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PCAdmix: Principal Components-Based Assignment of Ancestry along
Each Chromosome in Individuals with Admixed Ancestry from Two or
More Populations

Abstract
Identifying ancestry along each chromosome in admixed individuals provides a wealth of information for
understanding the population genetic history of admixture events and is valuable for admixture mapping and
identifying recent targets of selection. We present PCAdmix (available at https://sites.google.com/site/
pcadmix/home), a Principal Componentsbased algorithm for determining ancestry along each chromosome
from a high-density, genome-wide set of phased single-nucleotide polymorphism (SNP) genotypes of
admixed individuals. We compare our method to HAPMIX on simulated data from two ancestral populations,
and we find high concordance between the methods. Our method also has better accuracy than LAMP when
applied to three-population admixture, a situation as yet unaddressed by HAPMIX. Finally, we apply our
method to a data set of four Latino populations with European, African, and Native American ancestry. We
find evidence of assortative mating in each of the four populations, and we identify regions of shared ancestry
that may be recent targets of selection and could serve as candidate regions for admixture-based association
mapping.
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Abstract Identifying ancestry along each chromosome in admixed indi-
viduals provides a wealth of information for understanding the population
genetic history of admixture events and is valuable for admixture mapping
and identifying recent targets of selection. We present PCAdmix (available
at https://sites.google.com/site/pcadmix/home), a Principal Components-
based algorithm for determining ancestry along each chromosome from a
high-density, genome-wide set of phased single-nucleotide polymorphism
(SNP) genotypes of admixed individuals. We compare our method to
HAPMIX on simulated data from two ancestral populations, and we find
high concordance between the methods. Our method also has better accuracy
than LAMP when applied to three-population admixture, a situation as yet
unaddressed by HAPMIX. Finally, we apply our method to a data set of four
Latino populations with European, African, and Native American ancestry.
We find evidence of assortative mating in each of the four populations, and
we identify regions of shared ancestry that may be recent targets of selection
and could serve as candidate regions for admixture-based association
mapping.

There is increasing awareness that admixed individuals such as African Ameri-
cans or Latinos may have a broad range of ancestry proportions, with varying
ancestry proportions throughout the genome even within a single individual
(Bryc et al. 2010; Tang et al. 2007). Identifying the ancestry of chromosomal
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segments in admixed individuals is important for understanding the population
genetic history of admixture events, including the time to the event (Pool and
Nielsen 2009; Pugach et al. 2011; Stam 1980), and population growth since
admixture (Chapman and Thompson 2002). It is also valuable for identifying
recent targets of selection (Gompert et al. 2012; Jin et al. 2011; Tang et al. 2007)
and improving genotype imputation via the selection of reference panels
conditioned on local ancestry (Pasaniuc et al. 2011). Finally, identifying the
ancestry of chromosomal segments in admixed individuals enables fine-scale
admixture mapping or joint linkage disequilibrium (LD) and admixture mapping
(Pasaniuc et al. 2011), allowing more accurate identification of genetic variants
associated with disease in admixed populations.

The challenge of identifying ancestry along each chromosome can be
addressed in several ways. Three of the most widely used methods are structure
(Falush et al. 2003), HAPMIX (Price et al. 2009), and LAMP (Pasaniuc et al.
2009). The method structure (Falush et al. 2003) uses Markov Chain Monte
Carlo (MCMC) to sample from the posterior distribution of allele frequencies,
ancestry proportions, and other variables, conditional on the number of ancestral
populations. This method can analyze admixed individuals without requiring
ancestral representatives, but its complex model for uncertainty, combined with
the use of MCMC, makes it highly computationally intensive and thus less
practical for the analysis of hundreds of thousands of markers of dense
genome-wide data. HAPMIX (Price et al. 2009) uses a Hidden Markov Model
(HMM) on ancestral haplotypes to model LD accurately for dense genome-wide
data. However, HAPMIX does not model admixture of more than two ancestral
populations, and the computational intensiveness of its haplotype-based model
may limit such an application in the future. Modeling markers as nearly
independent, as in LAMP (Pasaniuc et al. 2009), allows for faster computation,
but imposes stringent LD requirements (e.g., r2 � 0.1), which means that
analyses cannot take advantage of all available information in dense-marker sets.
As yet, there is no fast, accurate method for local ancestry assignment that
accommodates nonindependent markers and more than two ancestral popula-
tions. We develop a method that captures the nonindependence of SNPs by using
windows, or blocks of SNPs, that are more independent to offer a computation-
ally feasible solution. Unlike the LD pruning used in LAMP, which may drop
informative SNPs, our method retains markers to leverage all the ancestry
information available in the panel of SNPs.

Principal Components Analysis (PCA) is a fast, nonparametric method of
detecting structure in data. When applied to genetic data, it separates major axes
of ancestry, which separates samples based on population genetic structure. The
projection of admixed individuals is intermediate between the PCA-space
locations of ancestral populations (McVean 2009; Patterson et al. 2006). This
makes it effective for deconvolution of ancestry segments in admixed individu-
als, an approach employed by Bryc et al. (2010) to assign diploid genotype data
of African Americans to two ancestral populations. Although the principal
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components (PCs) themselves may be less interpretable compared to admixture
models, in this application the interpretability is supplied not directly by each PC,
but by the positions of admixed individuals relative to clusters of ancestral
individuals. In addition, PCA models continuous gradients of population struc-
ture, such as in isolation-by-distance models, better than admixture models that
assume a star-shaped phylogeny (Engelhardt and Stephens 2010), such as
SABER (Tang et al. 2006) or ADMIXTURE (Alexander et al. 2009). This makes
PCA applicable to a wider range of real populations.

In this paper, we expand on the PCA-based method of Bryc et al. (2010)
to produce PCAdmix. Like the methods of Bryc et al. (2010) and Pugach et al.
(2011), PCAdmix uses PCA to assign greater weight to variants that are more
informative about ancestry. Unlike StepPCO (Pugach et al. 2011), our method
can utilize shorter windows of SNPs for fine-scale ancestry assignment, and it
employs a HMM to model the ancestry in each window probabilistically. Most
importantly, unlike the methods of Bryc et al. (2010) and Pugach et al. (2011),
PCAdmix is applicable for admixture from two or more populations. This
method uses phased genotype data, making it valuable for identifying ancestry
patterns that were inherited on the same chromosome. This provides information
about the ancestry contributions of an individual’s parents.

We test our method on simulated admixed chromosomes from two and
three ancestral populations. Ancestral representatives for the simulations involv-
ing two ancestral populations were drawn from the Yoruba and Utah samples of
the International Haplotype Map III (HapMap3) project (Altshuler et al. 2010),
as in previous studies (Pasaniuc et al. 2009; Price et al. 2009). For the simulations
involving three ancestral populations, ancestral representatives were drawn from
the Human Genome Diversity Project (HGDP) because of its more diverse set of
populations. Through these simulations, we show that the method is robust to
misspecification of ancestral populations and the number of generations since
admixture. We find that, when analyzing three-way population admixture, the
ability to distinguish between two closely related ancestral populations can be
improved by using a two-population disambiguation step, combined with
lengthened analysis windows and filtered sets of ancestral representatives.
Finally, we apply our method to assess three-way European, Native American,
and African admixture among Puerto Ricans, Ecuadorians, Dominicans, and
Colombians in the NYULatino data set (Bryc et al. 2010). We find evidence of
assortative mating in each of the four populations, and we identify 12 regions of
elevated levels of African or Native American ancestry that are shared among
multiple Latino populations.

Materials and Methods

PCAdmix Algorithm. Our approach is outlined in Figure 1. Briefly, the
method uses PCA to determine how informative each SNP is in classifying the
ancestry of a genetic region. These PC loadings are used as weights in a weighted
average of the allele values in a window of SNPs, and the resulting window
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scores are used as the observed values in a HMM to assign posterior
probabilities to the ancestry in each window. While the details of this
approach are discussed below, the website for the algorithm can be accessed
at https://sites.google.com/site/pcadmix/home.

PCAdmix Algorithm: Quality Control and PCA. An initial quality-control
filter removed SNPs with high missingness and low minor-allele frequency. A liberal LD
filter was then applied, removing one of each pair of SNPs with r2 � 0.80 in any of the
ancestral or admixed groups. This prevents high-LD blocks from having excessive
influence on the inferred ancestry of a region, while retaining a dense, informative set of
SNPs. We used Singular Value Decomposition in R (R Development Core Team 2010)
to infer PCs of the phased genotypes of the ancestral representatives. We then projected
phased genotypes of admixed individuals onto the basis of PCs. The observed ancestry
score for haplotype i in window w is the weighted sum Siw � Lwgiw, where giw is a
column vector of the haplotype’s alleles in the window, standardized by the mean and
standard deviation in the ancestral populations, and Lw is a matrix such that each column
contains the PC loadings of one SNP in the window. The vector Siw contains the ancestry
scores across the first K-1 PCs, where K is the number of ancestral populations.

PCAdmix Algorithm: Forward-Backward Algorithm. The posterior prob-
abilities of each ancestry for each window were then computed by a forward-backward
algorithm, a method of computing posterior probabilities for states in an HMM. The
transition probabilities for the HMM followed a haploid version of those in the Viterbi
algorithm of Bryc et al. (2010), which is based on the population genetic model of Falush
et al. (2003) and of Li and Stephens (2003). The transition probability is defined by �, the
probability of recombination between windows, and qi,j, the frequency of the target
population’s chromosomes in the admixing ancestral pool:

P�anci,w � j � anci,w � 1 � k� � � qi,j� if k � j
qi,j� � �1 � �� if k � j (1)

where anci,w is the ancestry of haplotype i at window w, qi,j is the
chromosome-wide proportion of population j ancestry in this haploid

Figure 1. Outline of the PCAdmix algorithm.
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chromosome, and � � 1 � exp�dĜ� is the probability of a single recombination
having occurred in the distance d (in Morgans) between the midpoints of windows

w�1 and w, during the estimated Ĝ generations since admixture. We assume that the
windows are sufficiently dense so that the probability of two or more recombination
events between adjacent windows is negligible, an assumption that should be
reasonable for admixture that is recent relative to the window size. As demonstrated
below, our method is robust to misestimation of G, which suggests that it is also
robust to multiple recombinations.

For a given haplotype i, qi,j represents the frequency of population j’s chromo-
somes in the admixing ancestral pool for haplotype i. In other words, qi,j represents the
average ancestry proportion of population j in haplotype i. The value qi,j is estimated by

qi,j �
Di,j�

k

Di,k
, (2)

where Di,j is the Euclidean distance in PC-space from haplotype i to the
hyperplane containing the mean window scores of all ancestral populations other
than j, as shown in Figure 2. Therefore, a haplotype that falls far from the mean
of population j will have small values for Di,j and qi,j. To ensure nonzero
transition probabilities, we restricted 0.01 � qi,j � 0.99 for all j.

The emitted window scores are modeled by a multivariate normal
distribution: Siw � �anci,w � j� � N��jw, �jw�, where Siw is the vector of
ancestry scores for admixed haplotype i in window w, �jw is a vector containing
ancestral population j’s mean scores for this window on the first K-1 PCs, and
�jw is the covariance matrix of the scores for this window among the population
j haplotypes. To ensure nonzero emission probabilities, we require that each

Figure 2. Estimation of average ancestry proportion for a haplotype. For k � 3 ancestral populations,
the population A average ancestry proportion of each haplotype (black square) is estimated
by that haplotype’s distance from the line connecting the means of the other two populations
on the first and second principal components, as a proportion of the haplotype’s total
distance from all edges: qi,A � a/(a 	 b 	 c).
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entry of �jw equals the maximum of the empirical covariance and 0.0001, and
that cov(Siw,a, Siw,b) � var(Siw,a), var(Siw,b), where a and b are distinct PCs.

By using the transition and emission probabilities described above, a
forward-backward algorithm is applied to find the posterior probability that each
window in each admixed haplotype originates from population 1, 2,. . . K. The
posterior probabilities may be used directly, or used to make hard assignments of
ancestry if the posterior probability exceeds a threshold.

Analysis of Simulated Admixture. We tested our method on simulated
admixed individuals with ancestry from both two and three populations. Haploid
genomes from the ancestral populations were chosen as ancestors, and recombination
breakpoints (potential ancestry change-points) were chosen by simulating a Poisson
process. Simulated chromosomes were then assembled by combining genomic
segments from the ancestors at each recombination breakpoint. The true ancestors
used to generate the admixed individuals were removed from the pool of ancestral
representatives before analysis. Accuracy was defined as the proportion of SNPs
assigned to the correct simulated ancestry. To assess accuracy, we used all the SNPs
from the original data set, while the windows were defined by the SNPs that passed
the LD and MAF filters for inclusion in the PCA. SNPs that fell before the first
window on the chromosome or after the last window, and SNPs that fell between
windows assigned to different ancestries, were excluded from the accuracy calcula-
tion, as no ancestry can be assigned to these SNPs.

Simulations with Two Ancestral Populations. For the two-population
simulations, ancestral haplotypes were chosen from the International HapMap3
project (Altshuler et al. 2010) (http://hapmap.ncbi.nlm.nih.gov/), with one
ancestor chosen from Utah individuals of European descent (CEU) and the other
from Yoruba individuals from Nigeria (YRI), simulating the largely West
African ancestry of African American individuals (Salas et al. 2005). The
distribution of recombination breakpoints was generated by using eight genera-
tions since admixture (G � 8), and genomic segments were chosen from
ancestors according to freq(YRI) 
 Beta (12,3) to model the average African
ancestry proportion among African Americans, approximately 80% (Bryc et al.
2010). Variants with r2 � 0.80 were removed, and 12 simulated haplotypes were

analyzed with PCAdmix and HAPMIX by using Ĝ � 8, the true parameter
value. PCAdmix was run with a window size of 20 SNPs. We also tested our

method’s robustness to the choice of parameter values by allowing Ĝ to vary
from 1 to 128, the number of SNPs per window to vary from 1 to 160, and the
LD filtering to vary from an r2 threshold of 0.80 to no LD filtering. Finally, we
examined our method’s robustness to the choice of ancestral representatives by
analyzing the simulated haplotypes with the true populations (YRI and CEU),
sets of three populations [YRI, CEU, and Han Chinese and Japanese (CHB-JPT)
or Italian (TSI)], and misspecified ancestral populations by using Luhya (LWK)
or Maasai (MKK) to represent YRI ancestry. These populations are likely to be
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poor ancestral proxies because they are East African populations, whereas the
simulated haplotypes were sampled from individuals from a West African
population, the Yoruba. The FST between Luhya and Yoruba is 0.0080 and
between Maasai and Yoruba is 0.027 (Altshuler et al. 2010).

Simulations with Three Ancestral Populations. For the three-population
simulations, ancestors were chosen from the HGDP (Cann et al. 2002) data
(http://hagsc.org/hgdp/files.html). Genomic segments from Yoruba and French
chromosomes were combined with segments from each of 29 other populations.
The locations of recombination breakpoints were simulated by using a Poisson
distribution with a parameter determined by the genetic distance as determined
from HapMap data. Genomic segments were chosen from the ancestors with
equal probability at each recombination breakpoint. The data were analyzed with
the use of the same parameters as described for the two-population simulations.
For comparison with LAMP (Pasaniuc et al. 2009), the four simulated chromo-
somes from each set of ancestries were combined into diploid individuals. LAMP

v. 2.5 was run by using Ĝ � 8, recombination rate �10�8, offset � 0.2, and
LD independence threshold � 0.1. The mixture proportion � for each population
was set to the average of the ancestry proportions estimated by PCAdmix. LAMP
was run by using its forward-backward algorithm for comparison with PCAdmix.
Two sets of simulations were also run by using LAMP’s default maximum
likelihood method; accuracies were found to be similar between the two methods.
A SNP was called as having homozygous ancestry if the locus-specific ancestry
from one population was 0.8, and having heterozygous ancestry if the locus-
specific ancestries from two populations were 0.4. For comparison with LAMP,
the diploid accuracy of PCAdmix was also computed on regions where PCAdmix
assigned ancestry to both haplotypes, by using a calling threshold of 0.8.

To investigate how to optimize accuracy when populations are closely
related, we further analyzed the Yoruba-French-Basque simulations by using a
variety of parameters; the FST on chromosome 1 between the HGDP French and

Basque samples is 0.0031. We tested Ĝ � 1, 4, 8, 12, 16; MAF �0.10, 0.05,
and 0; window sizes from 10 to 90 SNPs, and r2 �0.80, 0.90, and 1.0. Because
the challenge in assigning ancestry for admixtures of closely related populations
stems from the fact that the ancestral populations are genetically similar and
overlap in the space of PCs, we also tested four systems for filtering the ancestral
haplotypes to enhance their distinctness: In method A, we performed PCA on
the Yoruba, French, and Basque samples, and we removed the two French
haplotypes that fell closest to the Basque mean on the second PC (PC2), and vice
versa for two Basque haplotypes. In method B, we removed French haplotypes
that fell closer to the Basque mean on PC2 than the most French-looking Basque
haplotype, and vice versa for removing Basque haplotypes. In method C, we
performed PCA on the French and Basque samples only, and then we excluded
ancestral haplotypes that were more extreme than the admixed haplotype that fell
closest to that population’s mean on PC1 (Figure S1 in the Appendix). This

Ancestry Assignment by Principal Components / 349



method could result in an unnecessary reduction in sample size if the admixed
individuals spanned a wide range of ancestry proportions. Therefore, we also
explored method D, which excluded a different set of ancestral haplotypes for
each admixed haplotype. For each admixed haplotype, we excluded the French
haplotypes that fell closer to the Basque mean on PC1 than that admixed
haplotype, and similarly for Basque haplotypes. Finally, we tested the application
of a “disambiguation” phase, performing a two-population analysis of the regions
that were initially assigned as French or Basque.

Application. We used our method to examine three-way European, Native
American, and African admixture in Latino individuals from the NYULatino
project (Bryc et al. 2010). These individuals had origins in Ecuador, Colombia,
Puerto Rico, and the Dominican Republic. European and African ancestral
populations were represented by CEU and YRI individuals from HapMap3, and
the Native American ancestral population was represented by Maya, Pima,
Karitiana, Surui, and Colombian individuals from HGDP (Rosenberg et al. 2002)
that were estimated to have less than 5% genome-wide European ancestry using
FRAPPE (Tang et al. 2005). We filtered SNPs using MAF � 10%, missingness
�10% in the combined dataset of the ancestral representatives, and pairwise
r2 �0.80 in the full HapMap3 data set. After filtering, 380,360 autosomal SNPs

remained. We ran PCAdmix by using a window size of 20 SNPs and Ĝ � 8.
Native American haplotypes were phased with use of IMPUTE v.2.1.0 (Howie
et al. 2009) by using 110 iterations, 10 iterations of burn-in, and 120 conditioning
states, the same protocols as used for phasing by the HapMap 3 project
(http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02_phaseIII/HapMap3_
r2/hapmap3_r2_phasing_summary.doc).

After assigning ancestry along each chromosome, we computed the
African, European, and Native American ancestry proportions in each window of
each of the four Latino populations. Regions with ancestry proportions falling
more than three SDs from each Latino population’s genome-wide mean were
considered to have “extreme” ancestry. To illustrate the utility of a haplotype-
based approach to ancestry assignment, we also tested for assortative mating
(Risch et al. 2009) by examining the correlation between ancestry probabilities
for pairs of phased haplotypes and the proportion of windows at which haplotype
pairs shared the same ancestry. To test the significance of these values, we
permuted the haplotype labels 1,000 times within each Latino population sample.

Results

Simulations with Two Ancestral Populations. Both PCAdmix and HAPMIX
were highly accurate in assigning ancestry along simulated chromosomes, with
increasing accuracy at more stringent calling thresholds (Table S1 in the
Appendix). HAPMIX performed slightly better than our method because of a
lower number of short regions of spurious inferred European ancestry. However,
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HAPMIX was also less sensitive to short regions of true ancestry (Figure 3a). It
is interesting to note that HAPMIX and PCAdmix agreed in the two longest tracts
of incorrect ancestry assignment made by either method (Figure 3a and b),
suggesting that the Yoruba individuals used to simulate these segments may in
fact have some European ancestry or that some CEU individuals used as
ancestral representatives in the analysis may have African ancestry, leading to
poor disambiguation between these populations.

Our method is robust to the choice of the number of SNPs per window
(Table S2 in the Appendix). This demonstrates that the method picks up
consistent signals in the data, not artifacts of window subdivisions. As expected,
using fewer than 10 SNPs per window (resulting in an average window length of
�22.3 kb) increases the number of spurious short ancestry regions identified,
decreasing accuracy.

Our method, like HAPMIX, is robust to the estimate of G, the number of
generations since admixture (Table S3 in the Appendix). This robustness is an
advantage to researchers interested in mapping ancestry tracts, but it may prove a
challenge for fine-scale estimation of the timing of admixture events. Accuracy was

slightly higher when G was somewhat underestimated than when Ĝ � G, because
of the improved smoothing over noisy window scores.

When the Luhya or Maasai were used as ancestral representatives for the
Yoruba, our method’s accuracy was essentially unchanged (Table 1), although
these ancestral groups are genetically distinct, with FST � 0.0080 between Luhya

Figure 3. Comparison of PCAdmix and HAPMIX on simulated chromosomes. (A) and (B) are two
examples of simulated chromosomes. Top bar indicates the simulated ancestry of each
chromosome (black � YRI, gray � CEU). Solid and dashed lines indicate the posterior
probability of YRI ancestry at that window, using our method (solid) and HAPMIX
(dashed). The black oval indicates a short region of European ancestry. The black arrows
indicate regions where both methods inferred European ancestry, although the segment was
simulated from a YRI haplotype.
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and Yoruba and FST � 0.027 between Maasai and Yoruba. Using a simple
Wright-Fisher model (Durrett 2008) to generate forward simulations shows that
97.9% of the time, the FST between a population with effective population size �
5,000, and the same population after 100 generations of drift is �0.027. This
suggests that modern-day sampled individuals can be used as representatives for
ancestral populations from previous generations without loss of accuracy because
of genetic drift.

Our method retained excellent accuracy (97.2%) when HapMap3 Han Chinese
and Japanese (CHB-JPT) individuals were used as a third, spurious ancestral
population, with only two simulated African American haplotypes showing small
regions assigned to CHB-JPT ancestry. In contrast, when the spurious ancestral
population is closely related to one of the true ancestral populations, as in the
YRI-CEU-TSI analysis, which has FST (CEU-TSI) � 0.0040 (Altshuler et al. 2010),
our method experienced a 12.0 percentage-point reduction in accuracy (down to
86.1%) because of loss of disambiguation between CEU and TSI populations. The
accuracy for SNPs whose true background is YRI remains high (97.5% at a calling
threshold of 1/3, that is, assigning all SNPs) (Table 1), but the accuracy for SNPs
whose true background is CEU is no better than random guessing (51.6% for calling
threshold �1/3) and is not improved by the use of a more stringent calling threshold.

As shown in Figure 4a, LD filtering decreases the intensity of some, but not all,
spurious deviations from the true ancestry. A similar effect can be obtained without
LD filtering by increasing the number of SNPs per window (Figure 4b), increasing
the amount of information about the window’s true ancestry to contrast with spurious
ancestral information provided by a small cluster of high-LD SNPs.

Simulations with Three Ancestral Populations. In the three-population
simulations, PCAdmix had high accuracy on a per-chromosome and per-diploid
individual basis (Figure 5, Table S4 in the Appendix). PCAdmix had higher
accuracy than LAMP across 28 of the 29 simulations. PCAdmix was also able to
assign ancestry to a greater proportion of SNPs. This reflects the fact that the LD
filtering for PCAdmix is much less stringent than that for LAMP, permitting
ancestry assignment at a denser set of SNPs. It also indicates that PCAdmix’s
superior accuracy was not because of the choice of calling thresholds. As

Table 1. Accuracy under Different Assumptions about the Ancestral Populations;
the True Ancestry Was YRI-CEU

Tested Ancestry Overall Accuracy (%) Accuracy YRI Accuracy CEU

YRI-CEU 98.1 97.7 99.3
MKK-CEU 98.2 98.3 97.9
LWK-CEU 97.9 97.5 99.1
YRI-CEU-(CHB-JPT) 97.2 96.8 98.7
YRI-CEU-TSI 86.1 97.5 51.6

Accuracy percentage listed is for a calling threshold of 0.5 (for two ancestral populations) or 1/3
(for three ancestral populations). Accuracy YRI indicates accuracy for regions where the true
ancestry was YRI.
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expected, accuracy was higher when the three ancestral populations were more
differentiated (Figure 6).

For the Yoruba-French-Basque analysis, the baseline haploid accuracy

was 71.5% with r2 � 0.80, Ĝ � 8, and 20 SNPs per window. Underesti-
mating the number of generations since admixture, while effective in
decreasing the rate of spurious ancestry transitions in the two-population
simulations, did not improve the accuracy in the Yoruba-French-Basque
analysis. This is likely because of the fact that a majority of the errors in
classifying French and Basque tracts spanned multiple windows, so reducing
the transition rate of the HMM did not substantially change results. In

contrast, increasing Ĝ to 12 improved the accuracy to 72.4%. Windows
longer than 20 SNPs, particularly in conjunction with more liberal MAF or
LD thresholds for SNP inclusion, also improved accuracy. For this simulation
scenario, the best analysis combination was 50 SNPs per window with
MAF � 0, which gave an accuracy of 73.9%.

Removing the ancestral haplotypes that closely resembled typical haplotypes
of the other population was also effective; the most effective method was method C.
This method increased overall accuracy from 71.5% to 73.6%. A disambiguation
phase slightly improved overall accuracy from 71.5% to 72.0%. We also tested all

possible combinations of the four best-performing methods (Ĝ � 12, 50 SNPs per
window with MAF � 0, filtering by method C, and implementing a disambiguation
phase). The best overall accuracy, 74.8%, resulted from the combination of all these

methods except Ĝ � 12.

Figure 4. Effects of LD filtering on a simulated chromosome. (A) 20 SNPs per window. Solid line �
data filtered to r2 � 0.80; dashed line � data without filtering. (B) Solid line � 20 SNPs per
window, with LD filtering; dashed line � 40 SNPs per window without filtering. Black
arrows indicate a region of European ancestry which is correctly assigned when LD filtering
is used or when the window size is 40 SNPs.
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An identical strategy was also effective in slightly increasing the accuracy
on other combinations of closely related populations: Applying this combination
of three methods to Yoruba-French-Russian (French-Russian FST � 0.0026 for
chromosome 1 of HGDP data) increases the accuracy from 70.7% to 71.8%.
Applying it to Han Chinese-Japanese-Yoruba (Han Chinese-Japanese FST �
0.0035) increased the accuracy from 83.4% to 84.4%. Applying it to Yoruba-French-
North Italian (French-North Italian FST � 0.00034 for chromosome 1 of HGDP data)
increases the accuracy from 73.1% to 73.7%. It is likely that the accuracy on these
simulations could be increased somewhat further by fine-tuning the parameter values
to suit the particular combinations of populations. In a situation with real data, this
could be done by selecting parameter values that optimize accuracy on simulated
haplotypes that resemble the true admixed individuals.

Application. In the analysis of the NYULatino data, Dominicans showed
the largest mean proportion of African ancestry (39.5%), followed by Puerto

Figure 5. Diploid accuracy and call rate of PCAdmix and LAMP. Assigned % is out of 43,518 SNPs.
Chromosomes were simulated with ancestry from three populations, including Yoruba and
French. Labeled populations are the third population included in simulations. Biaka � Biaka
Pygmies; Mbuti � Mbuti Pygmies; Italian � North Italian.
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Ricans (21.1%). Ecuadorians had the largest mean proportion of Native
American ancestry (47.4%), followed by Colombians (30.0%). These results
agree with expectations based on historical information and previous results
with use of FRAPPE (Bryc et al. 2010). While most ancestry tracts spanned
many windows (73% of the tracts were �1 Mb in length), some parts of the
genome exhibited rapid switching of ancestry (Figure 7). All four Latino
populations showed evidence of assortative mating (P � 0.001 for correlation
of ancestry probability and for shared ancestry). This confirms and extends
the results of Risch et al. (2009), who found assortative mating in Puerto
Ricans on the basis of 104 ancestry-informative markers. We identified 12
regions having extreme levels of shared ancestry in more than one population
(Table 2). In particular, a pair of regions on chromosome 6 showed elevated
levels of African ancestry in three of the four Latino populations, and regions
on chromosomes 2 and 8 showed elevated levels of Native American ancestry
in three of the four Latino populations (Figure 8).

We examined 19,018 windows across the genome in four populations.
Therefore, for a single population’s ancestry proportion to be significantly above

Figure 6. Accuracy vs. minimum FST. Shown is the overall accuracy on three-population simulations
vs. the minimum pairwise FST among the three populations.
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the genome-wide mean at the � � 0.05 level would require a P value (assuming
Bonferroni correction for multiple testing) of 6.57e-07, equivalent to an ancestry
proportion of 4.84 SDs from the genome-wide mean. Three regions reached this
level of significance (Table S5 in the Appendix). None of these regions were
significant in more than one admixed population examined.

Discussion

In this paper, we have presented a PC-based approach to assigning ancestry
along the genome in admixed individuals. Our approach has similar accuracy to
HAPMIX for two-way population admixture, and better accuracy and calling rate
than LAMP for three-way population admixture. This superior accuracy may be
due in part to the fact that our method utilizes haplotypes from ancestral
representatives, whereas LAMP uses ancestral allele frequencies that do not
provide information about LD in the ancestral populations. Our approach is
robust to the choice of window size, to misspecification of ancestral populations,
and to the estimated time since admixture. We have implemented our method in

Figure 7. Analysis of Latino individuals using PCAdmix. Chromosome 22 is shown. We used a calling
threshold of 0.9. DOM � Dominican; COL � Colombian; PRI � Puerto Rican; ECU �
Ecuadorian.
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the software PCAdmix, which is freely available for academic use as a compiled
binary at https://sites.google.com/site/pcadmix/.

In the NYULatino data, rapid ancestry switching is present in some parts
of the genome. Further investigation of these short segments is warranted; those

that persist across many values of Ĝ and many calling thresholds may indicate
recombination hotspots. In contrast, ancestry segments with only intermediate

posterior probability that disappear under analysis with lower values of Ĝ (and
therefore, lower transition probabilities) may be artifacts of the analysis, because
of the fact that the ancestry with maximum marginal posterior probability for a
given window is not necessarily concordant with the most likely ancestry “path”
through the chromosome.

We identified 12 regions having extreme levels of shared ancestry in more
than one Latino population. Some of these regions are close together, indicating
that they may reflect a smaller number of larger regions of elevated ancestry
levels. These regions may have reached their extreme levels of ancestry because
of selection during or after the initiation of admixture. In particular, the region on
chromosome 2 is near the LCT locus (136.5�136.6 Mb) for lactase persistence
(Harvey et al. 1993), a known target of selection (Tishkoff et al. 2007). The
regions on chromosome 6 are close to the human leukocyte antigen loci (around
30�32 Mb), which play an important role in immunity. Tang et al. (2007) also
found a region on chromosome 6 centered at 28.8 Mb to have elevated African
ancestry in Puerto Ricans. It would be intriguing to find evidence of selection in
this important region, whether the selection is in the form of large genetic
differentiation between the true and proxy ancestral populations, leading to
biases in local ancestry estimates, or in the form of balancing selection in the
admixed population, favoring more-diverse African haplotypes. However, this
peak could also be explained as an artifact of the unusual long-range LD that

Table 2. Regions with Extreme Ancestry Proportions in Multiple
Latino Populations.

Chromosome Position (Mb) Ancestry Populations

2 136.8–136.9 NAmer COL, DOM, PRI
6 27.3–28.8 YRI COL, ECU, PRI
6 31.4–31.5 YRI COL, ECU, PRI
8 10.8–10.9 NAmer COL, DOM, PRI
2 134.9–135.5 NAmer DOM, PRI
5 30.5–30.9 YRI COL, ECU
8 8.4–8.8 NAmer DOM, PRI

11 87.5–87.6 YRI COL, PRI
13 58.3–58.5 NAmer DOM, PRI
15 59.7–59.8 YRI ECU, PRI
15 60.8–61.0 YRI ECU, PRI
15 66.8–67.5 YRI COL, ECU

All regions shown here exhibited ancestry proportions more than three standard deviations above
the genome-wide mean for that ancestral population. YRI � Yoruba (African); Namer � Native
American; COL � Colombian; DOM � Dominican; ECU � Ecuadorian; PRI � Puerto Rican.
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occurs in this region (Price et al. 2008). Furthermore, none of these regions
achieved statistical significance in more than one population, so we cannot reject
the null hypothesis of no selection. It would be valuable to pursue further
investigation of haplotype diversity on chromosome 6 and the other regions in
Table 2 to understand the sources of the elevated ancestry sharing in each region.

A potential limitation of our method is that it uses phased genotype data,
requiring family- or population-based phasing prior to ancestry deconvolution.
Analysis of phased data is advantageous because it provides information about
the distinct ancestry of an individual’s parents and permits haplotype-based
analyses of the population genetic history of admixture events, such as
assortative mating. However, worth noting is that errors in phasing can result in
errors in ancestry assignment. In particular, phasing errors may complicate

Figure 8. Normalized ancestry proportions in Latino populations. Dashed lines indicate values that are
three SDs from the mean. Black arrows indicate regions where three Latino populations
share high proportions of African or Native American ancestry. (A) African ancestry
proportion on chromosome 6. (B) Native American ancestry on chromosome 2. (C) Native
American ancestry on chromosome 8. GW � Genome-wide; SD � standard deviation.
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population genetic inference for regions of the genome where an individual has
ancestry from two different populations. However, our findings of assortative
mating in Latinos depend on regions where individuals have diploid ancestry
from a single population, so they are much more likely to remain valid in the
presence of possible phasing errors. Phasing errors are becoming less common as
phasing methods improve and efforts such as the 1,000 Genomes Project (Durbin
et al. 2010) produce larger pools of genotypes that can be used as references
during phasing; however, it would be valuable to extend PCAdmix to unphased
data, as well as to investigate the effectiveness of iterative phasing and ancestry
assignment, employing reference panels conditional on estimated local ancestry.

We found that filtering ambiguous ancestral haplotypes, along with modifying
parameters of analysis and implementing a disambiguation phase, produced modest
improvements in accuracy. When filtering-method C was applied to the Yoruba-
French-Basque simulations, overall accuracy increased from 71.5% to 73.6%. While
this increase is small, it is valuable to note that accuracy can be somewhat improved
simply through the choice of more informative ancestral representatives. In the
future, it would be worthwhile to explore additional methods of filtering ancestral
representatives for optimal accuracy. In addition, small increases in overall accuracy
can reflect larger improvements in the accuracy of classifying genomic regions from
a particular population; in these simulations, using method C increased the accuracy
of classifying true Basque regions from 56.2% to 61.4%. Such population-specific
improvements would be of particular interest when the genomes of admixed
individuals are used to understand the genome of a specific ancestral population, such
as ancestral populations with few extant unadmixed individuals (Byrnes et al. 2011).

When distinguishing ancestry from closely related populations, filtering
ancestral representatives according to Model C could result in an imbalance of
ancestral representative sample sizes if the ancestry proportions from the two closely
related populations were very different (e.g., 60% French and 5% Basque, in addition
to 35% Yoruba). This could result in a distortion of the PCA projection (McVean
2009), which could reduce the accuracy of the estimated ancestry proportions. This
was not a problem in our simulations, where Model C excluded just 2 Basque
haplotypes and 7 French haplotypes (out of 44 haplotypes from each population).
However, additional approaches to filtering the ancestral representatives should be
investigated for admixed individuals with less balanced ancestry proportions. One
possibility would be to exclude equal numbers of haplotypes from each population,
as in model A, but to determine the number of excluded haplotypes by the location
of admixed individuals in PC-space, as in models C or D.

PCAdmix utilizes haplotypes from ancestral representatives to assign
ancestry to admixed haplotypes. In our simulations, we found that the accuracy
of PCAdmix was robust to mis-specification of ancestral populations, suggesting
that modern individuals can be used to represent historical ancestral populations.
However, some ancestral populations may not have unadmixed modern repre-
sentatives. In the future, it would be valuable to enhance PCAdmix by an
investigation of iterative ancestry approximation when ancestral representatives
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are not available; as discussed by McVean (2009), admixture proportions are
detectable even without source populations for up to 15 generations after
admixture. Further extensions could allow the number of SNPs per window to
vary throughout the genome to better distribute information across windows and
to allow different estimates of G for different pairs of populations.

We have demonstrated that our method is useful in identifying regions of
extreme ancestry proportions within populations, which may indicate sites of
selection during or after the process of admixture. Our method is a computationally
fast algorithm that allows for multi-population ancestry estimation, which will have
applications for large data sets of multi-way admixed populations, such as Latinos,
North and East Africans (who have admixture from Chadic, West African and
Middle Eastern populations) (Jakobsson et al. 2008), South African Cape Coloured
(de Wit et al. 2010), and other worldwide populations. Our method will be valuable
for improving the understanding of the population genetic history of admixed
populations and for admixture mapping on dense genome-wide data.
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Appendix

Table S1. Accuracy of PCAdmix and HAPMIX on Simulated Two-Population Data

Calling Threshold PCAdmix HAPMIX

0.5 98.1 99.2
0.8 98.6 99.3
0.9 98.8 99.3
0.95 99.0 99.3
0.99 99.2 99.5
0.999 99.5 99.8

Table S2. Accuracy of Our Method under Different Window Sizes

SNPs per window
Median window

length (kb)
Accuracy

(calling threshold � 0.5)

1 1 base pair 92.2
2 1.7 93.5
5 9.3 96.2

10 22.3 97.3
15 35.3 98.4
20 49.0 98.1
40 112.3 98.6
80 223.8 98.7

160 481.9 97.6

To accentuate the differences among the window sizes, a calling threshold of 0.5 was used.

Table S3.

Estimated G Accuracy (0.5) Accuracy (0.9)

1 98.6 99.1
2 98.5 98.9
4 98.2 98.9
8 98.1 98.8

16 97.7 98.7
32 97.4 98.6
64 96.7 98.3

128 95.7 98.1

Accuracy under different values of G the true value of G, the number of Generations since
admixture, for the simulations was 8. Calling threshold is in parentheses.
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Table S4. Haploid Accuracy on Simulated Chromosomes with Ancestry from Three
Populations, Including Yoruba and French

Accuracy for SNPs Assigned to a Given Population

3rd Pop
Overall

Accuracy
Assigned to

Yoruba
Assigned to

French
Assigned

to 3rd Pop

Adygei 76.08 97.80 65.81 49.15
Balochi 83.80 97.39 78.94 72.35
Bantu NE 71.75 51.42 94.89 76.05
Basque 71.50 97.54 43.08 65.10
Bedouin 81.97 95.03 70.84 75.32
Biaka Pygmies 90.40 79.47 97.15 94.23
Brahui 89.73 98.94 85.26 76.68
Burusho 87.01 98.56 71.97 90.50
Druze 83.84 96.35 67.57 82.18
Han 97.78 98.20 97.95 97.13
Hazara 85.70 97.75 70.84 93.94
Japanese 95.58 98.63 92.60 95.19
Kalash 91.01 98.15 88.53 81.95
Karitiana 97.41 98.59 94.86 98.35
Makrani 88.43 97.97 87.46 67.56
Mandenka 83.83 82.29 97.69 47.24
Maya 95.82 97.14 96.03 92.81
Mbuti Pygmies 91.67 83.75 97.43 98.76
Mozabite 82.71 95.28 72.81 82.09
North Italian 73.12 97.51 55.35 69.18
Orcadian 80.68 97.68 71.76 45.58
Palestinian 84.84 97.75 85.38 58.46
Papuan 96.98 98.23 96.57 95.42
Pathan 86.89 98.12 80.69 79.26
Pima 96.81 98.62 95.39 97.11
Russian 70.73 97.13 53.95 50.44
Sardinian 84.36 99.06 78.07 59.32
Sindhi 86.88 98.35 75.52 87.53
Yakut 97.75 98.93 96.91 97.49

All analyses were performed with a window size of 20 SNPs, LD threshold of r2 � 0.8, Ĝ� 8,
and a calling threshold of 0.8.

Table S5. Regions with Extreme Ancestry Proportions Reaching Bonferroni-
Corrected Statistical Significance

Chromosome Position (Mb) Ancestry Population
Genome-Wide

Ancestry Mean (SD)
Ancestry Proportion

In Region

2 35.16–35.32 NAmer DOM 0.077 (0.044) 0.315
6 31.38–31.44 YRI ECU 0.065 (0.048) 0.325
8 37.24–37.57 YRI ECU 0.065 (0.048) 0.325
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Figure S1. Example of Method C approach to filtering ancestral representatives of closely related
populations. We excluded French haplotypes on the right of the solid line and Basque
haplotypes on the left of the dashed line.
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