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A Recursive Algorithm For Fractionally Differencing Long Data Series 
 

 Joseph McCarthy         Robert DiSario    Hakan Saraoglu 
              Finance Department     Department of Mathematics       Finance Department 

Bryant College 
 
 
We propose a recursive algorithm to fractionally difference time series data. The algorithm eliminates the 
need to evaluate the gamma function directly, and hence avoids the overflow problem that arises when 
fractionally differencing a long data series. The proposed algorithm can be implemented using any general 
matrix programming language. An implementation using SAS is presented. The algorithm and the code 
provide a practical approach to including fractional differencing as part of a time series data analysis. 
 
Key words: Fractionally differencing, time series 
 
 

Introduction 
 
The process of differencing is widely used in time 
series data analysis. First differencing is often 
adequate to deal with nonstationary data for an 
ARIMA model. A useful generalization of integer 
differencing is fractional differencing. The 
resulting FARIMA models, or fractional ARIMA 
models, are often used for time series exhibiting 
long-range dependence (Beran (1994); Geweke 
and Porter-Hudak (1983); Granger and Joyeux 
(1980); Mandelbrot and Van Ness (1968)). Long-
range dependent series have hyperbolically 
decaying autocorrelation functions, unlike the 
exponential decay found in autocorrelation 
functions for time series modeled by ARIMA. 
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Algorithms to do fractional differencing 
can be used in simulating FARIMA data, in 
fractionally differencing an empirical time series 
to obtain a series suitable for ARIMA modeling, 
and in testing for white noise of residuals after 
fitting a FARIMA model. Because long-range 
dependence is found in financial time series and in 
some geophysical time series, practical algorithms 
to accomplish fractional differencing are needed. 

Statistical packages are beginning to 
incorporate modules to do fractional differencing. 
However, some of these modules are limited to 
very small data sets. For example, the SAS 
function FDIF can only handle approximately 171 
observations (SAS release 8.2 Proc IML; SAS 
Institute, Inc. 2001). This limit is apparently due to 
use of the gamma function. Our proposed 
algorithm uses a recursive approach to eliminate 
the need to compute gamma directly. Thus it 
provides a practical way to fractionally difference 
a time series of much more than 171 observations. 
As discussed in the results section, we have tested 
this procedure for a time series as large as 10,000 
observations. The algorithm that we describe 
could be implemented in any general matrix 
programming language. We provide an 
implementation using the matrix language SAS 
IML (SAS Institute, Inc. 1990). 

 
Method 

 
Let yt be obtained by taking the dth difference of a 
time series ; 0,1, , 1tx t n= −… :  
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(1 )d
t ty B x= − ,                                (1) 

 
where B is the backshift operator defined by 
 1t tBx x −= . 
If d=1 , then yt is the first difference: 
 

1(1 )t t t t t ty B x x Bx x x −= − = − = − .        (2) 
 
If d=2 , then yt is the second difference: 
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We could also obtain this second difference by 
expanding 2(1 )B−  and applying the resulting 
second degree polynomial in B to xt. 
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In general, for any integer d, the dth 

difference can be found by expanding (1 )dB− and 
applying the resulting polynomial in B to xt. 
Fractional differencing (-.5 < d < .5) is defined in 
an analogous way. Expanding (1 - B)d in a Taylor 
series (see Kaplan, 1984, p431): 
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(5) 

 
where the numerator in the above expression has j 
factors except when j=0 where it is unity.  Now by 
multiplying each factor in the numerator by -1 we 
change the sign of each: 
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Next, multiplying by 
( )

1
( )

j j d
d

Γ − −
=

Γ −
 and 

reversing the order of the factors in the product we 
obtain: 
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Finally, by repeatedly using the recurrence 

property of the gamma function: 
( ) ( 1) ( 1)x x xΓ = − Γ −  we can re-express the 

numerator as ( )j dΓ − . Thus, we obtain 

0

( )
(1 )

( 1) ( )
d j

j

j d
B B

j d

∞

=

Γ −
− =

Γ + Γ −∑ , which is a 

commonly used representation for the fractional 
differencing operator (Jensen, 1999). 

To implement a fractional differencing 
algorithm it necessary to compute the coefficients 
in the above series: 

 
( )

0,1,2,
( 1) ( )j

j d
C j

j d
Γ −

= =
Γ + Γ −

…        (8). 

 
Because these coefficients are used to multiply 
observations in the time series, this infinite 
sequence of coefficients can be truncated to the 
length of the data series.  

A problem arises when calculating these 
coefficients because for large values of j the 
numerator and denominator become very large and 
exceed the computational capacity of the 
computer. For example, the gamma function 
evaluated at 171 is approximately 7.257E306. Our  
approach uses the recursive property of the gamma 
function, ( ) ( 1) ( 1)x x xΓ = − Γ − , to obtain a 

recursive property for the jC  as follows:  
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Because the above recursive formula does 

not involve use of the gamma function, it is 
possible to calculate Cj for large values of j. It is 

only necessary to multiply Cj-1 by 
( 1)j d

j
− −

 

which is computationally trivial. Our SAS 
program which implements this appears in 
Appendix I. The key lines of code which 
recursively calculate Cj follow. Note that in SAS 

the array [ ]jC  must be indexed from 1 to n, 
rather than from 0 to n-1. 
 
jj=0;                                                                  
do i=1 to n;                                                               
  if i=1 then Cj[i] = 1;                                                        
  else Cj[i]= Cj[i-1]*((jj-d- 
     1)/jj) ;                                                  
  jj=jj+1;                                                                
end;                                                                   
 
The fractionally differenced time series, yt, is 
obtained by convolving the input time series, xt, 
with the vector of coefficients Cj. That is 
 

( )
0

1 −
=

= − = ∑
t

d
t t j t j

j

y B x C x  (10). 

 
The lines of SAS code that implement the 
convolution appear below.  
 
do i=1 to n;                                                               
  yt[i]=Cj[1:i]`*xt[i:1];                                                       
end;                                                                   
 

Using our approach we have been able to 
fractionally difference long data series. In the 

results section we give an example using a series 
of 10,000 observations. 

 
Results 

 
In the first example, we fractionally difference a 
small integer data series using d=.5, then 
fractionally difference the result again using d=.5. 
For this example, fractional differencing was done 
in two ways: first using the SAS function FDIF 
(SAS release 8.2 Proc IML); then using the code 
described above. 
 One reason for performing this test was to 
confirm that both approaches to fractional 
differencing produce the same result for a small 
time series. A second reason was to check that the 
d values are additive: fractional differencing twice 
with d=.5 is the same as first differencing. 
 The data series and the two fractionally 
differenced series are presented in Table 1. The 
column labeled XT is the integer data series. YJ is 
the fractional difference of XT using ‘Call FDIF’ 
with d=.5. ZJ is the fractional difference of YJ 
using Call FDIF with d=.5. Next, YT is the 
fractional difference of XT using our recursive 
procedure with d=.5. Finally, ZT is the fractional 
difference of YT using the procedure with d=.5. 
Clearly, YT = YJ and ZT = ZJ, showing that the 
two procedures produce the same results for this 
small data series. Also, the reader can check that 
ZT and ZJ are the same as would be obtained by 
doing first differencing. The program that 
produced all four series appears in Appendix II. 

In the second example we use our 
recursive method to fractionally difference a 
random series of 10,000 observations. Note that 
the method using the SAS FDIF function will not 
run on a time series that is longer than 
approximately 171 observations (using a Pentium 
IV, running at 1.7 GHz) and therefore was not 
included in this example. The SAS LOG in 
Appendix III shows that the program using our 
method successfully ran. Thus this method 
provides a practical way to fractionally difference 
long time series. Implementing this algorithm in 
SAS provides a convenient way to include 
fractional differencing as part of a complete 
analysis of a long memory time series. 
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Conclusion 
 
FARIMA models are commonly used to model 
long range dependent time series. In such cases, 
fractional differencing is often a useful part of the 
analysis. The practical way to fractionally 
difference a long time series is to use an algorithm 
that avoids calculating gamma(n) directly. 
(Although not discussed in the results section, we 
also ran our program on a series of 100,000 
observations using 5 minutes of CPU time). Our 
implementation in SAS is a convenient way to 
incorporate fractional differencing into time series 
data analysis. 
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Table 1. Fractional differencing using SAS Call 
Fdif and using the recursive procedure. 

 
XT YT ZT YJ ZJ 
582 582 582 582 582 
227 -64 -355 -64 -355 
410 223.75 183 223.75 183 
109 -160.75 -301 -160.75 -301 
686 543.3281 577 543.3281 577 
753 345.9688 67 345.9688 67 
903 399.7793 150 399.7793 150 
996 377.9981 93 377.9981 93 
60 -647.4 -936 -647.4 -936 
76 -201.273 16 -201.273 16 
716 523.3205 640 523.3205 640 
202 -272.01 -514 -272.01 -514 
637 361.6509 435 361.6509 435 
60 -394.921 -577 -394.921 -577 
314 109.65 254 109.65 254 
969 691.8636 655 691.8636 655 
87 -524.382 -882 -524.382 -882 
660 406.5947 573 406.5947 573 
719 248.2841 59 248.2841 59 
784 241.7671 65 241.7671 65 

 
 

 
 

 

 
Appendix I - SAS Program FRACDIFF.SAS 

 
*******************************;                                                    
* fracdiff.sas                *;                                                    
*                             *;                                                    
*******************************;                                                    
* create random data for fractional differencing algorithm *;                                      
data one ;                                                                
* for n=171 both methods of fractional differencing work *;                                       
* for n=172 call to fdif fails, but convolution works *;                                        
 do i=1 to 10000;                                                            
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 x=rand('NORMAL');                                                            
 output;                                                                 
 end;                                                                  
* fractional differencing algorithm implemented below *;                                        
proc iml ;                                                                
  use one;                                                                
  read all into xx;                                                           
  index=xx[,1];                                                             
  xt=xx[,2];                                                               
  n=nrow(xt);                                                              
* d = fractional differencing parameter *;                                          
  d=.5;                                                                 
* initialization;                                                             
 yt=j(n,1,0);                                                              
 Cj=j(n,1,0);                                                              
* do loop calculates coefficients using recursive method *;                                       
jj=0 ;                                                                  
do i=1 to n;                                                               
  if i=1 then Cj[i] = 1;                                                        
  else Cj[i]= Cj[i-1]*((jj-d-1)/jj) ;                                                 
  jj=jj+1;                                                                
 end;                                                                   
* Convolution follows. The arrays are indexed in reverse order to 
implement the *;                      
* convolution. Also, the symbol for transpose in SAS IML is '          *;                     
do i=1 to n;                                                               
  yt[i]=Cj[1:i]`*xt[i:1];                                                       
end;                                                                   
quit; 
 

Appendix II - SAS Program TESTPROG4.SAS 
 
*****************;                                                            
* testprog4.sas *;                                                            
*               *;                                                            
*****************;                                                            
data one ;                                                                
* for n=171 both methods of fractional differencing work *;                                       
* for n=172 call to fdif fails, but convolution works *;                                        
 do i=1 to 20;                                                             
 x=int(rand(‘uniform’)*1000);                                                          
 output;                                                                 
 end;                                                                  
proc print data=one ;                                                           
 run;                                                                   
 proc iml ;                                                                
  use one;                                                                
  read all into xx;                                                           
  index=xx[,1];                                                             
  xt=xx[,2];                                                               
  n=nrow(xt);d=.5;                                                            
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* initialization;                                                             
 yt=j(n,1,0);                                                              
 zt=j(n,1,0);                                                              
 yj=j(n,1,0);                                                              
 zj=j(n,1,0);                                                              
 Cj=j(n,1,0);                                                              
  call fdif(yj, xt, .5);                                                        
  call fdif(zj, yj, .5);                                                        
jj=0 ;                                                                  
do i=1 to n;                                                               
  if i=1 then Cj[i] = 1;                                                        
  else Cj[i]= Cj[i-1]*((jj-d-1)/jj) ;                                                 
  jj=jj+1;                                                                
 end;                                                                   
 do i=1 to n;                                                               
 * convolution follows *;                                                        
   yt[i]=Cj[1:i]`*xt[i:1];                                                      
 end;                                                                  
do i=1 to n;                                                               
 * convolution follows *;                                                        
   zt[i]=Cj[1:i]`*yt[i:1];                                                      
 end;                                                                  
print index xt yt zt yj zj; 
 

Appendix III - SAS LOG for FRACDIFF.SAS 
 
653 *******************************; 
654 * fracdiff.sas                *; 
655 *                             *; 
656 *******************************; 
657 
658 
659 * create random data for fractional differencing algorithm *; 
660 
661 data one ; 
662 * for n=171 both methods of fractional differencing work *; 
663 * for n=172 call to fdif fails, but convolution works *; 
664  do i=1 to 10000; 
665  x=rand('NORMAL'); 
666  output; 
667  end; 
668 
669 
670 * fractional differencing algorithm implemented below *; 
671 
 
NOTE: The data set WORK.ONE has 10000 observations and 2 variables. 
NOTE: DATA statement used: 
   real time      0.00 seconds 
 
672 proc iml ; 
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NOTE: IML Ready 
673   use one; 
674   read all into xx; 
675   index=xx[,1]; 
676   xt=xx[,2]; 
677   n=nrow(xt); 
678 * d = fractional differencing parameter *; 
679   d=.5; 
680 
681 * initialization; 
682  yt=j(n,1,0); 
683  Cj=j(n,1,0); 
684 
685 * do loop calculates coefficients using recursive method *; 
686 
687 jj=0 ; 
688 do i=1 to n; 
689   if i=1 then Cj[i] = 1; 
690   else Cj[i]= Cj[i-1]*((jj-d-1)/jj) ; 
691   jj=jj+1; 
692  end; 
693 
694 * Convolution follows. Notice that the arrays are indexed in reverse 
order to implement the 
694! *; 
695 * convolution. Also, the symbol for transpose in SAS IML is ' 
695! *; 
696 
697 do i=1 to n; 
698   yt[i]=Cj[1:i]`*xt[i:1]; 
699 end; 
700 
701 quit; 
NOTE: Exiting IML. 
NOTE: 7659 workspace compresses. 
NOTE: PROCEDURE IML used: 
   real time      3.18 seconds 
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