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Chapter 1 

1 Introduction 

As time progresses, the battle to impede climate change has grown more fierce. 

Combustion research has become paramount to impeding the progress of climate change whilst 

maintaining the standard of living that citizens of the first-world are expecting. Researchers have 

made great strides in understanding the intricacies of combustion through experimentation. Such 

experimentation is augmented by simulations that use high-performance computing to better 

understand how fuel disperses and which reaction pathways are critical to combustion. 

Experimental data has led to the development of chemical kinetic models that can simulate 

combustion processes to a seemingly high degree of accuracy. When compared to quasi-steady 

state experimental data of ignition delay tests (e.g. tests performed using a batch reactor, shock 

tube, or Rapid Compression Machine (RCM)), these computational models seem to accurately 

predict the ignition delay of a multitude of fuels at a range of conditions. 

However, when these models are coupled with a 3-D computational fluid dynamics (CFD) 

program to predict turbulent spray combustion, the predicted results of the simulations do not 

match with the results recorded during experimentation. This is well demonstrated in the 

combustion test results of the Engine Combustion Network (ECN) [1]. This international research 

collaboration has well-defined initial conditions for experiments, which created a vast library of 

experimental data that can be used for kinetic mechanism validation. Figure 1 is a compilation of 

ignition delay data for both experiments and simulations. As it is shown, mechanisms that agree 

with the 0-D data (i.e. experiments that run at quasi-steady state conditions) do not predict the 

turbulent spray combustion well. The same goes for mechanisms that were verified by spray 

combustion experimentation. This begs the question, if the underlying chemical reactions are the 
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same for both cases, what causes the discrepancy between the predicted ignition delays of the 0-D 

and 3-D simulations? 

 

Figure 1.1 Experimental shock tube ignition delay data and various kinetic mechanisms (left) 
and experimental spray combustion data with the same kinetic mechanisms used to predict 
the ignition delay (right) [1]. 

The goal of this study is to understand the uncertainty in a chemical reaction’s rate and 

how it impacts the spray combustion. To achieve this goal, a well-validated detailed chemical 

mechanism of n-dodecane has been reduced to analyze the reactions effects on combustion. The 

most critical of these reactions have been identified through a sensitivity analysis and then 

independently subjected to ignition delay tests in 0-D and 3-D environments to study their effects 

on combustion. The results of this study are presented herein and recommendations for future work 

are provided. 

Following this introduction, a literary review of the experimental tests and CFD results will 

be discussed. After that, the numerical methodology will be described, after which the results will 

be presented.  
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CHAPTER 2 

2 LITERATURE REVIEW 

2.1 Chapter Overview 

This section is divided into two different parts: experimental results and CFD simulations. 

The experimental results will look into the work done in spray penetration measurements, flame 

lift-off length (LOL) measurements, ignition delay measurements, mixing measurements, internal 

nozzle geometry flow, and nozzle geometry effects. The CFD section will looking into the 

modeling of mono- and multi-component fuel sprays, flame LOL measurements, auto-ignition 

simulations, and various turbulence modeling simulations. 

2.2 Experimental Data Review 

This section reviews the experiments performed to evaluate combustion from turbulent 

sprays. It reviews the spray penetration measurements, ignition delay calculations, flame lift-off 

length distances, fuel and air mixing, and injector nozzle geometry. 

2.2.1 Spray Penetration 

There has been much work investigating spray penetration lengths and the effect of 

different parameters on the spray. The experimental research has investigated the effect of the 

ambient density and temperature, injection pressure, nozzle orifice diameter and aspect ratio, fuel 

temperature and fuel volatility on fuel sprays [2-6]. Additional experiments have investigated the 

physics of the jet ligaments and droplets formed under various conditions [7]. These experiments 

were performed in constant volume combustion chambers with optical accesses similar in size and 

shape of the one used in [1]. The experiments used a variety of different visualization methods to 

observe the spray, such as: schlieren imaging [2-6], high-speed Mie-Scatter [3-6], and high-speed 

long-distance microscopic imaging [7]. These imaging techniques are usually coupled together as 

the combined data can show spray features that are obscured by combustion [4]. In a later study, 
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Pickett et al. [6] demonstrated that how these imaging techniques are captured and analyzed can 

produce uncertainty in the results and thus caution must be taken when performing the 

experiments. 

These experiments have been insightful into the physics of liquid jets. It has been shown 

that an increase in the ambient gas density and temperature shortens the liquid penetration length 

[2,3,5]. The ambient density was shown to increase the spray dispersion and slow the jet 

penetration velocity. Pickett et al. [5] investigated conditions that were similar to those found in 

diesel engines approaching top dead center. They reported that a volume reduction associated with 

15 crank angle degrees reduced the liquid penetration length by approximately a factor of 2. While 

both factors have been shown to heavily impact the liquid length, the effect created by the ambient 

gas density was the greatest [3]. 

In addition, the results show that nozzle orifice diameter plays a critical role in determining 

the liquid penetration length. Siebers [3] showed that the liquid length of the jet was linearly 

dependent on the size of the nozzle orifice; however, this trend is independent of all other factors. 

This was later confirmed by Pickett et al. [5], who noted that the maximum penetration length of 

the spray can be the same as those nozzles with larger orifices if the injected mass is to be held 

constant (i.e. the injection duration is longer). Furthermore, they noted that short injection 

durations with high injection pressures produce the same maximum penetration length as injection 

events that were longer with lower injection pressures. Pickett et al. continued to say that multiple 

injection events, normally reducing the liquid penetration length, can produce the same liquid 

penetration length as its single injection counterparts [5]. Despite the great impact on the spray by 

the nozzle orifice, the nozzle orifice aspect ratio has an inconsistent effect on the spray [3].  
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Fuel properties were shown to impact the liquid penetration length [3,5]. Siebers showed 

that as the fuel temperature increased, the liquid length decreased. This was correlated to a 12% 

decrease in the length of the spray for a 60 K increase in temperature [3]. In addition, the study 

found that lower fuel volatility resulted in a longer liquid penetration length. In a multicomponent 

fuel spray, it is the component with the lower volatility that determines the liquid penetration length 

[5]. However, Siebers noted that the importance of volatilities on the liquid penetration length 

decreases as ambient temperature increases, as the penetration lengths appear to converge at higher 

ambient temperatures for different fuels [3].  

Manin et al., analyzed the liquid break-up in closer detail using long-distance microscopy 

visualization techniques. In their work, the effects of droplet surface tension contributing to the 

break-up at low temperatures was captured. They confirmed that droplet break-up increased as the 

ambient gas density increased due to greater drag forces on the droplet [7]. However, when the 

pressures increased to those of engine applications, the effect of surface tension is less apparent 

(even indiscernible). 

As a way to model all these parameters, Siebers developed a scaling law for the liquid 

penetration length [8]. This scaling law took into consideration ambient temperature, ambient 

density, fuel volatility, fuel temperature, and nozzle orifice size. 

2.2.2 Combustion Characteristics 

Traditionally, diesel spray combustion has two characteristics that are quantified during 

experimentation: flame lift-off length (LOL) and ignition delay of the fuel. More emphasis has 

been placed on LOL in the experiments involving turbulent spray combustion. As in the previous 

section, the experiments discussed in this section have been performed using a constant volume 

combustion chamber with optical accesses to measure the combustion processes using different 
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visualization techniques. In these experiments, it was confirmed numerous times that ignition 

delay and LOL have an inverse relationship with ambient temperature and pressure [9-13]. In 

addition to the relationship with ambient conditions, many observations have been made about 

diesel spray combustion. Higgins et al. used pressure trace measurements and chemiluminescence 

imaging to confirm the two-stage ignition delay behavior found in diesel combustion at a range of 

different temperatures and pressures [9]. The conditions used were similar to those found in 

medium- and heavy-duty diesel engines. Higgins and Siebers continued studying LOL using OH 

chemiluminescence in [10]. Their work concluded that chemical luminescence intensity does not 

vary with ambient temperature and pressure; as a result, the researchers concluded that the optimal 

wavelength to observe OH luminosity is at the 310 nm wavelength [10]. 

Further studies observed a cool flame forming in approximately the same location as the 

steady-state lift-off length prior to auto-ignition [11]. This is indicative of first stage ignition 

processes affecting the LOL and disputes the notion that flame propagation impacts the stabilized 

length of flame lift-off. Benajes et al. used Schlieren images to characterize the onset of these cool 

flames and developed a new method to predict when these flames would occur based on boundary 

conditions [12]. This methodology also improved quantification of the second stage ignition delay.  

Continued quantification of the lift-off length has led researchers to study how initial 

conditions impact the LOL. Different fuels were tested to compare the physical properties of the 

fuel and how it impacts the lift-off length. It was determined that the ignition quality of the fuel 

directly impacts the LOL during combustion [11]. Additionally, the mixing of the oxidizer with 

the fuel impacts the LOL as described in [13]. This mixing process is determined by the 

atomization of the jet stream as will be discussed in a later section. However, it was found that 

increasing droplet velocity (through increased injection pressure) resulted in an increased LOL 
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[13]. Interestingly, the equivalence ratio at the location of the LOL remains consistent despite 

changes in the ambient conditions [13]. Overall, these observations are essential to modelling the 

combustion of the diesel spray effectively. 

2.2.3 Mixing Measurements 

It is well-known that a proper balance of fuel and oxidizer must be mixed together to initiate 

combustion. Therefore, understanding how a pure liquid jet of fuel mixes in a combustion chamber 

is essential for a better comprehension of combustion. Since this knowledge is vital to diesel engine 

combustion modes, the work of Espey et al. used Rayleigh scattering techniques in an optically 

accessible diesel engine to study the mixing of fuel and air [14]. The researchers noted the initial 

fuel jet is dense and does not have much air entrained inside. However, as the jet propagates out, 

the air and fuel are uniformly mixed throughout the leading portion of the jet. This mixture is still 

fuel rich (φ = 2-4) but the equivalence ratio sharply drops in the front and sides of the jet. 

Interestingly, combustion of the mixture occurs simultaneously in these regions around the jet, 

leading to a fuel-rich combustion as opposed to a stoichiometric combustion as previously 

hypothesized [14]. 

Other studies have used Rayleigh scattering to provide further data about fuel and air 

mixing. In [15], Fielding et al. showed that depolarization Rayleigh scattering was a viable 

diagnostic tool for argon- and air-diluted mixtures. This was proven useful for mixtures that 

possess molecules that can significantly deviate the depolarization ratio from that of the oxidizer 

(e.g. methane) [15]. Later on Idicheria and Pickett explored the sources of error associated with 

the Rayleigh scattering imaging technique to improve the data gathered using this method [16]. 

Using a constant volume combustion chamber, they noted that careful placing the laser screen to 

avoid extraneous elastic scattering and correct for laser flare on the shot to shot variation would 
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lower the error significantly. Furthermore, a wavelength of 532 nm was recommended due to its 

great signal-to-noise ratio [16].  

If Rayleigh scattering was not an option to visualize the mixing, Blessinger et al. showed 

that high-speed Schliren and Mie-scattering imaging techniques are able to capture the mixing. In 

fact, these techniques are sensitive enough to capture areas of low equivalence ratio (i.e. regions 

on the edge of the spray) [17]. This sensitivity allows for vapor envelopes and probability curves 

to be drawn for the spray. When comparing the visual techniques, it was found that Rayleigh 

scattering showed more variability than Schliren imaging [17]. Based on these results, it was 

recommended that modelers use the probability curves to validate their vapor penetration 

predictions.  

2.2.4 Nozzle Geometry and Flow Characteristics 

As mentioned in the spray parametrization section, the nozzle orifice has a significant 

impact on combustion during fuel injection. Further quantification of nozzle geometry has been 

performed to test its impact on the spray combustion. It was found that nozzle orifices are 

cylindrical or divergent in shape and can vary from the manufacturing design by up to 8% [18]. In 

addition, it was discovered that fuel injectors induce cavitation based on the mass flow and 

momentum flux measurements of [18]. Manufacturer variability, cavitation, orifice diameter, and 

injection pressure are shown to impact the spray [18,19]. A correlation between nozzle conditions 

and CH/OH radicals was observed [19]. CH radicals are influenced by the spray pattern, which 

then relates to OH radical production.  Thus, it was discovered that nozzle geometry has a direct 

impact on the combustion progress via the CH and OH radical production.  
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2.3 Numerical Simulation Review 

This section reviews the numerical simulations that have been performed to improve 

turbulent spray combustion. Similar to the experimental review, this section covers spray 

penetration measurements, ignition delay predictions, flame lift-off length simulations, and 

turbulence model effects on the combustion. 

2.3.1 Fuel Sprays 

The physics behind fuel spray and atomization are complex. Much research has been 

performed to improve the computational sub-models used to create fuel jets. Validation studies 

have been done to confirm the penetration lengths and mixture fractions of diesel sprays [20-23]. 

These studies used n-heptane [20,21] and n-dodecane [22] to mimic the physical properties of the 

fuel. These surrogates were shown to predict the physical spray properties accurately with the sub-

models used in the study. Further analysis into the accuracy of the sub-models was done in [23]. 

This study compared the sub-model accuracy to the experimental data of [1]. The spray 

penetrations and fuel vapor mass fractions predictions were used to validated the CFD sub-models. 

In addition to the macroscopic sub-models, microscopic effects of the spray were modelled. 

Droplet collision and coalescence models have been updated to include droplets of different 

densities [24]. This sub-model when coupled with other models had good agreement with 

experimental data for liquid and vapor penetration lengths at ambient densities of 20 and 40
௞௚

௠య
. 

This new model predicts smaller SMD for the droplets compared to the model of O’Rourke and 

Bracco. However, the prediction of spray penetration and mass-averaged velocity was in good 

agreement with the other model [24].  

Evaporation models have been refined to improve the fuel mixing in simulations. Models 

for unsteady evaporation for mono-component and multi-component surrogates have been 
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developed to improve the accuracy of the CFD solver [25,26]. These models show that evaporation 

near the nozzle is difficult due to the liquid core of the jet and the time it takes for the droplets to 

breakup from the jet. The more volatile components evaporate quicker from the droplet than the 

less volatile components do [26]. This is reflective in the models as the light components are more 

upstream of the spray plume, while the heavier components are found more-so at the tip of the jet 

[25]. These models show accurate predictions of spray penetration when compared to experimental 

data. 

2.3.2 Combustion Characteristics  

Reacting simulations provide further insight into the physics behind combustion. Much 

like the experimental data, the simulations are used for ignition delay validation [7,21,23,27,28] 

and lift-off length predictions [7,23,27-29]. These studies have revealed a wealth of information 

that benefits our understanding of combustion. It was demonstrated that ignition location in a spray 

is dependent on the spray atomization when compared to the OH* chemiluminescence data [21]. 

Species histories have been used to demonstrate a more accurate way of calculating the ignition 

delay as demonstrated in [23]. Using the time histories of the hydroperoxyalkyl radicals to 

calculate the time of autoignition was demonstrated as a more accurate way to calculate ignition 

delay when compared with experimental data. The effect of ambient oxygen on the ignition delay 

has been tested as well and have shown good agreement with measured data [7,27,29]. Although 

these results are promising, these results still depend on the accuracy of the chemical mechanism 

[28]. 

Flame LOL is dependent on numerous factors and requires many factors to develop the 

flame. Flame structure has been shown to change with different realizations of numerical 

simulations [7,29]. Numerical investigations have been performed to better understand which 
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parameters are most critical for flame development. [29] studied LOL by correlating it to flamelet 

extinction. The study concluded that while flame stabilization in spray jets is effected by flamelet 

extinction, it is insufficient to say that flame stabilization the only parameter that affects the flame 

LOL [29]. During the process of flame propagation, it was observed that a developing flame moves 

in both directions of the spray. The flame propagates faster downstream than it does upstream until 

the flame stabilizes [27]. Coupled with this finding, [27] showed the results for the same model 

are similar when using two different CFD models. There were some minor differences in predicted 

LOL, flame shape, and flame penetration; nevertheless, both solvers were able to predict the 

experimental data quite nicely [27]. 

2.3.3 Turbulence Modelling Effects 

Two turbulence models are mostly used for modelling spray combustion: RANS and LES. 

LES is known to resolve the large eddies that RANS models at the expense of more computational 

time. Studies have been performed to see if the increased accuracy of the LES model is worth the 

additional computational expense when simulating turbulent spray combustion.  

It was found that liquid and vapor penetration lengths and flame lift-off lengths are 

captured well by both models when compared to experimental data [30]. However, the intricacies 

of the spray combustion are better captured by the LES turbulence model. Since LES resolves the 

large eddies, it is able to predict the complex distribution of equivalence ratio and soot contours 

quite well, whereas the RANS models predict a layer of equivalence ratios and soot contours from 

the spray jet [28,30,31]. The complex flow field allows the LES model to have an asymmetric fuel 

spray as opposed to the symmetric jet created in the RANS model [31]. In addition, LES shows a 

more realistic flame development compared to the RANS model. The flames in LES propagate 

from the source of ignition and more along the fuel spray. These flames propagate faster 
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downstream than they do upstream until the flame stabilizes [28,30]. In contrast, the RANS models 

features ignition kernels that move upstream, a phenomenon that does not occur in experiments 

[28,30]. From these conclusions, it appears that both simulations produce acceptable results and 

the proper model depends on what the user is studying. 
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Chapter 3 

3 Computational Methodology 

3.1 Chapter Overview 

This chapter focuses on the computational methodology used for this work. It will describe 

the equations employed by the sensitivity analysis, 0-D simulations and 3-D simulations, in that 

order. Each section is divided into sub-sections that explain the sub-models used in that analysis. 

3.2 Sensitivity Analysis Methodology 

In this work, a sensitivity analysis was performed to identify the reactions that significantly 

impact the ignition delay of the mechanism. Choosing the most critical reactions was important, 

as changing the reaction rates for these crucial elements should impact the combustion for both 0-

D and 3-D models. Thus, Chemkin 17.0 was used to conduct a reaction sensitivity analysis on the 

ignition delay time for the mechanism. The analysis is best explained in the Chemkin 17.0 Theory 

manual [32] and will be briefly described herein. An analysis on the reaction rates focuses on the 

pre-exponential factors (‘A-Factors’) in the Arrhenius reaction-rate equations. Using the formula 

to represent the vector of governing equations: 

 𝐹(𝛷(ϛ); ϛ) = 0 (1) 

where F is the residual vector, Φ is the solution vector, and ϛ is the model parameter in question 

(for this study, it is the A-factors). Equation 1 is then differentiated with respect to ϛ to produce: 

 
𝜕𝐹

𝜕∅

𝜕∅

𝜕ϛ
+

𝜕𝐹

𝜕ϛ
= 0 (2) 

The Jacobian of the of the original matrix is described by 
డி

డ∅
, the sensitivity coefficients are 

expressed by 
డ∅

డϛ
, and the partial derivatives of vector F with respect to the A-factors is given by 
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డி

డϛ
.  The sensitivity coefficients are resolved in the system of equations shown in Equation 2, and 

can be normalized based on the greatest value of the dependent variable. 

3.3 0-D Computation Methodology 

This section covers the equations used by the 0-D simulations. These simulations are 

simple as the volume of the chamber is fixed and no mass flows throughout the chamber. The 

energy equation is a crucial focus of this investigation as it is expanded to account for the energy 

released by combustion. The section will review how the governing equations are resolved and 

discuss how combustion is modeled. 

3.3.1 Governing Equations 

Chemkin 17.0 was utilized for the 0-D investigation. Again, the Chemkin 17.0 Theory 

manual [32] is the best source for describing the governing equations but they will be concisely 

described here. The mechanisms were simulated in a batch reactor model in which the initial gas 

species were homogenously mixed inside a constant volume. Mass does not enter or leave this 

volume for the entirety of the simulation. Therefore, the mass balance in the system can be 

described by: 

 
𝑑(𝜌𝑉)

𝑑𝑡
= 0 (3) 

Where ρ is the density of the mass in the system and V is the volume of the reactor [32]. 

Since this investigation is looking into chemical reactions, species are conserved through the 

following equation: 

 𝜌𝑉
𝑑𝑌௞

𝑑𝑡
= 𝜔௞̇𝑉𝑊௞ (4) 
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For Equation 4, Yk is the mass fraction of the kth species, 𝜔௞̇ is the molar production rate 

of species k due to chemical reactions in the gas phase (per unit volume) and Wk is the molecular 

weight of species k. The term 𝜔௞̇ is defined later in Equation 10. The energy equation, expressed 

as: 

 𝜌𝑉 ൤𝑐௣ഥ
𝑑𝑇

𝑑𝑡
൨ = 𝑉 ෍ ℎ௞𝜔௞̇𝑊௞

௄

௞ୀଵ

+ 𝑉
𝑑𝑃

𝑑𝑡
 (5) 

is used to express how the temperature and pressure change in the chamber with time. 𝑐௣ഥ  is defined 

as the mean specific heat term for all gas components and is calculated as: 

 𝑐௣ഥ = ෍ 𝑌௞𝑐௣௞

௄

௞ୀଵ

 (6) 

For this investigation, the ignition delay time for the 0-D simulations is defined as the time 

from the start of the simulation until the time of maximum temperature increase (i.e. when 
ௗ்

ௗ௧
 is 

maximum). The rate of heat released due to the chemical reactions is defined as: 

 
𝑑𝑄

𝑑𝑡
= −𝑉 ∗ ෍ ℎ௞𝜔௞̇𝑊௞

௄

௞ୀଵ

 (7) 

3.3.2 Combustion Modeling 

The chemical reactions will be explained. As mentioned in [32,33], a basic reaction can be 

expressed as: 

 ෍ 𝑣௞𝐴௞ ↔ ෍ 𝑣௞
ᇱ 𝐴௞

௄

௞ୀଵ

௄

௞ୀଵ

 (8) 

Where vk is the stoichiometric coefficient of species k and Ak is the chemical formula of 

species k. The amount of species k formed during a reaction is expressed as: 
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 𝑛௞ = 𝑛௞଴ + 𝑣௞𝜖 (9) 

Where nk is the amount of the species at the time in question, nk0 is the initial amount of 

species k and 𝜖 is the reaction coordinate which expresses the occurrence of the reaction in 

question. It is important to note that the sign of convention for the stoichiometric coefficient of the 

species is different for reactants and products; the reactants have a negative sign convention 

whereas the products have a positive sign convention. This is to indicate the consumption of the 

reactants and the production of the products. If there are multiple reactions that consume and 

produce certain species, the production rate for species k is expressed by [30]: 

 𝜔௞̇ = ෍ 𝑉௞,௥𝜖௥

Я

௥ୀଵ

 (10) 

where Я is the total amount of reactions that affect species k and Vm,r is the summation of the 

stoichiometric coefficients for species m during reaction r. To express the progress of the reaction, 

the reaction coordinate for that reaction is given by: 

𝜖௥ = 𝑞௙௢௥௪௔௥ௗ ෑ(𝑋௞)௩ೖ,ೝ

௄

௞ୀଵ

− 𝑞௥௘௩௘௥௦௘ ෑ(𝑋௞)௩ೖ,ೝ
ᇲ

௄

௞ୀଵ

 (11) 

Where Xk is the molar concentration of species k and q is the forward and reverse rate 

coefficients for that reaction. In this work, the Arrhenius form of the forward and reverse rate 

coefficients are used, which is given as: 

 𝑞 = 𝐴𝑇௕𝑒
ିாಲ
ோ்  (12) 

Where A is the pre-exponential factor, b is the temperature exponent for the given reaction, 

EA is the activation energy and R is the universal gas constant. This methodology is a highly 

accurate way of tracking how to combustion develops in the simulation. 
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3.4 3-D Computational Methodology  

This section will touch on the methodology used for the turbulent spray combustion 

simulations. The geometry and mesh used for the simulation will be presented. Following that 

discussion, the sub-models used for the spray, droplet collision and evaporation, turbulence and 

combustion will be explained. 

3.4.1 Geometry and Mesh Generation 

For the 3D analysis, the aforementioned Spray A condition developed by the ECN is used 

in conjunction with the CFD software CONVERGE [43]. The geometry used for the 3-D 

simulation was based on Sandia National Lab’s constant volume combustion chamber as shown 

in Figure 3.1. The domain is cylindrical in shape, measuring 80.6 mm in length and diameter. 

 

Figure 3.1 The 3-D computational geometry used for this work. 

The mesh used in the simulations has been evaluated in previous work [37] and will be 

described herein. A base grid size of 2 mm is used for the domain, and features a heavily embed 

region around the nozzle. This embed region is 1 mm in diameter and extends 12 mm from the tip 
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of the nozzle into the chamber. This length was determined based on the steady-state liquid 

penetration length of the ECN’s experimental data [1]. The cells within this region are refined to 

a size of 31.25 µm. Since it is difficult to predict how the spray will develop outside this embed 

region, CONVERGE’s Adaptive Mesh Refinement (AMR) was utilized to refine cells of interest. 

This use of additional cells in areas of interest makes AMR a powerful tool. AMR evaluates sub-

grid conditions to determine where refinement is needed based on user conditions. The sub-grid is 

defined by CONVERGE as the difference between the actual field and the resolved field. 

According to the work of Bedford and Yeo [35] and Pomraning [36] the sub-grid for any scalar 

can be expressed as an infinite series given as: 

𝜙ᇱ = −𝛼[௞]

𝜕ଶ𝜙ത

𝜕𝑥௞𝜕𝑥௞
+

1

2!
𝛼[௞]𝛼[௟]

𝜕ସ𝜙

𝜕𝑥௞𝜕𝑥௞𝜕𝑥௟𝜕𝑥௟

−
1

3!
𝛼[௞]𝛼[௟]𝛼[௠]

𝜕଺𝜙ത

𝜕𝑥௞𝜕𝑥௞𝜕𝑥௟𝜕𝑥௟𝜕𝑥௠𝜕𝑥௠
+ ⋯ 

(13) 

In which, ϕ’ is the sub-grid scalar field, α[k] is 
ௗ௫ೖ

మ

ଶସ
 for a rectangular cell, the brackets 

indicate no summation, and 𝜙ത is the resolved scalar field. Since it is impossible to evaluate an 

infinite series, AMR approximates the series using the first term in Equation 13. This results in: 

 𝜙ᇱ ≅ −𝛼[௞]

𝜕ଶ𝜙ത

𝜕𝑥௞𝜕𝑥௞
 (14) 

For this work, if the sub-grid scale was larger than 2.5 K for temperature and 1 m/s for 

velocity, AMR refined the cells. AMR was allowed to refine the cells down to a minimum size of 

31.25 µm. The total allowable cell count for the simulation was 30 million and was determined 

through a mesh dependency analysis performed in [37].  In that previous work, it was found that 

temperature rise caused by combustion would converge if AMR was allowed to refine to 31.25 

microns outside the aforementioned embed region and the cell count was allowed to rise to a 
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minimum of 20 million from a beginning cell count of 0.5 million. This is shown in Figure 3.2. 

Due to the accuracy required in this work, a maximum allowable cell count of 30 million was 

allowed. The initial mesh can be seen in Figure 3.3. 

 

Figure 3.2 Gas temperature in the combustion chamber using different maximum cell count 
thresholds. The vertical lines show at which point in the simulation the maximum cell count 
was achieved [37]. 

 

Figure 3.3 Mesh used for all 3-D cases in the simulation. Mesh size was determined in [37]. 
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3.4.2 Spray Modeling 

CONVERGE couples pressure and velocity using the Pressure Implicit with Splitting of 

Operators (PISO) method developed by Issa [38]. The fuel is injected as a Lagrangian particle into 

the gas which is represented as a Eulerian field. The liquid and gas are coupled using the nearest 

computational node of the gas phase to exchange mass, momentum and energy to the parcel. The 

fuel is injected using the blob injection model of Reitz and Diwakar [39].  This model equates the 

parcel leaving the injector as the same size of the injector nozzle (i.e. 84 µm) as seen in Figure 3.4. 

The break-up of the particle is modeled using the KH-RT model based on the Kelvin-Helmholtz 

(KH) and Rayleigh-Taylor (RT) instabilities, which will be briefly described herein. The Kelvin-

Helmholtz model assumes that the injected parcels are large enough to be modeled as a liquid jet 

as show in Figure 3.4. 

 

Figure 3.4 Visualization of blob-injection model of Reitz [40]. 

These jets predict unstable waves for certain flow conditions which have maximum growth 

rate ΩKH and corresponding unstable surface wavelength ΛKH described by Reitz 1987 [41] as: 

Λ୏ୌ

𝑟௣
= 9.02

(1 + 0.45𝑍௟
଴.ହ)(1 + 0.4𝑇଴.଻)

൫1 + 0.87𝑊𝑒௚
ଵ.଺଻൯

଴.଺  (15) 
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Ω୏ୌ ቈ
𝜌௟𝑟௣

ଷ

𝜎
቉

଴.ହ

=
(0.34 + 0.38𝑊𝑒௚

ଵ.ହ)

(1 + 𝑍௟)(1 + 1.4𝑇𝑎଴.଺)
 (16) 

where Zl is the Ohnesorge number, Ta is the Taylor number, We is the Weber number, σ is the 

surface tension, and rp is the radius of the parcel. Subscripts l and g represent the liquid and gas 

phase respectively. These instabilities will impact how quickly the injected parcels changes size. 

As aforementioned, the parcels are equal to that of the nozzle diameter but will breakup to a radius 

(rd) proportional to the wavelength of the unstable surface described by: 

 𝑟ௗ = 𝐵଴Λ୏ୌ (17) 

B0 is a model constant that was set to 0.6 for this work and was based on the work of Reitz 

1987 [41]. The rate of change of the parent parcel radius is described as: 

𝑑𝑟௣

𝑑𝑡
= −

൫𝑟௣ − 𝑟ௗ൯

𝜏௄ு
,           (𝑟ௗ ≤ 𝑟௣) (18) 

where the breakup time is defined as: 

 𝜏௄ு =
3.762𝐵ଵ𝑟௣

Λ୏ୌΩ୏ୌ
 (19) 

B1 is a model constant that defines the initial fuel jet disturbance level that varies between 

fuel injectors [42]. For this investigation, this constant was set as 4. As the jet of fuel inserts into 

the chamber, the RT instabilities occur after a defined break-up length of the liquid core. This 

length is defined as: 

 𝐿௕ = 𝐶௕ඨ
𝜌௟

𝜌௚
𝑑଴ (20) 

where the constant Cb is equal to 10 for this study and d0 is the diameter of the nozzle. This breakup 

length is depicted in Figure 3.5.  
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Figure 3.5 Depiction of the KH-RT breakup length model. Prior to length Lb, the Kelvin-
Helmholtz instabilities only impact the breakup of the spray. After this length, the Rayleigh-
Taylor instabilities also impact the spray breakup [43]. 

After this defined length, both KH and RT instabilities occur. The Rayleigh-Taylor are 

assumed to be caused by the magnitude of the drag for on the droplet. Similar to the KH model, 

the RT instabilities are modeled as waves occurring on the droplet surface. CONVERGE uses the 

study of Xin et al. 1998 [44] to define the fastest growing wavelength and corresponding growth 

rate of these instabilities as: 

 𝛬ோ் = 2𝜋ඨ
3𝜎

𝑎(𝜌௟ − 𝜌௚)
 (21) 

and 

 𝛺ோ் = ඩ
2ൣ𝑎൫𝜌௟ − 𝜌௚൯൧

ିଷ/ଶ

3√3𝜎(𝜌௟ + 𝜌௚)
 (22) 
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respectively. For Equations 21 and 22, a is defined as the droplet deceleration. If the wavelength 

defined by CRTΛRT is calculated to be smaller than diameter of the droplet, the model assumes that 

the RT waves are growing on the surface of the droplet. If these waves are allowed to remain on 

the droplet surface for a time equal to  
஼೟

ఆೃ೅
, the RT instabilities are assumed to break-up the droplet. 

For this study, the constants CRT and Ct are 0.1 and 1.0, respectively. 

3.4.3 Droplet Collision Modeling 

In addition to the droplets of the spray breaking up, they are also subjected to collisions. 

The collisions are modeled based on the No Time Counter (NTC) model of Schmidt and Rutland 

2000 [45], as will be briefly described. Derived from probability model for stochastic collision, 

the NTC model sorts the number of parcels that reside within a computational cell. The expected 

number of collisions within a cell is deduced by summing the probability of all possible collisions. 

For a cell with N droplets which have cross-section of 𝜎௜ ,௝ =  𝜋൫𝑟௜ + 𝑟௝൯
ଶ
during a time interval of 

Δt this is expressed as: 

 𝑀௖௢௟௟௜௦௜௢௡ =  
1

2
෍ ෍

𝑣௜ ,௝ 𝜎௜ ,௝ ∆𝑡

𝑉

ே

௝ୀଵ

ே

௜ୀଵ

 (23) 

where vi,j is the relative velocity between the two droplets and V is the cell volume. By grouping 

similar droplets together in a parcel, assuming that all the droplets within a parcel have uniform 

physical properties and simplifying the equation to allow for a constant factor to be outside of the 

summations, the equation is now represented as: 

𝑀௖௢௟௟௜௦௜௢௡ =
(𝑤𝑣𝜎)௠௔௫∆𝑡

2𝑉
෍ 𝑤௜ ෍

𝑤௝𝑣௜ ,௝ 𝜎௜ ,௝

(𝑞𝑉𝜎)௠௔௫

ே೛

௝ୀଵ

ே೛

௜ୀଵ

 (24) 
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where Np is the number of parcels within the cell and w is the number of droplets within a parcel. 

(wvσ)max scales the selection probability of a collision and must be large enough so that the 

following is true: 

 
𝑤௝𝑣௜ ,௝ 𝜎௜ ,௝

(𝑤𝑣𝜎)௠௔௫
< 1 (25) 

If this is true, it can be assumed that a representative sub-sample of parcels within the 

computational cell can represent all parcels within the cell. This reduces the limits of summation, 

and the amount of collisions within the cell can be expressed as: 

𝑀௖௢௟௟௜௦௜௢௡ = ෍ 𝑤௜ ෍
𝑤௝𝑣௜ ,௝ 𝜎௜ ,௝

(𝑤𝑣𝜎)௠௔௫

ඥெೌೞೞೠ೘೛

௝ୀଵ

ඥெೌೞೞೠ೘೛

௜ୀଵ

 (26) 

where: 

 𝑀௔௦௦௨௠௣ =
𝑁௣

ଶ(𝑤𝑣𝜎)௠௔௫∆𝑡

2𝑉
 (27) 

Equation 24 is used by CONVERGE to calculate the collisions of the droplets within this 

investigation. To determine what happens to the droplets after a collision occurs, the model of Post 

and Abraham 2002 [46] is utilized and will be described succinctly. This model predicts the 

following outcomes for the droplets: grazing collision, coalescence, stretching separation and 

reflexive separation. To determine what occurs after the collision, the collision Weber number 

(Wecollision) is compared to a bouncing Weber number described by: 

𝑊𝑒௕௢௨௡௖௘ =
∆௣(1 + ∆௣

ଶ)(4𝜑 − 12)

𝜒ଵ(cos(arc sin 𝐵))ଶ
 (28) 

where: 
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 ∆௣=
𝑟ଵ

𝑟ଶ
                 (𝑟ଶ > 𝑟ଵ) (29) 

 𝜑 = 𝜑଴ ൬
𝜌௚

𝜌଴
൰

ଶ
ଷ
 (30) 

 
𝜒ଵ = 1 − 0.25(2 − 𝜏)ଶ(1 + 𝜏)      𝑓𝑜𝑟 𝜏 > 1 

𝜒ଵ = 0.25𝜏ଶ(3 − 𝜏)     𝑓𝑜𝑟 𝜏 < 1 
(31) 

and: 

 𝜏 =
1 − 𝐵

1 + ∆௣
 (32) 

For equation 30, 𝜑଴ is 3.351, 𝜌଴ is 1.16 
௞௚

௠య
, and 𝜌௚ is the gas density. B is given by: 

 𝐵 =
𝑏

𝑟ଵ + 𝑟ଶ
 (33) 

where b is the distance from the center of one drop to the relative velocity vector placed on the 

center of the other drop. r1 and r2 are the droplet radii for the colliding droplets. Figure 3.6 provides 

a visual of b as provided by Post and Abraham [46]. 
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Figure 3.6 Figure of droplet-droplet collision. This depiction shows how CONVERGE 
calculates the post-collision direction and velocity of the droplets as outlined in the above 
equations. Image adopted from [46] with permission. 

Once Webounce has been determined, the droplets are assumed to bounce if 2Weୡ୭୪୪୧ୱ୧୭୬ <

𝑊𝑒௕௢௨௡௖௘ [47], or either coalesce, separate by stretching or separate by reflex if 2Weୡ୭୪୪୧ୱ୧୭୬ ≥

𝑊𝑒௕௢௨௡௖௘. To determine which of the latter events occur, CONVERGE checks two other criteria. 

Stretching separation occurs if 𝑏 > 𝑏௖௥௜௧௜௖௔௟, while reflexive separation can occur if the criterion 

of Ashgriz and Poo (1990) [48] is met. This criterion is defined as: 

 2𝑊𝑒௖௢௟௟௜௦௜௢௡ > 3 ቈ7൫1 + ∆௣
ଷ൯

ଶ
ଷ − 4൫1 + ∆௣

ଶ൯቉
∆௣൫1 + ∆௣

ଷ൯
ଶ

∆௣
଺𝜂ଵ + 𝜂ଶ

 (34) 

where: 

 𝜂ଵ = 2(1 − 𝜉)ଶඥ1 − 𝜉ଶ − 1 (35) 

 𝜂ଶ = 2൫∆௣ − 𝜉൯
ଶ

ට∆௣
ଶ − 𝜉ଶ − ∆௣

ଷ  (36) 

and 

 𝜉 = 0.5𝐵(1 + ∆௣) (37) 
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For all cases, the post-collision velocities are expressed as: 

𝑣௜ ,ଵ
ᇱ =

𝑚ଵ𝑣௜ ,ଵ+ 𝑚ଶ𝑣௜ ,ଶ+ 𝑚ଶ(𝑣௜ ,ଵ− 𝑣௜ ,ଶ )

𝑚ଵ + 𝑚ଶ
ඥ1 − 𝑓ா  (38) 

and, 

𝑣௜ ,ଶ
ᇱ =

𝑚ଵ𝑣௜ ,ଵ+ 𝑚ଶ𝑣௜ ,ଶ+ 𝑚ଵ(𝑣௜ ,ଶ− 𝑣௜ ,ଵ )

𝑚ଵ + 𝑚ଶ
ඥ1 − 𝑓ா  (39) 

As described in the work of Hou [47]. For these equations, fe is the amount of energy lost 

in the collision represented as a fraction. In the cases where the droplets bounce, 𝑓ா = 0. However, 

if CONVERGE determines that only stretching separation occurs, 𝑓ா  can be found through: 

 1 − 𝑓ா = ൬
𝑏 − 𝑏௖௥௜௧௜௖௔௟

1 − 𝑏௖௥௜௧௜௖௔௟
൰

ଶ

 (40) 

Similarly, if reflexive separation is the only determined outcome of the collision, then 𝑓ா  

can be found through: 

1 − 𝑓ா = 1 −

3 ቈ7൫1 + ∆௣
ଷ൯

ଶ
ଷ − 4൫1 + ∆௣

ଶ൯቉
∆௣൫1 + ∆௣

ଷ൯
ଶ

∆௣
଺𝜂ଵ + 𝜂ଶ

2𝑊𝑒௖௢௟௟௜௦௜௢௡
 

(41) 

Both equations of 𝑓ா  are determined in the work of Hou [47]. If CONVERGE finds that 

2Weୡ୭୪୪୧ୱ୧୭୬ ≥ 𝑊𝑒௕௢௨௡௖௘but neither form of separation occurs, the droplets are assumed to 

coalesce. 

The droplet-wall interaction is modeled by wall impingement model of Gonzalez et al. 

1991 [49]. However, the walls of the computational domain are sufficiently far away that wall-

droplet interaction does not occur. Thus, discussion of this model has been omitted.  
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3.4.4 Droplet Evaporation Modeling 

As the liquid droplets are dispersed throughout the domain, they will eventually evaporate. 

In this study, the Frossling correlation is used to determine the how the mass of the fuel evaporates 

into the domain based on the study of Amsden et al. [50]. From this study, the rate of change of 

the droplet radius is defined as: 

 
𝑑𝑟଴

𝑑𝑡
= −

𝜌௚𝐷

2𝜌௟𝑟଴
𝐵ௗ𝑆ℎௗ  (42) 

where D is the mass diffusivity of the liquid vapor in air, Bd is the ratio of vapor mass fractions 

and Shd is the Sherwood number. Bd is expressed as: 

 𝐵ௗ =
𝑌ᇱ − 𝑌

1 − 𝑌
 (43) 

where Y’ is the vapor mass fraction at the droplet surface and Y is the vapor mass fraction of the 

ambient gas. Furthermore Shd is defined as: 

𝑆ℎௗ = (2 + 0.6𝑅𝑒ௗ

ଵ
ଶ𝑆𝑐

ଵ
ଷ)

ln (1 + 𝐵ௗ)

𝐵ௗ
 (44) 

 

in which: 

 𝑅𝑒ௗ =
𝜌௚|𝑢௜ + 𝑢௜ − 𝑣௜′|2𝑟ௗ

𝜇௔௜௥
 (45) 

and Sc is the Schmidt number of air. The air viscosity term in the Reynold’s number formulation 

and the Schmidt number are evaluated at a temperature calculated by: 

 𝑇ఓ =
𝑇௚ + 2𝑇ௗ

3
 (46) 
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where Tg is the temperature of the ambient gas and Td is the temperature of the droplet. The mass 

diffusivity term in Equation 40 and the Schmidt number can be found from: 

 𝜌௚𝐷 = 1.293𝐷଴ ൬
𝑇ఓ

273
൰

௡బିଵ

 (47) 

D0 and n0 are experimentally determined model constants, which are 4.16*10-6 and 1.6 

respectively for this study. In CONVERGE, Y’ in Equation 43 is defined by: 

𝑌ᇱ =
𝑀௙௨௘௟

𝑊௙௨௘௟ + 𝑊௠௜௫ ൬
𝑃௚

𝑃௩
− 1൰

 
(48) 

where Wfuel is the molar weight of the fuel, Wmix is the molar weight of the mixture, Pg is the 

pressure of the gas, and Pv is the vapor pressure at the current droplet temperature. Overall, these 

equations model the mass shedding of the droplet over time as the droplet evaporates. 

3.4.5 Turbulence Modeling 

For this work, the Re-Normalisation Group (RNG) k-ε RANS turbulence model was used 

for CONVERGE [43]. As it is well known, RANS models express instantaneous qualities of the 

flow as fluctuations around an ensemble average term determined by averaging Navier-Stokes 

equations. The mass and momentum transport equations used by CONVERGE are: 

 
𝜕𝜌̅

𝜕𝑡
+

𝜕𝜌̅𝑢ఫ෥

𝜕𝑥௝
= 0 (49) 

and, 

 
𝜕𝜌̅𝑢ప෥

𝜕𝑡
+

𝜕𝜌̅𝑢ప෥ 𝑢ఫ෥

𝜕𝑥௝
= −

𝜕𝑃ത

𝜕𝑥௜
+

𝜕

𝜕𝑥௝
ቈ𝜇 ቆ

𝜕𝑢ప෥

𝜕𝑥௝
+

𝜕𝑢ఫ෥

𝜕𝑥௜
ቇ −

2

3
𝜇

𝜕𝑢௞෦

𝜕𝑥௞
𝛿௜௝቉ +

𝜕

𝜕𝑥௝
𝜏௜௝  (50) 

respectively. The Reynolds stress term for the RNG RANS model is given as: 
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 𝜏௜௝ = 2𝜇௧𝑆௜௝ −
2

3
𝛿௜௝ ൬𝜌𝑘 + 𝜇௧

𝜕𝑢ప෥

𝜕𝑥௜
൰ (51) 

where Sij is the mean strain rate tensor, and µt is the turbulent viscosity. These terms are defined 

as: 

 𝑆௜௝ =
1

2
ቆ

𝜕𝑢ప෥

𝜕𝑥௝
+

𝜕𝑢ఫ෥

𝜕𝑥௜
ቇ (52) 

and 

 𝜇௧ = 𝑐ఓ𝜌
𝑘ଶ

𝜀
 (53) 

where cµ is a model constant which was 0.0845 for this study. The turbulent kinetic energy and 

dissipation of turbulent kinetic energy transport equations are expressed as: 
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and 
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𝑘
+ 𝑆 − 𝜌𝑅 

(55) 

In the aforementioned equations, cε1, cε2, and cε3 are model constants that are used to 

account for compression and expansion. They are 1.42, 1.68, and -1.0 for this work. S and Ss are 

user-supplied source terms that interact with the spray. For this work, S set as 0 and Ss is 0.03. R is 

defined as: 

 𝑅 =
𝑐ఓ𝜂ଷ ቀ1 −

𝜂
𝜂଴

ቁ 𝜀ଶ

(1 + 𝛽𝜂ଷ)𝑘
 (56) 
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where: 

 𝜂 =
𝑘

𝜀
ට2𝑆௜௝𝑆௜௝ (57) 

Note that β and η0 are model constants, which are 0.012 and 4.38 respectively for this work. 

Equations 56 and 57 are unique to the RNG RANS model [43].  

3.4.6 Combustion Modeling 

CONVERGE features a detailed chemistry solver named SAGE. SAGE models chemical 

kinetics based on reaction thermodynamic data that is in the CHEMKIN format. To calculate the 

combustion, SAGE calculates the reactions rates for each elementary reaction and solves the 

combustion using the CVODES solver, while the other parts of the CFD package calculate the 

transport equations of these species. It should be noted that for this work, the turbulence chemistry 

interaction has been ignored, regardless of its significance. The methodology of SAGE is 0-D, 

which has been explained in the previous section and therefore will not be explained herein. 
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Chapter 4 

4 Results and Discussion   

4.1 Chapter Overview 

This chapter discusses the results of the simulations. It will lead with the results validating 

the kinetic mechanisms used in this investigation. Following this investigation, the results of the 

sensitivity analysis are presented as well as the results of the 0-D and 3-D simulations. The chapter 

is divided into two sub-sections based on the results of the sensitivity analysis and the results of 

the combustion simulations. 

4.2 Sensitivity Analysis 

In this study, the n-dodecane kinetic mechanisms of Narayanaswamy et al. [51] was 

utilized. To reduce computational time, the mechanism was reduced from 369 species and 1896 

reactions to 109 species and 169 reactions. This newly developed reduced mechanism and the 

mechanism of Narayanaswamy et al. [51] were validated against experimental shock tube data 

from the Oehlschlager group as reported in [52]. The mechanisms simulated a 0-D constant volume 

chamber as discussed in the previous chapter at temperatures from 800 to 1100 K at 100° intervals. 

The pressures for these temperatures were 40, 60, and 80 atm, and the equivalence ratio varied 

between 1 and 2. These conditions were the same as the experiments [52].  As seen in Figures 4.1 

and 4.2, both mechanisms’ ignition delays were in fair agreement with the experimental data for 

most test conditions. The exception would be the test conditions in the low temperature regions, 

where both mechanisms struggled to predict the experimental data. 
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Figure 4.1 Simulations and experimental ignition delay at an equivalence ration of 1. N-
dodecane is the fuel used in this study. 

 

Figure 4.2 Simulations and experimental ignition delay at an equivalence ration of 2. N-
dodecane is the fuel used in this study. 
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Since the newly developed skeletal mechanism succeeded in predicting the ignition delay 

of the experimental data for a wide range of conditions to the same degree of accuracy as the parent 

mechanism of Narayanaswamy et al., it was deemed suitable for further analysis in this 

investigation. 

The skeletal mechanism was subjected to a sensitivity analysis at temperatures of 800 to 

1400 K and pressures of 10 to 60 bar. The sensitivity analysis would individually alter each 

reaction in the mechanism to the same degree, and compare the new ignition delay to that of the 

mechanism before the reaction rate was modified. For this investigation, a modified reaction which 

produced a change to the ignition delay of greater than ±10% when compared to the unmodified 

ignition delay was deemed a critical reaction in the mechanism. Using this criteria, over 30 

reactions were identified as critical. Due to the amount of further testing required for this work, 

the six reaction pathways that produced the greatest change in the ignition delay were used. These 

reactions can be found in Table 1. Most the reactions decreased the ignition delay (denoted by the 

negative percent change) with the exception of one reaction (C12H25O2 → C12OOH-T6) which 

increased the ignition delay. 

Table 4.1 Critical Reactions. 

Name Reaction Original Reaction Rate 
Mechanism 0 C12H25O2 → C12OOH-T6 6.904e11 
Mechanism 1 C12H25O2 → C12H24 + HO2 1.905e38 
Mechanism 2 C12OOHO2 → C12KET-T6 + OH 3.667e11 
Mechanism 3 NC12H26 + HO2 → C12H25 + H2O2 3.518e02 
Mechanism 4 CH3 + HO2 ↔ CH3O + OH 1.000e13 
Mechanism 5 H + O2 ↔ O + OH 1.040e14 

 

To ensure the effect of the identified reactions on the combustion was observable, the A-

factor of each reaction was multiplied by 10 independently of each other in six new mechanism 
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files. This would amplify the effect of the reaction on the combustion and make the results easier 

to compare to the original skeletal mechanism. 

4.3 0-D and 3-D Combustion Simulations 

After the sensitivity analysis was performed, the combustion simulations of the new 

mechanisms were performed in 0-D and 3-D environments. All mechanisms were tested at similar 

conditions for both cases. The tested ambient temperatures ranged from 900 to 1100 K at 100° 

intervals, while the pressure remained constant at 60 bar for all tested cases. The ambient gases 

consisted of the following mass fractions: O2 = 16.418%, N2 = 71.975%, CO2 = 9.376% and H2O 

= 2.331%. A summary of the initial conditions for both cases can be seen in Table 4.2.  

Table 4.2 A summary of initial conditions used for the simulations. 

 0-D Simulation 3-D Simulation 

Ambient Composition 

(% Mass) 
16.418% O2, 71.975% N2, 0.9376% CO2, 0.2231% H2O 

Ambient Temperature (K) 900 – 1100 

Ambient Pressure (Bar) 60 

Fuel n-Dodecane (109 species & 169 reactions) 

Equivalence Ratio 1 N/A 

Injection Parameters N/A 
Injection Pressure: 1500 Bar 

Injection duration/mass: 1.5 ms / 3.5 mg 

Nozzle Diameter N/A 90 µm 
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The ignition delay for the 0-D cases was calculated based on the point of maximum 

pressure rise with respect to time (i.e. maximum 
ௗ௉

ௗ௧
) in the combustion chamber. The ignition delay 

for the turbulent spray combustion cases was calculated by the concentration history of the 

hydroperoxyalkyl radicals, as discussed by Samimi-Abianeh et al. [23] and described herein. Since 

the fuel is at a much lower temperature than the ambient gas, the vaporized fuel initially undergoes 

low temperature combustion. During this time, the hydrocarbon fuel undergoes hydrogen 

abstraction to form alkyl radicals. These radicals obtain oxygen from the ambient gas forming 

RO2, which undergoes isomerization to form a hydroperoxyalkyl. During low temperature 

combustion, these alkyls multiply and form a peak concentration. However, as the temperature 

begins to increase, the RO2 radicals begin to decompose and form HO2 and H2O2 species. H2O2 

further decomposes as the temperature increases and forms two OH radicals, indicating that high 

temperature combustion has begun. During this process, the hydroperoxyalkyl radicals reach a 

post-peak minimum concentration value that aligns nicely with luminosity-based ignition delay. 

This process can be seen in Figure 4.3. [23] has shown that this method for calculating ignition 

delay is more representative of experimental data; resultantly, this methodology will be used for 

calculating the turbulent spray ignition delay in this work. 
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Figure 4.3 Mass history of key species in the combustion chamber. Initial ambient gas 
temperature was 1000 K. The ignition delay predicted by the species history is shown in red. 
As a comparison, the pressure-based ignition delay is shown as well. The luminosity-based 
ignition delay timing and its respective uncertainty is shown by the gray box. This figure is 
adopted from [23] with permission. 

The ignition delay times for all modified mechanisms can be seen in Table 4.3. Note that 

a negative sign denotes a decrease in the new ignition delay when compared to the base 

mechanism. From the data presented, there exists a disparity between the 0-D predicted ignition 

delay and the 3-D predicted ignition delay for all tested conditions. The following observations 

are determined from the table: 

C12H25O2 → C12OOH-T6: Modifying the Arrhenius constant by an order of magnitude decreases 

the ignition delay for the 0-D and 3-D models by an order of magnitude. It should be noted that 

the 3-D ignition delay is less impacted by the change at temperatures of 900 K and 1000 K. At 

1100 K, the opposite is true suggesting that the reaction is dependent on ambient temperature for 

the spray model. 
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C12H25O2 → C12H24 + HO2: Increasing the A-factor of the reaction by an order of magnitude 

increases the ignition delay of both models. However, the 0-D model with have an increase of one 

order of magnitude but the 3-D model will have an ignition delay change of two orders of 

magnitude. 

C12OOHO2 → C12KET-T6 + OH: Similar to the first reaction mentioned, an order of magnitude 

change to the rate constant induces an order of magnitude decrease for the ignition delay of both 

0-D and 3-D models. The 3-D model is more impacted at higher temperatures, whereas the 0-D 

model is more impacted at lower temperatures. 

N-C12H26 + HO2 → C12H25 + H2O2: When the Arrhenius constant is modified by an order of 

magnitude, the 0-D and 3-D ignition delays decrease. The 0-D model predicts that ignition delay 

reaches its lowest value at a temperature of 1000 K, while the 3-D model predicts that the ignition 

delay continuously decreases as the temperature of the chamber decreases. 

CH3 + HO2 ↔ CH3O + OH: Modifying this rate constant does not impact the ignition delay of 

the spray for ambient temperatures of 900 K and 1000 K. However, a significant decrease in the 

ignition delay is observed for the 3-D model at 1100 K. Juxtaposed, the 0-D model appears to have 

a parabolic change in the ignition delay for the temperature range tested on this ignition delay. 

H + O2 ↔ O + OH: This reaction impacts both 0-D and 3-D reactions to a similar degree at higher 

temperature (1100 K). However, the 0-D model shows a decrease in the ignition delay at the lower 

temperatures whereas the 3-D model shows no significant change in the ignition delay time. 
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Table 4.3 Ignition delays of mechanisms with modified reaction rates. Note how the 0-D predictions 
do not line up with the 3-D predictions. 

 C12H25O2 

→ 
C12OOH

-T6 

C12H25O2 → 
C12H24 + 

HO2 

C12OOHO2 
→ 

C12KET-T6 
+ OH 

NC12H26 + 
HO2 → 
C12H25 + 

H2O2 

CH3 + HO2 
↔ CH3O + 

OH 

H + O2 ↔ O 
+ OH 

Temperature 
(K) 

0-D 
(%) 

3-D 
(%) 

0-D 
(%) 

3-D 
(%) 

0-D 
(%) 

3-D 
(%) 

0-D 
(%) 

3-D 
(%) 

0-D 
(%) 

3-D 
(%) 

0-D 
(%) 

3-D 
(%) 

900 -72 -44 638 >133 -55 -26 -41 -11 -13 1 -13 4 

1000 -77 -54 74 >80 -59 -36 -66 -25 -7 0 -12 0 

1100 -29 -62 4.1 >110 -17 -40 -55 -37 -14 -24 -23 -25 

 

Figure 4.4 and 4.5 shows the impact these reactions have on the ignition delay when 

compared to the baseline mechanism. At a time of 0.285 ms after the start of injection (ASOI), at 

an ambient gas temperature of 1000 K, all mechanisms show their individual combustion progress. 

As demonstrated in the figure, most of the tested mechanisms accelerated the combustion when 

compared to the baseline mechanism. This is most evident in the C12H25O2 → C12OOH-T6, C-

12OOHO2 → C12KET-T6 + OH, and n-C12H26 + HO2 → C12H25 + H2O2 reactions, where the 

combustion is completely underway at the time the images were visualized. As described above 

and shown in Figure 7, the C12H25O2 → C12H24 + HO2 reaction significantly delays the combustion, 

as the fuel still propagates within the chamber without reacting compared to the baseline 

mechanism which is reacting. There is some increased reactivity in the CH3 + HO2 ↔ CH3O + 

OH and H + O2 ↔ O + OH reactions at this ambient temperature. However, they are closely related 

to the baseline mechanism as described in Table 4.3.  
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Figure 4.4 Comparison of the temperature contours of the different mechanisms compared 
to the baseline mechanism. These contours were visualized 0.285 ms after the start of 
injection at an initial gas temperature of 1000 K. 

 

Figure 4.5 Ignition delays of the turbulent spray simulations using the different mechanisms 
compared to experimental data [1]. 



41 
 

 
 

Since these reactions modified the ignition delay of the spray combustion, it would be a 

failure of inquiry to ask how the other spray characteristics were impacted by the change in the 

reaction rates. Following the ignition delay observations, the liquid and vapor penetration lengths 

were examined for each of the modified mechanisms and compared to experimental data. These 

lengths for the simulations at 900 K are shown in Figure 9. For this study, the liquid penetration 

length is defined as the distance from the nozzle that 99% of the n-dodecane mass is contained in. 

The vapor penetration length is defined as the further distance from the nozzle in which 0.1% of 

the fuel by mass can be found. As seen in Figure 4.6, the liquid penetration lengths for all 

mechanisms are very close to one another. This is expected as the liquid penetration length is not 

impacted by the chemical mechanism. However, the fuel vapor penetration lengths are different 

for all cases. If the reactivity of the mechanism was found to increase (i.e. the ignition delay was 

reduced) the fuel vapor penetration length of that mechanism was reduced significantly. This is 

attributed to the increased rate of radical production that results in an increased consumption rate 

of the fuel. Reactions that have this increased reactivity (i.e. most of the reactions) show reduced 

fuel vapor penetration rate when compared to the baseline mechanism. On the other hand, since 

the C12H25O2 → C12H24 + HO2 reaction impedes the combustion, the vapor continues to disperse 

into the chamber, resulting in an ever-expanding vapor penetration length. 



42 
 

 
 

 

Figure 4.6 Liquid and vapor penetration lengths of the various mechanisms at an ambient 
temperature of 900 K. 

A final comparison of flame LOL was conducted to completely scrutinize the data 

presented by the simulations. In this work, the definition of flame lift-off length was take from 

Samimi-Abianeh et al. [23] and will be briefly described here. As explained in the ignition delay 

section, when the hydroperoxyalkyl radicals are formed the temperature within the chamber 

increases do to the energy released during this process. The temperature plateaus around a local 

maximum until high-temperature chemistry begins and the temperature dramatically rises. 

Furthermore, since the spray is injected into the chamber the chemical reactions can be thought of 

as occurring at approximately the same axial distance from the nozzle as the heat transfer from the 
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ambient gas to the fuel should occur at the same rate for similarly sized droplets. It is reasonable, 

in turn, to assume that the time it takes for the temperature of the fuel vapor to reach this local 

maximum is the same. This observation was confirmed in the work of Samimi-Abianeh et al. [23], 

who determined the temperature thresholds for initial ambient gas temperatures of 900, 1000, 

1100, and 1200 K are 1050, 1150, 1250, and 1350K respectively. These thresholds are used to find 

the LOL in this work.  

For the reactions C12H25O2 → C12OOH-T6, C12OOHO2 → C12KET-T6 +OH, and N-C12H26 

+ HO2 → C12H25 + H2O2, the LOL is shorter than the baseline mechanism as shown in Figure 4.7. 

This corroborates the previous findings in this study, as a short lift-off length is generally indicative 

of increased reactivity [53 and 54]. C12H25O2 → C12H24 + HO2 is not shown in the figure as it did 

not combust during the simulation time provided. The mechanisms that contained the modified 

CH3 + HO2 ↔ CH3O + OH and H + O2 ↔ O + OH reactions had similar lift-off lengths to that of 

the baseline mechanism. As discussed in [11], the reactions that are related to the first stage ignition 

processes show a direct relation to the stabilized LOL. The LOL from each mechanism is compared 

to experimental data in Figure 4.7. 
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Figure 4.7 Flame lift-off lengths for each mechanism compared to experimental data of [1]. 
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Chapter 5 

5 Conclusion 

Combustion of n-dodecane was simulated in a constant volume batch reactor (0-D) and 

through turbulent spray (3-D) in a combustion chamber. A reduced chemical mechanism was used 

for the combustion modelling. A sensitivity analysis was performed to identify the reactions that 

are most important to the ignition delay timing; six reactions were identified. The reaction rates of 

these reactions were independently modified and used in individual mechanisms to study their 

impact on the ignition delay. Thus, six new mechanisms were built, in which one reaction per 

mechanism was changed. These mechanisms were subjected to 0-D and 3-D ignition delay 

simulations, in which the results were compared with experimental data.  

None of the mechanisms (including the original one) could accurately predict low temperature 

combustion (a temperature range of 750 to 850 K) during the batch reactor simulations (0-D) due 

to the deficiency of the chemical pathways at low-temperature combustion. Thus, only turbulent 

spray combustion of n-dodecane at gas temperatures of 900, 1000, and 1100 K were simulated.  

Ignition delays of all the mechanisms were compared to observe the effect of the reaction rates 

on the ignition delay. The mechanism with the unmodified reaction is called baseline, which all 

the new mechanisms were compared to for the 0-D and 3-D simulations. The difference between 

the baseline and the modified mechanisms were not of the same degree for the 0-D and the 3-D 

simulations at the studied conditions. While some differences between the two types of simulations 

are small, as is the case for the CH3 + HO2 ↔ CH3O + OH at gas temperature of 1000 K, some 

cases had a significant disparity between the two simulation types. This was the case for the 

reaction C12H25O2 → C12H24 + HO2 at 1100 K as the 0-D model predicted minimal changes but 

the 3-D model predicted a difference that was greater than two orders of magnitude from the 
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baseline mechanism. This is puzzling as turbulence chemistry interaction was not modelled for 

spray simulation, implying that chemistry should be the driving factor for both simulation types. 

This could be caused by how spray combustion occurs. Temperature gradients caused by the 

difference in the initial fuel and ambient gas temperature subjugates the fuel to a minimum 

temperature of approximately 600 K for the studied cases (the fuel temperature is 373 K for these 

cases). The rate at which the fuel reaches the critical reaction temperature (i.e. when the fuel 

ignites) is dependent on how the quickly the fuel disperses and absorbs thermal energy. This 

implies that the process of ignition between 0-D and 3-D simulations are not a direct nor suitable 

comparison of mechanism validation. 

Flame lift-off length (LOL) was simulated to determine how the modified reaction rates affect 

the LOL. The modified reactions that significantly decrease the ignition delay time (C12H25O2 → 

C12OOH-T6, C12OOHO2 → C12KET-T6 +OH, and N-C12H26 + HO2 → C12H25 + H2O2), also 

decrease the LOL. The mechanism with the reaction CH3 + HO2 ↔ CH3O + OH showed a 

negligible impact on the LOL for all tested temperatures except 1100 K. At this initial gas 

temperature, the LOL increased. Similarly, the mechanism with the modified H + O2 ↔ O + OH 

reaction increases the lift-off length for all initial ambient gas temperatures despite decreasing the 

ignition delay. These results indicate that the lift-off length is more dependent to initial ignition 

reactions as shown through the following reactions: C12H25O2 → C12OOH-T6, C12OOHO2 → 

C12KET-T6 +OH, and N-C12H26 + HO2 → C12H25 + H2O2. In addition, these reactions that affect 

the initial ignition delay in the baseline mechanism are not fully developed. The reactions that 

greatly reduce the ignition delay (i.e. C12H25O2 → C12OOH-T6, C12OOHO2 → C12KET-T6 +OH, 

and N-C12H26 + HO2 → C12H25 + H2O2) reduce the lift-off length and make it more in-line with 

measured data. This implies one of the following: either the primary combustion reactions have 
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errors within them that impede their predictions of the lift-off length or there is a different sub-

model that impacts the lift-off length prediction to a degree large enough to reduce the LOL by 5 

mm. This requires further evaluation. 

The fuel liquid and vapor penetration lengths were simulated for each mechanism at all of the 

test conditions. All of the liquid penetration lengths reach the same approximate steady state value, 

as expected. However, mechanisms with a modified reaction rate that increased the reactivity of 

the fuel showed a decrease in n-dodecane (fuel) vapor penetration length, once the flame was fully 

developed.  This is especially prevalent for the modified C12H25O2 → C12OOH-T6, C12OOHO2 → 

C12KET-T6 +OH, and N-C12H26 + HO2 → C12H25 + H2O2 reactions, as the temporally-averaged 

steady-state fuel vapor penetration lengths are approximately 15, 17, and 18 mm, respectively. 

Juxtaposed, the baseline mechanism simulated an averaged vapor penetration length of 25 mm at 

the steady-state condition. The mechanism that did not have combustion occur (i.e. the mechanism 

with the modified C12H25O2 → C12H24 + HO2 reaction), showed a vapor penetration length that 

kept dispersing further into the combustion chamber. In short, reactions that increases the reactivity 

of the combustion (i.e. reactions that decreased the ignition delay) has shorter fuel vapor 

penetration lengths.  

As a conclusion, it is insufficient to only validate a chemical mechanism using ignition delay 

times. Errors in a reactions’ rate can drastically impact the ignition delay of turbulent spray 

combustion especially at higher gas temperatures as exemplified in this study. It may appear that 

a mechanism predicts ignition delay is within the experimental uncertainty when performing a 0-

D ignition delay study. However, if a critical reaction has a minute error (<10%) associated with 

it (as amplified with the C12H25O2 → C12H24 + HO2 reaction in this study), there can be critical 

errors (>100%) in the predictive ability of the mechanism when testing a 3-D combustion 
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simulation. Therefore, it is recommended that critical species (for n-dodecane, C12H25O2 and 

C12H24 based on this study) have their time histories validated as well to improve the combustion 

performance.  
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 This work investigates the uncertainties in reaction rates of an n-dodecane model on 

turbulent spray combustion simulations. Six major reactions were found to significantly impact 

the ignition delay of the mechanism in a 0-D batch reactor model. These reactions’ rates were 

independently modified and placed into individual mechanisms. These newly developed 

mechanisms were simulated in a 3-D turbulent spray simulation and a 0-D batch reactor at a 

pressure of 60 bar and temperatures from 900 to 1100 K. The combustion characteristics (e.g. 

ignition delays, flame lift-off length, liquid and vapor penetration) of the modified mechanisms 

were compared to those produced by the original mechanism. The impact of the reaction on the 

ignition delay timing was different between the 0-D and 3-D simulations, with an average 

difference of 30%. This indicates that kinetic mechanism validation through ignition delay timing 

alone is insufficient. 
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