HSV color

space can distinguish these light colors from other colors. Similar to RGB, Hue

Saturation Value (HSV) is a type of color space model.

Figure 25 HSV Color space [38]

52

𝑉 ← max(𝑅, 𝐺, 𝐵)

𝑆 ← {
𝑉 −min (𝑅, 𝐺, 𝐵)

𝑉
, 𝑖𝑓 𝑉 ≠ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐻 ←

{

60(𝐺 − 𝐵)

𝑉 −min(𝑅, 𝐺, 𝐵)
, 𝑖𝑓 𝑉 = 𝑅

120 +
60(𝐵 − 𝑅)

𝑉 −min(𝑅, 𝐺, 𝐵)
, 𝑖𝑓 𝑉 = 𝐺

240 +
60(𝑅 − 𝐺)

𝑉 −min(𝑅, 𝐺, 𝐵)
, 𝑖𝑓 𝑉 = 𝐵

If 𝐻 < 0 then 𝐻 ← 𝐻 + 360. The output of HSV color space is restricted to

0 ≤ 𝑉 ≤ 1, 0 ≤ 𝑆 ≤ 1, 0 ≤ 𝐻 ≤ 360.

After the perspective transform and color space conversion, we can see the yellow lines

clearly even with human eyes.

Figure 26 Image after perspective transform and color space conversion

3.1.1.2. Canny Edge Detection

53

Canny edge detection is used to detect features in an image, especially edge features.

John Canny developed this edge detector in 1986 [39]. In order to detect edges in an

image, a Gaussian filter will be applied to the image to smooth the image. Noise and

useless feature details will be filtered out.

𝑔(𝑚, 𝑛) = 𝐺𝜎(𝑚, 𝑛) ∗ 𝑓(𝑚, 𝑛)

Where

𝐺𝜎 =
1

√2𝜋𝜎2
exp (−

𝑚2 + 𝑛2

2𝜎2
)

We can get the gradient of each image by performing any of the gradient operators such

as Roberts, Prewitt, Sobel, etc.

𝑀(𝑛, 𝑛) = √𝑔𝑚2 (𝑚, 𝑛) + 𝑔𝑛2(𝑚, 𝑛)

And

𝜃(𝑚, 𝑛) = arctan [
𝑔𝑛(𝑚, 𝑛)

𝑔𝑚(𝑚, 𝑛)
]

Then we can calculate the threshold M by

MT(𝑚, 𝑛) = {
𝑀(𝑚, 𝑛) 𝑖𝑓 𝑀(𝑚, 𝑛) > 𝑇

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where T is chosen that all edge elements are kept while most of the noise is suppressed.

3.1.1.3. Hough Line Transform

After getting edge features from a canny edge detector, we need to fit lines in the image

to visualize potential lanes. Lines in an image space can be defined as two parameters,

either in Cartesian or Polar coordinate system.

For Hough transform, the parameters of lines will be discussed in the Polar system, as

following,

54

y = (−
cos 𝜃

sin 𝜃
) x +

𝑟

sin 𝜃

r = x cos 𝜃 + 𝑦 sin 𝜃

For each pixel in the image (x0, 𝑦0), we can consider a group of lines that goes through

that point as

r𝜃 = 𝑥0 ⋅ cos 𝜃 + 𝑦0 ⋅ sin 𝜃

And each pair of (rθ, θ) represents a unique line that has (x0, 𝑦0) on it. We can draw a

group of lines on this point, each plot will add a sine wave to the graph. We will consider

only points such that 𝑟 > 0 and 0 < 𝜃 < 2𝜋.

For every point in the image, we can do similar iteration to find several sets of points

that are on the same line. If more than one set of points were considered to be on one

specific line, then there is high probability that we can declare a line detection. Hough

transform tracks the intersection of each point set we found in the image. If the number of

intersections goes over a pre-defined threshold, we consider there is a line.

After getting lines from Hough transform, we can create a bounding box using the four

coordinates of the two side lines of a detected parking spot. Before completing the

parking spot detection, the last step after Hough line transform is to convert the

coordinates of the lines back to the original image. This can simply be done by

performing inverse perspective transform.

55

Figure 27 Picture after line detection

3.1.2. Object Detection Algorithms – Convolutional Neural Networks

The object detection and tracking algorithms are developed and applied on Nvidia GPU

platform, which runs on a 16.04 Ubuntu OS, with a USB-webcam connected to laptop as

a mono camera. The camera is mainly responsible for object detection and tracking.

Object range and range rate measurement will also be part of its job, which will be

discussed in the next section.

YOLO (You Only Look Once) is a real-time object detector equipped with deep fully

convolutional neural network to generate bounding boxes, class labels and confidence

scores. YOLO-network were used as object detection algorithm. This single network is

applied to the full image, by first dividing the image into several sub-regions to predict

probabilities as well as confidence scores for each region. Then bounding boxes are

added to the image according to the confidence score. We designed a 34-layer

convolutional neural network with two classes for vehicle feature extraction and

56

detection. The weights file for the networks was trained using GTI and KITTI vehicle

picture dataset by PC with Nvidia GPU. The speed of YOLO-network is boosted using

NVidia CUDA toolbox, which utilizes GPU on embedded Jetson TX2, increasing

detecting speed from 2~3 FPS (CPU only) to 15~18 FPS (GPU only).

The coordinates of the bounding box are used for tracking objects. Kalman filter

algorithm is used for vehicle tracking and labelling. We use OpenCV Kalman filter class

and functions to predict the future position of the bounding box coordinates and reduce

noise in the detected location. The tracking algorithm helps to associate multiple physical

objects with their corresponding tracks. Different vehicles will be labeled with unique

IDs throughout the whole detection period.

Range and range rate measurement can also be realized by using mono cameras, though

predicting accuracy and robustness are not as good as radars. However, with the neural

network algorithm, our detecting- and tracking-algorithms are robust enough to predict

relatively accurate values for slow moving objects.

3.1.3. Another Object Detection Algorithm – HOG and SVM approach

We tested both HOG and YOLO on PC. Compared to an average of 15 FPS on Jetson

TX2, YOLO can reach 50 FPS on a PC with Nvidia GeForce GTX 1066 for vehicle

detection with the same algorithms.

For lane detection we improved our algorithm by adding perspective transform and

creating a series of search windows over the lines. For perspective transform, OpenCV

function cv2.getPerspectiveTransform (Python) and cv2.warpPerspective to generate a

linear matrix transform. For search windows, which is like sliding-window technique, but

with an extra action of splitting the windows into left and right halves.

57

For vehicle detection, Histogram of Oriented Gradients (HOG), and Support vector

machine (SVM) approach is used by classifying vehicle using the HOG feature and color

space feature. By performing a HOG feature extraction on a labeled training set of

images, a linear SVM classifier could be trained. Linear SVM is a linearly scalable

routine meaning that it creates an SVM model in a CPU time which scales linearly with

the size of the train data set. It should be noticed that our training data set was created

from the images that our team member took for previous ADAS tasks. Normalization of

differences in magnitude between the color-based and gradient-based feature and sliding-

window technique are used for trained classifier to search for vehicle in an image. This

yields the result of images with adjacent boxes, as shown below.

58

Figure 28 Heat map of vehicles in picture

However, the result is not satisfactory because there are many positives and multiple

detections. Heatmap is a solution for this problem. By overlapping bounding boxes on the

target image, calculating the accumulating rate of bounding boxes and create a heat map

for vehicle detection. While the final results are satisfactory, yet the elapsed time for a

vehicle detection is too long (0.2FPS). Furthermore, high contrast images would make

our detector more accurate and robust.

Table 8 Performance and processing speed of two algorithms

Algorithms True positive rate (%) Processing speed (FPS)

59

On PC On Jetson TX2

HOG + SVM ~90 0.191 <0.01

Convolutional Neural Network 80.42 30-50 15-17

True positive rate is calculated by comparing detection result and ground truth labeled

in the footage video captured by webcam on Jetson. Note that our neural network has

quite high true positive rate when the object is quite close to the camera. As shown in the

pictures, neural network algorithms start to detect vehicles at the distance of ~40 meters

form the object (distance between each cone is 10 meters.

60

Figure 29 Comparison between HOG+SVM and Neural Network algorithms vehicle

detection results

61

Figure 30 On-road test of Neural Network algorithm

We tested the neural network algorithm using pictures from Internet taken in different

time and weather conditions. For example, sunny, snowy, foggy and rainy days, as well

as daytime and nighttime traffic. Testing pictures have cars with different shapes and

driving directions. Number of cars in each picture also varies.

62

Figure 31 Partial results for evaluating performance of vehicle detection algorithms

The output of the camera image processing algorithms contains obstacle position and

raw data of each available parking spots. Especially for parking spot detection, some

features will be the input of sensor fusion algorithms, which will be discussed in the next

section.

63

Figure 32 Image of parking lot after lane detection and object detection

3.1.4. Sensor fusion

Sensor fusion system is the critical part in the auto parking system. Sensor fusion

algorithm collects objects list and parking spot features obtained from perception

algorithms. GPS signal will also be fused to get the accurate location of the vehicle, i.e.,

the trajectory of the vehicle will be tracked when it starts to move. The information was

used to build an environment model for localizing the car and identifying obstacles. Here

we propose two approaches.

The first approach starts with Around View Monitor (AVM). Fusion image of four

surround view cameras mounted on the four sides of the vehicle, we can obtain an around

view picture by performing perspective transform, feature matching, then connecting and

stitching four images to a large AVM image. The perception algorithm such as object

detection and tracking, lane detection algorithms are conducted in the AVM image. The

detection result (typically an object list) of perception algorithms can be directly put into

64

the world model for further processing.

The second approach is to do perception on each camera. Object detection/tracking and

lane detection algorithms are performed by each camera and the detection results are put

into the world model after perspective transform. This step requires the exact position of

each camera. And the perception algorithm should have the ability to estimate the

distance of the object.

In this research project, we will use the second method. To get a around view

monitoring image, at least four high resolution cameras are needed. The location

accuracy of the camera and dimension of the vehicle are critical to calibrating the camera.

After calibration, the stitched surround view image is too distorted for object detection, as

shown in the figure below.

Figure 33 Distorted vehicles in surround view camera system [40]

In our case, we will use the second method to avoid complicated camera calibration. In

65

future work, we can mount high-resolution cameras permanently on a development

vehicle to obtain the surround view and use other sensors to perform object detection.

During the parking process, the location of the vehicle is critical for path planning and

localization. In the auto parking system, we will use GPS and IMU for localization. GPS

will be used both in experiment and simulation. However, hacking into the IMU of a

vehicle is difficult, IMU will only be used in the simulation environment.

As is discussed in the vehicle dynamics model earlier in this chapter, five parameters of

the vehicle are used for describing the localization information of the vehicle. We will

use a state vector to describe the vehicle model.

xk = [𝑥 𝑦 𝜓 𝑣 𝜓̇]

We will get readings of these five parameters from different sensors on the vehicle. X

and Y are the position of the vehicle coming from the GPS, in Cartesian coordinate. 𝜓

and 𝜓̇ are the yaw angle and yaw rate of the vehicle coming from IMU, in polar

coordinate. 𝑣 is the speed of the vehicle. The value of speed comes from vehicle wheel

encoder, and the heading of the vehicle comes from GPS.

As is described in the vehicle dynamics model, these five parameters are constrained by

nonlinear functions. We will use extended Kalman filter for estimating the state of the

vehicle. The mathematical model of an extended Kalman filter can be written as [41]

𝒙𝑘 = 𝑔(𝒙𝑘−1, 𝒖𝑘−1) + 𝒘𝑘−1

𝒛𝑘 = ℎ(𝒙𝑘) + 𝒗𝑘

Where 𝒘𝑘 and 𝒗𝑘 are noises occurred when processing and measuring the sensor data,

respectively. They can be considered as mean Gaussian noises with Q and T covariance.

Function g and h can be used to calculate the predicted state/measurement from the

66

previous estimate. At each step, a Jacobian matrix is applied between the prediction

functions and the noise covariance.

From the vehicle dynamics model we can get that

[

𝑥
𝑦
𝜓
𝑣
𝜓̇]

=

[

 𝑥 +

𝑣

𝜓̇
(− sin𝜓 + sin (𝑇𝜓̇ + 𝜓))

𝑦 +
𝑣

𝜓̇
(cos𝜓 − 𝑐𝑜𝑠 (𝑇𝜓̇ + 𝜓))

𝑇𝜓̇ + 𝜓
𝑣
𝜓̇]

Then we can take partial differential of the vehicle state matrix to get the Jacobian

matrix of the vehicle state

Jacobian(state)

=

[

 1 0

𝑣

𝜓̇(− cos𝜓 + cos(𝑇𝜓̇ + 𝜓))

1

𝜓̇(− sin𝜓 + sin(𝑇𝜓̇ + 𝜓))
…

0 1
𝑣

𝜓̇(− sin𝜓 + sin(𝑇𝜓̇ + 𝜓))

1

𝜓̇(cos𝜓 − cos(𝑇𝜓̇ + 𝜓))
…

0 0 1 0 …
0 0 0 1 …
0 0 0 0 …]

[

 …

𝑇𝑣

𝜓̇
cos(𝑇𝜓̇ + 𝜓) −

𝑣

𝜓2̇ (− sin𝜓 + sin(𝑇𝜓̇ + 𝜓))

…
𝑇𝑣

𝜓̇
sin(𝑇𝜓̇ + 𝜓) −

𝑣

𝜓2̇ (cos𝜓 − cos(𝑇𝜓̇ + 𝜓))

… 𝑇
… 0
… 1

]

Extended Kalman filter can handle synchronization of different sensors. For example,

in our case, the sample rate of GPS is 10Hz, while other sensors have a sample rate of

50Hz. Before we start fusing the data using extended Kalman filter, we will set up the

initial environment, including initial uncertainty, noise covariance matrix, etc. Assuming

67

the initial parameters of the vehicle are 0, meaning when the driver activates auto-parking

functionality, the vehicle is static, and the GPS is reset to the location where the driver

stopped.

The next step is to define the sensor measurement noise, as is pointed out by Kelly, A.,

etc., the uncertainty estimates take on the significance of relative weights of state

estimates and measurements. So it is not so much important that uncertainty is absolutely

correct as it is that it be relatively consistent across all models [42]. We will define the

measurement noise covariance R as

R =

[

𝑣𝑎𝑟(𝐺𝑃𝑆𝑥)

2 0 0 0

0 𝑣𝑎𝑟(𝐺𝑃𝑆𝑦)
2

0 0

0 0 𝑣𝑎𝑟(𝑆𝑝𝑒𝑒𝑑)2 0

0 0 0 𝑣𝑎𝑟(𝑌𝑎𝑤)2]

Where var() is the standard deviation of sensor measurement. Here we define the

standard deviation is 6, 1 and 0.1, for GPS, speed and yaw rate, respectively.

The Process Noise Covariance Matrix Q is defined as

Q =

[

𝑠(𝐺𝑃𝑆𝑥)

2 0 0 0

0 𝑠(𝐺𝑃𝑆𝑦)
2

0 0

0 0 𝑠(𝑆𝑝𝑒𝑒𝑑)2 0

0 0 0 𝑠(𝑌𝑎𝑤)2]

Where s() is the maximum value a sensor can measure.

The extended Kalman filter has a loop that performs prediction and correction of the

state parameters. Within each time-stamp in the loop, the prediction process will project

the state and error covariance one time-stamp ahead, using the Jacobian matrix calculated

each iteration.

𝑥𝑘+1 = 𝑔(𝑥𝑘, 𝑢)

𝑃𝑘+1 = 𝐽𝐴𝑃𝑘𝐽𝐴
𝑇 + 𝑄

68

The correction process will update the estimate via sensor measurement as well as the

error covariance used in the prediction phase.

𝐾𝑘 = 𝑃𝑘𝐽𝐻
𝑇(𝐽𝐻𝑃𝑘𝐽𝐻

𝑇 + 𝑅)−1

𝑥𝑘 = 𝑥𝑘 + 𝐾𝑘(𝑧𝑘 − ℎ(𝑥𝑘))

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐽𝐻)𝑃𝑘

The output of the sensor fusion algorithm contains parking spot features, as well as the

ego vehicle information, as shown in the table below.

Table 9 Description of sensor fusion output parameters

Sensor fusion output Description

𝑖 Starting from zero, ID records the indices

of all the parking spots found.

𝑥𝑝, 𝑦𝑝 The orientation of the parking spot. The

direction of the parking spot will determine

vehicle motion planning.

𝑑𝑖 Geometric feature of the parking spot

𝑤𝑖 Geometric feature of the parking spot

𝑚, 𝑛, 𝑝, 𝑞 Localize the parking lot in the frozen world

coordinate.

𝜁 Probability for the parking spot is available

𝑡𝑦𝑝𝑒_𝑖 Different types of detected parking lot

𝑣 Value of vehicle speed

𝜓 Heading of vehicle speed

69

𝑥𝑣, 𝑦𝑣 Relative position to the original point,

where auto-parking started

𝜓̇ Yaw rate of vehicle

Sensor fusion result will be integrated in the world model. These features listed in the

table are essential for vehicle maneuvering such as motion planning and local feedback

control.

3.1.5. Route planning, behavior decision making and motion planning

With the perception and sensor fusion information, we can plan a path from the start

point to the desired destination. In our case, the start point is the location of the vehicle

when it detected an available parking spot. The destination is the center of the available

parking spot.

Many path planning algorithms can be used in autonomous vehicle, such as Dijkstra

algorithm, RRT algorithm, A* algorithm, etc. According to Reeds and Shepp [43], in a

parking lot with obstacles, as long as there is a trajectory that can avoid all the obstacles

between the initial and destination point, there is a Reeds-Shepp curve that allows the

vehicle to move from start to end. To obtain a Reeds-Shepp curve, random searching

algorithm are usually used to find a path for the vehicle. In our case, we will choose RRT

as our path planning algorithm. RRT is the abbreviation for Rapid-exporting Random

Trees.

Below is the pseudo code for RRT algorithm. The advantage of RRT algorithm is fast

speed. During the auto-parking process, every time the vehicle moves, the path planning

algorithm will re-generate a path for the vehicle to follow. This requires the path planning

70

algorithm to be fast in terms of processing speed.

Algorithm BuildRRT

 Input: Initial configuration qinit, number of vertices in RRT K, incremental distance

Δq)

 Output: RRT graph G

 G.init(qinit)

 for k = 1 to K

 qrand ← RAND_CONF()

 qnear ← NEAREST_VERTEX(qrand, G)

 qnew ← NEW_CONF(qnear, qrand, Δq)

 G.add_vertex(qnew)

 G.add_edge(qnear, qnew)

 return G

71

Figure 34 Reference path generated by RRT

3.1.6. Vehicle control

Motion planning determines reference velocity and reference pose of the vehicle. In the

simulation environment, the vehicle is controlled by steering wheel, throttle and brake,

same as vehicles we drive daily. In our case, vehicle control is a path follower. Using

feedback control, the vehicle will be driven with a pre-defined path and speed profile, as

discussed in the last section. In order to control the vehicle to follow the path created by

path planning algorithm, a simple PID controller will be applied to control the vehicle.

72

Figure 35 Diagram of the speed PID controller

Figure 36 Diagram of the feed-forward steering PID controller

73

4. CHAPTER IV EXPERIMENTAL AND SIMULATION RESULTS

A universal simulation tool for ADAS feature testing and validation is developed in

this chapter. The simulation tool, especially for the auto-parking algorithm simulation, is

conducted in Robot Operating System (ROS). ROS is an open source simulation

environment for robotics research application. In this simulation environment, vehicle

simulation tool such as Gazebo and visualization tool such as Rviz can be used as the

main development platform.

4.1. ROS Environment setup

In Gazebo, a plug-in open source software for robot visualization and simulation,

vehicles and obstacles are simulated. In our simulation, a Lincoln MKZ is used as the ego

vehicle. Vehicle dynamics discussed in the previous chapter can be defined in Gazebo. In

this vehicle model, vehicle mass, center of mass and Ackermann steering mechanism are

also simulated to make the model more realistic.

Multiple sensors are mounted on the vehicle, including a front view camera; a perfect

GPS with Gaussian noise added; a surround view camera system with four fisheye

cameras; an IMU; a mid-range Radar; 12 ultrasonic sensors and a Velodyne 32 beam

scanning LiDAR. Although not all the simulated sensors are used in the auto-parking

application, they can be reserved for future work. For example, the LiDAR and Radar can

be used as major sensors for level 3 or level 4 feature development such as highway pilot.

From the screenshots taken in Gazebo below, we can see how the vehicle is modeled and

the two obstacles are for visualization purposes.

74

Figure 37 Vehicle model built in Gazebo with different view angle

As is discussed in the previous chapter, the auto-parking process can be divided to six

parts. Perception, sensor fusion, route planning, behavior decision making, motion

planning and vehicle control. All these functionalities can be simulated in ROS

environment.

75

Figure 38 Surround view camera simulation

As is shown in the figure above, four surround view cameras are mounted on the

simulation vehicle. A top-down view camera is deployed to monitor the status of the

vehicle using a bird eye view. The image captured by the cameras can be used for image

processing purpose, as discussed in previous chapters. GPS sensors can be setup on the

vehicle, providing the speed, heading and position of the vehicle. In Gazebo, sensor data

will be transmitted as a rostopic. Command $ rostopic echo /vehicle/* can be used to

visualize sensor data.

Figure 39 On-vehicle GPS data acquired from rostopic list

76

Figure 40 LiDAR detection result in simulation environment

As is shown in the figures above, virtual sensors mounted on the vehicle can be used to

perceive information from the virtual world in Gazebo. Sensor fusion, motion planning

and vehicle control will be conducted within the work flow below. The work flow graph

is generated by command $ rqt_graph. This command can help us visualize all the nodes

and topics from the simulation environment.

Figure 41 RQT Graph of the simulation environment

4.2. MATLAB Simulation Environment

Algorithm development in ROS can be performed in either C++ or Python. However,

77

we can also use MATLAB ROS Toolbox to communicate between ROS and MATLAB.

In this case, we can develop all the algorithms in MATLAB Simulink and Simscape. In

our case, the sensor fusion result processed in ROS will be transmitted to MATLAB as a

ROS topic. Motion planning and vehicle control algorithm are conducted in Simulink.

We can also visualize the parking process in MATLAB Simscape multi-body simulator.

78

Figure 42 Auto-parking Simulation result in different view angles

Similarly, algorithm output from MATLAB, such as reference path and vehicle

steering angle, can also be transmitted to ROS environment. In the following simulation

experiment, lane detection result detected from ROS is transmitted to MATLAB, where

path planning and vehicle control is performed. The generated path and steering angle are

transmitted back to ROS, in order to control the vehicle to drive within the lane, as shown

in the figure below. The whole system can reach a speed of 10 FPS, meaning 10

messages transmitted to ROS per second.

79

Figure 43 Lane Keeping Assist simulation based on ROS and MATLAB

4.3. Experimental results

4.3.1. Surround view camera experiment

80

Figure 44 Camera mounted on the vehicle for experiment

The experiment for surround view camera parking spot detection is conducted in an

open US parking lot with yellow solid line markers. A webcam is mounted near the wing

mirror on the side window. The videos recorded from the webcam was stored for post

processing. Parking spot detection and object detection are performed on the video.

81

Figure 45 Parking spot and object detection in a parking lot

Comparing with ground truth labeled by human drivers, the true positive rate for

parking spot detection after sensor fusion is 73%. Most of the false negative detection are

due to non-robust computer vision algorithms. The detection algorithm is sensitive to

cracks on the ground and vehicle shade that partially covered lines on the ground.

4.3.2. GNSS vehicle tracking experiment

Normal GNSS (GPS) receivers usually have a few meters of positioning errors, and not

accurate enough for use in ADAS applications. RTK GNSS can achieve a better

positioning accuracy with positioning errors of a few centimeters, but they are very

expensive. In our experiment, we used an embedded GNSS sensor with antenna,

developed based on Arduino.

82

Figure 46 GNSS Sensor for vehicle localization

The GNSS is using the RTK base station in the City of Warren, Michigan. The base

station is located at 42° 32' 02.45507" N, 83° 01' 13.34816" W.

Figure 47 RTK base station near Warren waste water treatment plant on Google Map

With the GNSS sensor, we can get accurate position of the test vehicle, which is an

essential assumption in the sensor fusion algorithm discussed in the previous chapters.

During the experiment, the GNSS sensor is mounted on the top of the test vehicle. The

vehicle was driven around in a parking lot. The GNSS has a 10Hz sample rate and after

83

applying Kalman filter to it, the trajectory is smooth. The trajectory of test vehicle is

drawn on Google Map background.

Figure 48 Vehicle location GNSS signal during experiment

The GNSS sensor can be used to create an HD map for future work. The antenna was

put on the parking spot lines, road curb and s light pole to create a scaled map for the

parallel parking.

Figure 49 Simple HD Map creation using GNSS sensor

84

5. CHAPTER V CONCLUSION AND FUTURE WORK

5.1. Conclusions

This thesis presents an integrated design of Auto-Parking Assist in an Advanced Driver

Assistance System. The modified architecture of the ADAS, especially for auto-parking

feature, is introduced in this thesis. The system was broken down to four major sub-

systems: sensor selection, perception and signal processing, motion planning and

behavior decision making, and vehicle control and trajectory following. Each sub-system

was discussed in detail in this thesis. A ROS based simulation environment has been

developed to simulate the performance of the ADAS feature, based on individual tests on

perception, sensor fusion, path planning, and vehicle control. Due to resource limitation,

simple experiments such as camera image processing for available parking spot detection

and GPS localization were conducted. More sophisticated experiment involving more

sensors and processors are planned for future work.

Sensor selection criteria for autonomous driving have been established in this thesis.

Different types of sensors have pros and cons to be utilized in different use cases, in

terms of ADAS features, traffic conditions and surrounding environments. Cameras and

localization sensors such as GPS are used for auto-parking application. Sensor fusion

between cameras and GPS using extended Kalman filter are discussed in the thesis.

Cameras mounted around the vehicle are used for detecting available parking spots. GPS

is used as a localization sensor in order to obtain the accurate location of ego vehicle for

minimizing accumulative error. The fused sensors will provide more accurate parking

spot detection result as well as vehicle localization information. Motion planning

algorithms are based on Reeds-Shepp and Rapid-exploring Random Tree (RRT). Based

85

on the detection and fusion result from the perception and sensor fusion system, an initial

point and a destination point will be defined in the vehicle coordinate system. The RRT

algorithm was used as a path planning algorithm to plan a feasible path that guides the

vehicle to the parking spot. A PID controller is used to control the steering angle of the

vehicle to follow the trajectory.

A simulation environment has been designed and setup up in Robot Operating System

(ROS). Virtual vehicle, lane markers, parking lot and obstacles such as vehicles and

pedestrians are defined in the simulation world. The simulation vehicle subjects to a

bicycle vehicle dynamics model. Virtual sensors such as cameras, GPS receiver, LiDAR

and ultrasonic sensors are simulated in ROS.

5.2. Future work

5.2.1. Algorithm improvement

The sensor fusion algorithm is based on the constant velocity vehicle model, which

limits the motion planning and vehicle control of the system. For example, the path

planning algorithm will only be able to generate a geometric path without generating a

speed profile for the trajectory. At the same time, a more sophisticated vehicle controller

can be developed to handle real-world experiments, such as Model Predictive Control,

Fuzzy Control, etc.

5.2.2. Use cases in other ADAS feature scenarios

The ADAS architecture design in this thesis can also be migrated to other ADAS

functionalities to achieve a higher level of automation. For example, Adaptive Cruise

Control (ACC), Traffic Jam Assis (TJA), High Way Assist (HWA), etc. can adopt the

sensor fusion and motion planning algorithm.

86

Auto Dim

Figure 50 Adaptive cruise control: use case scenario on local roads

Auto Dim

Speed
Limi t

70

Figure 51 Adaptive cruise control: use case scenario on highways

Adaptive cruise control is commonly used as the primary ADAS feature on vehicles.

When adaptive cruise control is enabled on highway or local express way, the ego vehicle

will cruise at a pre-set speed and follow the preceding vehicle by automatically adjusting

throttle and brake. If the preceding vehicle slows down or cut-in, the ego vehicle should

87

be able to detect the speed difference between itself and the preceding vehicle and adjust

its speed accordingly.

Figure 52 Traffic jam assist use case

Traffic jam assist is another important ADAS feature yet not many vehicles have in

their ADAS package. The system will automatically adjust steering, throttle and brake to

navigate the vehicle in traffic jam situations. Normally the system will drive the vehicle

in the host lane and will not change lane. When the driver turns on the turning lights, the

system can provide necessary information to the driver (such as blind spot detection

results, etc.), but the system will not have any physical operations.

88

APPENDIX

Parking spot to world model coordinate transform

#include <ros/ros.h>

#include <geometry_msgs/PoseStamped.h>

#include <tf/transform_listener.h>

ros::Publisher parkingspot_publisher;

void transformPose(const tf::TransformListener& listener){

 //we'll create a point in the base_laser frame that we'd like to transform to the base_link

frame

 geometry_msgs::PoseStamped parkingspot;

 parkingspot.header.frame_id = "world";

 //we'll just use the most recent transform available for our simple example

 parkingspot.header.stamp = ros::Time();

 //just an arbitrary point in space

 parkingspot.pose.position.x = 0.0;

 parkingspot.pose.position.y = 0.0;

 parkingspot.pose.position.z = 0.0;

 parkingspot.pose.orientation.x = 0.0;

 parkingspot.pose.orientation.y = 0.0;

89

 parkingspot.pose.orientation.z = 0.3428978;

 parkingspot.pose.orientation.w = 0.9393727;

 try{

 geometry_msgs::PoseStamped base_point;

 listener.transformPose("vehicle/base_footprint", parkingspot, base_point);

 parkingspot_publisher.publish(base_point);

 ROS_INFO("world: (%.2f, %.2f. %.2f) -----> base_footprint: (%.2f, %.2f, %.2f) at

time %.2f", parkingspot.pose.position.x, parkingspot.pose.position.y,

parkingspot.pose.position.z, base_point.pose.position.x, base_point.pose.position.y,

base_point.pose.position.z, base_point.header.stamp.toSec());

 }

 catch(tf::TransformException& ex){

 ROS_ERROR("Received an exception trying to transform a point from \"world\" to

\"base_link\": %s", ex.what());

 }

}

int main(int argc, char** argv){

 ros::init(argc, argv, "parkingspot_tf_listener");

 ros::NodeHandle n;

 parkingspot_publisher =

n.advertise<geometry_msgs::PoseStamped>("parkingspot",1000);

 tf::TransformListener listener(ros::Duration(10));

90

 //we'll transform a point once every second

 ros::Timer timer = n.createTimer(ros::Duration(0.1), boost::bind(&transformPose,

boost::ref(listener)));

 ros::spin();

}

Transmit Brake Command from MATLAB to ROS

#! /usr/bin/env python

import rospy

from dbw_mkz_msgs.msg import BrakeCmd

class CmdKeeper:

 def __init__(self):

 rospy.init_node('BrakeCmd_Keeper')

 rospy.Subscriber('/vehicle/SimulinkBrakeCmd', BrakeCmd, self.recv_brakecmd)

 self.pub_brakecmd = rospy.Publisher('/vehicle/brake_cmd', BrakeCmd,

queue_size=1)

 self.start = False

 self.cmd = BrakeCmd()

 self.pubrate = rospy.Rate(50)

91

 def pub_cmd(self):

 while not rospy.is_shutdown():

 if self.start:

 self.pub_brakecmd.publish(self.cmd)

 self.pubrate.sleep()

 def recv_brakecmd(self, msg):

 self.cmd.pedal_cmd = msg.pedal_cmd

 self.cmd.pedal_cmd_type = msg.pedal_cmd_type

 self.cmd.enable = msg.enable

 self.cmd.clear = msg.clear

 self.cmd.ignore = msg.ignore

 self.cmd.count = msg.count

 self.start = True

if __name__ == '__main__':

 node_instance = CmdKeeper()

 node_instance.pub_cmd()

rospy.spin()

Steering Command

#! /usr/bin/env python

92

import rospy

from dbw_mkz_msgs.msg import SteeringCmd

class CmdKeeper:

 def __init__(self):

 rospy.init_node('SteerCmd_Keeper')

 rospy.Subscriber('/vehicle/SimulinkSteerCmd', SteeringCmd, self.recv_steeringcmd)

 self.pub_steercmd = rospy.Publisher('/vehicle/steering_cmd', SteeringCmd,

queue_size=1)

 self.start = False

 self.cmd = SteeringCmd()

 self.pubrate = rospy.Rate(50)

 def pub_cmd(self):

 while not rospy.is_shutdown():

 if self.start:

 self.pub_steercmd.publish(self.cmd)

 self.pubrate.sleep()

 def recv_steeringcmd(self, msg):

 self.cmd.steering_wheel_angle_cmd = msg.steering_wheel_angle_cmd

 self.cmd.steering_wheel_angle_velocity = msg.steering_wheel_angle_velocity

 self.cmd.enable = msg.enable

 self.cmd.clear = msg.clear

93

 self.cmd.ignore = msg.ignore

 self.cmd.quiet = msg.quiet

 self.cmd.count = msg.count

 self.start = True

if __name__ == '__main__':

 node_instance = CmdKeeper()

 node_instance.pub_cmd()

rospy.spin()

Throttle Command

#! /usr/bin/env python

import rospy

from dbw_mkz_msgs.msg import ThrottleCmd

class CmdKeeper:

 def __init__(self):

 rospy.init_node('ThrottleCmd_Keeper')

 rospy.Subscriber('/vehicle/SimulinkThrottleCmd', ThrottleCmd,

self.recv_throttlecmd)

 self.pub_throttlecmd = rospy.Publisher('/vehicle/throttle_cmd', ThrottleCmd,

queue_size=1)

 self.start = False

94

 self.cmd = ThrottleCmd()

 self.pubrate = rospy.Rate(50)

 def pub_cmd(self):

 while not rospy.is_shutdown():

 if self.start:

 self.pub_throttlecmd.publish(self.cmd)

 self.pubrate.sleep()

 def recv_throttlecmd(self, msg):

 self.cmd.pedal_cmd = msg.pedal_cmd

 self.cmd.pedal_cmd_type = msg.pedal_cmd_type

 self.cmd.enable = msg.enable

 self.cmd.clear = msg.clear

 self.cmd.ignore = msg.ignore

 self.cmd.count = msg.count

 self.start = True

if __name__ == '__main__':

 node_instance = CmdKeeper()

 node_instance.pub_cmd()

rospy.spin()

95

REFERENCES

[1] Patrascu, D. (2010, Sept 22). Valeo Electric Show Car to Shine in Paris.

Retrieved from https://www.autoevolution.com/news/valeo-electric-show-car-

to-shine-in-paris-24640.html.

[2] H. Satonaka, M. Okuda, S. Hayasaka, T. Endo, Y. Tanaka, and T. Yoshida,

“Development of parking space detection using an ultrasonic sensor,” in Proc.

13th World Congr. Intell. Transp. Syst. Serv., Oct. 2006, pp. 1–10.

[3] S. Hiramatsu, A. Hibi, Y. Tanaka, T. Kakinami, Y. Iwata, and M. Nakamura,

“Rearview camera based parking assist system with voice guidance,”

presented at the Proc. SAE World Congr. Exhib., Detroit, MI, USA, Apr.

2002, Paper 2002-01-0759.

[4] Ji, G., Hu, J., Zhu, Y., Gao, Z., & Yu, C. (2014). A Novel Method to Reduce

Accumulative Switching Errors in Multi-Sensor Incremental Measurement

Systems. ECS Transactions, 60(1), 863-868.

[5] Lima, P. F., Pereira, G. C., Mårtensson, J., & Wahlberg, B. (2018).

Experimental validation of model predictive control stability for autonomous

driving. Control Engineering Practice, 81, 244-255.

[6] Hucko, F. (2017). The development of autonomous vehicles (Master Thesis).

Retrieved from

https://projekter.aau.dk/projekter/files/260085639/Master_Thesis___The_dev

elopment_of_autonomous_vehicles.pdf.

[7] NHTSA. (2016). Automated Vehicles for Safety. Retrieved from

https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety.

96

[8] Ivanov, A. M., & Shadrin, S. S. (2018, February). Development of

autonomous vehicles’ testing system. In IOP Conference Series: Materials

Science and Engineering (Vol. 315, No. 1, p. 012011). IOP Publishing.

[9] Shuttleworth. J. (2019, Jan 7). SAE Standards News: J3016 automated-driving

graphic update. Retrieved from https://www.sae.org/news/2019/01/sae-

updates-j3016-automated-driving-graphic.

[10] Alaniz. A. (2018, Aug 7). Tesla Model 3 Outperforms In New IIHS Level 2

Autonomy Tests. Retrieved from

https://www.motor1.com/news/261555/tesla-model-3-autonomous-best/

[11] Solís-Marcos, I., Ahlström, C., & Kircher, K. (2018). Performance of an

additional task during Level 2 automated driving: an on-road study comparing

drivers with and without experience with partial automation. Human factors,

60(6), 778-792.

[12] Karnouskos, S. (2018). Self-Driving Car Acceptance and the Role of Ethics.

IEEE Transactions on Engineering Management.

[13] Huang, C., Lu, R., Lin, X., & Shen, X. (2018). Secure automated valet

parking: A privacy-preserving reservation scheme for autonomous vehicles.

IEEE Transactions on Vehicular Technology, 67(11), 11169-11180.

[14] Thorpe, C.; Hebert, M.H.; Kanade, T.; Shafer, S.A. Vision and navigation for

the Carnegie-Mellon Navlab. IEEE Trans. Pattern Anal. Mach. Intell. 1988,

10, 362–373.

97

[15] Thrun, S.; Montemerlo, M.; Dahlkamp, H.; Stavens, D.; Aron, A.; Diebel, J.;

Fong, P.; Gale, J.; Halpenny, M.; Hoffmann, G.; et al. Stanley: The robot that

won the DARPA Grand Challenge. J. Field Robot. 2006, 23, 661–692.

[16] Urmson, C.; Anhalt, J.; Bagnell, D.; Baker, C.; Bittner, R.; Clark, M.N.;

Dolan, J.; Duggins, D.; Galatali, T.; Geyer, C.; et al. Autonomous driving in

urban environments: Boss and the Urban Challenge. J. Field Robot. 2008, 25,

425–466.

[17] DARPA Urban Challenge. Retrieved form https://www.darpa.mil/about-

us/timeline/darpa-urban-challenge

[18] Tesla Motors. (2016, Dec 20). Accelerating the world to sustainable energy.

Retrieved from https://www.tesla.com/presskit/autopilot

[19] Elmenreich, W. (2002). An introduction to sensor fusion. Vienna University

of Technology, Austria, 502.

[20] L. Wald. A European proposal for terms of reference in data fusion.

International Archives of Photogrammetry and Remote Sensing, XXXII, Part

7:651–654, 1998

[21] B. V. Dasarathy. Information fusion - what, where, why, when, and how?

Information Fusion, 2(2):75–76, 2001. Editorial.

[22] Chavez-Garcia, R. O. (2014). Multiple sensor fusion for detection,

classification and tracking of moving objects in driving environments

(Doctoral dissertation, Université de Grenoble).

[23] Fairfield, N. (2009). Localization, mapping, and planning in 3D environments.

Ph. D. dissertation.

98

[24] Suhr, J. K., & Jung, H. G. (2014). Sensor fusion-based vacant parking slot

detection and tracking. IEEE Transactions on Intelligent Transportation

Systems, 15(1), 21-36.

[25] Loveday, S. (2018, Dec 19). 20 Best Self-Parking Cars in 2018. Retrieved

from https://cars.usnews.com/cars-trucks/best-self-parking-cars.

[26] Wang, C., Zhang, H., Yang, M., Wang, X., Ye, L., & Guo, C. (2014).

Automatic parking based on a bird's eye view vision system. Advances in

Mechanical Engineering, 6, 847406.

[27] Suhr, J. K., & Jung, H. G. (2016). Automatic parking space detection and

tracking for underground and indoor environments. IEEE Transactions on

Industrial Electronics, 63(9), 5687-5698.

[28] Lee, S., & Seo, S. W. (2016). Available parking slot recognition based on slot

context analysis. IET Intelligent Transport Systems, 10(9), 594-604.

[29] Zhang, L., Li, X., Huang, J., Shen, Y., & Wang, D. (2018). Vision-Based

Parking-Slot Detection: A Benchmark and A Learning-Based Approach.

Symmetry, 10(3), 64.

[30] Schoettle, B. (2017). Sensor fusion: A comparison of sensing capabilities of

human drivers and highly automated vehicles. Ann Arbor: University of

Michigan.

[31] Bosch MRR Radar Specification Sheet. (2019, Jan 11). Retrieved from

https://www.bosch-mobility-solutions.com/media/global/products-and-

services/passenger-cars-and-light-commercial-vehicles/driver-assistance-

99

systems/predictive-emergency-braking-system/mid-range-radar-sensor-

(mrr)/product-data-sheet-mid-range-radar-sensor-(mrr).pdf

[32] Eichelberger, A. H., & McCartt, A. T. (2016). Toyota drivers' experiences

with dynamic radar cruise control, pre-collision system, and lane-keeping

assist. Journal of safety research, 56, 67-73.

[33] Continental ARS 408 Long Range Radar Specification Sheet. (2019, Jan 11).

Retrieved from https://www.continental-

automotive.com/getattachment/5430d956-1ed7-464b-afa3-

cd9cdc98ad63/ARS408-21_datasheet_en_170707_V07.pdf.pdf

[34] Breyer, B. (1997). Ultrasonic measurements and technologies: Sensor physics

and technology series 4: S. Kocis, Z. Figura, Chapman & Hall, 1996, 218 pp.

Ultrasound in Medicine and Biology, 23(9), 1442.

[35] Wing, M. G., Eklund, A., & Kellogg, L. D. (2005). Consumer-grade global

positioning system (GPS) accuracy and reliability. Journal of forestry, 103(4),

169-173.

[36] Deng, X. X., Wang, X. N., & Zhu, J. (2014). Available lane detection based

on radon transform. Paper presented at the, 1046 415-424. doi:

10.4028/www.scientific.net/AMR.1046.415

[37] OpenGL Programming Guide, OpenGL ARB, Addison-Wesley 1993, ISBN

0-201-63274-8. (chapter 3; see insight)

[38] By HSV_color_solid_cylinder.png: SharkDderivative work: SharkD Talk

HSV_color_solid_cylinder.png, CC BY-SA 3.0, Retrieved from

https://commons.wikimedia.org/w/index.php?curid=9801673

100

[39] Canny, J. (1987). A computational approach to edge detection. In Readings in

computer vision (pp. 184-203). Morgan Kaufmann.

[40] Bonnici, D. 360-degree parking monitors explained. (2018, Feb 27). Retrieved

from https://www.whichcar.com.au/car-advice/360-degree-parking-monitors-

explained

[41] Kalman, R. E. (1960). Contributions to the theory of optimal control. Bol. soc.

mat. mexicana, 5(2), 102-119.

[42] Kelly, A. (1994). A 3D state space formulation of a navigation Kalman filter

for autonomous vehicles (No. CMU-RI-TR-94-19). CARNEGIE-MELLON

UNIV PITTSBURGH PA ROBOTICS INST.

[43] Dubins L E. On Curves of Minimal Length with a Constraint on Average

Curvature, and with Prescribed Initial and Terminal Positions and Tangents[J].

American Journal of Mathematics, 1957, 79(3): 497-516

[44] DeMuro D. (Nov 2016). 7 Self-Driving Car Features You Can Buy Now (and

Some You May Already Have). Retrieved from

https://www.autotrader.com/best-cars/7-self-driving-car-features-you-can-

buy-now-and-so-259333

101

ABSTRACT

ROS-BASED SENSOR FUSION AND MOTION PLANNING FOR

AUTONOMOUS VEHICLES: APPLICATION TO AUTOMATED PARKINIG

SYSTEM

by

YUANZHE LI

May 2019

Advisor: Dr. Caisheng Wang

Co-Advisor: Dr. Chin-An Tan

Major: Electrical Engineering

Research and development in autonomous vehicles are currently very active since these

vehicles are expected to play an important role in future transportation. During the past

decade, numerous Advanced Driver Assistance Systems (ADAS) features have been

developed and implemented on production vehicles, such as Adaptive Cruise Control and

Lane Keeping Assist. However, most ADAS features are aimed to assist driving on

highways where the environments are usually more structured and decision making can

be made more easily. Non-highway environments, such as in the case of self-parking, are

unstructured and require more complicated analysis of the image information,

localization and path planning. Most camera-based auto-parking features are limited to

partial autonomy, not intelligent enough to park a vehicle automatically without the

participation of a driver. Camera-based auto-parking systems can detect parking spots

but cannot accurately localize the vehicle as well as the parking spot. ds. These

algorithms are specifically designed for ADAS under low velocity and requires high

102

precision vehicle maneuvering, by increasing the localization accuracy, in terms of

vehicle and parking spot location. The APA system will help the driver to search for

available parking spots and self-drive the vehicle into the parking spot safely. The

strategic architecture of the auto-parking system includes environment perception, sensor

data fusion, motion planning, and vehicle control. Perception algorithms such as line

detection and object detection are discussed in this thesis. Sensor data fusion and data

association using extended Kalman filter for parking spot and vehicle location tracking

are developed in this thesis. Rapidly-exploring Random Tree (RRT) motion planning

algorithm is used to generate a path, leading the vehicle to park into the parking spot.

Simulations for sensor data processing, data association and motion planning are

conducted in a Robot Operating System (ROS) environment. A versatile virtual

environment with vehicle dynamics model and control algorithms are developed in the

simulation environment. Parking spot detection, vehicle behavior decision making, and

motion planning are tested based on virtual sensor signals modelled in ROS. Simulation

results show that the vehicle can self-drive into the parking spot without the participation

of a driver. Vehicle localization field experiments based on GPS sensor fusion has been

conducted in an open parking lot. Localization accuracy of ego vehicle is improved.

103

AUTOBIOGRAPHICAL STATEMENT

Name: YUANZHE LI

Education: May 2019, M.S. Electrical Engineering, Wayne State University, Detroit,

Michigan, U.S.A.

June 2018, B. S. Mechanical Engineering, Zhejiang University of

Technology, Hangzhou, Zhejiang, China.

	Ros-Based Sensor Fusion And Motion Planning For Autonomous Vehicles: Application To Automated Parkinig System
	Recommended Citation

	tmp.1562182926.pdf.aTm4E

