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Chapter I- Research objective 

The primary objective of the undertaken work is to study the effect of external 

parameters such as the substrate nature, solute concentration, over-potential on the electro 

crystallization of charge transfer complex organic nanorod of TTF (tetrathiafulvalene) and 

TCNQ(7,7,8,8,-tetracyanoquinodimethane) on a substrate1. The basis of this work is the 

analogy which assumes that control of these parameters governs the final morphology of the 

electro crystallized nanorods which in turn is necessary regarding their integration as 

nanomaterials and nanodevices for patterned circuitry. Moreover, we have prescribed an 

additional analogy that the change in solute concentration and applied overpotential have a 

net effect in rendering the electro crystallization process as preferably thermodynamically or 

kinetically driven. The proposed research objective sought to be achieved by the justification 

of the obtained experimental evidences with a theoretical model. 

On the theoretical front the process is considered in line with a Classical Density 

Functional Theory-CDFT model which initializes the thermodynamic state of the system  in 

terms of Helmholtz free energy functional of one particle density2–4. 

We did perform initial analysis of the experimental results which paved our way towards 

Phase field crystal model built up on the very concepts of CDFT. The derivation of PFC model 

comes through after approximation to the model of Classical density functional theory. We 

have performed an in-depth review of the work where PFC model has been applied 

extensively to study crystallization and thus have resort to the model for our theoretical study. 
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Chapter II-Introduction and Background research 

II-I Classical Density Functional Theory 

The CDFT model is built up on the concepts of Classical thermodynamics and 

Statistical mechanics. In mathematical terms the model consider the system in terms of 

Helmholtz free energy functional of one particle density. The Helmholtz free energy 

functional is represented as2,5:  

                                                                𝐹[𝜌] = 𝐹𝑖𝑑𝑙[𝜌] + 𝐹𝑒𝑥𝑐[𝜌]                        (1) 

, where 𝐹𝑖𝑑𝑙[𝜌] represents free energy as that of an ideal gas given by: 

                                 𝐹𝑖𝑑𝑙 = 𝑘𝑇 ∫ 𝑑𝑟𝜌(𝑟)[𝑙𝑛Ʌ3𝜌(𝑟) − 1]                       (2) 

and  Ʌ=
ℎ

√2𝜋𝑚𝑘𝑇
is the de Broglie wavelength, m is the mass of particles, h is the Plank’s 

constant, k is the Boltzmann constant and T is the temperature 

Whereas, the one particle density is denoted as an ensemble average2 

𝜌(𝑟) = 〈∑ 𝛿(𝑟 − 𝑟𝑖)〉                      (3) 

, where ri is the position of a particle/atom in a system 

Finally, the second term in the Helmholtz free energy equation accounts for the 

interaction between the particle in the system. There is no exact expression for 𝐹𝑒𝑥𝑐[𝜌] and 

because of which one must resort to various approximate approaches for its evaluation. One 

of such approximation involves the expansion of the excess Helmholtz free energy 

functional Fexc (ρ) in a Taylor series around the density of reference fluid till the second 

order6. One of the other known approximation in this direction is the fundamental measure 

theory or the weighted density approximation given by Rosenfield proposed specifically for 
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a system of hard spheres3.The theory suggest the excess free energy functional can be taken 

as a combination of weighted densities, which can be written as3: 

𝐹[(𝜌𝑖)] = ∫ 𝑑𝑟𝛷{𝑛𝑣(𝑟)}                     (4) 

, where  𝛷  is the excess free energy density as a function of  𝑛𝑣  , the weighted 

density. The weighted density has scalar and vector component which depends upon m 

number of weight scaling factor (wi) used. They are written as3: 

𝑛𝑣(𝑟) = ∑ ∫ 𝑑𝑟′𝜌𝑖(𝑟′)𝑤(𝑟 − 𝑟′)𝑚
𝑖=1 = ∑ (𝜌𝑖

𝑚
𝑖=1 ∗ 𝑤𝑣

𝑖)                             (5) 

, where ρi denotes the density distribution of species i and 𝑤𝑣
𝑖  denotes the weight 

functions having the scalar and vector components. Another approach that leads to the 

calculation of the excess free energy functional is the Mean field approach where the 

interaction are composed of soft or ultra-soft interaction 7 like Lennard Jones .In this case the 

excess free energy functional is written as5: 

𝐹𝑒𝑥𝑐 =
1

2
∬ 𝑑𝑟𝑑𝑟′𝜌(𝑟)𝜌(𝑟′)𝜑(|𝑟 − 𝑟′|)                     (6) 

All thermodynamics state of the system is related to the grand canonical potential 

which is related to the Helmholtz free energy2: 

𝛺(𝑟) = 𝐹(𝜌) − 𝜇 ∫ 𝜌(𝑟)𝑑𝑟                                     (7) 

, where μ is the imposed chemical potential. 

Thus, in a CDFT model the equilibrium criteria is based upon finding out that one 

particle density configuration ρ0(r) which minimizes the grand canonical potential. In 

Mathematical terms the following equation reflects the minimization criteria2: 

        
𝛿𝛺[𝜌]

𝛿𝜌
= 0, 𝑜𝑟  

𝛿𝐹[𝜌]

𝛿𝜌
− 𝜇 = 0          (8) 
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In the next section we will introduce an extension of Density Functional theory to time 

domain known as the Dynamical Density Functional Theory(DDFT model).In the DDFT 

model the time evolution of the ensemble average of  particle position inside a system is given 

by an integro-differential equation in terms of the equilibrium Helmholtz free energy 

functional( or the grand canonical function).The time evolution of one particle density can be 

understood in terms of relaxation dynamics between the particle and the surrounding fluid as 

the system moves towards an equilibrium state.  

II-2 Dynamical Density Functional theory (DDFT) 

The need to study the time evolution of one particle density ρ(r, t) in a non-

equilibrium  fluid lead to the development of Dynamical Density Functional theory 8derived 

from the fundamentals of CDFT. To derive the DDFT model one needs to look at the 

Langevian equation which considers the motion of N particles under the influence of internal 

and external force. The force between the particles is caused by the net acting potential given 

by5: 

𝑈 = 𝑈𝑒𝑥𝑡 + 𝑈𝑖𝑛𝑡               (9) 

 , where 𝑈𝑒𝑥𝑡(𝑟1, 𝑟2 … 𝑟𝑁) = ∑ 𝑈1(𝑟𝑖 , 𝑡) and 𝑈𝑖𝑛𝑡 = ∑ 𝑈2(𝑟𝑖 − 𝑟𝑗) 

 The expression of N particle density is given by Smoluchowsk equation in terms of 

N particle probability density distribution9  

                       
𝑑𝑃(𝑟1,𝑟2…𝑟𝑁)

𝑑𝑡
= 𝐿̂ 𝑃(𝑟1, 𝑟2 … 𝑟𝑁)                                                         (10) 

  with the Smoluchowski operator given as5,9 

              𝐿̂ = 𝐷 ∑ ∇𝑟𝑖
(∇𝑟𝑖

𝑈(𝑟1,𝑟2…𝑟𝑁)

𝑘𝑇
+ ∇𝑟𝑖

)                                                   (11) 
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In general, the n particle density 𝜌𝑛 (n<N) distribution is directly proportional to the 

n particle probability density P (𝑟1, 𝑟2 … 𝑟𝑁) density as5: 

        𝜌𝑛(𝑟1, 𝑟2 … 𝑟𝑁) =
𝑁!

(𝑁−𝑛)!
∫ 𝑑𝑟𝑁+1 ∫ ∫ … . ∫ 𝑑𝑟𝑁𝑃(𝑟1, 𝑟2 … 𝑟𝑁)                    (12) 

Now integrating Smoluchowski equation (10) over (N-1) particle position and 

combining it with the equation (12) and (11) we get the one particle density variation with 

time  

         
𝑑𝜌(𝑟,𝑡)

𝑑𝑡
= 𝐷𝛻𝑟 . [𝛻𝑟𝜌(𝑟, 𝑡) −

𝑓(𝑟,𝑡)

𝑘𝑇
+

𝜌(𝑟,𝑡)

𝑘𝑇
∇𝑟𝑈1(𝑟, 𝑡)]        (13) 

, where 𝑓(𝑟, 𝑡) = − ∫ 𝑑𝑟′ 𝜌2(𝑟, 𝑟′, 𝑡)∇𝑟𝑈(|𝑟 − 𝑟′|) 

As discussed in previous section the Helmholtz free energy functional is sometimes  

approximated by a mean field approach as 2,5 given by equation (6) 

𝐹𝑒𝑥𝑐 =
1

2
∫ ∫ 𝑑𝑟𝑑𝑟′𝜌(𝑟)𝜌(𝑟′)𝑈2(|𝑟 − 𝑟′|) 

Correlating to the above expression of excess Helmholtz free energy f(r,t) can be 

written as 5 

            𝑓(𝑟, 𝑡) = −𝜌(𝑟)𝛻𝑟
𝛿𝐹𝑒𝑥𝑐[𝜌(𝑟,𝑡)]

𝛿𝜌(𝑟,𝑡)
               (14) 

Also  ∇𝑟𝑈1(𝑟, 𝑡) = ∇𝑟 
𝛿𝐹𝑒𝑥𝑡[𝜌(𝑟,𝑡)]

𝛿𝜌(𝑟,𝑡)
                    (15), 

∇𝑟𝜌(𝑟, 𝑡) =
1

𝑘𝑇
×𝜌(𝑟, 𝑡)∇𝑟

𝛿𝐹𝑖𝑑[𝜌(𝑟,𝑡)]

𝛿𝜌(𝑟,𝑡)
       (16) 

,where    𝐹𝑖𝑑𝑙 = 𝑘𝑇 ∫ 𝑑𝑟𝜌(𝑟)[𝑙𝑛˄3𝜌(𝑟) − 1]     and  𝐹𝑒𝑥𝑡 = ∫ 𝑑𝑟𝜌(𝑟)𝑉𝑒𝑥𝑡(𝑟) .Besides 

the expression  
𝛿𝐹𝑖𝑑[𝜌(𝑟,𝑡)]

𝛿𝜌(𝑟,𝑡)
 ,

𝛿𝐹𝑒𝑥𝑡[𝜌(𝑟,𝑡)]

𝛿𝜌(𝑟,𝑡)
,  

𝛿𝐹𝑒𝑥𝑐[𝜌(𝑟,𝑡)]

𝛿𝜌(𝑟,𝑡)
 are the functional derivative of ideal 
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,external and excess Helmholtz free energy with respect to one particle density and ∇𝑟 is the 

gradient operation on these expression in space variable r.  

 Incorporating (14), (15) and (16) together in (13) we come to the fundamental 

equation of Dynamical density functional theory5. 

𝑑𝜌(𝑟, 𝑡)

𝑑𝑡
=

𝐷

𝑘𝑇
∇𝑟 . [𝜌(𝑟, 𝑡)∇𝑟

𝛿𝐹[𝜌(𝑟, 𝑡)]

𝛿𝜌(𝑟, 𝑡)
] 

For time-independent external potentials Vext(r) the DDFT describes the relaxation 

dynamics of the density field toward equilibrium at the minimum of the Helmholtz free-

energy functional F[ρ0], given an exact canonical excess free-energy functional Fexc[ρ]. 

II-3 Phase Field Crystal Model (PFC) 

Similar to a DDFT model the phase field crystal model consider the system in terms 

of Helmholtz free energy functional Ƒ [Ψ (r, t)] of a phase field Ψ (r, t). The phase field model 

can be derived by taking into account the expansion of the free energy Helmholtz free energy 

functional around a density of a reference liquid as was proposed6 by Ramakrishnan-

Yussouff. 

The final derived equation which represents the PFC model contain terms which are 

dimensionless in nature and represents the physical attributes of fluids and crystals 10,11.The 

derivation of PFC model follows up from the expansion of the difference in Helmholtz free 

energy ∆F=F-Fref functional between the crystal and reference fluid ( 𝜌𝐿
𝑟𝑒𝑓

)density difference 

∆𝜌 = 𝜌 − 𝜌𝐿
𝑟𝑒𝑓

   in the following manner12. 

   𝐹[𝜌] = 𝐹[𝜌𝐿
𝑟𝑒𝑓

] + ∫
𝛿𝐹[𝜌]

𝛿𝜌(𝑟)
|𝜌0

∆𝜌(𝑟)𝑑𝑟+
1

2
∫ ∫

𝛿𝐹[𝜌]

𝛿𝜌(𝑟1)𝛿(𝑟2)
|𝜌0

∆𝜌(𝑟1)∆𝜌(𝑟2))𝑑𝑟1𝑑𝑟2  +Ideal 

free energy. Truncating the Taylor expansion to two terms11      

     
∆𝐹

𝑘𝐵𝑇
= ∫ 𝑑𝑟 [(𝜌 ln (

𝜌

𝜌𝐿
𝑟𝑒𝑓) − ∆𝜌] −

1

2
∬ 𝑑𝑟1𝑑𝑟2∆𝜌(𝑟1)∆𝜌(𝑟2) ∗ 𝐶(|𝑟1 − 𝑟2|)        (17) 
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, where 𝐶(|𝑟1 − 𝑟2|) is equal to 
𝛿𝐹[𝜌]

𝛿𝜌(𝑟1)𝛿𝜌(𝑟2)
 in the above equation. 

The equilibrium density profile of a crystal can be represented in a Fourier expanded 

form as 𝜌𝑠 = 𝜌𝐿
𝑟𝑒𝑓

(1 + 𝜂𝑠 + ∑ 𝐴𝐾𝑒𝑖𝐾𝑟
𝐾 ),where AK are the respective Fourier amplitude, 𝜂𝑠 

is the fractional change in density from liquid to crystal and K is the reciprocal lattice vector. 

After introducing the reduced number density11,13 𝑛 =
(𝜌−𝜌𝐿

𝑟𝑒𝑓
)

𝜌
 and substituting 𝜌 = (1 +

𝑛)𝜌𝐿
𝑟𝑒𝑓

, equation(17) of difference in Helmholtz free energy transforms to the following 

form10,11: 

∆𝐹

𝑘𝐵𝑇
= ∫ 𝑑𝑟[(𝜌𝐿

𝑟𝑒𝑓(1 + 𝑛) ln(1 + 𝑛) − 𝜌𝐿
𝑟𝑒𝑓

𝑛] −
1

2
∬ 𝑑𝑟1𝑑𝑟2𝜌𝐿

𝑟𝑒𝑓
𝑛(𝑟1)𝜌𝐿

𝑟𝑒𝑓
𝑛(𝑟2) ∗ 𝐶(𝑟1, 𝑟2) − (18)  

For further simplification, the product of ∫ 𝑑𝑟1𝜌𝑙
𝑟𝑒𝑓

𝑛(𝑟1) ∗ 𝐶(𝑟1, 𝑟2)  is dealt as a 

Fourier transform of a convolution integral which states that14: 

Ƒ(𝑓 ∗ 𝑔) = Ƒ(𝑓)Ƒ(𝑔), 𝑤ℎ𝑒𝑟𝑒 Ƒ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓   

The convolution integral expression can be written as Ƒ−1(Ƒ(∫ 𝑑𝑟1𝜌𝑙
𝑟𝑒𝑓

𝑛(𝑟1) ∗ 𝐶(𝑟1, 𝑟2) )  

with Ƒ−1 being he Inverse Fourier Transform 

 For reference Fourier transform and Inverse Fourier Transform of any function in 

Fourier space and real space can be written as per equation 19 and 20 respectively: 

𝑓(𝜔) = ∫ 𝑓(𝑥) ∗ 𝑒−𝑖𝜔𝑥𝑑𝑥
∞

−∞
               (19) 

𝑓(𝑥) = ∫ 𝑓(𝜔) ∗ 𝑒𝑖𝜔𝑥𝑑𝜔
∞

−∞
             (20) 

The integral term in the excess Helmholtz free energy after Fourier transform 

operation functional breaks down to 

1

2
∫ 𝑑𝑟2 𝜌𝐿

𝑟𝑒𝑓
𝑛(𝑟2)Ƒ−1(𝜌𝐿

𝑟𝑒𝑓
𝑛(𝜔)𝑐̂2(𝜔))         (21) 
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,where 𝑛̂(𝜔) 𝑎𝑛𝑑 𝑐̂2(𝜔) 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑓𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 (𝜌𝐿
𝑟𝑒𝑓

×𝑛(𝑟1))  𝑎𝑛𝑑 𝑐2(|𝑟1 −

𝑟2|)   

Now expanding the Fourier transform of direct correlation function 𝑐̂2(𝜔)in a Taylor 

series of terms around 𝜔=0 equation (21) becomes14: 

1

2
∫ 𝑑𝑟𝜌𝐿

𝑟𝑒𝑓
𝑛(𝑟2)Ƒ−1(𝜌𝐿

𝑟𝑒𝑓
𝑛(𝜔)(𝐶̂0 + 𝐶̂2𝜔2 + 𝐶̂4𝜔4 + ⋯ . . ))        (22) 

,where 𝐶̂2 =
1

2!

𝑑2𝐶̂0(0)

𝑑2𝜔
, 𝐶̂4 =

1

4!

𝑑4𝐶̂0(0)

𝑑4𝜔
 and 𝐶̂𝐾 = 𝐶̂0 + 𝐶̂2𝜔2 + 𝐶̂4𝜔4 has its first peak  

𝜔=2π/𝞂 ,𝞂 being the inter particle distance.  

Now we revisit equation (21) and apply the inverse Fourier transform operation to 

produce an equation in the real space. Here we need to acknowledge an important property of 

the Fourier transform operation of the nth order derivative of a function and its relation to the 

Laplacian of the function. The Fourier transform of the derivative of a function 𝑓(𝑥) can be 

evaluated by parts integration in the following way: 

∫ 𝑓′(𝑥) ∗ 𝑒−𝑖𝜔𝑥𝑑𝑥 =
∞

−∞
[𝑒−𝜔𝑥𝑓(𝑥)]−∞

∞ + ∫ 𝑖𝜔𝑒−𝑖𝜔𝑥𝑓(𝑥)𝑑𝑥
∞

−∞
    (23) 

For very large value of x (tending to ∞) f(x) tends to zero. The remaining second term 

in the above expression can be written as 𝑖𝜔𝑓(𝜔)  .Similarly it can be proved that the Fourier 

transform of the second derivative and fourth derivative and so on can be related to the 

Laplacian of the function as: 

                           Ƒ[ 𝛻2𝑓] = −𝜔2𝑓                    (24) 

                         Ƒ[ 𝛻4𝑓] =  𝜔4𝑓                        (25) 
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 The inverse (Ƒ-1 ) Fourier transform of the functions  (𝐶0
̂ + 𝐶̂2𝜔2 + 𝐶̂4𝜔4 + ⋯ . . ) ∗

𝜌𝐿
𝑟𝑒𝑓 ∗ 𝑛 (𝜔)  in equation (22)  and incorporation of relations given in (24,25) results in the 

following form of the Excess Helmholtz free energy functional 10,11 

∆𝐹

𝑘𝐵𝑇
= ∫ 𝑑𝑟[(𝜌𝐿

𝑟𝑒𝑓(1 + 𝑛) ln(1 + 𝑛) − 𝜌𝐿
𝑟𝑒𝑓

𝑛] −
1

2
(𝜌𝐿

𝑟𝑒𝑓
)

2
∫ 𝑑𝑟1𝑛(𝑟1) {∑(−1)𝑚𝐶2𝑗   

𝑚

𝑗=0

∇2𝑗} 𝑛(𝑟1) − (26) 

The next step is to introduce the dimensionless form of  𝐶2𝑗  as 𝜌𝐿
𝑟𝑒𝑓

𝐶2𝑗 =

∑ 𝑐2𝑗
𝑚
𝑗=0 ∇2𝑗= ∑ 𝑏2𝑗

𝑚
𝑗=0 (𝜎∇)2𝑗 ,where 𝞂 is the inter particle distance. The coefficients 𝑏2𝑗 

contain information about the physical properties of the crystal and fluid. Expansion of the 

term ln(1+n) and its product with (1+n) gives 

                             (1 + 𝑛) ∗ ln(1 + 𝑛) = 𝑛 +
𝑛2

2
−

𝑛3

6
+

𝑛4

12
 𝑓𝑜𝑟 |𝑛| < 1              (27) 

The equation boils down to the following form11,13 after logarithmic expansion and b2j 

inclusion : 

∆𝐹

𝑘𝐵𝑇𝜌𝐿
𝑟𝑒𝑓 = ∫ 𝑑𝑟 (

𝑛2

2
− 𝑛3

6
+ 𝑛4

12
) −

𝑛

2
 {∑ 𝑏2𝑗

𝑚
𝑗=0 (𝜎𝛻)

2𝑗
} 𝑛              (28) 

For m=2 PFC model, the equation results in the following manner: 

∆𝐹

𝑘𝐵𝑇𝜌𝐿
𝑟𝑒𝑓 = ∫ 𝑑𝑟 {

𝑛2

2
(1 + |𝑏0|) +

𝑛

2
[|𝑏2|𝜎2∇2 + |𝑏4|𝜎4∇4]𝑛 −

𝑛3

6
+

𝑛4

12
}        (29) 

Introducing new variables giving information giving information about the physical 

attributes of crystal and fluid such as11: 

𝐵𝐿 = |1 + 𝑏0|   [= (
1

𝑘
) , 𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦]               (30) 

 𝐵𝑠 =
|𝐵𝑠|2

4|𝑏4|
 [=

𝐾

(𝜌𝐿
𝑟𝑒𝑓

𝑘𝑇)
 , 𝑤ℎ𝑒𝑟𝑒 𝐾 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑢𝑙𝑘 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑐𝑟𝑦𝑠𝑡𝑎𝑙     (31) 

    𝑅 = 𝜎(2|𝑏4|/|𝑏2|)1/2 [= 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑐𝑎𝑙𝑒 (𝑥 = 𝑅𝑥,̌ which is now related to 

the position of the maximum of Taylor expanded 𝐶̂𝜔]                                                   (32) 



10 

 

 

 

 Including a multiplier 𝞶 for the n3 term in Helmholtz free energy equation we obtain 

the following equation: 

∆𝐹 = ∫ 𝑑𝑟𝐼(𝑛) = 𝑘𝐵𝑇𝜌𝐿
𝑟𝑒𝑓

∫ 𝑑𝑟 {
𝑛

2
[𝐵𝐿 + 𝐵𝑆(2𝑅2𝛻2 + 𝑅4𝛻4)]n − ν

𝑛3

6
+

𝑛4

12
} 

       -(33) 

Conversion to the phase field Ψ form with additional new variable 𝑥 = 𝑅𝑥,̌ 𝑛 =

(3𝐵𝑠)1/2, ∆𝐹̃ = (3𝜌
𝐿
𝑟𝑒𝑓𝑘𝑇𝑅𝑑), , ∆𝐹̃ is the free energy into a modified swift -Hohenberg type 

dimensionless form written as11,13: 

, ∆𝐹̃ = ∫ 𝑑𝑟̌ {
𝛹

2
[𝑟∗ + (1 + ∇̌2)

2
] 𝛹 + 𝑡∗

𝛹3

3
+

𝛹4

4
} − (34) 

,where 𝑡∗ = − (
𝞶

𝟐
) . (

𝟑

𝐵𝑠
)

𝟏

𝟐
= −𝞶. (

|𝑏4|

|𝑏2|2)

1

2
 𝑎𝑛𝑑 𝑟∗ =

∆𝐵

𝐵𝑠
=  

(|1+𝑏0|)

|𝑏2|2

4|𝑏4|

while Ψ=
𝑛

(3𝐵𝑠)1/2. 

The equation shows that m=2 PFC model contain two dimensionless similarity parameters 

𝑡∗𝑎𝑛𝑑  𝑟∗ that can be obtained as combination of the original physical model parameters. The 

next section will discuss the derivation of PFC model equation of motion from the underlying 

concept of time evolution of density as is given by the model of Dynamic Density functional 

theory. 

II-4 Equation of Motion (PFC)  

Similar to DDFT based on the concept of conserving relaxation of density profile with 

time, the equation of motion for a PFC model is derived 11 except that it includes a constant 

mobility coefficient of 𝑀𝜌 = 𝜌0𝐷𝜌/𝑘𝑇.Thus the equation of motion has the form11 

𝑑𝜌

𝑑𝑡
= ∇ [𝑀𝜌𝛻.

𝛿𝐹[𝜌]

𝛿𝜌
] – (39) 

. When density ρ replaced as reduced number density 𝑛 =
(𝜌−𝜌𝐿

𝑟𝑒𝑓
)

𝜌
  in equation 39, 

and incorporating equation  18 transforms to11,13: 
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𝑑𝑛

𝑑𝑡̃
= ∇2[𝑛 (|1 + 𝑏0| + ∑ |𝑏2𝑗|∇2𝑗𝑚

𝑗=0 𝑛 −
𝑛2

2
+

𝑛3

3
]        (40) 

, where. Equation (40) after introducing variable from (31), (32) and (33) becomes 

𝑑𝑛

𝑑𝑡
= ∇̂ {𝑀𝑛∇̂[(𝑘𝑇𝜌𝐿

𝑟𝑒𝑓
)([𝐵𝐿 + 𝐵𝑆(2𝑅2∇̂2 + 𝑅4∇̂4)]𝑛 − 𝜈

𝑛2

2
+

𝑛3

3
}       (41) 

 Now following the same sequence of conversion as that for (34) the dimensionless 

Swift -Hohenberg for PFC Equation of motion follows11 

                       
𝑑𝛹′

𝑑𝑡
= ∇̌2 {[𝑟∗ + (1 + ∇̌2)

2
] 𝛹 + 𝛹3}         (42) 

, where r* and other operation have been defined previously. 

In m=2 PFC model equation of motion is dimensionless with parameter 𝑟∗ comprising 

the physical properties of the material. This is the most generic form of PFC model equation 

of motion used to study of the various aspects of crystallization phenomenon. The next section 

will discuss some of the previous research work performed via utilizing PFC model to study 

the essential parameters of a crystallization process.  

II-5 Literature review  

The model of Dynamical Density Functional theory and Phase Field Crystal model 

has been applied on numerous occasion to predict a theoretical understanding of the general 

characteristic of a crystallization process. Through the phase of initial literature review we 

have broadly classified our review work into three categories which are as follows: 

1) Crystal Growth 

2) Phase/Facets development 

3) Morphology of crystal growth  

In the following sections, we have discussed some of the previous work in each of the 

above categories along with their respective conclusion and results. 
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II-5-1 Crystal Growth 

II-5-1- a- Externally Imposed Nucleation 

In this work15 the fundamental equation of DDFT (
𝜕(𝜌(𝑟,𝑡)

𝜕𝑡
=

𝐷

𝑘𝑡
∇. (𝜌(𝑟, 𝑡)𝛻

𝛿𝐹[𝜌(𝑟,𝑡)

𝛿𝜌(𝑟,𝑡)
)  

is solved numerically to study the crystal growth on a nucleation cluster created by an external 

potential. There are two setups for which the simulation is performed. The first setup has 

rhombic nucleation seed of 19 particles arranged in a hexagon with different unit cell 

parameter Area A (strain parameters) and θ spanning the two nucleus axes. The second setup 

includes the time evolution of a nucleation seed of two equal linear arrays along the y 

direction, each comprising three infinite rows of hexagonally crystalline particles, which are 

separated by a gap. 

In case of the first setup, the evolution of density field of the initially arranged 

hexagonal cluster of 19 particles is observed to be governed by unit cell parameter i.e. A. This 

shows that the arrangement of particle which has more unit cell area (less strain) grows into 

an equilibrium crystalline state while the one with lesser area (more strain collapse into the 

surrounding metastable liquid).  

Summary: 

The outcome of this work is relevant to acknowledge Dynamical Density Theory as a 

powerful tool in investigating heterogenous nucleation on an externally imposed cluster of 

atoms. It is deduced from these results that initial arrangement of atoms in imposed cluster 

(area for unit cell) determine whether further crystallization occurs. Moreover, these results 

coveys a theory that crystallization is a two-step process in which the imposed heterogenous 

cluster first relaxes with respect to the surrounding fluid and then promotes free growth 

throughout the space.  
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II-5-1-b DDFT & PFC for Colloidal Solidification 

In this work16 a comparative study is performed between the phase field crystal theory 

and DDFT towards analyzing nucleation behavior in a colloidal suspension. The respective 

equation for DDFT and PFC model that were solved are as given below16: 

DDFT-   
𝜕(𝜌(𝑟,𝑡)

𝜕𝑡
=

𝐷

𝑘𝑡
∇. (𝜌(𝑟, 𝑡)𝛻

𝛿𝐹[𝜌(𝑟,𝑡)

𝛿𝜌(𝑟,𝑡)
 

PFC- 𝜌(𝑟, 𝑡) = 𝐷∇2𝜌(𝑟, 𝑡) + 𝐷. {𝜌(𝑟, 𝑡)∇[𝐾𝑡−1𝑉(𝑟, 𝑡) − (𝐶0̂ + 𝐶2̂∇2 + 𝐶4̂∇4)𝜌(𝑟, 𝑡)]} 

To solve these equations the direct correlation coefficients (𝐶0̂, 𝐶2̂, 𝐶4̂ ) corresponding 

to the coupling constant potential (Г =
𝑢0𝜌3/2

𝑘𝑇
) are plugged in to the equations. As discussed 

earlier, these coefficient are the result of evaluating the excess Helmholtz free energy as per 

RY approximation and Taylor expansion of correlation function c(r,r’) in Fourier space(k). 

The wave vector k bears a relationship with the interparticle distance (𝞂) in real space.  

𝐶̂𝐾 = 𝐶̂0 + 𝐶̂2𝜔2 + 𝐶̂4𝜔4 − 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑠𝑝𝑎𝑐𝑒 𝜔, 𝐶0̂ + 𝐶2̂∇2 + 𝐶4̂∇4 − 𝑅𝑒𝑎𝑙 𝑆𝑝𝑎𝑐𝑒 

                The corresponding value of the direct correlations function  𝑐0
2(𝑟) (determined by 

correlation coefficients 𝐶0̂, 𝐶2̂, 𝐶4̂)against the coupling constant (interaction strength) governs 

the metstability of the fluid and the stability regime of the crystalline region. Initially the 

particles were tagged in a liquid with a coupling constant Г<Гf (freezing) and then quenched 

to a coupling constant corresponding to a higher correlation among particles to initiate the 

freezing transition. The snapshot of emergence of density field ρ (r, t) with time for a coupling 

constant of Г=60 by solving the DDFT and PFC model numerically has been reported.    

Another interesting result which have been tabulated in this work is the y averaged 

density profile along the x direction. The results demonstrate that variation of ρ(r,t) about the 

y averaged density (ρ) is more strengthened in case of DDFT than in PFC mode.  Also, the 



14 

 

 

 

width of the crystal front propagation in case of DDFT (∆x=5𝜌−1/2) is smaller than that of 

PFC model (∆x=25𝜌−1/2).  

 The article also reports crystal front propagation velocity 𝑣𝑓(Г) =
𝑑𝑥𝑓(𝑡)

𝑑𝑡
 as a function 

of change in coupling constant from ∆Г(Г-Гf) from its initial value to freezing transition value 

Гf. It was well observed, that the crystal front velocities increase with increase in ∆Г. When 

∆Г is negative or the coupling constant Г<Гf, then the crystal front velocity is negative and it 

retreats to the initial liquid. As calculated from this data the coupling constant for freezing 

transition in case of the three model is around Г=36. 

Summary:  

The essence of this work comes from the fact that it portrays PFC and DDFT models 

as powerful tools to study Brownian dynamics of particle in a colloidal dispersion. The 

derivation of the PFC model was achieved after inculcating certain approximation to the pair 

correlation function present in the excess Helmholtz free energy functional. Thus, it is 

reasonable to claim that numerical solutions of DDFT and PFC model equation are effecting 

in predicting crystal front propagation with time and space. 

II-5-2 Phase/Facets Development 

II-5-2-a Diffusion controlled growth Polymorphs/phases 

This work17 considers the time evolution of phase field density to study the     

crystallization of facets of different phases (BCC, FCC, HCP,SC) as a function of one 

particle number density in a under cooled liquid. The phase field density equation is given 

by17:

𝑑𝑛

𝑑𝑡
= ∇. (𝑀𝑛∇

𝛿𝐹

𝛿𝑛 
) 
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             Where ∆𝐹 = ∫ 𝑑𝑟 {
𝑛

2
[𝐵𝐿 + 𝐵𝑆(2∇2 + ∇4)]𝑛 − 𝜈

𝑛3

6
+

𝑛4

12
} 

Here 𝑀𝑛 = [
(1+𝑛0)𝐷𝜌

𝑘𝛽𝑇𝜌𝑙
𝑟𝑒𝑓 ] is the constant mobility term determining the time scale for 

system evolution and n0 is the initial reduced density of the reference fluid. The dislocation-

free growth of the (100), (110) and (111) faces of the BCC and FCC structures, and the (0001) 

(101̅0), and (112̅0) faces of HCP are studied. The facets evolution study is done by the 

respective reduced density (nmin) of the liquid ahead of the growing crystal front. During 

evolution of crystal front it is observed that there is a certain ordering of liquid at the interface 

and further crystallization (growth process) is observed by sharp rise in density peaks (nmax).   

Initially the system is assigned as a rectangular slab of dimension (∆x, ∆y, ∆z) in increments 

of ∆a=1. The slab is initially filled with particle density (n) distributed periodically as sin and 

cosine function of (x,y,z) coordinate of the simulation slab. The driving force of 

crystallization ∆ω (grand potential density) against initial number density n0 is simulated and 

reported. 

        This results analysis reveals that liquid -crystal coexistence for different phases are BCC-

Liquid: -0.0862<n0<0.0315, HCP-Liquid: -0.0865<n0< -0.0344, FCC-Liquid: -0.0862<n0<-

0.0347, SC-Liquid: -0.0.249<n0<-0.0216. Consequently, numerical solution of PFC Equation 

of Motion was also carried to study various aspect of crystal growth in a BCC system. The 

article reports non-uniform density distribution along the centerline in z direction for different 

BCC crystals facets precipitating from the same far field density representing anisotropic 

growth. It also reports the density depletion ahead of the crystal front which resembles a 

barrier controlled layer by layer growth of the BCC crystal. The interface position for different 

BCC facets with time 𝝉 and the velocity coefficient-C of these facets are some other results 

produced through this work. 
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Summary: 

The significance of this work is the fact that it was possible to predict the diffusion 

controlled growth of a BCC, FCC and HCP crystal system coming from a surrounding liquid. 

The phenomenon of diffusion controlled growth was supported by the fact that density 

depletion zone between the liquid and crystal varies for different facets of a crystal system 

(BCC as reported in this article). Moreover, the anisotropic growth in a BCC crystal system 

was also reported in terms of plots of Interface position vs Time and Velocity coefficient vs 

Initial Reduced Density(n0) for respective facets. 

 

II-5-2-b Polymorphism & Crystal nucleation in PFC model in 2D and 3D 

This work11,18 discusses about the  thermodynamic driving force (minimization of free 

energy) which result in the evolution different phases(BCC,FCC,HCP) in a homogenous 

phase of given density. The equation of motion and Euler Lagrange (free energy minimization 

with respect to Ψ) were solved numerically to study this phase evolution. These equations are 

of the following form11 

  Euler Lagrange:    
𝛿𝐹̃

𝛿𝛹
=

𝛿𝐹̃

𝛿𝛹
|𝛹0

  (Ψ0 minimizes F) 

  Equation of motion: 
 𝑑𝛹′

𝑑𝑡
= ∇̌2 {[𝑟∗′

+ (1 + ∇̌2)
2

] 𝛹′ + 𝛹′3} + 𝛼∗ 

 For the respective BCC, FCC, HCP phases the initial guess of the normalized 

density(Ψ) was assigned as a combination of periodic sin and cosine function in space. On 

computationally solving the equation of motion (density evolution) it was possible to predict 

the equilibrium shape of the crystal whose faces are bounded by the planes of BCC, FCC and 

HCP phases. In a different numerical analysis, the Euler Lagrange equation was solved to 

predict a 3D phase diagram representing different phase with respect to reduced temperature 

r* and reduced number density Ψ0. The three-phase equilibria (liquid–hcp–bcc, liquid–fcc–
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hcp, hcp–bcc–rod, and fcc–hcp–rod) are represented by horizontal peritectic/eutectoid lines 

in the phase diagram.     

The other interesting results reported in this article is the 3-dimensional evolution of 

equilibrium shapes for the FCC, BCC, HCP structures respectively. The equilibrium shapes 

as predicted comes as rhombo-docodehdral, Octahedral and hexagonal prism structures 

bounded by (100), (111) and (101̅0) planes for the respective BCC, FCC and HCP system.  

The equilibrium crystal shapes whether BCC or FCC phase is determined after 

observing the work of formation (grand canonical potential difference) against the number of 

atoms.     

Summary:  

This work highlights the effective utilization of PFC model EOM and EL equations to 

predict polymorphism and various aspect of crystal nucleation. The outcome of the simulation 

was successful enough to predict a 3D phase diagram representing different phases i.e. Liquid-

FCC-HCP-BCC-Rod at different pair values of  reduced temperature r*(contains information 

about the physical properties of the model) and reduced number density Ψ0  with respect to 

the reference fluid .The solution of the model reveals the final equilibrium shapes of the 

nucleated crystals pertaining to BCC,FCC,HCP as rhombo-docodehdral ,Octahedral and 

hexagonal prism structures bounded by (100),(111) and (101̅0) planes respectively. 

II-5-2-c Heterogeneous Crystal Nucleation: The Effect of Lattice Mismatch 

The objective of this work13,19 was to investigate the process of nucleation on a 

crystalline substrate. The Helmholtz free energy density expression was modified to include 

external potential Vext (r) of the substrate. The Helmholtz free energy expression here reads 

as19: 
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∆𝐹 = ∫ 𝑑𝑟 {
𝛹

2
[∈ +(1 + ∇2)2]𝛹 + 𝑉𝑒𝑥𝑡(𝑟) +

𝛹4

4
} 

, where 𝛹 ∝
𝜌−𝜌𝑟𝑒𝑓

𝜌
 is the scaled density difference, ∈> 0 is the reduced temperature 

related to the bulk moduli of the liquid and crystalline phase and is responsible for the 

anisotropy in crystal growth. The effect of substrate is considered a s an external potential 

whose properties are managed by the factor V(r).  This factor which relates to the lattice 

constant as and structure factor S(as,r) is added to the PFC Helmholtz free energy expression 

to introduce the effect of substrate adsorption.   

The dimensionless equations which were solved numerically pertaining to this work 

includes ELE and EOM equation. They read as19: 

                 Euler Lagrange Equation    
𝛿𝐹

𝛿Ѱ
= (

𝛿𝐹

𝛿Ѱ
)

Ѱ0

(Ψ0 minimizes F) 

                 Equation of motion             
𝛿𝛹

𝛿𝜏
= ∇2 𝛿𝐹

𝛿Ѱ
+ 𝛼  , 𝛼 𝑏𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒 

 

The Euler Lagrange equation was solved numerically at reduced temperature of ∈=

 0.5 𝑎𝑛𝑑 ∈= 0.25 and varied lattice constant. The solution prescribes the development of 

non-faceted  parallel to a squared lattice wall for parameters  ∈= 0.25, 𝛹0 = −0.341 and 

𝑎𝑠

𝜎
= 1.49 𝑎𝑛𝑑 2    respectively. However, with parameters ∈= 0.5, 𝛹0 = −0.514 and 

𝑎𝑠

𝜎
=

√3 𝑎𝑛𝑑 1 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 faceted nuclei growth is observed.                                  

The other phenomenon studied in this work is the growth of a nucleus on a cubic substrate. 

The dimensions of the cubic substrate Ls are kept at 32 as and 16as , where  as is the lattice 

constant of a stable BCC structure. Iterative solution showed that with Ls=32as the growth on 

the face of cube is spherical in nature whereas at Ls=16as the growth process comes as faceted 

morphology. 
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Summary: 

In this work the free energy equation of the PFC model was modified to include the 

effect of external substrate. Thereafter these equations were solved numerically which showed 

that the lattice mismatch between the substrate and crystal influence the growth morphology 

of crystal. In addition, these results also convey the idea that the size of the foreign particle 

effect the final growth morphology of crystal. 

II-5-2-d Crystallization induced by multiple seeds: DDFT approach 

In this work20 the process of crystallization was studied by introducing nucleating 

seeds through an external potential 𝑉𝑝(𝑟) = ∑ 𝑉𝑝
0𝑒−𝛼(𝑟−𝑟𝑖)2

𝑖   with parameters of the external 

potential kept as 𝛼𝜎2 = 6 and 
𝑉𝑝

0

𝑘𝑇
= 4. To calculate dynamics of crystal growth the DDFT 

equation was solved numerically which is given by20: 

𝑑𝜌(𝑟, 𝑡)

𝑑𝑡
= ∇ [𝜌(𝑟, 𝑡)

𝛿𝐹[𝜌(𝑟, 𝑡)]

𝜌(𝑟, 𝑡)
] 

With this approach, it was observed that the number of particle in each nucleus, the initial 

orientation and area fraction play a part in grain boundary development between the growing 

phases. In the first case when the area fraction of the external seeds was kept low the seeds 

got dissolved and no net growth occurs. In case of an intermediate area fraction and small 

orientation angle the resultant phase develops as a monocrystal. Finally, in the last case when 

the orientation angle is large a crystal with grain boundary is formed. 

The size ratio of the initial nuclei(N1/N2) is another factor which was assumed to play 

a role in this exact phase behaviour. In the initial setup with N1=61 and N2=3, it was observed 

that the boundary between the monocrystalline phase and the phase with grain shifts towards 

smaller area fraction. This outcome can be interpreted as lower area fraction being sufficient 

for the smaller size nucleus to remain stable. In the case when nuclei are kept smaller (N1 = 

37 andN2 = 19), the phase boundary is strongly shifted to higher area fractions. It can be 
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inferred through this set of simulation results that at low area fractions the bigger nucleus 

forms a more stable crystal—with larger density peaks and modifies the smaller crystal thus 

finally filling the entire simulation box and hence no grain boundary or melting is observed.                 

Summary 

 In this work, it was successfully demonstrated that DDFT calculation were efficient 

enough to study crystal growth on an externally imposed multiple nucleation seeds. These 

results show that there are different scenarios when the initial nucleus grows into a fluid, a 

monocrystal and crystal with grain boundary. The grain boundary formation and its final 

position depends upon the size of the nuclei, the area fraction within the fluid and the initial 

orientation of the seeds with respect to each other. 

II-5-3 Morphology   

  II-5-3-a Tuning the structure of non-equilibrium soft materials by varying the 

thermodynamic driving force for crystal ordering. 

 This work21 discusses the phenomenon of morphological change during crystallization 

when the thermodynamic driving force are varied in a different set of simulation (Change in 

particle concentration or level of under cooling of the liquid). The basic PFC equation of motion 

was solved to study crystal growth on a nucleation seed introduced in a homogenous phase. The 

Helmholtz free energy is given by21: 

𝐹 = ∫ 𝑑𝑟 {
𝛹

2
[∈ +(1 + ∇2)2]𝛹 + +

𝛹4

4
} 

 The Thermodynamic driving force depends upon: 

Supersaturation: 𝑆 =
𝛹0−𝛹𝐿

𝑒

𝛹𝑆
𝑒−𝛹𝐿

𝑒 and Temperature: 𝝴 

The crystal growth was studied for cases when effect of noise was pertinent (thermal 

fluctuation) along with increase in supersaturation (varying 𝛹0).When the PFC model 
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equation of motion was solved including the thermal fluctuation the final shape crystal 

morphology resulted as porous and irregular dendrite, whereas we see a more compact 

hexagonal morphology when the thermal fluctuation was not included in the simulation. 

         The other part of this work compares the mechanism of the slow and the fast growth 

mode (rate of change of supersaturation). The simulation results depict, that a slow growth 

mode proceeds with evolution of faceted morphology, whereas in a fast growth mode non-

faceted morphology develops. Concurrently the simulation results showed that for a slow 

growth process a sharp and faceted solid–liquid interface builds up at near-equilibrium, 

whereas in a fast growth process a non-faceted interface builds up which extends to several 

particle layers. The fast growth process was accompanied by a weak density depletion zone 

which spread across the solid–liquid interface. The slow growth mode process is further 

illustrated by simulation results which showed a narrow density depletion zone and a sharp 

interface  

It is claimed through these results that the diffusion mechanism which controls slow mode 

allows more time to develop a faceted morphology (a sharp interface) unlike the kinetically 

driven fast mode which results in uniform growth from all facets (interface between crystal 

and liquid spreads towards many layer).  

 

Conclusion 

 

The results as conveyed and discussed in this work provides a theoretical description 

to the understanding of crystal growth morphology at different mode. The analysis of these 

results showed that slow mode of crystal growth is diffusion controlled by thermodynamics 

whereas the fast mode is kinetically driven. 
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Chapter III-Results and Discussions 

III-1 Experimental deduction 

As stated in previous section the fundamental aim of this work is to analyse the 

morphological phase transition behaviour of charge transfer complex material electro 

crystallized on a substrate electrode. The experimental results as obtained through the course 

of this work strongly supports the initial hypothesis of the work. Following the hypothesis, 

K(def)TCP a charge transfer complex material was electro crystallized on a HOPG substrate 

under varying condition of initial concentration and applied overpotential. To analyse the role 

of these parameter on the morphology of electro crystallized K(def)TCP, Atomic force 

microscopy imaging was performed post the electro crystallization process. The following 

Atomic force microscopy images given in figure 1 ,2 ,3 depicts the electro crystallization 

results under respective experimental condition. 

 

 
Figure 1- Electrocrystallized K(def)TCP -  Concentration: 0.05 M, Overpotential :1.2V and 

Time of deposition: 1 second 
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Figure 2- Electrocrystallized K(def)TCP – Concentration:0.2 M, Overpotential:1.2V and Time 

of deposition:1 second 

 

 
Figure 3- Electrocrystallized K(def)TCP -Concentration:0.2 M, Overpotential: 1.5 V and Time 

of deposition: 1 second 
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The experimental results as shown through the above-mentioned AFM images clearly 

demonstrate that the morphology of electro crystallized K(def)TCP depends upon the initial 

experimental parameters takes. The first of the cases (Figure 1) shows that at a low 

concentration of 0.05M and a overpotential of 1.2 V, the morphology of the electro 

crystallized K(def)TCP is preferably that of small spheres uniformly distributed along the 

substrate. The morphological transition from spherical to small rod like structure (2nd case 

AFM images) takes place when the K(def)TCP concentration was increased to 0.2 M under 

the effect of same overpotential(1.2V) (Figure 2). Moreover, the rod like morphology of 

K(def)TCP is more prominent when the overpotential is increased to 1.5V (Figure 3) and 

K(def)TCP concentration is kept at 0.2M. 

The outcome of the experimental work clearly builds up for the argument that 

morphology of the deposited K(def)TCP on the substrate is driven by change in its initial 

concentration and applied overpotential. Taking into perspective that the electro 

crystallization process would be governed by the rates of diffusion or deposition of the 

K(def)TCP atoms to the site on the substrate and that the two rates produce a net effect on the 

morphology of deposited K(def)TCP on the substrate. Following on this analysis, it can be 

argued that the electro crystallization process is thermodynamically driven when rate of 

deposition lag that of diffusion, whereas kinetic takes over the thermodynamic of the process 

in the reverse case scenario. Thus, the motivation arises implement Phase Field Crystal model 

for our theoretical study whose inception comes from the basic concept classical 

thermodynamics. 
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III-2 - Theoretical results   

The Phase Field Crystal model is derived after making necessary approximation to the 

Classical Density Functional model. The Helmholtz free energy functional in the PFC model 

as derived and discussed in the previous chapter takes the following form11: 

                                  ∆𝐹̃ = ∫ 𝑑𝑟̌ {
𝛹

2
[𝑟∗ + (1 + ∇̌2)

2
] 𝛹 + 𝑡∗ 𝛹3

3
+

𝛹4

4
}    (1) 

The equation is dimensionless in Ψ which is the relative phase variable given by the 

ratio of density difference between the one particle density of the crystal and a reference liquid 

to the one particle density 
(𝜌−𝜌𝐿

𝑟𝑒𝑓
)

𝜌
. The variable 𝑟∗ is the model parameter incorporates the 

effect of correlation coefficient (𝐶̂0, 𝐶̂2 ) introduced after expanding the correlation function  

𝐶̂𝐾 = 𝐶̂0 + 𝐶̂2𝑘2 + 𝐶̂4𝑘4 in fourier space(k). At this point it’s a tangible fact that variable 𝑟∗ 

and the initial Ψ (reduced particle density) are two major properties which effect the phase 

equilibrium between the periodic phase(Solid) and a homogenous phase(liquid) with time. 

Having done a comprehensive review of the basics of the PFC model, it seemed relevant for 

us to go ahead and investigate the direct correlation function 𝐶(𝑟, 𝑟′) from the view point of 

classical thermodynamics.   

III-2-a- Direct correlation function 

To determine the direct correlation function for a system through a model present in 

literature we referred to the Ornstein-Zernike Percus-Yevick (OZPY) equation22. The 

OZPY is one of the most basic equation and is considered a good fit to generate the pair 

correlation function of simple fluids interacting via Lennard Jones potential. It is of the 

following form22: 

𝑔(𝑟, 𝑟′) − 1 = 𝐶(𝑟, 𝑟′) + 𝑛 ∗ ∫ 𝐶(𝑟, 𝑟′) ∗ [𝑔(𝑟′′, 𝑟′) − 1]𝑑𝑟′′                  -(2) 
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, where 𝑛 is the homogenous density distribution and thus is kept constant. The term 

𝑘𝑇  is the thermal energy in terms of Boltzmann constant (k) and Temperature(T).  

The Pair Correlation function  𝑔(𝑟, 𝑟′)  in OZPY integral equation bears a linear 

relationship with the direct correlation function 𝐶(𝑟, 𝑟′) along with an integral including the 

interaction of a particle placed at 𝑟′′(𝑔(𝑟′′, 𝑟′)).The equation also incorporates the Percus-

Yevick approximation which correlates the pair correlation with the direct correlation 

function is as follows22:                      

𝐶(𝑟, 𝑟′) = 𝑔(𝑟, 𝑟′) [1 − 𝑒𝑥𝑝
𝑢(𝑟,𝑟′)

𝑘𝑇 ]                  (3) 

, where 𝑢(𝑟, 𝑟′)  is the potential (Lennard Jones (𝑟−6 − 𝑟−12)) acting between the 

particles. We have performed our simulation run by choosing the units of  𝑢(𝑟, 𝑟′) in unit of 

thermal energy (𝑘𝑇).  

The OZPY equation is not in its simplest form because of the occurrence of 𝑔(𝑟, 𝑟′) 

and 𝑔(𝑟′, 𝑟′′) which makes the solution of pair correlation function in Cartesian coordinates 

unreasonable. Thus, follows the need to simplify the integral part of the OZPY equation in 

polar coordinates (𝑟′′, 𝜃, 𝜑) which results in the following form of equation: 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 =
2𝜋

𝑟′
∫ 𝑑𝑟′′𝑔(𝑟, 𝑟′′) ∫ 𝑟12𝑑𝑟12[𝑔(𝑟12) − 1]

𝑟"+𝑟′

|𝑟′′−𝑟′|
                        (4) 

Including the integral, the OZPY equation which we have numerically solved for the 

direct correlation function   

𝑦(𝑟, 𝑟′) = 1 + 𝑛 ∗
2𝜋

𝑟′
∫ 𝑑𝑟′′𝑔(𝑟, 𝑟′′) ∫ 𝑟12𝑑𝑟12[𝑔(𝑟12) − 1]

𝑟"+𝑟′

|𝑟′′−𝑟′|
       (5) 

, where          𝑦(𝑟, 𝑟′) = 𝑔(𝑟, 𝑟′) ∗ 𝑒𝑥𝑝
𝑢(𝑟,𝑟′)

𝑘𝑇  
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Figure 4 is the plot of the pair correlation function g (r, r’) at a reduced temperature of 

2(𝑢(𝑟, 𝑟′) in units of thermal energy (𝑘𝑇)). The graph gives the plot of the pair correlation 

function for two different values of homogenous density 𝑛 in the OZPY equation. The effect 

of high homogenous density 𝑛  is evident from the red curve compared to that of low 

homogenous density given by green curve. The simulation results presented here are at a 

reduced temperature of (𝛽 =
1

𝑘𝑇
) 2 and homogenous density of 0.55 and 0.25. 

  The pair correlation plot in figure 4 is evidence of the fact that the initial homogenous 

density of the liquid influences the pair correlation and the arrangement of atoms around a 

reference atom. The red curve represents the case of a higher density homogenous phase 

(0.55) and have two peaks showing higher packing of atoms. On the other case the green 

curve with a lower initial density distribution has only one prominent peak implying lesser 

correlation/packing among atoms.   

 

 

Figure 4- Pair Correlation function for Homogenous density 0.55 (red curve) and 0.25 (green 

curve). 

From here onwards, we refer back to the percus-Yevick relation (equation 2) to compute 

the direct correlation function (𝐶(𝑟, 𝑟′) from the pair correlation function (𝑔(𝑟, 𝑟′).At this point 
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we may go forward and expand the direct correlation  in Fourier space as  𝐶̂𝐾 = 𝐶̂0 + 𝐶̂2𝑘2 +

𝐶̂4𝑘4 and calculate r* parameter of  the PFC model from these coefficient. This facilitates the 

use of the PFC model to study the phase behaviour (Ψ) for a fluid or an ideal gas interacting via 

Lennard Jones potential. However due to the unknown nature of the interacting potential between 

atoms/ions in solid and periodic phases the solution of direct correlation function though this 

method becomes trivial and unthinkable. Considering this problem, it is usually recommended 

to use a numerical value of r*(sometime referred to as reduced temperature) as an initial guess 

which is close enough to the physical properties (compressibility, Bulk modulus) of the 

material/phase to be studied through the model. In the next section, we will discuss some of the 

results we have produced on solving the equation of motion of the PFC model in 1 dimension. 

III-2-b Equation of motion  

In the previous section, we have discussed the Helmholtz free energy functional 

(equation 1) of the PFC model. However, the free energy equation that we have simulated in 

this work is modified to the simplest form possible. For instance we have solved the equation 

of motion without considering the multiplier 𝑡∗as it accounts for the complex contribution of 

three particle correlation 11 .Moreover we have solved the PFC equation of motion on the 

standard length scale(x) rather than the scale  𝑥̂ =
2∗(

𝐶4
𝐶2

)

1
2

𝑥
  (corresponds to the maximum of 

correlation function) on which the Helmholtz free energy of the conventional PFC model has 

been derived .Incorporating these modification the expression for the Helmholtz free energy 

we arrive to is given by: 

                             ∆𝐹 = ∫ 𝑑𝑟 {
𝛹

2
[𝑟∗ + (1 + ∇2)2]𝛹 +

𝛹4

4
}     

 The corresponding equation of motion to this form of Helmholtz free energy thus 

takes the following form: 
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𝑑𝛹

𝑑𝑡
= ∇2{[𝑟∗ + (1 + ∇2)2]𝛹 + 𝛹3}                        (6) 

Equation 6 is a sixth order differential equation which needs a set iterative method to 

solve over time. To solve the equation in one dimension we have implemented forward Euler 

Scheme (finite difference) where each iterative step is as follows 

𝛹𝑡+∆𝑡,𝑛 = 𝛹𝑡,𝑛 + ∆𝑡 ∗ ∇2{[𝑟∗ + (1 + ∇2)2]𝛹 + 𝛹3} 

  The Laplacian and higher order differential in the equation are solve based on finite 

difference scheme and Discrete Fourier Transform algorithm. As Per the finite difference 

scheme the Laplacian of the phase variable Ψ at any x position in space and time t is given by 

𝜕2 𝛹

𝜕𝑥2
=

𝛹𝑡,𝑥−∆𝑥 +   2 ∗ 𝛹𝑡,𝑥   +   𝛹𝑡,𝑥+∆𝑥 

(∆𝑥)2
 

 We have solved the equation of motion by plugging in an initial distribution of Ψ 

along space and value of r* in equation of motion. 

 

      Figure 5- Random distribution of Ψ at Time =0 
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Figure 5 represents the distribution in space where phase variable Ψ is initialized as 

random fluctuation around zero resembling initial perturbation in a homogenous liquid. The 

space variable is discretized as ∆x=0.4.  The value of r*(reduced temperature) chosen is 0.4 

for this case and the simulation is run for 20 units of time at an increment of 0.0001. Figure 6 

gives the distribution of Ψ at Time=20.The boundary condition are taken periodic in nature. 

As is can be observed from Figure 6 Ψ has changed from a random fluctuation to a more 

periodic phase. This behaviour can be inferred as an effect of sudden undercooling of the 

liquid by the factor r*=-0.4 in space which results from a random fluctuation into a periodic 

ordered phase. Our simulation results and the reasoning that follows it seems coherent with 

the physical mechanism behind the liquid-solid transition in a solidification process.    

 
Figure 6- Periodic phase distribution of Ψ at Time =20 

We next fitted the periodic phase distribution of figure 6 to a Sin function of the form 

𝐴𝑠𝑖𝑛(𝑘𝑥 − 𝑥0) ,with k as the wavenumber. On number of trial we found that 0.6 ∗ sin (1.1𝑥) 

best fit the periodic phase distribution at r*=-0.4; 
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The results observed in Figure 6 after iteratively solving the PFC equation of motion with 

initial parameters shows the utility of the model to study transition between two phases 

(random to periodic) with time. As discussed above we fitted this periodic phase to a Sin 

function of the form   𝐴𝑠𝑖𝑛(𝑘𝑥 − 𝑥0) and could obtain reasonable results. For our next case, 

we believed that it was necessary to study the effect of change of model parameters on the 

phase transition behaviour. On that note we ran few other simulations by placing a crystal in 

a homogenous phase of reduced density 𝛹0.For that purpose Ψ was initialized as a periodic 

phase of the form ( 𝐴 ∗ sin(𝑘𝑥) + 𝛹0) for certain portion in space. We initialized the wave 

number k as 1. The simulation run was performed for different pair of r* and 𝛹0.Figure 8 and 

9 gives the simulation results at time t=0 and t=10 for the case with 𝛹 taken initially as 0.72 ∗

𝑠𝑖𝑛(𝑥) + 0.45 . 

 

Figure 7- Ψ obtained from initial random fluctuation fitted with a periodic function at r*=-0.4 
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Figure 8- Placing a crystal with periodicity Ψ=0.72*sin(x)+0.45 in a homogenous phase at time 

t=0 and driving force for solidification given by r*=-0.2 

 

Figure 8 and 9 shows the phase transition Ψ from t=0 to t=10 at the initial quench 

given by r*= -0.2. The crystal with periodicity Ψ=0.72*sin(x)+0.45 placed in the homogenous 

phase disappears and cease to grow at this value of quench(r*=-0.2) parameter and reduced 

particle density 𝛹0 = 0.45. 

We next considered a different pair of value for 𝛹0 and r*.Figure 10 and 11 gives the 

simulation results at time t=0 and t=10 respectively. The value assigned to 𝛹0  and r* in this 

case are 0.2 and -0.45. Figure 10 resembles a crystal with perodicity Ψ=0.72*sin(x)+0.2 

placed in a homogenous phase with reduced density (𝛹0 ) 0.2. As is evident from the result 

given in Figure 11  the crystal has fully grown across the interface crystal/liquid by time t=10. 

The simulation results as shown in Figure 9 and 11 are of extreme relevance to determine 

equilibrium existence or coexistence of crystal/liquid phase along the independent variation 

of  quench parameter(r*) and reduced particle density (𝛹0  ).These results holds good to 
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predict the liquid-crystal phase transition from inherent material properties given by r* and 

the homogenous phase(with reduced density 𝛹0) surrounding it. 

 

Figure 9- Crystal placed in liquid disappears at time t=10 when the parameter r*=-0.2 

 

Figure 10- Placing a crystal with periodicity Ψ=0.72*sin(x)+0.2 in a homogenous phase at time 

t=0 and driving force for solidification given by r*=-0.45 
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Figure 11- The initial crystal with periodicity Ψ=0.72*sin(x)+0.2 disappear in the homogenous 

phase after time t=10 when the driving force for solidification is r*=-0.45 

We next attempted to look into the interface that gets generated when the 

Crystal/liquid phases tends to coexist.In order to investigate the interface we first placed the 

crystal(Figure 12,Time=0) coexixting with a liquid phase and let the system move towrads 

equlibirum according to the dynamics of PFC equation of motion.We reported our results at 

time=40 (Figure 13) with quench paramter set at r*=-0.3 and different value of reduced 

density, 𝛹0,𝑙 = −0.43 𝑎𝑛𝑑 𝛹0,𝑐 = −0.29 .Here 𝛹0,𝑙  and 𝛹0,𝑐 represents the boundary 

between liquid/coexistance and solid/coexistance phase.The hyperbolic tangent fucntion were 

fitted to the interface between the crystal and liquid on both side as shown in Figure 13. In a 

similar way we solved for the solid/liquid interface with r*=-0.5 as given in Figure 14.The 

Crystal /liquid interface in Figure 13 is less steep/sharper compared to that of Figure 14.It is 

evident from these results that a increase in quench factor r* changes the diffusive width of 

the interface between crystal and liquid.This shows that at higher quench rate kinetic effects 

takes over and does not provide sufficient allowance for diffusion effects as per 

thermodynamic laws. 
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Figure 12- Crystal placed in a liquid at time =0. 

 

 

  

  

 
Figure 13- Interface between Crystal/Liquid with parameters r*=-0.3 
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Figure 14- Interface between Crystal/Liquid with parameters r*=-0.5. Interface formed here is 

sharper compared to the case of r*=-0.3(Figure 31) 

III-2-c The Spectral Method  

In this section we present some of our simulation results produced using the Fast 

fourier transform spectral method.The specral method is perceived to be computationally 

efficient than the finite difference because its uses a simpler method to calculate the higher 

order derivative.The algorithm of Fast Fourier Transform works by transforming a space 

dependent function as in our case to frequency dependent (𝜔) function.We have used the 

discrete fourier transform of the function Ψ(j) where j range from 1 to N given by: 

    𝛹(𝜔) =
2∗𝜋

𝑁
∑ 𝑒𝑥𝑝−𝑖𝜔𝑥(𝑗)𝛹(𝑗)𝑁

𝑗=1    ,              

Where: 𝜔=[ -N/2+1,……..,N/2]   and the inverse Fourier transform is given as: 

𝛹(𝑗) =
1

2𝜋
∑ 𝑒𝑥𝑝𝑖𝜔𝑥(𝑗)𝛹(𝜔)

𝑁
2

𝜔=−
𝑁
2

+1
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If Ψ(j) is Fourier transformed as 𝛹 ̂(ω) then the Fourier transform of higher order 

derivative of Ψ(j) bears the following relation with  

Ƒ[ 𝛻2𝛹(𝑗)] = −𝜔2𝛹̂(𝜔) 

Ƒ[ 𝛻2𝛹(𝑗)] = 𝜔4𝛹̂(𝜔) 

Incorporating these relations makes Helmholtz free energy functional of the PFC 

model looks like 

𝑑𝛹̂

𝑑𝑡
= −𝜔2(𝑟 ∗ +(1 − 𝜔2)2)𝛹̂ − 𝜔2𝛹3̂               (7) 

The above equation contains a linear and nonlinear term(𝛹3̂) .Thus we need to 

operator split the above equation i.e we solve the linear and non linear part separately and 

then merge the invidual results afterwards. Therefore we solve the linear and non linear part 

of differential equation separately and apply the forward Euler scheme which results in a  

numerical solution of the form 

𝛹̂(𝑡 + ∆𝑡) = 𝛹̂(𝑡)𝑒𝑥𝑝𝐿𝜔∆𝑡 − ∆𝑡𝑘2𝛹3̂                (8) 

Where 𝐿𝜔 = −𝜔2(𝑟 ∗ +(1 − 𝜔2)2) 

The vector 𝜔 in this instance is the fourier space frequency variable given by 

𝜔 = [0, ∆𝜔, 2∆𝜔, … . .
𝜋

∆𝑥
, −

𝜋

∆𝑥
+ ∆𝜔, −

𝜋

∆𝑥
+ 2∆𝜔,…-∆𝜔] 

Here ∆𝜔 =
2𝜋

𝑁∆𝑥
, N being the size of the vector in x space. 

We ran our simulation on equation (8) iteratively over time .In each of the simulation 

we descritized space variable ∆x=0.1 and time ∆t=0.0001.The system size in real space range 

from x=-400 to 400. The utility of fourier transform alogorithm in simplifying the higher order 
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derivative gives us an edge to solve the PFC equation of motion for a larger size system and 

higher computational speed.Figure 15 gives the simulation results of equation 8 with quench 

factor r*=-0.7 at time =35.For comparative analysis of this result we performed similar 

simulation on equaiton 8 with quench factor r*=-0.2 at time =35. 

The solution of the PFC equation of motion given in Figure 15 and 16 shows that the 

quench paramter r* determines the crystal propogation.A higher value of r* accounts for the 

crystal front propagating to larger length than a lower r*.This deduction falls in line with our 

earlier analysis made through finite difference alogorithm.  

 
Figure 15- Propagating crystal front at r*=-0.7. The figure only shows the right side of the 

crystal 

. 
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Figure 16- Propagating crystal front at r*=-0.2. The figure only shows the right side of the  

                                                                        crystal 
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Chapter IV-Conclusion 

In this work, we have tried putting up a sincere effort to analyse the phase transition 

behaviour during a crystallization process. The analysis of the experimental results on electro 

crystallized charge transfer complex material on a substrate electrode laid the initial 

foundation of our research. The morphological transition of these charge transfer complex 

materials under different condition of concentration and applied overpotential were relevant 

results to adopt phase field crystal model(PFC) for our theoretical work. The phase field 

crystal(PFC) is an effective model to study the equilibrium between a homogenous(liquid) 

and a periodic phase(crystal). The equilibrium state of the system in a PFC model is 

represented in terms of Helmholtz free energy functional of density profile. The relation 

between the change in density profile with time and the proportional change in the Helmholtz 

free energy with respect to this density profile is referred to as the PFC equation of motion. 

We have solved the PFC equation of motion for different parameters and have achieved 

decent quantitative results. We have argued through our results that growth or disappearance 

of a periodic phase in a homogenous phase depends upon the initial parameters r* and Ψ0. We 

have also determined the nature of interface region between coexisting phases through our 

simulations. We have performed these simulations using the finite difference and Fast Fourier 

transform algorithm. We have realized through our analysis that the implementation of Fast 

Fourier Transform significantly increases the computational speed and allows simulation of 

large system than with the finite difference scheme. These results are encouraging to claim 

that the PFC model is a powerful tool to correlate with the real time behaviour during a 

crystallization process.  
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Chapter V-Future work 

The results and data reported in this thesis holds significance for further study of the 

phase transition phenomenon during the process of crystallization. We have structured our 

research based on the preliminary demonstration of phase transition behaviour of charge 

transfer complex material subjected to electro crystallized on a substrate electrode. These 

results laid initial ground work to adopt the well-known Phase field crystal(PFC) model for 

our theoretical study. The simulation results of this work are concrete evidence of the point 

that PFC model is a powerful tool to investigate research problems related to the 

crystallization process. We have used the most fundamental PFC model for our work in which 

the driving force for transition between a periodic and homogenous phase depends solely on 

quench parameter r* and reduced particle density. However, the interaction of charged species 

in an electro crystallization process it requires necessary modification of the PFC model 

currently implemented in this work. Moreover, we have restricted the PFC model simulation 

to 1 dimensional system and have left sufficient space to implement the model to higher 

dimensions. Our simulation results are encouraging and are a step in the direction to consider 

PFC for enhanced theoretical study of crystallization process. In a future study, the excess 

Helmholtz free energy functional of classical density functional theory containing the direct 

correlation function will change to incorporate the electrostatic interaction among particles. 

It is worth mentioning that there have been  successful attempts to use a modified form of the 

original CDFT23 in systems with charged hard sphere24,25, asymmetric electrolyte26 

.Therefore, a new form of PFC model derived from these modified CDFT model will certainly 

alleviate the understanding of electro crystallization process on a larger scale..  
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APPENDIX 

 

Matlab code solving PFC using Finite difference 

 
clc 
clear all 
dr=0.4; 
x=0:dr:40; 
dr2=dr^2; 
m=zeros(1,length(x)); 
Si=-0.2+0.4*rand(1,length(x));   % Si taken as initial random 

distribution 

  
f1=figure; 
plot(x,Si); % Plotting Si at time=0 
  axis([0 40 -1.5 1.5]) 
 title('Time = 0'); 
 f2=figure; 
 t=50; 
dt=0.0001; 
epsilon=0.2; 

  
for i=0:dt:t 
Si3=Si.^3; % Si^3 calculated from Si 
    Si_old=Si;     % Current Si 
        for j=1:length(Si) 
     cnt=j+1; 
      cnt1=j-1; 

  
      if (cnt==length(Si)+1) 
          cnt=1;     % applying periodic boundary condition to Si 
      end 
      if (cnt1==0) 
          cnt1=length(Si);  % applying periodic boundary condition to 

Si 
      end 
     term1(j)=(Si(cnt)-2*Si(j)+Si(cnt1))/(dr2);  % Taking Laplcian of 

Si at each grip point 
          term4(j)=(Si3(cnt)-2*Si3(j)+Si3(cnt1))/(dr2);     % Taking 

Laplacian of Si^3 at each grid point 
        end 
  for k=1:length(term1) 
      cnt2=k+1; 
      cnt3=k-1; 
    if (cnt2==length(term1)+1) 
          cnt2=1;     % applying periodic boundary condition to 

laplacian of Si 
      end 
      if (cnt3==0) 
          cnt3=length(term1); % applying periodic boundary condition 

to laplacian of Si 
      end   
      term3(k)=(term1(cnt2)-2*term1(k)+term1(cnt3))/(dr2);% Taking 

Laplacian^2 of Si at each grid point 
  end 
  for l=1:length(term3) 
      cnt4=l+1; 
      cnt5=l-1; 
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       if (cnt4==length(term3)+1) 
          cnt4=1;              % applying periodic boundary condition 

to laplacian^2 of Si 
      end 
      if (cnt5==0) 
          cnt5=length(term3); % applying periodic boundary condition 

to laplacian^2 Si 
end 
      term2(l)=(term3(cnt4)-2*term3(l)+term3(cnt5))/(dr2);  % Taking 

Laplacian^4 at each grid point 
  end 
    grad_Si=((1-epsilon)*term1+term2+2*term3+term4)*dt;      % change 

in Si after time dt 
Si=Si_old+grad_Si; % Si at time t+dt 
      if(rem(i,1000*dt)==0) 
figure(f2) 
 plot(x,Si) % Plotting Si after 1000dt 
    axis([0 40 -1 1]) 
 title(['Time=' num2str(i)]); 
        pause(0.0001) 
      end 
end 

 

 

Matlab code solving PFC using Fourier Transform 

 

 
x=0:dr:80; % grid size 

dr=0.5; 
 Si(1:((length(x)+1)/2))=0;           % Initializing Phase variable 

Si to left of mid region in grid 
  Si(((length(x)+1)/2)+1)=0.2;         % Initializing Phase variable 

Si at mid value in space 
  Si(((length(x)+1)/2)+2:length(x))=0;  % Initializing Phase variable 

Si to right of mid value in grid 

  
Si_3=Si.^3;       % Calculating non linear Si^3. 
N=length(x);       
delta_k=(2*pi)/(N*(dr));  % Discretization of Space variable k 
 z=[-N/2+1:1:0 0:1:N/2]; 
k_x=delta_k*z;         % Vector k in fourier space 
y1=(fft(Si,length(k_x)));   % Calculating fast fourier transform of 

Phase variable Si 
y2=(fft(Si_3,length(k_x)));  % Calculating fast fourier transform of 

Phase variable Si^3 
Si_f=(y1); 
Si_3f=(y2); 

  
t=35; 
dt=0.0001; 
epsilon=0.7; % Setting PFC parameter Si 
f1=figure; 
plot(x,(Si));   % Plotting initial Si at time=0 
title('Time = 0'); 
 f2=figure; 
for cnt=0:dt:t                      
    for cnt1=1:length(Si_f) 
            cnt2=cnt1; 
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      term1(cnt1)=(-((k_x(cnt2))^2)*(-epsilon+(1-

(k_x(cnt2))^2)^2))*dt;  % Converting PFC equation of motion differential 

equation as per fourier transformation     

  
grad_Si_f(cnt1)=Si_f(cnt2)*exp((term1(cnt1))); % calculating 

gradient of fourier of Si. 
grad_Si_3f(cnt1)=(-(Si_3f(cnt2))*(((k_x(cnt2))^2))*dt); % 

calculating gradient of fourier of Si^3. 
    end 

  
Si_f=(grad_Si_f+grad_Si_3f); % Si in fourier space at t+dt  
Si=(ifft(Si_f,length(k_x))); % Taking Si back to real space 

  
 Si_3=Si.^3;  % Updating Si^3 from new Si 
 Si_3f=(fft(Si_3,length(k_x)));  % Updating fourier transform of  Si^3 
if(rem(cnt,1000*dt)==0) 
figure(f2) 
     Si_new=Si((length(x)+1)/2:length(x));  % Considering phase 

variable Si after 1000*dt 
     x1=x((length(x)+1)/2):dr:x(length(x)); 
plot(x1,Si_new)         % Ploting Si after 1000dt 

  
title(['Time' num2str(cnt)]);  
  pause(0.0001) 
end 
end 
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ABSTRACT 

ENGINEERING CRYSTALLIZATION via PHASE FIELD 

CRYSTAL MODEL 
 

Advisor: Dr. Korosh Torabi  

Major : Material Science and Engineering 

Degree: Master of Science 

Charge transfer complex material demonstrate morphological transitions while electro-

crystallized on a substrate electrode under varying solute concentration and applied 

overpotential. It is hypothesized that variations in these parameters affect the thermodynamics 

and the kinetics of the electro-crystallization process. Having analysed these results, we resort 

to applying phase field crystal(PFC) model for our theoretical study. Our initial literature 

review laid foundation to consider PFC model as a powerful tool to study various aspect of 

crystallization process. In a PFC model the thermodynamic state of a system under study is 

defined in terms of Helmholtz free energy functional of density profile 𝐹 = 𝐹[𝜌(𝑟)].Our 

numerical solution of the time-dependent PFC model demonstrates that the phase transition 

behaviour between a periodic crystal phase and a homogenous phase can be tuned by 

changing parameters within the PFC equation. These simulations also predicted the nature of 

the interface between solid/liquid phase at different simulation conditions. Moreover, it was 

evident from our results that solution of the PFC equation of motion through Fast Fourier 

Transform algorithm is computationally faster which facilitates the simulation of a large 

system. 

  



48 

 

 

 

                          Autobiographical Statement 

Following my deep interest in the field of Material science and Engineering I was motivated 

to pursue my master’s studies in this major at Wayne State University, Detroit United States. 

It was during the initial phase of regular coursework in this major I was introduced to the tool 

of modelling and simulation applied to various area of research. In particular I was deeply 

impressed with the concepts of statistical mechanics and advanced thermodynamics applied 

to research problems at microscopic level. On realizing my new found interest in the 

application of Modelling and Simulation techniques to fundamental research topic, I choose 

to work under the supervision Dr Korosh Torabi, Asst Prof Department of Chemical and 

Material science Engineering at Wayne State University for my Masters degree thesis work. 

I was fortunate to have reached out to him at a time when he had just started working on a 

collaborated research work with Dr Guangzhao Mao experimental group on a project outlined 

as the “Engineering the morphology of electro crystallization kinetics of organic nanorods on 

a substrate “.On Dr Torabi recommendation I was lean towards undertaking this research via 

experimental and theoretical route. The experimental part of my research work involves 

electrocrystallization of charge transfer complex TTFBr nanorods on a selectively oriented 

substrate followed up by morphological analysis via Atomic force microscopy imaging. 

Moreover, on the theoretical front I am involved in investigating previous literature work 

conducted via utilizing Phase field crystal thermodynamic model derived from the concepts 

of Classical density functional theory towards studying phase transition of materials on a 

substrate. On a final note I once again wants to give my sincere regards to  Dr Torabi for his 

immense support and valuable guidance in letting me explore and build my foundation in 

areas from the point of view of statistical mechanics and Classical Thermodynamics.   

 


	Wayne State University
	1-1-2017
	Engineering Crystallization Via Phase Field Crystal Model
	Deepak Joshi
	Recommended Citation


	tmp.1511371811.pdf.ZEqFt

