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REGULAR ARTICLES 
Twenty Nonparametric Statistics And Their Large Sample Approximations 

 
Gail Fahoome 

 Educational Evaluation and Research 
 Wayne State University 

 
 
Nonparametric procedures are often more powerful than classical tests for real world data which are rarely 
normally distributed. However, there are difficulties in using these tests. Computational formulas are scattered 
throughout the literature, and there is a lack of availability of tables and critical values. The computational 
formulas for twenty commonly employed nonparametric tests that have large-sample approximations for the 
critical value are brought together. Because there is no generally agreed upon lower limit for the sample size, 
Monte Carlo methods were used to determine the smallest sample size that can be used with the respective 
large-sample approximation. The statistics reviewed include single-population tests, comparisons of two 
populations, comparisons of several populations, and tests of association. 
 
Key words: nonparametric statistics, Monte Carlo methods, sample size, large sample approximation 
 
 

Introduction 
 
Classical parametric tests, such as the F and t, 
were developed in the early part of the twentieth 
century. These statistics require the assumption of 
population normality. Bradley (1968) wrote, “To 
the layman unable to follow the derivation but 
ambitious enough to read the words, it sounded as 
if the mathematician had esoteric mathematical 
reasons for believing in at least quasi-universal 
quasi-normality” (p. 8). “Indeed, in some quarters 
the normal distribution seems to have been 
regarded as embodying metaphysical and awe-
inspiring properties suggestive of Divine 
Intervention” (p. 5). 

When Micceri (1989) investigated 440 
large-sample education and psychology data sets 
he concluded, “No distributions among those 
investigated passed all tests of normality, and very 
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few seem to be even reasonably close 
approximations to the Gaussian” (p. 161). This is 
of practical importance because even though the 
well known Student’s t test is preferable to 
nonparametric competitors when the normality 
assumption has been met, Blair and Higgins 
(1980) noted:  
 

Generally unrecognized, or at least not made 
apparent to the reader, is the fact that the t 
test’s claim to power superiority rests on 
certain optimal power properties that are 
obtained under normal theory. Thus, when the 
shape of the sampled population(s) is 
unspecified, there are no mathematical or 
statistical imperatives to ensure the power 
superiority of this statistic. (p. 311) 

 
Blair and Higgins (1980) demonstrated the 

power superiority of the nonparametric Wilcoxon 
Rank Sum test over the t test for a variety of 
nonnormal theoretical distributions. In a Monte 
Carlo study of Micceri’s real world data sets, 
Sawilowsky and Blair (1992) concluded that 
although the t test is generally robust with respect 
to Type I errors under conditions of equal sample 
size, fairly large samples, and two-tailed tests, it is 
not powerful for skewed distributions. Under those 
conditions, the Wilcoxon Rank Sum test can be 
three to four times more powerful. See Bridge and 
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Sawilowsky (1999) and Nanna and Sawilowsky 
(1998) for other examples. 

The prevalence of nonnormally distributed 
data sets in applied studies in education and 
related fields has its initial impact on parametric 
procedures with regard to Type I errors. Thus, the 
immediate advantage of nonparametric 
procedures, such as the Wilcoxon test, is that their 
Type I error properties are not dependent on the 
assumption of population normality.  

A difficulty in using nonparametric tests is 
the availability of computational formulas and 
tables of critical values. For example, Siegel and 
Castellan (1988) noted, “Valuable as these sources 
are, they have typically either been highly 
selective in the techniques presented or have not 
included the tables of significance” (p. xvi). This 
continues to be a problem as evidenced by a 
survey of 20 in-print general college statistics 
textbooks, including seven general textbooks, 
eight for the social and behavioral sciences, four 
for business, and one for engineering. Formulas 
were given for only eight nonparametric statistics, 
and tables of critical values were given for only 
the following six: (a) Kolmogorov-Smirnov test, 
(b) Sign test, (c) Wilcoxon Signed Rank test, (d) 
Wilcoxon (Mann-Whitney) test, (e) Spearman’s 
rank correlation coefficient, and (f) Kendall’s rank 
correlation coefficient. 

This situation is somewhat improved for 
nonparametric statistics textbooks. Eighteen 
nonparametric textbooks published since 1956 
were also reviewed. Table 1 contains the statistical 
content of the eighteen textbooks. The most 
comprehensive texts in terms of coverage were 
Neave and Worthington (1988), which is currently 
out of print, and Deshpande Gore, and 
Shanubhogue (1995). 

Many nonparametric tests have large 
sample approximations that can be used as an 
alternative to tabulated critical values. These 
approximations are useful substitutes if the sample 
size is sufficiently large, and hence, obviate the 
need for locating tables of critical values. 
However, there is no generally agreed upon 
definition of what constitutes a large sample size. 
Consider the Sign test and the Wilcoxon tests as 
examples. Regarding the Sign test, Hájek (1969) 
wrote, “The normal approximation is good for 

12≥N ” (p. 108). 
 

Table 1. Survey of 18 Nonparametric Books 
 
 

Statistic 
 

  Number of Books That 
Included Tables 

of Critical Values 
Single Population Tests  
Kolgomorov-Smirnov Test 11 
Sign Test 4 
Wilcoxon Signed Rank Test 14 
  
Comparison of Two Populations 
Kolmogorov-Smirnov2-sample Test  11 
Rosenbaum’s Test 1 
Wilcoxon (Mann-Whitney) 14 
Mood Test 1 
Savage Test 1 
Ansari-Bradley Test 1 
  
Comparison of Several Populations 
Kruskal-Wallis Test 10 
Friedman’s Test 9 
Terpstra-Jonckheere Test 5 
Page’s Test 4 
Match Test for Ordered Alternatives         1 
  
Tests of Association  
Spearman’s Rank Correlation Coefficient  12 

Kendall’s Rank Correlation Coefficient   10 

 
 

 Gibbons (1971) agreed, “Therefore, for 
moderate and large values of N (say at least 12) it 
is satisfactory to use the normal approximation to 
the binomial to determine the rejection region” (p. 
102). Sprent (1989) and Deshpande, Gore, and 
Shanubhogue (1995), however, recommended N 
greater than 20. Siegel and Castellan (1988) 
suggested N ≥ 35, but Neave and Worthington 
(1988) proposed N > 50. 

The literature regarding the Wilcoxon 
Rank Sum test is similarly disparate. Deshpande, 
Gore, and Shanubhogue (1995) stated that the 
combined sample size should be at least 20 to use 
a large sample approximation of the critical value. 
Conover (1971) and Sprent (1989) recommended 
that one or both samples must exceed 20. Gibbons 
(1971) placed the lower limit at twelve per sample. 
For the Wilcoxon Signed Rank test, Deshpande, 
Gore, and Shanubhogue (1995) said that the 
approximation can be used when N is greater than 
10. Gibbons (1971) recommended it when N is 
greater than 12, and Sprent (1989) required N to be 
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greater than 20. The general lack of agreement 
may indicate that these recommendations are 
based on personal experience, the sample sizes 
commonly accommodated in tables, the author’s 
definition of acceptable or large, or some other 
unstated criterion.  

There are two alternatives to tables and 
approximations. The first is to use exact 
permutation methods. There is software available 
that will generate exact p-values for small data sets 
and Monte Carlo estimates for larger problems. 
See Ludbrook and Dudley (1998) for a brief 
review of the capabilities of currently available 
software packages for permutation tests. However, 
these software solutions are expensive, have 
different limitations in coverage of procedures, 
and may require considerable computing time 
even with fast personal computers (see, e.g., 
Musial, 1999; Posch & Sawilowsky, 1997). In any 
case, a desirable feature of nonparametric statistics 
is that they are easy to compute without statistical 
software and computers, which makes their use in 
the classroom or work in the field attractive. 

A second alternative is the use of the rank 
transformation (RT) procedure developed by 
Conover andIman (1981). They proposed the use 
of this procedure as a bridge between parametric 
and nonparametric techniques. The RT is carried 
out as follows: rank the original scores, perform 
the classical test on the ranks, and refer to the 
standard table of critical values. In some cases, 
this procedure results in a well-known test. For 
example, conducting the t test on the ranks of 
original scores in a two independent samples 
layout is equivalent to the Wilcoxon Rank Sum 
test. (However, see the caution noted by 
Sawilowsky & Brown, 1991). In other cases, such 
as factorial analysis of variance (ANOVA) 
layouts, a new statistic emerges. 

The early exuberance with this procedure 
was related to its simplicity and promise of 
increased statistical power when data sets 
displayed nonnormality. Iman and Conover noted 
the success of the RT in the two independent 
samples case and the one-way ANOVA layout. 
Nanna (1997, 2001) showed that the RT is robust 
and powerful as an alternative to the independent 
samples multivariate Hotelling’s T2. 

However, Blair and Higgins (1985) 
demonstrated that the RT suffers power losses in 
the dependent samples t test layout as the 

correlation between the pretest and posttest 
increases. Bradstreet (1997) found the RT to 
perform poorly for the two samples Behrens-
Fisher problem. Sawilowsky (1985), Sawilowsky, 
Blair, and Higgins (1989), Blair, Sawilowsky, and 
Higgins (1987), and Kelley and Sawilowsky 
(1997) showed the RT has severely inflated Type I 
errors and a lack of power in testing interactions in 
factorial ANOVA layouts. Harwell and Serlin 
(1997) found the RT to have inflated Type I errors 
in the test of β = 0 in linear regression. In the 
context of analysis of covariance, Headrick and 
Sawilowsky (1999, 2000) found the RT’s Type I 
error rate inflates quicker than the general 
ANOVA case, and it demonstrated more severely 
depressed power properties. Recent results by 
Headrick (personal communications) show the RT 
to have poor control of Type I errors in the 
ordinary least squares multiple regression layout. 
Sawilowsky (1989) stated that the RT as a bridge 
has fallen down, and cannot be used to unify 
parametric and nonparametric methodology or as a 
method to avoid finding formulas and critical 
values for nonparametric tests. 

 
Purpose Of The Study 
 As noted above, the computational formulas 
for many nonparametric tests are scattered 
throughout the literature, and tables of critical 
values are scarcer. Large sample approximation 
formulas are also scattered and appear in different 
forms. Most important, the advice on how large a 
sample must be to use the approximations is 
conflicting. The purpose of this study is to 
ameliorate these five problems. 

Ascertaining the smallest sample size that 
can be used with a large sample approximation for 
the various statistics would enable researchers who 
do not have access to the necessary tables of 
critical values or statistical software to employ 
these tests. The first portion of this paper uses 
Monte Carlo methods to determine the smallest 
sample size that can be used with the large sample 
approximation while still preserving nominal 
alpha. The second portion of this paper provides a 
comprehensive review of computational formulas 
with worked examples for twenty nonparametric 
statistics. They were chosen because they are 
commonly employed and because large sample 
approximation formulas have been developed for 
them. 
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Methodology 
 

Each of the twenty statistics was tested with 
normal data and Micceri’s (1989; see also 
Sawilowsky, Blair, & Micceri, 1990) real world 
data sets. The real data sets represent smooth 
symmetric, extreme asymmetric, and multi-modal 
lumpy distributions. Monte Carlo methods were 
used in order to determine the smallest samples 
that can be used with large-sample 
approximations. 

A program was written in Fortran 90 
(Lahey, 1998) for each statistic. The program 
sampled with replacement from each of the four 
data sets for n = 2, 3, … N; (n1, n2) = (2, 2), (3,3), 
… (N1,N2), and so forth as the number of groups 
increased. The statistic was calculated and 
evaluated using the tabled values when available, 
and the approximation of the critical value or the 
transformed obtained value, as appropriate. The 
number of rejections was counted and the Type I 
error rate was computed. Nominal α was set at .05 
and .01. Bradley’s (1978) conservative estimates 
of .045 < Type I error rate < .055 and .009 < Type 
I error rate < .011 were used, respectively, as 
measures of robustness. The sample sizes were 
increased until the Type I error rates converged 
within these acceptable regions. 
 
Limitations 

In many cases there are different formulas 
for the large sample approximation of a statistic. 
Two criteria were used in choosing which formula 
to include: (1) consensus of authors, and (2) ease 
of use in computing and programming. All 
statistics were examined in the context of balanced 
layouts only. 

Some statistics have different large sample 
approximations based on the presence of ties 
among the data. Ties were corrected using average 
ranks for rank-based tests, obviating tie correction 
formulae. For nonrank-based tests, simple deletion 
of ties results in a failure to adjust for variance. (A 
well-known example is the necessity of using a 
winsorized standard deviation – or some other 
modification to the estimate of population variance 
– in constructing a confidence interval for the 
trimmed mean when tied scores are deleted.) 
Nevertheless, many authors (e. g., Gibbons, 1976) 
indicated that adjustment for ties makes little 
difference for rank- or nonrank-based tests unless 

there is an extreme number of ties. The issue of 
correcting for ties is discussed in the section 
below. 
 
Data Sets For Worked Examples In This Article 

The worked examples in this study use the 
five data sets in Table 3 (Appendix). Some 
statistics converged at relatively large sample 
sizes. In choosing the sample size for the worked 
example, a compromise was made based on the 
amount of computation required for large samples 
and an unrepresentatively small but convenient 
sample size for presentation in this article. 
Therefore, a sample size of n = 15 or N = 15, as 
appropriate, was selected, recognizing that some 
statistics’ large sample approximations do not 
converge within Bradley’s (1968) limits for this 
sample size. The data sets were randomly selected 
from Micceri’s (1989) multimodal lumpy data set 
(Table 4, Appendix). Because the samples came 
from the same population, the worked examples 
all conclude that the null hypothesis cannot be 
rejected. 
 
Statistics Examined 

The twenty statistics included in this 
article represent four layouts: (1) single population 
tests, (2) comparison of two populations, (3) 
comparison of several populations, and (4) tests of 
association. Single-populations tests included: (a) 
a goodness-of-fit test, (b) tests for location, and (c) 
an estimator of the median. Comparisons of two 
populations included: (a) tests for general 
differences, (b) two-sample location problems, and 
(c) two-sample scale problems. Comparisons of 
several populations included: (a) ordered 
alternative hypotheses, and (b) tests of 
homogeneity against omnibus alternatives. Tests 
of association focused on rank correlation 
coefficients. 

 
Results 

 
Table 2 shows the minimum sample sizes 
necessary to use the large sample approximation 
of the critical value or obtained statistic for the 
tests studied. The recommendations are based on 
results that converged when underlying 
assumptions are reasonably met. The minimum 
sample sizes are conservative, representing the 
largest minimum for each test. If the test has three 
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or more samples, the largest group minimum is 
chosen. Consequently the large-sample 
approximations will work in some instances for 
smaller sample sizes. This is the smallest size per 
sample when the test involves more than one 
sample. 
 
Table 2. Minimum Sample Size for Large-Sample 
Approximations. 
 

Test α= .05 α= .01 
Single Population Tests   
Kolmogorov-Smirnov  
Goodness-of-Fit Test 

 
25 ≤ n ≤ 40 

 
28 ≤ n ≤ 50 

Sign Test n > 150 n > 150 
Signed Rank Test 10 22 
Estimator of Median for  
a Continuous Distribution 

 
n > 150 

 
n > 150 

   
Comparison of Two Populations 
Kolmogorov-Smirnov Test n > 150 n > 150 
Rosenbaum’s Test 16 20 
Tukey’s Test  10 ≤ n ≤ 18 21 
Rank-Sum Test 15 29 
Hodges-Lehmann Estimator  15 20 
Siegel-Tukey Test 25 38 
Mood Test 5 23 
Savage Test 11 31 
Ansari-Bradley Test 16 29 
   
Comparison of Several Populations 
Kruskal-Wallis Test 11 22 
Friedman’s Test 13 23 
Terpstra-Jonckheere Test 4 8 
The Match Test (k > 3) 86 27 
Page’s Test k > 4 11 18 
   
Tests of Association   
Spearman’s Rho 12 40 
Kendall’s Tau 14 ≤ n ≤ 24 15 ≤ n ≤ 35 

 
Some notes and cautionary statements are 

in order with regard to the entries in Table 2. The 
parameters for the Monte Carlo study were limited 
to n (or N) = 1, 2, … 150. The Kolmogorov-
Smirnov goodness-of-fit test was conservative 
below the minimum value stated and liberal above 
the maximum value stated. Results for the Sign 
test indicated convergence for some distributions 
may occur close to N = 150. The results for the 
confidence interval for the Estimator of the 

Median suggest convergence may occur close to N 
= 150 only for normally distributed data. 
However, for the nonnormal data sets the Type I 
error rates were quite conservative (e.g., for α = 
.05 the Type I error rate was only 0.01146 and for 
α = .01 it was only 0.00291 for N = 150 and the 
extreme asymmetric data set). 

The Kolmogorov-Smirnov two samples 
test was erratic, with no indication convergence 
would be close to 150. Results for Tukey’s test 
were conservative for α = .05 when the cutoff for 
the p-value was .05, and fell within acceptable 
limits for some sample sizes when .055 was used 
as a cutoff. The Hodges-Lehmann estimator only 
converged for normal data. For nonnormal data the 
large sample approximation was extremely 
conservative with n = 10 (e.g., for the extreme 
asymmetric data set the Type I error rate was only 
0.0211 and 0.0028 for the .05 and .01 alpha levels, 
respectively) and increased in conservativeness 
(i.e., the Type I error rate converged to 0.0) as n 
increased. The Match test only converged for 
normally distributed data, and it was the only test 
where the sample size required for α = .01 was 
smaller than for α = .05. 

These results relate to the large sample 
approximation of the critical values associated 
with those tests. These procedures work quite well 
with small sample sizes when tabled critical values 
are used. The difficulty, as noted above, is that 
tabled critical values are generally not available, or 
the implementation of exact procedures is still by 
far too time-consuming or memory intensive to 
compute with statistical software. For example, 
Bergmann, Ludbrook, and Spooren (2000), noted 
“What should be regarded as a large sample is 
quite vague …,most investigators are accustomed 
to using an asymptotic approximation when group 
sizes exceed 10” (p. 73). If they are correct with 
their perception of common practices using as few 
as n = 11, the results in Table 2 demonstrate that 
the large sample approximation of the critical 
value prevents the statistic from converging with 
nominal alpha for seventeen of the twenty 
procedures for α = 0.05, and for nineteen of 
twenty procedures for α = 0.01. 

The vagueness of what constitutes a large 
sample for the purposes of using the 
approximation to the critical values vanishes in 
view of the results in Table 2. For example, with α 
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= 0.05, large for the Match test is greater than 85. 
This does not mean the test performs poorly and 
should be removed from the data analyst’s 
repertoire if one has a smaller sample size; rather, 
it means the researcher is advised to have at least 
86 per group before relying on the large sample 
approximation of the critical values.  

 
Statistics, Worked Examples, Large Scale 

Approximations 
 
Single Population Tests 

Goodness-of-fit statistics are single-
population tests of how well observed data fit 
expected probabilities or a theoretical probability 
density function. They are frequently used as a 
preliminary test of the distribution assumption of 
parametric tests. The Kolmogorov-Smirnov 
goodness-of-fit test was studied. 

Tests for location are used to make 
inferences about the location of a population. The 
measure of location is usually the median. If the 
median is not known but there is reason to believe 
that its value is M0, then the null hypothesis is 

00 : MMH = . The tests for location studied were 
the Sign test, Wilcoxon’s Signed Rank test, and 
the Estimator of the Median for a continuous 
distribution. 
 
Kolmogorov-Smirnov Goodness-of-Fit Test 

The Kolmogorov-Smirnov (K-S) statistic 
was devised by Kolmogorov in 1933 and Smirnov 
in 1939. It is a test of goodness-of-fit for 
continuous data, based on the maximum vertical 
deviation between the empirical distribution 
function, FN(x), and the hypothesized cumulative 
distribution function, F0(x). Small differences 
support the null hypothesis while large differences 
are evidence against the null hypothesis.  

The null hypothesis is H0: FN(x) = F0(x) 
for all x, and the alternative hypothesis is H1: FN(x) 
≠ F0(x) for at least some x where F0(x) is a 
completely specified continuous distribution. The 
empirical distribution function, FN(x), is a step 
function defined as: 

 

N
xxFN

≤
=

  valuessample ofnumber )(     (1) 

 
where N = sample size.    

Test statistic. The test statistic, DN, is the 
maximum vertical distance between the empirical 
distribution function and the cumulative 
distribution function.  

 
[ ] )()(max,)()(maxmax 010 iiNiiNN xFxFxFxFD −−= − (2)

       
Both vertical distances )()( 0 iiN xFxF −  
and )()( 01 iiN xFxF −− have to be calculated in 
order to find the maximum deviation. The overall 
maximum of the two calculated deviations is 
defined as Dn.  

For a one-tailed test against the 
alternatives H1: FN(x) > F0(x) or H1: FN(x) < F0(x) 
for at least some values of x, the test statistics are 
respectively: 

 
         [ ]  )()(max 0 xFxFD NN −=+                       (3) 
 
or 
 

  [ ]  )()(max 0 xFxFD Nn −=−               (4) 
 
The rejection rule is to reject H0 when 

α,NN DD ≥ where DN,α is the critical value for 
sample size N and level of significance α. 
 Large sample sizes. The null distribution of 

)4(or  4
22 −+

NN NDND is approximately 2χ with 2 
degrees of freedom. Thus, the large sample 
approximation is 
 

       
N

Dn

2
2,

2
1 αχ≈+                              (5) 

 
where 2

2,αχ  is the value for chi-square with 2 
degrees of freedom.  

Example. The K-S goodness-of-fit 
statistic was calculated for sample 1 (Table 3, 
Appendix), N = 15, against the cumulative 
frequency distribution of the multimodal lumpy 
data set. The maximum difference at step was 
0.07463 and the maximum difference before step 
was 0.142610. Thus, the value of Dn is 0.142610. 
For a two-tail test, with α = .05, the large sample 
approximation is  

1.3581/ 15 =1.3581/ 15 =0.35066.  



TWENTY NONPARAMETRIC LARGE SAMPLE APPROXIMATIONS 254

Because 0.142610 < 0.35066, the null hypothesis 
cannot be rejected 

. 
The Sign Test  

The Sign test is credited to Fisher as early 
as 1925. One of the first papers on the theory and 
application of the Sign test is attributed to Dixon 
and Mood in 1946 (Hollander & Wolfe, 1973). 
According to Neave and Worthington (1988), the 
logic of the Sign test is “almost certainly the oldest 
of all formal statistical tests as there is published 
evidence of its use long ago by J. Arbuthnott 
(1710)!” (p. 65). 

The Sign test is a test for a population 
median. It can also be used with matched data as a 
test for equality of medians, specifically when 
there is only dichotomous data. (Otherwise, the 
Wilcoxon Signed Rank is more powerful.) The test 
is based on the number of values above or below 
the hypothesized median. Gibbons (1971) referred 
to the Sign test as the nonparametric counterpart of 
the one-sample t test. The Sign test tests the null 
hypothesis H0: M = M0, where M is the sample 
median and M0 is the hypothesized population 
median, against the alternative hypothesis H1: M ≠ 
M0. One-tailed test alternative hypotheses are of 
the form H1: M < M0 and H1: M > M0. 

Procedure. Each xi is compared with M0. 
If 0Mxi > then a plus symbol ‘+’ is recorded. If 

0Mxi < then a minus symbol ‘–’ is recorded. In 
this way all data are reduced to ‘+’ and ‘–’ 
symbols.  

Test statistic. The test statistic is the 
number of ‘+’ symbols or the number of ‘–’ 
symbols. If the expectation under the alternative 
hypothesis is that there will be a preponderance of 
‘+’ symbols, the test statistic is the number of ‘–’ 
symbols. Similarly, if the expectation is a 
preponderance of ‘–’ symbols, the test statistic is 
the number of ‘+’ symbols. If the test is two-tailed, 
use the smaller of the two. Thus, depending on the 
context, 

        S = number of ‘+’ or ‘–’ symbols            (6) 
Large sample sizes. The large sample 

approximation is given by  

           

4

2*

N

NS
S

−
=                                 (7) 

where S is the test statistic and N is the sample 
size. S* is compared to the standard normal z 
scores for the appropriate α level. 

Example. The Sign test was calculated 
using sample 1 (Table 3, Appendix), N = 15. The 
population median is 18.0. The number of minus 
symbols is 7 and the number of plus symbols is 8. 
Therefore S = 7. The large sample approximation, 
S*, using formula (7) is -.258199. The null 
hypothesis cannot be rejected because -.258199 > -
1.95996. 
 
Wilcoxon’s Signed Rank Test 

The Signed Rank test was introduced by 
Wilcoxon in 1945. This statistic uses the ranks of 
the absolute differences between xi and M0 along 
with the sign of the difference. It uses the relative 
magnitudes of the data. This statistic can also be 
used to test for symmetry and to test for equality 
of location for paired replicates. The null 
hypothesis is H0: M = M0, which is tested against 
the alternative H1: M ≠ M0. The one-sided 
alternatives are H1: M < M0 and H1: M > M0. 

Procedure. Compute the differences, Di, 
by the formula  

 
        0MxD ii −= .            (8) 

 
Rank the absolute value of the differences in 
ascending order, keeping track of the individual 
signs. 

Test statistic. The test statistic is the sum 
of either the positive ranks or the negative ranks. If 
the alternative hypothesis suggests that the sum of 
the positive ranks should be larger, then  

 
  T– = the sum of negative ranks             (9) 
 
If the alternative hypothesis suggests that the sum 
of the negative ranks should be larger, then  
 
  T+ = the sum of positive ranks          (10) 
 
For a two-tailed test, T is the smaller of the two 
rank sums. The total sum of the ranks is 

2
)1( +NN , which gives the following relationship: 

 

     −+ −
+

= TNNT
2

)1( .                (11) 
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 Large sample sizes. The large sample 
approximation is given by 
 

   

24
)12)(1(

4
)1(

++

+
−

=
NNN

NNT
z              (12) 

 
where T is the test statistic. The resulting z is 
compared to the standard normal z for the 
appropriate alpha level. 

Example. The Signed Rank test was 
computed using the data from sample 1 (Table 3, 
Appendix), N = 15. The median of the population 
is 18.0. Tied differences were assigned midranks. 
The sum of the negative ranks was 38.5 and the 
sum of the positive ranks was 81.5. Therefore the 
Signed Rank statistic is 38.5. The large sample 

approximation is   22112.1
6068.17

5.21
310

5.21
−=

−
=

− .  

Because –1.22112 > –1.95996, the null hypothesis 
is not rejected. 
 
Estimator of the Median (Continuous Distribution) 
  The sample median is a point estimate of the 
population median. This procedure provides a 1-α 
confidence interval for the population median. It 
was designed for continuous data.  

Procedure. Let N be the size of the 
sample. Order the N observations in ascending 
order, )()2()1( Nxxx ≤≤≤ … . Let −∞=)0(x  and 

∞=+ )1( Nx . These N+2 values form N+1 intervals 

),( ),,(,  .  .  .  ),,( ),,( )1()()()1()2()1()1()0( +− NNNN xxxxxxxx . 
The ith interval is defined as ),( )()1( ii xx − with i = 1, 
2, . . . , N, N+1. The probability that the median is 
in any one interval can be computed from the 
binomial distribution. The confidence interval for 
the median requires that r be found such that the 
sum of the probabilities of the intervals in both the 
lower and upper ends give the best conservative 
approximation of α/2, according to the following: 

 

    ∑∑
−==









=








≈

N

rNj
N

r

j
N j

N
j
N

2
1

2
1

2 0

α .      (13) 

 
Thus, (x(r), x(r+1)) is the last interval in the lower 
end, making x(r+1) the lower limit of the confidence 

interval. By a similar process, x(N-r) is the upper 
limit of the confidence interval. 

Large sample sizes. Deshpande, Gore, and 
Shanubhogue (1995) stated “one may use the 
critical points of the standard normal distribution, 
to choose the value of r + 1 and n – r, in the 
following way”: r + 1 is the integer closest to 
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−

NzN
α             (14) 

 
where zα/2 is the upper α/2 critical value of the 
standard normal distribution. 
 
 Example. The data from sample 1 (Table 3, 
Appendix), N = 15, were used to compute the 
Estimator of the Median. The population median is 
18.0. For the given N and α = .05, the value of r is 
3. The value of r + 1 is 4, and n – r is 12. The 4th 
value is 13 and the 12th value is 33. Therefore the 
interval is (13, 33). The large sample 
approximation yields 7.5 – 1.95996(1.9365) = 7.5 
– 3.70 = 3.80. The closest integer is r + 1 = 4, so r 
= 3 and N – r = 12, resulting in the same interval, 
(13, 33). The interval contains the population 
median, 18.0. 
 
Two Sample Tests 

The two-sample layout consists of 
independent random samples drawn from two 
populations. This study examined two sample tests 
for general differences, two sample location tests, 
and two sample scale tests. 
 When differences between two samples are 
not expected to be predominantly differences in 
location or differences in scale, a test for general 
differences is appropriate. Generally differences in 
variability are related to differences in location. 
Two tests for differences were considered, the 
Kolmogorov-Smirnov test for general differences 
and Rosenbaum’s test.  

Two sample location problems involve 
tests for a difference in location between two 
samples when the populations are assumed to be 
similar in shape. The idea is that F1(x) = F2(x+θ) 
or F1(x) = F2(x-θ) where θ is the distance between 
the population medians. Tukey’s quick test, the 
Wilcoxon (Mann-Whitney) statistic, and the 
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Hodges-Lehmann estimator of the difference in 
location for two populations were considered. 

In two sample scale tests, the population 
distributions are usually assumed to have the same 
location with different spreads. However, Neave 
and Worthington (1988) cautioned that tests for 
difference in scale could be severely impaired if 
there is a difference in location as well. The 
following nonparametric tests for scale were 
studied: the Siegel-Tukey test, the Mood test, the 
Savage test for positive random variables, and the 
Ansari-Bradley test.  
 
Kolmogorov-Smirnov Test for General 
Differences 

The Kolmogorov-Smirnov test compares 
the cumulative distribution frequencies of the two 
samples to test for general differences between the 
populations. The sample cdf “is an approximation 
of the true cdf of the corresponding population – 
though, admittedly, a rather crude one if the 
sample size is small” (Neave & Worthington, 
1988, p. 149). This property was used in the 
goodness-of-fit test above. Large differences in the 
sample cdfs can indicate a difference in the 
population cdfs, which could be due to differences 
in location, spread, or more general differences in 
the distributions. The null hypothesis is 

)()(: 210 xFxFH = for all x. The alternative 
hypothesis is )()(: 211 xFxFH ≠ for some x. 
  Procedure. The combined observations are 
ordered from smallest to largest, keeping track of 
the sample membership. Above each score, write 
the cdf of sample 1, and below each score write 
the cdf of sample 2. Because the samples are of 
equal sizes, it is only necessary to use the 
numerator of the cdf. For example, the cdf(xi) = 

n
i

. Then, write i above xi for sample 1. Find the 

largest difference between the cdf for sample 1 
and the cdf for sample 2.  

Test statistic. The test statistic is D*. D* = 
n1n2D, and D* = n2D for equal sample sizes. The 
above procedure yields nD. Thus  

 
     D* = n(nD) .           (15) 
 
The greatest difference found by the procedure is 
multiplied by the sample size. 

 Large sample sizes.  The distribution is 
approximately 2χ  with 2 degrees of freedom as 
sample size increases, as it is for the goodness-of-
fit test. The large sample approximation for D is 
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= αχ            (16) 

 
where 2

2,αχ  is the value for chi-square with 2 
degrees of freedom for the appropriate alpha level, 
and n1 and n2 are the two sample sizes. The 
resulting D is used in formula (15).  
 Example. This example used the data from 
sample 1 and sample 5 (Table 3, Appendix), n1 = 
n2 = 15. The greatest difference (nD) between the 
cdfs of the two samples is nD = 3. Therefore D* = 
15(3) = 45. The large sample approximation is 

225
30)3581.1(152  = 225(1.3581)(.365148) = 

111.579301. Because 45 < 111.579301, the null 
hypothesis cannot be rejected. 
 
Rosenbaum’s Test 

Rosenbaum’s test, which was developed 
in 1965, is useful in situations where an increase in 
the measure of location implies an increase in 
variation. It is a quick and easy test based on the 
number of observations in one sample greater than 
the largest observation in the other sample. The 
null hypothesis is that both populations have the 
same location and spread against the alternative, 
that both populations differ in location and spread. 

Procedure. The largest observation in 
each sample is identified. If the largest overall 
observation is from sample 1, then count the 
number of observations from sample 1 greater 
than the largest observation from sample 2. If the 
largest overall observation is from sample 2, then 
count the number of observations from sample 2 
greater than the largest observation from sample 1. 

Test statistic. The test statistic is the 
number of extreme observations. R is the number 
of observations from sample 1 greater than the 
largest observation in sample 2, or the number of 
observations from sample 2 greater than the 
largest observation in sample 1. 
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Large sample sizes. As sample sizes 

increase, p
N
n

→1 and the probability that the 

number of extreme values equals h approaches ph. 
Example. Rosenbaum’s statistic was 

calculated using samples 1 and 5 (Table 3, 
Appendix), n1 = n2 = 15. The maximum value 
from sample 1 is 39, and from sample 2 it is 33. 
There are three values from sample 1 greater than 
33: 34, 36, and 39. Hence, R = 3. The large sample 
approximation is (.5)3 = 0.125. Because 0.125 > 
.05, the null hypothesis cannot be rejected. 
 
Tukey’s Quick Test 

Tukey published a quick and easy test for 
the two-sample location layout in 1959. It is easy 
to calculate and in most cases does not require the 
use of tables. The most common one-tailed critical 
values are 6 (α = .05) and 9 (α = .01). These 
critical values can be used for most sample sizes. 
The statistic is the sum of extreme runs in the 
ordered combined samples. When a difference in 
location exists, more observations from sample 1 
will be expected at one end and more observations 
from sample 2 will be expected at the other end. 
  Procedure.  The combined samples can be 
ordered, but it is only necessary to order the 
largest and smallest observations. If both the 
maximum and minimum values come from the 
same sample the test is finished, the value of Ty = 
0, and the null hypothesis is not rejected. 

For the one-tailed test, the run on the 
lower end should come from the sample expected 
to have the lower median, and the run on the upper 
end should come from the sample expected to 
have the larger median. For a two-tailed test, it is 
possible to proceed with the test as long as the 
maximum and minimum observations come from 
different samples.  

Test statistic. Ty is defined as follows for 
the alternative hypothesis, H1: M1 > M2. Ty is the 
number of observations from sample 2 less than 
the smallest observation of sample 1, plus the 
number of observations from sample 1 greater 
than the largest observation from sample 2. For the 
alternative H1: M2 > M1 the samples are reversed. 
For the two-tailed hypothesis H1: M1 ≠ M2, both 
possibilities are considered. 
 Critical values. As stated above, generally, 
the critical value for α = .05 is 6, and is 9 for α = 

.01. There are tables available. As long as the ratio 
of nx to ny is within 1 to 1.5, these critical values 
work well. There are corrections available when 
the ratio exceeds 1.5. For a two-tailed test the 
critical values are 7 (α = .05) and 10 (α = .01).  

Large sample sizes. The null distribution 
is based on the order of the elements of both 
samples at the extreme ends. It does not depend on 
the order of the elements in the middle. Neave and 
Worthington (1988, p. 125 ) gave the following 
formula:  
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)()(Prob      (17) 

 
for h ≥ 2. When the sample sizes are equal, p = q = 
.5. Then the probability of Ty ≥ h is )1(2 +− hh . For a 
two-tailed test the probability is doubled. 

Example. The Tukey test was calculated 
using the data in sample 1 and sample 5 (Table 3, 
Appendix), n1 = n2 = 15. The maximum value (39) 
is from sample 1 and the minimum (2) is from 
sample 5, so the test may proceed. The value of Ty 
= 1 + 3 = 4. For a two-tailed test with α = .05, the 
large sample approximation is 2(4)(2-5) = 0.25. 
Because 0.25 > .05, the null hypothesis cannot be 
rejected.  
 
Wilcoxon (Mann-Whitney) Test 
 In 1945, Wilcoxon introduced the Rank Sum 
test, and in 1947 Mann and Whitney presented a 
different version of the same test. The Wilcoxon 
statistic is easily converted to the Mann-Whitney 
U statistic. The hypotheses of the test are 

xxFxFH  allfor  )()(: 210 =  against the two-tailed 
alternative,  )()(: 210 xFxFH ≠ . The one-tailed 
alternative is )()(: 211 θ+= xFxFH . 

Procedure. For the Wilcoxon test, the 
combined samples are ordered, keeping track of 
sample membership. The ranks of the sample that 
is expected, under the alternative hypothesis, to 
have the smallest sum, are added. The Mann-
Whitney test is conducted as follows. Put all the 
observations in order, noting sample membership. 
Count how many of the observations of one 
sample exceed each observation in the first 
sample. The sum of these counts is the test 
statistic, U. 
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Test statistic. For the Wilcoxon test,  
 

      Sn = ∑
=

n

j
jR

1

           (18) 

 
where Rj are the ranks of sample n and Sn is the 
sum of the ranks of the sample expected to have 
the smaller sum.  

For the Mann-Whitney test, calculate the 
U statistic for the sample expected to have the 
smaller sum under the alternative hypothesis. 

   
Un2 = the sum of the observations in n1 

       exceeding each observation in n2.             (19) 
 

Un1 = the sum of the observations in n2  
       exceeding each observation in n1.             (20) 

 
There is a linear relation between Sn and Un. It is 
expressed as  
 

       )1(
2
1

1111
+−= nnSU nn           (21) 

 
and similarly, 
 

       )1(
2
1

2222
+−= nnSU nn           (22) 

 
where    
 
          

21 21 nn UnnU −=  .           (23) 

 
In a two-tailed test, use the smallest U statistic to 
test for significance. 

Large sample sizes. The large-sample 
approximation using the Wilcoxon statistic, Sn1 is: 
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The large-sample approximation with the U 
statistic is 
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In either case, reject H0 if z < -zα (or z < - zα/2 for a 
two-tailed test). 

Example. The Wilcoxon Rank Sum 
(Mann-Whitney) statistic was calculated with data 
from sample 1 and sample 5 (Table 3, Appendix), 
n1 = n2 = 15. The combined samples were ranked, 
using midranks in place of the ranks of tied 
observations. The rank sum for sample 1 was 
258.5 and for sample 5, 206.5. Hence S = 206.5. 
Calculating the U statistic, U= 206.5 – 0.5(15)(16) 
= 86.5. The large sample approximation for U is 

1091.24
5.25

12
)31(15

)15(5.5.5.86
2

2 −
=

−+ = –1.05769. Because 

–1.05769 > –1.95996, the null hypothesis cannot 
be rejected.  
 
Hodges-Lehmann Estimator of the Difference in 
Location  

It is often useful to estimate the difference 
in location between two populations. Suppose two 
populations are assumed to have similar shapes, 
but differ in locations. The objective is to develop 
a confidence interval that will have the probability 
of 1-α that the difference lies within the interval. 

Procedure. All the pairwise differences 
are computed, xi–yj . For sample sizes of n1 and n2, 
there are n1n2 differences. The differences are put 
in ascending order. The task is to find two integers 
l and u such that the probability that the difference 
lies between l and u is equal to 1–α. These limits 
are chosen symmetrically. The appropriate lower 
tail critical value is found for the Mann-Whitney U 
statistic. This value is the upper limit of the lower 
end of the differences. Therefore, l is the next 
consecutive integer. The upper limit of the 
confidence interval is the uth difference from the 
upper end, found by u = n1n2 - l+1. The interval (l, 
u) is the confidence interval for the difference in 
location for the two populations. 
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Large sample sizes. Approximate l and u 
by 
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“where the square brackets denote integer nearest 
to the quantity within, and zα/2 is the suitable upper 
critical point of the standard normal distribution” 
(Deshpande, et al., 1995, p. 45, formulas rewritten 
for consistency of notation with this article). 

Example. The Hodges-Lehmann estimate 
of the difference in location was computed using 
samples 1 and 5 (Table 3, Appendix), n1 = n2 = 15. 
All possible differences were computed and 
ranked. Using the large sample approximation 
formula (26), l = 112.5–1.95596(24.109)–0.5 = 
64.844. Thus, l = 65 and the lower bound is the 
65th difference, which is -4. The upper bound is 
the 65th difference from the upper end, or the 225 
–65+1=161st value, 14. The confidence interval is 
(-4, 14). 
 
Siegel-Tukey Test 
 The Siegel-Tukey test was developed in 
1960. It is similar in procedure to the Wilcoxon 
Rank Sum test for difference in location. It is 
based on the logic that if two samples come from 
populations with the same median, the one with 
the greater variability will have more extreme 
scores. An advantage of the Siegel-Tukey statistic 
is that it uses the Wilcoxon table of critical values 
or can be transformed into a U statistic for use 
with the Mann-Whitney U table of critical values.  

The hypotheses for a two-tailed test are 
H0: There is no difference in spread between the 
two populations, which is tested against the 
alternative H1: There is some difference in spread 
between the two populations. 

Procedure. The two combined samples are 
ordered, keeping track of sample membership. The 
ranking proceeds as follows: the lowest 
observation is ranked 1, the highest is ranked 2, 
and the next highest 3. Then the second lowest is 

ranked 4 and the subsequent observation ranked 5. 
The ranking continues to alternate from lowest to 
highest, ranking two scores at each end. If there is 
an odd number of scores, the middle score is 
discarded and the sample size reduced 
accordingly. Below is an illustration of the ranking 
procedure: 

 
1  4  5  8  9 … N … 7  6  3  2 

where N = n1 + n2. 
 
 Test statistic. The sum of ranks is calculated 
for one sample. The rank sum can be used with a 
table of critical values or it can be transformed 
into a U statistic by one of the following formulas: 
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or  
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Large sample sizes. The large-sample 

approximations are the same for the Siegel-Tukey 
test as for the Wilcoxon Rank Sum or the Mann-
Whitney U statistic, formulas (24) and (25). 

Example. The Siegel-Tukey statistic was 
calculated using sample 1 and sample 5 (Table 3, 
Appendix), n1= n2 = 15. The samples were 
combined and ranked according to the method 
described. Then, tied ranks were averaged. The 
sum of ranks was 220.5 for sample 1, and 244.5 
for sample 5. The U statistic is 220.5 – .5(15)(16) 
= 100.5. The large sample approximation is  

z = 
109127.24

5.11

12
)31(15

)15(5.5.5.100
2

2 −
=

−+ = –0.476998. 

Because –0.476998> –1.95996, the null hypothesis 
cannot be rejected. 
 
The Mood Test 

In 1954, the Mood test was developed 
based on the sum of squared deviations of one 
sample’s ranks from the average combined ranks. 
The null hypothesis is that there is no difference in 
spread against the alternative hypothesis that there 
is some difference.  
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Procedure. Let sample 1 be 121 ,,, nxxx …  
and let sample 2 be 221 ,,, nyyy … . Arrange the 
combined samples in ascending order and rank the 
observations from 1 to n1+ n2. Let Ri be the rank of 
xi. Let N = n + n2. If N is odd, the middle rank is 
ignored to preserve symmetry. 

Test statistic. The test statistic is 
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Large sample sizes. The large sample 

approximation is 
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where N = n1 + n2 and M is the test statistic. 

Example. The Mood statistic was 
calculated using sample 1 and sample 5 (Table 3, 
Appendix), n1 = n2 = 15. The combined samples 
are ranked, with midranks assigned to the ranks of 
tied observations. The mean of the ranks is 15.5, 
and the sum of squared deviations of the ranks 
from the mean for sample 1 was calculated, 
yielding M=1257. The large sample approximation 

is 
333.186
25.133

34720
75.11231257

=
− = 0.71512. Because 

0.71512 < 1.95596, the null hypothesis cannot be 
rejected. 
 
The Savage Test for Positive Random Variables 

Unlike the Siegel-Tukey test and the 
Mood test, the Savage test does not assume that 
location remains the same. It is assumed that 
differences in scale cause a difference in location. 
The samples are assumed to be drawn from 
continuous distributions. 

The null hypothesis is that there is no 
difference in spread, which is tested against the 
two-tailed alternative that there is a difference in 
variability. 

Procedure. Let sample 1 be 121 ,,, nxxx …  
and let sample 2 be 221 ,,, nyyy … . The combined 
samples are ordered, keeping track of sample 

membership. Let Ri be the rank for xi. The test 
statistic is computed for either sample. 

Test statistic. The test statistic is  
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Large sample sizes. For large sample sizes 

the following normal approximation may be used. 
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S* is compared to the critical z value from the 
standard normal distribution. 

Example. The Savage statistic was 
calculated using samples 1 and 5 (Table 3, 
Appendix), n1 = n2 = 15. Using sample 1, S = 
18.3114. The large sample approximation is 

59334.2
114.3

)86683(.7586.7
153114.18

=
− = 1.27689. Because 

1.27689 < 1.95596, the null hypothesis cannot be 
rejected. 
 
Ansari-Bradley Test 

This is a rank test for spread when the 
population medians are the same. The null 
hypothesis is that the two populations have the 
same spread, which is tested against the alternative 
that the variability of the two populations differs. 

Procedure. Order the combined samples, 
keeping track of sample membership. Rank the 
smallest and largest observation 1. Rank the 
second lowest and second highest 2. If the 
combined sample size, N, is odd, the middle score 

will be ranked 
2

1+N and if N is even the middle 
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two ranks will be 
2
N . The pattern will be either 1, 

2, 3, . . . , 
2

1+N , . . . , 3, 2, 1 (N odd), or 1, 2, 3, . . 

., 
2
N , 

2
N , . . . , 3, 2, 1 (N even).  

Test statistic. The test statistic, W, is the 
sum of the ranks of sample 1.  

 

    ∑
=

=
1

1

n

i
iRW        (35) 

 
where Ri is the rank of the ith observation of a 
sample. 

Large sample sizes. There are two 
formulas. If N is even, use 
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and if N is odd, use 
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Reject the null hypothesis if W*≥  zα/2. 

Example. The Ansari-Bradley statistic was 
calculated using samples 1 and 5 (Table 3, 
Appendix), n1 = n2 = 15. The combined samples 
were ranked using the method described, and the 
ranks of tied observations were assigned average 
ranks. The two-tailed statistic, W, is 126.5, the 
rank sum of sample 5. The large sample 

approximation is 
034.12
5.6

8276.144
1205.126

=
−  = 0.54. 

Because 0.54 < 1.95596, the null hypothesis 
cannot be rejected. 
 
Comparisons Of Several Populations  

This section considered tests against an 
omnibus alternative and tests involving an ordered 
hypothesis. The omnibus tests were the Kruskal-
Wallis test and Friedman’s test. The tests for 

ordered alternatives are the Terpstra-Jonckheere 
test, Page’s test, and the Match test. 

The Kruskal-Wallis statistic is a test for 
independent samples. It is analogous to the one-
way analysis of variance. Friedman’s test is an 
omnibus test for k related samples, and is 
analogous to a two-way analysis of variance.  

Comparisons of several populations with 
ordered alternative hypotheses are extensions of a 
one-sided test. When an omnibus alternative states 
only that there is some difference between the 
populations, an ordered alternative specifies the 
order of differences. Three tests for an ordered 
alternative were included: the Terpstra-Jonckheere 
Test, Page’s Test, and the Match Test. 
 
Kruskal-Wallis Test 

The Kruskal-Wallis test was derived from 
the F test in 1952. It is an extension of the 
Wilcoxon (Mann–Whitney) test. The null 
hypothesis is that the k populations have the same 
median. The alternative hypothesis is that at least 
one sample is from a distribution with a different 
median.  

Procedure. Rank all the observations in 
the combined samples, keeping track of the sample 
membership. Compute the rank sums of each 
sample. Let Ri equal the sum of the ranks of the ith 
sample of sample size ni. The logic of the test is 
that the ranks should be randomly distributed 
among the k samples.  

Test statistic. The formula is  
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where N is the total sample size, ni is the size of 
the ith group, k is the number of groups, and Ri is 
the rank-sum of the ith group. Reject H0 when H 
≥  critical value. 

Large sample sizes. For large sample 
sizes, the null distribution is approximated by the 

2χ  distribution with k – 1 degrees of freedom. 
Thus, the rejection rule is to reject H0 if 2

1, −≥ kH αχ  
where 2

1, −kαχ  is the value of 2χ at nominal α with 
k – 1 degrees of freedom.  

Example. The Kruskal-Wallis statistic was 
calculated using samples 1–5 (Table 3, Appendix), 
n1 = n2 = n3 = n4 = n5 = 15. The combined samples 



TWENTY NONPARAMETRIC LARGE SAMPLE APPROXIMATIONS 262

were ranked, and tied ranks were assigned 
midranks. The rank sums were: R1 = 638, R2 = 
595, R3 = 441.5, R4 = 656.5, and R5 = 519. The 
sum of Ri

2 = 1,656,344.5, i = 1, 2, 3, 4, 5. 
 

47.422897.422,110( 00211.0
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Thus, H = 4.47. The large sample approximation 
with 5 – 1 = 4 degrees of freedom at α = .05 is 2χ  
= 9.488. Because 4.47 < 9.488, the null hypothesis 
cannot be rejected. 
 
Friedman’s Test 

The Friedman test was developed as a test 
for k related samples in 1937. The null hypothesis 
is that the samples come from the same 
population. The alternative hypothesis is that at 
least one of the samples comes from a different 
population. Under the truth of the null hypothesis, 
this test only requires exchangeability (or, if 
variances differ, compound symmetry) and the 
ability to rank the data. The data are arranged in k 
columns and n rows, where each row contains k 
related observations. 

Procedure. Rank the observations for each 
row from 1 to k. For each of the k columns, the 
ranks are added and averaged, and the mean is 
designated jR . The overall mean of the ranks is 

)1(
2
1

+= kR . The sum of the squares of the 

deviations of mean of the ranks of the columns 
from the overall mean rank is computed. The test 
statistic is a multiple of this sum. 

Test statistic. The test statistic for 
Friedman’s test is M, which is a multiple of S, as 
follows: 
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where n is the number of rows, and k is the 
number of columns. An alternate formula that does 
not use S is as follows. 
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where n is the number of rows, k is the number of 
columns, and Rj is the rank sum for the jth column, 
j = 1, 2, 3, . . . , k. 

Large sample sizes. For large sample 
sizes, the critical values can be approximated by 

2χ with k – 1 degrees of freedom. 
Example. Friedman’s statistic was 

calculated with samples 1 – 5 (Table 3, Appendix), 
n1 = n2 = n3 = n4 = n5 = 15. The rows were ranked, 
with the ranks of tied observations replaced with 
midranks. The column sums are: R1 = 48.5, R2 = 
47, R3 = 33, R4 = 52.5, and R5 = 44. The sum of 
the squared rank sums is 10,342.5. 

M= 6153)5.342,10(
6515

12
⋅⋅−

⋅⋅
=0.0267(10,342.5)

–270 = 5.8. The large sample approximation is 2χ  
with 5 – 1 = 4 degrees of freedom and α = .05, 
which is 9.488. Because 5.8 < 9.488, the null 
hypothesis cannot be rejected. 
 
Terpstra-Jonckheere Test 

This is a test for more than two 
independent samples. It was first developed by 
Terpstra in 1952 and later independently 
developed by Jonckheere in 1954. The null 
hypothesis is that the medians of the samples are 
equal, which is tested against the alternative that 
the medians are either decreasing or increasing. 
This test is based on the Mann-Whitney U 
statistic, where U is calculated for each pair of 
samples and the U statistics are added. 

Suppose the null hypothesis is H0: F1(x) ≥ 
F2(x) ≥ F3(x) ≥ … ≥ Fk(x) and the alternative 
hypothesis is H0: F1(x) < F2(x) < F3(x) < … < Fk(x) 
for i = 1, 2, . . . k. The U statistic is calculated for 

each of the 
2

)1( −kk  pairs, which are ordered so 

that the smallest U is calculated.  
Test statistic. The test statistic is the sum 

of the U statistics.  
1,22,31,32,1, UUUUUW kk +++++= …      (42) 

where Ui,j is the number of pairs when the 
observation from sample j is less than the 
observation from sample i. 
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Large sample sizes. The null distribution 
of W approaches normality as the sample size 
increases. The mean of the distribution is  

 

   
4

)( 22 ∑−= inN
µ              (43) 

 
and the standard deviation is  
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The critical value for large samples is given by 
 

2
1
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where z is the standard normal value, and 
2
1  is a 

continuity correction.  
Example. The Terpstra-Jonckheere 

statistic was calculated with samples 1 – 5 (Table 
3, Appendix), n1 = n2 = n3 = n4 = n5 = 15. This was 
done as a one-tailed test with α = .05. The U 
statistics for each sample were calculated. U5,1 = 
135, U5,2 = 124, U5,3 = 91, U5,4 = 136, U4,1 = 103, 
U4,2 = 97, U4,3 = 71, U3,1 = 145, U3,2 = 142, and 
U2,1 = 121, for a total W = 1,165. The large sample 
approximation was calculated with µ = 1125 and σ 
= 106.94625. The approximation is 1125 – 
1.6449(106.9463) - .5 = 948.584. Because 1165 > 
948.584 the null hypothesis cannot be rejected. 
 
Page’s Test 

Page’s test for an ordered hypothesis for k 
> 2 related samples was developed in 1963. It 
takes the form of a randomized block design with 
k columns and n rows. The null hypothesis is 

kMMMH === …210 : and the alternative 
hypothesis is kMMMH <<< …211 :  for i = 1, 2, 
. . . k. For this test, the alternative must be of this 
form. The samples need to be reordered if 
necessary. 

Procedure. The data are ranked from 1 to 
k for each row, creating a table of the ranks. The 
ranks of each of the k columns are totaled. If the 
null hypothesis is true, the ranks should be evenly 
distributed over the columns, whereas if the 

alternative is true, the ranks sums should increase 
with the column index. 

Test statistic. Each column rank-sum is 
multiplied by the column index. The test statistic 
is 
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where i is the column index, i = 1, 2, 3, . . . , k, and 
Ri is the rank sum for the ith column.  
 
 

Large sample sizes. The mean of L is  
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and the standard deviation is 
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For a given α, the approximate critical region is  
 

    
2
1
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Example. Page’s statistic was calculated 

with samples 1 – 5 (Table 3, Appendix), n1 = n2 = 
n3 = n4 = n5 = 15. This was done as a one-tailed 
test with α = .05. The rows are ranked with 
midranks assigned to tied ranks. The column sums 
are: R1 = 48.5, R2 = 47, R3 = 33, R4 = 52.5, and R5 
= 44. The statistic, L, is the sum of iRi

2 = 671.5, 
where i = 1, 2, 3, 4, 5. The large sample 
approximation was calculated with µ = 675 and σ 
= 19.3649. The approximation is 675 + 
1.64485(19.3649) + .5 = 707.352. Because 671.5 < 
707.352, the null hypothesis cannot be rejected. 
 
The Match Test for Ordered Alternatives 

The Match test is a test for k > 2 related 
samples with an ordered alternative hypothesis. 
The Match test was developed by Neave and 
Worthington (1988). It is very similar in concept 
to Page’s test, but instead of using rank-sums, it 
uses the number of matches of the ranks with the 
expected ranks plus half the near matches. The 
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null hypothesis is H0: M1= M2= … = Mk and the 
alternative hypothesis is H0: M1< M2< …< Mk for i 
= 1, 2, . . . k. 

Procedure. A table of ranks is compiled 
with the observations in each row ranked from 1 to 
k. Tied observations are assigned average ranks. 
Each rank, ri, is compared with the expected rank, 
i, the column index. If the rank equals the column 
index, it is a match. Count the number of matches. 
Every non-match such that 0.5 ≤ |ri - i | ≤ 1.5 is 
counted as a near match.  

Test statistic. The test statistic is 
 

matches)near  ofnumber (
2
1

12 += LL       (50) 

 
where L1 is the number of matches. 

Large sample sizes. The null distribution 
approaches a normal distribution for large sample 
size. The mean and standard deviation for L2 are as 
follows: 
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For a given level of significance α the critical 
value approximation is  
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where z is the upper-tail critical value from the 

standard normal distribution and 
2
1 is a continuity 

correction. 
Example. The Match statistic was 

calculated with samples 1 – 5 (Table 3, Appendix), 
n1 = n2 = n3 = n4 = n5 = 15. This was done as a 
one-tailed test with α = .05. The rows are ranked, 
with midranks assigned for tied observations. The 
number of matches for the five columns are 3, 3, 
2, 2, and 1, for L1 = 11. The number of near 
matches were 1, 6, 8, 8, and 4, for L2 = 27. The 

statistic, L = 11 + .5(27) = 24.5. For the large 
sample approximation, µ = 27 and σ = 3.68103. 
The approximation is 27 + 1.6449(3.68103) + .5 = 
33.5549. Because 24.5 < 33.5549, the null 
hypothesis cannot be rejected. 
 
Rank Correlation Tests 

The rank correlation is a measure of the 
association of a pair of variables. Spearman’s rank 
correlation coefficient (rho) and Kendall’s rank 
correlation coefficient (tau) were studied. 
Spearman’s Rank Correlation Coefficient 

Spearman’s rank correlation (rho) was 
published in 1904. Let X and Y be the two 
variables of interests. Each observed pair is 
denoted (xi, yi). The paired ranks are denoted (ri, 
si), where ri is the rank of xi and si is the rank of yi. 
The null hypothesis for a two-tailed test is 

0:0 =ρH , which is tested against the alternative 
0:1 ≠ρH . The alternative hypotheses for a one-

tailed test are 0:1 >ρH  or 0:1 <ρH .  
Procedure. Rank both X and Y scores 

while keeping track of the original pairs. Form the 
rank pairs (ri, si ) which correspond to the original 
pair, (xi, yi). Calculate the sum of the squared 
differences between ri and si. 

Test statistic. If there are no ties, the 
formula is  
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where 
  
    2)( ii srT −=∑ .      (55) 

 
Large sample sizes. For large n the 

distribution of ρ  is approximately normal. The 

critical values can be found by 1−= nz ρ . The 
rejection rule for a two-tailed test is to reject H0 if 
z > zα/2 or z < - zα/2 where zα/2 is the critical value 
for the given level of significance. 

Example. Spearman’s rho was calculated 
using sample 1 and sample 5 (Table 3, Appendix), 
n = 15. The sum of the squared rank differences 
for the two samples is T = 839. Rho is 

3360
50341

)224(15
)839(61 −=− =1–1.498 = –0.498. So z = 
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–0.498 14 = –1.864. Because –1.864 > –1.956, 
the null hypothesis cannot be rejected. 
 
Kendall’s Rank Correlation Coefficient 

Kendall’s rank correlation coefficient (tau) is 
similar to Spearman’s rho. The underlying concept 
is the tendency for concordance, which means that 
if ji xx > then ji yy > . Concordance implies that 
the differences xi – xj and yi - yj have the same 
sign, either “+” or “–”. Discordant pairs have 
opposite signs, that is, ji xx > but ji yy < , or the 
opposite, ji xx <  but ji yy > .  

Procedure. Arrange the pairs in ascending 
order of X. Count the number of yi smaller than y1. 
This is the number of disconcordant pairs (ND) for 
x1. Repeat the process for each xi, counting the 
number of yj < yi , where j = i + 1, i + 2, i + 3, . . . , 
n. 

Test statistic. Because the total number of 

pairs is )1(
2
1

−nn , Nc = )1(
2
1

−nn – ND. The tau 

statistic (τ ) is defined as  
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This formula can be simplified by substituting Nc 

= )1(
2
1

−nn – ND into the formula so that 
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Large sample sizes. For large sample 

sizes, the formula is  
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where z is compared to the z score from the 
standard normal distribution for the appropriate 
alpha level. 

Example. Kendall’s tau was calculated 
using sample 1 and sample 5 (Table 3, Appendix), 
n = 15. The number of discordant pairs for each 
pair, (x1, x5), were 12, 8, 8, 5, 9, 5, 6, 3, 5, 3, 0, 3, 

0, 1, and 0. The total number of discordant pairs, 

ND is 68. Tau is 
210
2721

1415
6841 −=
⋅
⋅

− = –0.295. 

Thus z =
366.8

835.12
)35(2

)14)(15()295.(3 −
=

− = –1.534. 

Because –1.534 > –1.95596, the null hypothesis 
cannot be rejected. 
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Appendix 
 
Table 3. Samples Randomly Selected from 
Multimodal Lumpy Data Set (Micceri, 1989) 
 
Sample 

1 
Sample 

2 
Sample 

3 
Sample 

4 
Sample 

5 
20 11 9 34 10 
33 34 14 10 2 
4 23 33 38 32 

34 37 5 41 4 
13 11 8 4 33 
6 24 14 26 19 

29 5 20 10 11 
17 9 18 21 21 
39 11 8 13 9 
26 33 22 15 31 
13 32 11 35 12 
9 18 33 43 20 

33 27 20 13 33 
16 21 7 20 15 
36 8 7 13 15 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table 4. Multimodal Lumpy Set (Micceri, 1989). 
 

Score cum freq cdf score cum freq cdf 

0 5 0.01071 22 269 0.57602
1 13 0.02784 23 279 0.59743
2 21 0.04497 24 282 0.60385
3 24 0.05139 25 287 0.61456
4 32 0.06852 26 297 0.63597
5 38 0.08137 27 306 0.65525
6 41 0.08779 28 309 0.66167
7 50 0.10707 29 319 0.68308
8 62 0.13276 30 325 0.69593
9 80 0.17131 31 336 0.71949

10 91 0.19486 32 351 0.75161
11 114 0.24411 33 364 0.77944
12 136 0.29122 34 379 0.81156
13 160 0.34261 35 389 0.83298
14 180 0.38544 36 401 0.85867
15 195 0.41756 37 418 0.89507
16 213 0.45610 38 428 0.91649
17 225 0.48180 39 434 0.92934
18 234 0.50107 40 445 0.95289
19 244 0.52248 41 454 0.97216
20 254 0.54390 42 460 0.98501
21 261 0.55889 43 467 1.00000
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