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CHAPTER 1: INTRODUCTION 

Microbiota 

The human body is home to around 3.9x1013 bacterial cells [1]. They are present in 

several tissues like: gastrointestinal, urogenital, oral, nasal, and skin [2]. These microor-

ganisms are collectively known as the microbiota. Much research has been directed at 

understanding the role that these communities play in our health. In 2008 advances in 

molecular biology and genome sequencing facilitated the implementation of the Human 

Microbiome Project (HMP) [2, 3] by the National Institutes of Health (NIH). This was es-

tablished not long after the Human Genome Project, but was not as widely known at the 

time. However, the HMP has proven to have as powerful impact on our understanding of 

many diseases. A growing number of research studies have focused on the microbiota 

of the gut, in particular, since it has been correlated with chronic diseases such as type 

2 diabetes, Chron’s disease, and obesity [4]. It is also a popular field of study since the 

microbiota can be manipulated through different models using diet modification [5], fe-

cal transplant [6], and even antibodies [7]. The gut microbiota is not unique to humans. 

Bacterial communities are also found in other mammalian species like mice [8]. This 

makes them easier to study since mice can act as a surrogate for studying in vivo inter-

actions between host and microbiota.  

Bacteroidetes, Firmicutes, and Proteobacteria are the most abundant phyla in our 

gut [9], yet no two individuals share the same microbiota [2]. The exact composition 

changes through our lifetime in both diversity and structure. It can also be affected by 

antibiotic therapy, overseas traveling, and temporary illness [10]. This constant change 

in the microbiota can many times go unnoticed and can have an influence on our health.  
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We know that gut bacteria can play a beneficial role by increasing levels of short-

chain fatty acids (SCFA) and preventing food allergies [11]. They are also capable of pro-

tecting against pathogens [12] and toxins [13] as well as maintaining the integrity of the 

intestinal epithelial barrier [14]. However, they can also be detrimental to our health. The 

gut microbiota can influence gastrointestinal disorders, colon cancer, hypertension, and  

even asthma [9]. Some associated conditions like obesity or colitis have also been as-

sociated with the western lifestyle [15]. This makes us question whether the rise in cer-

tain diseases is due to an impaired or dysbiotic flora. If true, we have to wonder if there 

are ways to stabilize the microbiota and what that would look like for each individual. 

LPS + LBP 

Lipopolysaccharides (LPS) provide structure and protection to the outer membrane 

of almost all Gram-negative bacteria, especially those that are pathogenic such as Es-

cherichia coli, Salmonella enterica, Neisseria meningitidis, Pseudomonas aeruginosa, and 

Helicobacter pylori [16]. They consist of a hydrophobic domain known as lipid A endo-

toxin, a non-repeating oligosaccharide, and a distal polysaccharide, or O-antigen [17]. 

LPS that enters the mammalian bloodstream can cause many negative health effects. 

Cells in the intestinal lining known as enterocytes can internalize Gram-negative bacte-

ria through phagocytosis mediated by toll-like receptor 4 (TLR4) [18]. Lipoproteins like 

chylomicrons become associated with a lipopolysaccharide binding protein (LBP) and 

are responsible for inactivating the LPS from the dead bacteria and transporting it to 

target tissues [19].  

LBP is a 58 kDa glycoprotein [20] synthesized in the liver [21] that forms a complex 

with LPS which can bind to CD14 receptors in macrophages or neutrophils and trigger 
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an inflammatory response involving interleukin-1 (IL-1) and IL-6 cytokines [22]. Elevated 

serum LBP levels have been associated with heavy drinking [23], metabolic syndrome, 

and obesity [24]. Levels tend to be higher in males and increase with age [25]. We know 

that lifestyle factors can contribute to higher LBP levels, but LBP resulting from endo-

toxemia can also play a role in obesity and insulin resistance [26]. This means there is 

more to obesity than an excess of food intake and that the microbiota can also play an 

important role. 

Bifidobacteria 

The Bifidobacterium genus consists of Gram-positive, non-motile, non-spore-form-

ing, rod-shaped, and often branched anaerobic bacteria. They belong to the Actinobacte-

ria phylum. These bacteria are associated with animal habitats and have been isolated 

from feces, sewage, human vagina, dental caries, and honey bee intestine [27]. They 

cannot grow below 20˚C or above 46.5˚C and prefer a pH close to 6.5. In humans, bifi-

dobacteria are most abundant at birth, likely due to the fermentation of maternal milk 

[28]. While populations normally decrease with age, they can still be boosted through 

consumption of certain foods [5, 29].  

Commercially, we can find these bacteria added to food products like yogurt which 

always propose some kind of health benefit. There does seem to be some protective 

effect against enterocolitis [13, 30]. Studies have also shown a negative correlation be-

tween bifidobacteria abundance and abdominal pain in healthy adults [10]. Models have 

shown that they can help reduce inflammation [31]. Still, there is another study suggest-

ing that some bifidobacteria species may be associated with obesity [32]. 
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Lactobacillus 

Lactobacillus bacteria are Gram-positive, non-spore-forming, fermentative, mi-

croaerophilic, chemo-organotrophic, and can occur as rods or coccobacilli [27]. They 

belong to the Firmicutes phylum and are known for their ability to convert sugars into 

lactic acid, which can function as a preservative in foods. Lactobacilli grow best at a 

temperature of 30˚C to 40˚C. They are commonly incorporated as viable microorgan-

isms in many foods and supplements. The list of lactobacilli used commercially is ex-

tensive and many have shown health benefits in mammals [33]. Despite this, there have 

been other strains that have been known to cause infections. The most common 

species that are associated with diseases are L. casei, L. rhamnosus, and L. plantarum 

[34].  

VSL#3 

Probiotics consist of live microorganisms, like those usually found in yogurt, that 

may have beneficial health effects. Most claim to provide some form of digestive or 

gastrointestinal relief. Few probiotics have had the same success as VSL#3. This par-

ticular probiotic is a well studied mixture containing high concentrations of freeze-dried 

bacteria (Bifidobacterium longum, Bifidobacterium breve, Bifidobacterium infantis, Lacto-

bacillus acidophilus, Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus bul-

garicus, and Streptococcus thermophilus) [35]. The label states it contains over 225 bil-

lion bacteria that are 10 times as potent than the average probiotic [36]. This product is 

sold in capsule as well as powder form. Many studies have demonstrated positive ef-

fects in the dietary management of irritable bowel syndrome (IBS) [37, 38], ulcerative 

colitis [39-41], and an ileal pouch [42]. 
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Potato Resistant Starch 

Potato starch is a commercially available polysaccharide extracted from the potato 

root/vegetable. A serving of Bob’s Red Mill Unmodified Potato Starch, 1 tablespoon, has 

40 calories and 10 g of total carbohydrates. It is mainly used as a thickener in soups 

with similar cooking functionality to corn starch. Recently, it has grown in popularity 

among consumers afflicted with gastrointestinal issues like IBS. This product is classi-

fied as a resistant starch (RS), “defined as that fraction of dietary starch, which escapes 

digestion in the small intestine” [43]. It is also considered a prebiotic because its indi-

gestible compounds can act as a substrate for the growth of healthy bacteria in the gut. 

Amylopectin and amylose polymers are the main components of potato starch. 

These starches get fermented by the gut microbiota which produce short chain fatty 

acids (SCFA) that are primarily composed of acetic, propionic, and butyric acids [44]. 

This can lower the pH in the lumen and protect against the formation of cancerous tu-

mors [45]. Resistant starches seem to provide a higher proportion of butyric acid than 

other indigestible carbohydrates [44]. This is important because butyric acid can act as 

a powerful anti-inflammatory agent for colonic cells by inhibiting IL-12 and up regulating 

IL-10 [46]. It also keeps toxins out of the bloodstream by reducing intestinal permeability 

[47].  

Considering Supplements 

Although supplements are regulated by the Food and Drug Administration, they do 

not undergo the same approval process as medications. Supplements are assumed to 

be safe until proven otherwise. The lack of clinical trials makes it difficult to assess the 

effectiveness of one supplement against another. Consumers rely on labels and per-
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sonal experience. This is sometimes not enough to make informed decisions. For ex-

ample, VSL#3 has been found to restructure the gut microbiota into a community that 

protects against diseases like colitis [48]. Potato starch also changes the microbiota 

into one that produces high levels of butyrate [49] which strengthen the intestinal wall 

[47] and reduce inflammation [46]. Consumers report similar health benefits using either 

VSL#3 or potato starch. These products are especially popular among groups suffering 

with IBS. However, VSL#3, can be many times more expensive than potato starch. This 

makes it unattainable to many. Therefore, there is a need to understand the differences 

between supplements to justify a higher price point. Our study is the first to compare 

the short-term effects of VSL#3 against potato starch in a healthy mouse model. 
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CHAPTER 2: OBJECTIVES 

1) Design a replicable, non-invasive, mouse model for testing supplements. 

2) Test two commercially-available supplements associated with a beneficial microbio-

ta and gastrointestinal relief: VSL#3 and potato starch.  

3) Study the associated physiological changes in response to 15 days of dietary sup-

plementation. 

4) Compare the effectiveness of each diet in modifying the host microbiota. 
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CHAPTER 3: METHODS 

Animals  

Twenty-four male C57BL/6 mice, 21 days old, were obtained from The Jackson Lab-

oratory (Bar Harbor, ME) and used in this study following experimental protocol 

(16-03-061) approved by The Institutional Animal Care and Use Committee (IACUC) at 

Wayne State University (Detroit, MI). Sani-chips bedding was used instead of corn cob in 

order to minimize consumption by the animals. Mice were randomly assigned to one of 

6 small cages (n = 4, per cage) with free access to food and water. After 2 days of ac-

climation, the mice were placed in one of three treatment groups and were labelled as 

shown in Figure 2. Briefly, three out of four mice in every cage were labelled using per-

manent markers (Sharpie, Oak Brook, IL) at the base of their tails in colors: red, green, 

and blue. The first two cages (n = 8) were fed a control chow diet: PicoLab® Laboratory 

Rodent Diet 5L0D (LabDiet, St. Louis, MO). The remaining 4 cages were divided into two 

test groups: potato starch and VSL#3. The 10% potato starch supplemented diet (Bob’s 

Red Mill, Milwaukie, OR) was formulated, pelleted (Figure 1), and irradiated by TestDiet 

(St. Louis, MO) and kept at 4  C̊. Water for all groups was changed daily. The VSL#3 

group was given the control chow diet with modification of water, formulated daily as 

published previously [50]. Briefly, one pack of unflavored VSL#3 probiotic mixture was 

dissolved in 1 L of water. Five-hundred milliliters was given to each of the two VSL#3 

group cages. Water intake was monitored daily for all groups. Food intake was moni-

tored periodically as described in Table 1. Body weight was measured on day 0, 8, and 

14. Following 15 days of dietary intervention, mice were euthanized using CO2 followed 

by tissue harvest. Blood was collected through cardiac puncture, processed to obtain 
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serum with SST Microtainer tubes (Becton, Dickinson and Company, Franklin Lakes, NJ), 

and stored at -80 C̊ (Figure 1). Animals were 5 weeks of age at the time of sacrifice.  

Measurement of Fecal Bacteria 

Fresh fecal samples were collected from the animals at specific times (Table 1). 

Each mouse was placed into individual empty cages for a short period until defecation 

and collection. Stools were stored at -80˚C. Microbial DNA was extracted from the feces 

using the FastDNA spin kit for soil (MP Biomedicals, LLC, Solon, OH). DNA concentra-

tions were quantified using a NanoDrop 2000 (Thermo Fisher Scientific Inc., Asherville, 

NC) and diluted to 4 ng/µL before being stored at -20˚ C until analysis. Microbial profiles 

were obtained using 96-well plates in a CFX96 Touch System (Bio-Rad Inc., Missis-

sauga, ON). Samples were run in triplicates with a final volume of 10μL containing 5μL 

of SsoAdvanced Universal SYBR Green Supermix, 0.5μM primers, and 4ng of template 

DNA. Standard curves were generated using reference strains Escherichia coli (Total 

bacteria), Bifidobacterium infantis (Bifidobacteria), and Lactobacillus rhamnosus (Lacto-

bacillus) diluted 10-fold. The curves were normalized to copy number using previously 

published 16S rRNA gene copy number values [51]. Group-specific primers are shown in 

Table 2 along with reference strains for generating standard curves. 

Amplicon Validation 

Amplicon sizes of group specific primers for total bacteria, bifidobacteria, and lacto-

bacillus were identified through ethidium bromide stained-agarose gel electrophoresis 

after end-point polymerase chain reaction (PCR). Size was determined using a 100 base 

pair ladder. F1 and F2 were female mouse samples on a control diet from another study 

and used for comparison. C1, C2, and C5 were control mice. PS1, PS2, and PS5 were 
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samples from mice given a 10% potato starch diet. V1, V2, and V5 were mice drinking 

VSL#3 probiotic water. EC-ref, B-ref, and L-ref are DNA samples from our reference 

strains: Escherichia coli, Bifidobacterium infantis, and Lactobacillus rhamnosus. VSL#3 

was DNA extracted from the live bacteria found in the VSL#3 probiotic. NTC was the no 

template control that only contained master mix, H2O, and primers. 

LBP ELISA 

Serum LBP levels were measured in duplicates with the Mouse Lipopolysaccharide-

binding protein ELISA Kit (Aviva Systems Biology Corporation, San Diego, CA) read at 

450 nm. 

Glucose Assay 

Serum glucose levels were measured in triplicates using a Glucose Colorimetric As-

say Kit (Cayman Chemical, Ann Arbor, MI) read at 500nm. 

Statistical Analysis 

Statistical analyses were performed in SPSS version 24.0 (Armonk, NY) at a signifi-

cance level of 0.05. Differences among the three groups were assessed using the 

Kruskal-Wallis test and subsequent nonparametric Mann-Whitney U test. 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CHAPTER 4: RESULTS 

Non-Invasive Labelling 

The red label was easier to visualize and outlasted the blue as well as the green. The 

green labelled mice required more reapplication of marker dye than the other two. Mice 

did not show any differences in weight, food intake, or water intake because of the la-

belling. 

Intake and Physiology 

The mice showed normal food and water consumption after exposure to the diets 

(Figure 3). There was an increase in water intake for the VSL#3 group. Food intake re-

mained the same across all groups. Body weight at day 14 was statistically different be-

tween the potato starch group and the control only (Table 3). Tissue measurements in 

the same table indicate an increase of large intestine weight in mice given the 10% pota-

to starch supplementation. This is statistically different against the control and the 

VSL#3 group. Blood glucose levels were almost identical in all the diet groups.  

Fecal Microbial Profile 

Quantitative PCR data showed similar numbers of total bacteria among the three 

groups (Figure 4). Bifidobacteria levels were higher after potato starch supplementation 

(9.25 ± 0.26) compared to control group as well as VSL#3 group (6.77 ± 0.60, 7.33 ± 

0.21 respectively). VSL#3 supplementation was associated with more lactobacillus 

(8.24 ± 0.21) compared to control and potato starch groups (7.71 ± 0.52, 7.73 ± 0.37 re-

spectively). Values are given in log 16S rRNA gene copies/ng of total DNA (mean ± SD). 

Differences among the three groups were assessed using the Kruskal-Wallis test and 

subsequent nonparametric Mann-Whitney U test at a significance level of 0.05. Primers 
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were validated through endpoint PCR and showed normal amplification (Figure 5). The 

amplicon sizes matched those found in literature (Table 2). 

LBP 

Supplementation with VSL#3 was associated with lower LBP levels (Figure 6) with a 

mean of 0.97 ± 0.38 µg/mL. LBP levels in potato starch (1.82 ± 0.60 µg/mL) have a 

higher mean than controls (1.47 ± 0.45 µg/mL) but did not reach significance (p > 0.05) 

using the Kruskal-Wallis test and subsequent nonparametric Mann-Whitney U test. 

Samples were measured in duplicates (total n = 48). Values given as mean ± SD. 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CHAPTER 5: DISCUSSION 

Many studies have shown the health benefits of incorporating probiotics and prebi-

otics in our diet. Few studies have looked at whether one is more beneficial than the 

other.  Both supplements have grown in demand and are commonly used to relieve gas-

trointestinal and digestive issues. Probiotics might appear more beneficial since they 

contain actual living bacteria. These have been shown to help with diarrhea [52] and de-

crease the numbers of pathogenic bacteria in our gut [53]. They are also common in 

foods like yogurt. The disadvantage is that viability and effectiveness of a probiotic can 

depend on product brand, shelf life, bacterial count, temperature, pH, tissue adhesion, 

and host immune response [54]. Many prebiotics, on the other hand, have longer shelf 

lives and make it all the way to the colon without being absorbed. Therefore, instead of 

introducing new bacteria, they can help increase the abundance of beneficial ones that 

are already part of our GI tract. These would then produce SCFAs and help prevent colon 

carcinogenesis [55]. Since prebiotics are dietary fiber they can be found in many afford-

able foods like fruits and vegetables. This makes them more accessible to the average 

consumer. 

In this study we compared the VSL#3 probiotic against the potato starch prebiotic in-

vivo. We introduced mice to 15 days of potato starch or VSL#3 supplementation and 

were surprised by the quick changes in their physiology and microbiome.  

Both mice groups as well as controls consumed similar amounts of food. This was 

an important observation since one group had customized food pellets that incorporat-

ed 10% potato starch. There was a concern that they would not like the food. Even 

though this group showed normal food intake they were associated with increased body 
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weight on day 14. This was an unexpected outcome since all groups had gained the 

same amount of weight from day 0. The weight difference may have been due to slower 

digestion since their large intestines were also heavier. We also know that potato starch 

acts like fiber and increases colonic transit time. This slower digestion has not been as-

sociated with any detrimental outcomes. In fact, potato starch has been found to pro-

duce high levels of butyrate which has many health benefits [56]. One concern for the 

mouse weight gain is that the potato starch may be selecting a gut microbiota that in-

creases energy harvest [57]. However, this would likely involve higher levels of blood 

glucose compared to the other groups. In our study we found that all groups had similar 

blood glucose levels. The potato starch group did have a slight increase in LBP levels 

which have been associated with obesity. Still, this increase was not statistically signifi-

cant. 

Our other test group had been given the VSL#3 probiotic supplement through a wa-

ter mixture that was made fresh daily. Interestingly, this group was found to have con-

sumed more liquid than the others. This may have been due to the small traces of corn-

starch in VSL#3 that possibly improved the taste of the water. VSL#3 is a well estab-

lished probiotic and there is extensive research demonstrating its benefits in ulcerative 

colitis [39-41] and IBS [37, 38]. The VSL#3 product formula includes a mixture of both 

lactobacillus and bifidobacteria species. However, when we looked at the mice fecal 

microbial profiles we found that supplementation with VSL#3 only increased lactobacil-

lus abundance. This differs slightly from another study that showed an increase in both 

lactobacillus and bifidobacteria [58]. It is possible that 15 days of supplementation is 

not enough time for bifidobacteria to become established. There may also be more lac-
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tobacillus in the original product, since the actual numbers for each probiotic species in 

VSL#3 is not disclosed. Potato starch supplementation did a better job at increasing bi-

fidobacteria abundance. This is supported by other studies [59, 60].  

Lactobacillus and bifidobacteria are known to displace pathogens [61]. Therefore, 

both bacterial groups can be beneficial. Studies have demonstrated that the combina-

tion of both bacterial groups may provide more benefits by suppressing the pro inflam-

matory cytokines IL-6 as well as IL-7 and promoting the expression of tight junction pro-

teins claudin-1 and occluding, thus reinforcing the intestinal barrier [62]. It is possible 

that a combination of potato starch and VSL#3 into a synbiotic might be the best way to 

increase both lactobacillus and bifidobacteria. This has not yet been tested.  

The VSL#3 probiotic was also associated with lower serum LBP levels, which is 

consistent with the literature [63]. It was impressive to see how LBP levels dropped so 

quickly after only 15 days of supplementation. Low LBP levels are associated with lower 

risk of obesity [24] and inflammation [64]. 

Our results have validated some of the benefits of potato starch and VSL#3 that are 

found in literature. While both products had short term effects on the microbiota, it is 

difficult to say which is more favorable. VSL#3 seemed to trigger an increase in lacto-

bacillus, while potato starch demonstrated an increase in lactobacillus. In the future, we 

would like to see the effects of supplementation combining both VSL#3 and potato 

starch as a synbiotic. This could provide better health effects since the inclusion of bifi-

dobacteria and lactobacillus along with prebiotics have been found to enhance the sur-

vival and activity of a host in both in-vitro and in-vivo experiments [65]. Limitations of 
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this study did not allow us to include female mice or a larger sample size for parametric 

statistical analysis. This should also be incorporated in future research. 
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CHAPTER 6: CONCLUSION 

The VSL#3 probiotic and potato starch prebiotic are in high demand because of their 

potential health benefits. In this study we used a non-invasive mouse model to observe 

how the microbiota and murine physiology changed after just 15 days of supplementa-

tion. We found that the fecal bacteria can change significantly in only 15 days. There 

was an increase in bifidobacteria after potato starch supplementation. This group also 

showed higher body weight, although this may have been due to slower bowel move-

ments. Mice given the VSL#3 probiotic were associated with greater lactobacillus 

abundance. They also had lower levels of serum LBP which might suggest that they are 

at lower risk for inflammation and obesity. 
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TABLE 1. ANIMAL MODEL TIMELINE

D E S C R I P T I O N  P R O C E D U R E  D A T E         

D A Y  - 2  Acclimation Period Tue, Aug 30, 2016

D A Y  - 1 Acclimation Period Wed, Aug 31, 2016

D A Y  0  Experimental / Control Diet fecal sample, start diet Thu, Sep 1, 2016

D A Y  1 Experimental / Control Diet Fri, Sep 2, 2016

D A Y  2 Experimental / Control Diet food intake Sat, Sep 3, 2016

D A Y  3 Experimental / Control Diet Sun, Sep 4, 2016

D A Y  4 Experimental / Control Diet fecal sample, food intake Mon, Sep 5, 2016

D A Y  5 Experimental / Control Diet Tue, Sep 6, 2016

D A Y  6 Experimental / Control Diet food intake Wed, Sep 7, 2016

D A Y  7 Experimental / Control Diet Thu, Sep 8, 2016

D A Y  8 Experimental / Control Diet fecal sample, food intake Fri, Sep 9, 2016

D A Y  9 Experimental / Control Diet Sat, Sep 10, 2016

D A Y  1 0 Experimental / Control Diet food intake Sun, Sep 11, 2016

D A Y  1 1 Experimental / Control Diet Mon, Sep 12, 2016

D A Y  1 2 Experimental / Control Diet food intake Tue, Sep 13, 2016

D A Y  1 3 Experimental / Control Diet Wed, Sep 14, 2016

D A Y  1 4 Experimental / Control Diet fecal sample, food intake Thu, Sep 15, 2016

D A Y  1 5  Morning Fast (6 hours) euthanasia, tissue harvest Fri, Sep 16, 2016
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TABLE 2. PRIMERS FOR Q-PCR 

MICROBIAL 
GROUP

PRIMER SEQUENCE, 
5’-3’ (FORWARD, F AND 
REVERSE, R)

GENOMIC 
DNA 
STANDARD

AMPLICON 
(BP) REFERENCE

Total Bacteria
F: ACTCCTACGGGAGGCAG

Escherichia coli 200
Amann, Krumholz, & 
Stahl, 1990; W.T. Liu, 
Mirzabekov, & Stahl, 
2001

R: CCGTMTTACCGCGGCTGCTGGCA

Bifidobacteria
F: CGCGTCYGGTGTGAAAG Bifidobacterium 

infantis 242 Delroisse et al., 2008
R: CCCCACATCCAGCATCCA

Lactobacillus
F: GCAGCAGTAGGGAATCTTCCA Lactobacillus 

rhamnosus 348 Castillo, et al., 2006
R: GCATTYCACCGCTACACATG
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TABLE 3. ANIMAL CHARACTERISTICS IN RESPONSE TO DIETARY INTAKE

*All tissues were collected on day 15. Values in the same row not sharing the same superscript are significantly dif-
ferent at p < .05 in the two-sided test of equality for column means. Tests assume equal variances and are adjusted 
for all pairwise comparisons within a row using the Bonferroni correction.  

   D E S C R I P T I O N
control
(N=8)

potato starch
(N=8)

VSL#3
(N=8)

Mean (SD) Mean (SD) Mean (SD)

daily food intake per mouse (g) 3.63 (0.26) 3.70 (0.36) 3.74 (0.29)

daily water intake per mouse (mL) 5.54 (0.77) 5.55 (1.21) 6.65 (1.39)a

body weight at day 14 (g) 20.61 (0.94)a 21.84 (0.71)b 20.89 (1.05)a,b

total bodyweight gain from day 0 (g) 7.71 (0.94) 8.65 (0.71) 8.27 (1.33)

spleen weight (g) 0.08 (0.01) 0.08 (0.01) 0.07 (0.01)

spleen length (cm) 1.30 (0.2) 1.40 (0.1) 1.40 (0.1)

large intestine weight (g) 0.95 (0.08) 1.23 (0.10)a 0.95 (0.07)

large intestine length (cm) 10.10 (0.6) 10.70 (0.9) 10.50 (1.0)

blood glucose (mg/dL) 105.57 (34.52) 113.81 (21.51) 116.05 (22.07)
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FIGURE 1. CONTROL VS. FORMULATED DIETS 
The 10% potato starch food pellets (TestDiet) were similar in color to the control (LabDiet). The cross-sectional shape 
of the custom pellet was more circular rather than oval. The custom pellets were also smaller. Both were irradiated. 

5L0D* 
9GCZ 

10% (w/w) potato starch 
+ irradiation
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FIGURE 2. NON-INVASIVE ANIMAL LABELLING 
Three out of four mice in every cage were labelled using permanent markers (Sharpie, Oak Brook, IL) at the base of 
their tails in colors: red, green, and blue. 

RED

BLUE

GREEN
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FIGURE 3. INTAKE AND BODY WEIGHT OVER TIME 
A. Mean daily food intake per mouse (g). Intake was measured periodically for each cage and was divided by the total 
mice per cage (n=4).  
B. Mean daily water intake per mouse (mL). Intake was measured per cage and divided by the total mice per cage 
(n=4).  
C. Mean mouse body weight (g).  
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FIGURE 4. QUANTIFICATION OF FECAL BACTERIA 
Abundance of microbial groups in fresh fecal samples measured by quantitative polymerase chain reaction (qPCR). 
Values are given in log 16S rRNA gene copies/ng of total DNA. Values not sharing the same letter are significantly 
different.  
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FIGURE 5. PRIMER VALIDATION AND AMPLICON SIZE 
F1 and F2 were female mouse samples on a control diet from another study and used for comparison. C1, C2, and C5 
were control mice. PS1, PS2, and PS5 were samples from mice given a 10% potato starch diet. V1, V2, and V5 were 
mice drinking VSL#3 probiotic water. EC-ref, B-ref, and L-ref were DNA samples from our reference strains: Es-
cherichia coli, Bifidobacterium infantis, and Lactobacillus rhamnosus. VSL#3 was DNA extracted from the live bacteria 
found in the VSL#3 probiotic. NTC was the no template control that only contained master mix, H2O, and primers.  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FIGURE 6. LEVELS OF SERUM LBP AFTER DIETARY SUPPLEMENTATION 
Groups not sharing the same letter are significantly different. 

a
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The gut microbiome may play a role in the development of chronic diseases like 

obesity, diabetes, and heart disease. Diets including prebiotics or probiotics can alter 

the abundance of gut bacterial groups and have subsequent health effects. In this study 

we wanted to establish a method for comparing the benefits of commercial 

supplements that alter the microbiota by monitoring fecal microbial profiles in male 

C57BL/6 mice (n = 24) exposed to 15 days of dietary supplementation. A probiotic diet 

(VSL#3) and a prebiotic diet (potato starch) were compared to a standard diet (n = 8 for 

each group). Microbial profiles were obtained through qPCR using group-specific 16S 

RNA primers.  

The potato starch group showed higher body weight than the control (p < 0.05), but 

was similar to the VSL#3 group. The large intestine weight of the potato starch group 

was higher than the control and the potato starch group (p < 0.05). Food intake 

remained the same across the groups. Daily water consumption was higher in the 

VSL#3 group (6.65 ± 1.38 mL) as opposed to the potato starch and the control group 
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(5.55 ± 1.21 mL, 5.54 ± 0.77 mL respectively). Blood glucose levels were similar 

between all groups. Quantitative PCR data showed higher abundance of bifidobacteria 

at a significant level compared to control and VSL#3 groups. VSL#3 supplementation 

was associated with more lactobacillus (p < 0.05) and lower serum LBP levels (p < 0.05) 

compared to control and potato starch groups.  

The microbiota changes observed with VSL#3 and potato starch supplementation 

were mostly consistent with the literature. However, VSL#3 probiotic did not 

demonstrate the same increase in bifidobacteria as other studies. This may suggest a 

need for prolonged consumption or combination with a prebiotic like potato starch. 

Weight increase after potato starch supplementation might have been due to slower 

digestion. There was a reduction in LBP levels after VSL#3 consumption, which may 

help prevent inflammation and obesity. 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