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Introduction 
 

This thesis is comprised of two primary areas of study; the first chapter focuses on 

pedagogical research and the following two on bench biochemistry research. At the beginning, 

work was focused solely on bench chemistry, developing cell specific protein delivery vehicles. 

Soon, work was split between the bench and developing a pedagogical tool for visualizing and 

analyzing longitudinal progression of student cohorts through various majors. As the chimera 

project began to stall, bench work became centered on elucidating a possible mechanism of toxin 

production within the pathogenic Clostridium difficile, while continuing pedagogical research. 

Eventually, frustrations working on bench-chemistry lead to focusing solely on the student data 

visualization tool and pedagogical research.  
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Chapter 1 
Development of a New Student Data Visualization Tool: 
Changing the Paradigm of Data-Driven Decision Making 
 
Introduction  

In recent years, colleges and universities have invested significant resources towards 

improving student success.1-3 When students succeed in college, they become productive 

members of their community and promote the advancement of their society. When students do 

not complete their courses of study, a portion of responsibility falls on the institution to assess 

the students’ needs and supply the necessary resources for success. Student attrition leads to a 

loss of time and money invested for the student and the institution. Assessing student success has 

traditionally focused on academic output, but the issues are multi-dimensional. Researchers are 

beginning to expand their focus to psychosocial and financial aspects, and the role they play in 

student success.4-6 Unfortunately, many of these investigations are carried out at the highest 

levels of an institution, and data rarely filter down to those faculty and staff closest to the issues. 

The goal of this work was to create a data visualization tool that can generate actionable 

outcomes from faculty and staff at all levels within an institution.  

Emphasis on improving student success has lead to the emergence of learning analytics, 

focusing on aspects of students’ lives and experiences, to find factors that can improve student 

learning and success.7-9 Learning analytics has lead many to ask the question, “What leads 

students into academic trouble?” Answering that question requires parsing complex data on 

student performance, sometimes making it difficult to supply clear and actionable answers. 

Visualization tools help guide institutions or stakeholders through the complicated data, portray 
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it in an easy to follow manner, and allow for large amounts of information to be analyzed 

simultaneously to discern patterns. The ethics of student data analytics is highly discussed and it 

is important to note that for the privacy of faculty and students all courses, dates, and fields of 

study used herein have been de-identified.10, 11  

The current paradigm of student data analytics relies heavily on predictive algorithms that 

analyze student demographic information and prior academic performance, or current data, to 

flag students at-risk for sub-optimal success in “real time”.12, 13 While these algorithms have been 

used towards many productive ends, they contain inherent limitations. These tools often fail to 

analyze the longitudinal progression of student cohorts. Also, many of the algorithms are end-

point focused using graduation or a single class outcome as the measure of success, which may 

define the problem too narrowly. Some learning analytic tools, such as the Open Learning 

Initiative, have a wider definition of success and focus on student learning outcomes in 

individual courses, but tend to have microscopic focus within foundational courses prone to 

being a barrier to student success.14 Most predictive algorithms do little to address the student 

deficit model, or the belief that students’ own deficits lead to a lack of academic success, by not 

analyzing longitudinal effects of curriculum.15-17 A truly effective analytic tool should focus on 

the curriculum and the student in parallel. 

 A class of visualization tools that depict student migration complement predictive 

algorithms.18, 19 These tools allow administrators or faculty to determine populations of students 

who do not graduate with their initial major, or demonstrate how students migrate within a 

particular school of study. Changing majors clearly can affect time to degree and attrition from 

college but does not repair the more fundamental problems that might exist within the program. 

Migration plots are not sufficiently granular. They focus on starting and/or ending points without 
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addressing specific barriers that might catalyze student migration. Our tool uses a java generated 

user interface (UI) to present student data in a curriculum-centered fashion highlighting students’ 

performance for each class in sequence, and not only identifying graduation as an endpoint 

(Figure 1.1). This tool lends itself to go beyond current student data, which most predictive 

A 

B 

 
Figure 1.1: Java interface and demographic selectors. A) The java UI allows any user to generate 
Student Circos plots without prior experience with R syntax. The interface requires a range of semesters 
with the desired courses to build the required karyotype, and many optional demographic selectors by 
which to select a cohort. A cohort can also be selected based on a class selection with the option of 
specifying a particular semester and/or grade(s) earned in that class. B) The major track allows for easily 
switching between majors and will auto-update the window when selecting a new major. The user can 
select as many or as few of the supplied courses for each major track from which to build the karyotype. 
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algorithms use, and display historic student data for faculty and staff to draw conclusion about 

their programs as a whole. Student Circos plots allow the unique ability to track cohorts before 

and after a class of interest, making it a very robust tool for visualizing longitudinal student data.  

Results 

To probe student data effectively, the right people need the correct data and they have to 

ask the right questions. An investigator can generate a collection of questions and then easily 

become lost in a sea of data. Answering these questions by panning data for statistically 

significant trends can often be akin to taking a shot in the dark. This tool can help narrow the 

Student Data 

Student Circos Plots 

??? ??? Pointed Questions 

Statistical Analysis 

Actionable Outcome 	
 
Figure 1.2: Workflow for analyzing student data. Analyzing student data to generate actionable 
outcomes is a multifaceted process. Student Circos plots aid an investigator in forming pointed 
questions from the complicated and cumbersome student data. The pointed questions can then be 
validated via statistical means and used to implement actionable outcomes to improve student success.	



	 6	

focus leading them to a quicker understanding of longitudinal cohort progressions (Figure 1.2). 

Using the Student Circos plots allows swift visualization of many cohorts to quickly analyze if 

the proposed questions have merit. Then, more pointed questions can be generated and the data 

table output can be used to analyze for statistically significant relationships. The investigator can 

then use their own experience to filter the results and propose an actionable outcome, working to 

improve student success. 

Reading Student Circos Plots 
 

Circos is a program that was designed for visualizing data, most often of genomic origins, 

in a circular layout maximizing the data-to-ink ratio.20 Student Circos plots are built off of the 

parent Circos program because the circular layout allows the longitudinal analysis of student 

progression through majors. Because this tool is based off of Circos, aspects have adopted 

nomenclature such as “karyotype”. The karyotype is the outside circle of class names and color 

boxes. The colored boxes denote semesters where red, blue, and yellow indicate fall, winter, and 

spring/summer semesters respectively. The colored lines signify the grade a student earned in the 

class where: A=green, B=blue, C=yellow, D=orange, WF=black. Students’ progress through a 

major via three main paths ending in one of three possible outcomes: graduation, still currently 

enrolled, or stopping out (Figure 1.3). Other endpoints exist (such as transfer out) which could 

also be added if needed by an institution, but these three encompass the majority of students. 

Plotting full cohorts together, one can gather information on longitudinal student progression. 

Visualizing cohorts over time can identify important trends that warrant further analysis, such as 

statistical tests between cohorts. 

Proof of Concept For Student Circos Plots 
 To validate the ability to draw conclusions using Student Circos plots, the tool was used 

to identify the semester a curriculum change was implemented within the first class of a major  
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Figure 1.3: Reading a Student Circos plot.  The karyotype displays the semesters and courses 
selected by a user. Red boxes symbolize fall semesters, blue winter, and yellow spring/summer. The 
interior of the karyotype has a series of tick marks for easily identifying when a semester begins (-), 
when a class begins (<<), or when the academic year begins (X). These plots show three students with 
expected paths through a given major. A) Student tracking through without delay and with good 
grades to graduation B) Student struggled through the track with repeated attempts at courses, but still 
graduated C) Student struggled through the track and has not yet reached graduation. D) Overlay of all 
three students. 
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(Figure 1.4). A series of plots were generated using winter and fall semesters (spring/summer 

semesters were ignored because they are not part of a normal progression and have low levels of 

enrollment) covering a four-year span. Before Semester 4, each cohort took the second class in 

this progression over a wide range of semesters indicating the cohorts are not proceeding 

together. During and after Semester 4, the cohorts advance to Class 2.4 with less spread, 

suggesting they have begun to advance as a cohesive unit and students do not delay over multiple 

semesters. Students also exhibit better performances in the first two classes, with the majority of 
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Figure 1.4: Analysis of a change in curriculum. Our institution implemented a change in curriculum 
for Class 1.4 of this track. Cohorts include students who took Class 1.4 in A) Semester 1, N=56 B) 
Semester 2, N=70 C) Semester 3, N=63 D) Semester 4, N=62 E) Semester 5, N=60 F) Semester 6, 
N=85. Without prior knowledge, this tool identified that the curriculum change occurred between 
semesters 3 and 4, evidenced by the increase of A/B grades coming out of Class 1.4 in addition to a 
decrease in student delay moving into Class 2.4. 
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students gaining a higher grade, though not significantly higher. Together these factors correctly 

indicated Semester 4 was the semester where the curriculum change was implemented. 

Interestingly, the change in curriculum appears to not address the population of students that 

only take Class 1.4, evidenced by a consistent migration of students from Class 1.4 to Current. 

This example demonstrates this tool is capable of identifying trends in student data. 

Effects of Grade in a Seed Course 
Student Circos plots were used to visualize how student’s performance in a seed course 

(the first in a sequence) affects longitudinal progress through foundational classes of a major. 

Students who took the seed course in a particular semester were separated by grade into four 

plots (Figure 1.5). The A and B cohorts tend to maintain a high level of achievement throughout 

the rest of the track, with few ending in Stopout and many graduating after completing all the 

courses, as one might expect of students who have early academic success within their major 

(Figure 1.5A and B). Students that struggle in the first course often continue to have difficulty in 

subsequent courses (Figure 1.5C). Within the C cohort, multiple students repeat many classes 

within this major. Seeing the difficulties students have within this cohort highlights an area that 

could be further analyzed to improve student success. A possible issue at hand is the fixed vs. 

growth mindset, a common area of discussion in pedagogy.21 Students starting track 5 with a 

DWF often terminate at Stopout or Graduation, demonstrating the difficulty of recovering from a 

failing grade within this major (Figure 1.5D). These two end points are drastically different and 

more work is required to determine what factors lead the DWF cohort to Graduation compared to 

stopping out. On the whole, this tool has provided visual evidence that can lead a stakeholder 

into deeper analysis of the C or DWF cohorts to further elucidate factors that lead to differential 

success, and ask how the program or support services might be adjusted to improve outocomes 

for these students. 
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Figure 1.5: Effect of seed course grade on progression through major. Cohort includes students 
who took Class 1.4 in the semester designated with a star and grade of A) A, N=48 B) B, N=59 C) C, 
N=54 D) DWF, N=68. Many students who didn’t pass Class 1.4 (Grade DWF) in the selected 
semester also failed in prior semesters, with few moving to higher-level courses within this track. 
Students who do well in their first course (Grade = A/B) tend to maintain success through the entire 
track, demonstrating that when students start strong, they tend to finish strong. Conversely, when 
students experience difficulty in the first class (Grade = C/D/F) few students recover to experience 
high levels of success.	
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Student Success in a Gateway Course 

Gateway courses are foundation-level, with high enrollment, and a high risk of failure 

and have been an area of intense study within pedagogy for over twenty years.22-25 This tool was 

used to compare cohorts that retake the gateway course Class 2.6 (retake gateway course, RGC) 

and those that progress after one attempt (OA), to analyze if gateway courses hamper student 

success in this major (Figure 1.6). OA students do significantly better than RGC in all classes, 

even when comparing the highest attained grade for RGC (Figure 1.7). The RGC cohort takes 

Class 1.6 multiple times, suggesting that the skills and knowledge gained in Class 1.6 is not 

appropriately preparing students for Class 2.6. Further analysis of the RGC cohort shows that for 

the first two classes of this track, the grades attained decrease with each attempt (Figure 1.8). 

These data suggest that students seldom improve their grade, which likely creates a financial 

burden on the student. Additionally, the cohorts were analyzed for correlations between class 

grade and ACT composite score or high school grade point average (HS GPA), and the gender or 

ethnicity make up but no significant relationships were found (Appendix A Figure 1-4) 

Regardless of grade or number of attempts many students move from Class 2.6 to Current, 

Graduation, or Stopout. These plots visually demonstrate a large exodus from this major, 

supporting the hypothesis that the gateway course truly inhibits students from succeeding and 

progressing in this major.  

Effect of Delaying Within a Major 
Every major contains expected pathways, progressions, and milestones that faulty deem 

successful. For this major, students are expected to progress from the first to fourth class within 

two years (Figure 1.10). A faculty and staff narrative at our institution involved students’ whom 

delay taking certain courses, suggesting the delay leads to a lower grade in the final course, an  

affect we wanted to visualize. At first glance, the cohort delaying (delay full, DF) and the cohort 
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Figure 1.6: Student performance within gateway course. Students who took the gateway course 
Class 2.5, in the term denoted with a star. A) Full cohort, N=407 B) Students retaking Class 2.5 
(RGC), N=234 C) Students who do not retake Class 2.5 (OA), N= 172. The RGC cohort had 
decidedly poorer performances in Classes 3.5 and 4.5. These students also exhibit a wide fanning 
within Classes 1.5 and 3.5, demonstrating that many retake each course over a large time period. OA 
students most often earn a grade of C and seldom stumble within Classes 1.5 or 3.5. Collectively these 
plots demonstrate that success in Class 2.5 indicates success in Class 3.5, and confirms Class 2.5 
behaves as a gateway course. 
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Figure 1.7: Average grade for Class 2.6 cohorts. Students who attempt Class 2.6 once (OA) do 
significantly better than the cohort that retakes this class (RGC). OA students do better in all but the 
first class when using the highest grade attained by the RGC cohort (RGC, Max Grade).  This supports 
the conclusion that students who struggle in the gateway course continue to perform poorly throughout 
the major. *** = p<0.01, ** = p<0.05, student’s t-test 
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Figure 1.8: Class performance by number of attempts for students retaking Class 2.6. In the 
early classes of this major, as attempts increase the earned grades decrease. The same trend does not 
hold for the last two classes. For Class 1.6 and Class 2.6, the data support this institutions policy of 
requiring special permission to take a class more than three times, as student grades are generally 
worse at higher attempts. 
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 that stays on time (OT) do not appear to perform differently in the first or last course (Figure 

1.10C and D). However, DF can be split into two distinct sub-populations: those who delay 

because they retake the second class of this progression (delay retake, DR) and those who delay 

for reasons beyond our knowledge (delay no retake, DNR) (i.e taking courses outside this track, 

personal factors, etc.). Plotting these populations separately shows the DR cohort performs 

poorer in the first and last course compared to DNR (Figure 1.11). The grades within Class 4.10 

for DNR mirror those of OT. The data unexpectedly show that how long a student takes to 

progress through this major has minimal impact on success, but the students’ path between 

classes plays a large role. Correlation analyses and gender or ethnicity make-ups or each cohort 

were conducted as with the gateway course investigation, but no significant results were 

identified (data not included). Without these plots, identification of DR and DNR cohorts would  
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Figure 1.9: Correlation between class grade and HS GPA*ACT Composite score. HS GPA*ACT 
Composite score is a good predictor of success for students who attempt Class 2.6 once (OA), but is 
very poor for students retaking the gateway course (RGC). r = Pearson rho, *** = p< 0.01, **= p< 
0.05 
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Figure 1.10: Student path from Class 1.9 to Class 4.9 and the effect on Class 4.9 performance. 
Students who took Class 1.9 in the semester denoted by a star compose this cohort. A) Full cohort, 
N=416 B) Students who did not take Class 4.9, N=296 C) Students taking Class 4 within two years of 
taking Class 1.9 (OT), N=41 D) Students taking Class 4.2 more than two years after Class 1.9 (DF), 
N= 79 E) Students taking Class 4.9 more than two years after Class 1.9 and did not retake Class 2.9 
(DNR), N=43 F) Students taking Class 4.9 more than two years after Class 1.9 and retook Class 2.9 
(DR), N=36. Students are expected to progress from Class 1.9 to Class 4.9 within two academic years. 
OT students do very well in Class 4.9, with most earning a B or higher. The DF cohort can be split 
into two sub-populations: DNR and DR. The DR cohort performs poorly in every class within this 
track compared to DNR. OT and DF cohorts both show a high success rate after reaching Class 4.9, 
confirming a trend previously reported at our institution. 
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have been exceedingly difficult. Additionally, it has previously been reported that when students 

reach Class 4.10 there is ~ 96% graduation rate. For all of the cohorts that reach Class 4.10, very 

few students migrate to Stopout confirming the high success rate (Figure 1.10A, C, D). Student 

Circos plots have verified a trend previously reported at this institution while simultaneously 

discrediting another. 

 
Discussion 

Improving student success in higher education is heavily dependent on data being in the 

hands of faculty and staff who have the ability to generate positive changes at their institution. 

Visualization tools depicting student data in a longitudinal manner are required for faculty to 

draw meaningful conclusions from historic student data. Current predictive algorithms and 

student migration plots fail to accomplish the task of presenting data for longitudinal analysis of 

student cohorts and often utilize current data and not historic. The Student Circos tool achieves 

the goal of depicting student data as longitudinal progression and has exhibited a wide variety of 

applications. Plotting student data in a circular fashion maximizes the quantity of data presented 
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Figure 1.11: Average grade by Class 1.10 cohort. Students delaying within major and not retaking 
Class 2.10 (DNR) do significantly better in each class than their repeating counterparts (DR). 
Interestingly, DNR students perform better in the first class than the cohort that progresses through 
this major on time (OT). DF = full delay cohort   ***= p<0.01 
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in each plot and shows longitudinal student progression through majors. Using this tool has 

identified questions that require further analysis to generate actionable outcomes for improving 

student success. For example, the DWF cohort of a seed course contains students that attain 

success by graduating and the less optimal endpoint of Stopout. An institution can use these data 

to set the stage for an in depth analysis, determining what factors lead to the two very different 

outcomes. Students can use these data as a precautionary tale to start their college career on a 

positive note. Student Circos plots have also generated data visualizations that challenge 

previous understandings, as is the case with students who delay within a major. Without this tool, 

the effect of a student’s progression through compared to the amount of time delaying within a 

major would likely never have been identified.  

It is important to note that this tool can be altered to many ends. For example, there is a 

version of this tool that generates single student plots that are useful for advising purposes. 

Single student plots depict student progression of a major and the major requirements that have 

been met. Additionally, one can alter plots by adjusting the order in which data is printed, to 

better represent the question at hand. Currently, term, class, and grade are used to sort course 

data, in that order, before plotting. By adjusting these parameters one can change the emphasis of 

a plot or mine for different trends. The level of personalization and control over cohort and class 

selections make Student Circos plots an invaluable tool for analyzing longitudinal cohort 

progression. One major limitation of Student Circos plots is the inability to draw meaningful 

conclusions from large cohorts of students because the plots become very hard to read. However, 

the benefit of only plotting smaller samples is that an interested faculty member will need a 

directed question before starting analyses, preventing them from becoming lost in a sea of data. 
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Student Circos plots allow faculty and staff to identify important trends in longitudinal student 

progression and generate actionable outcomes for student success in higher education. 
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Chapter 1 Materials and Methods 

Institutions wishing to implement this program will require three items: student data in 

.csv format (Appendix A Figure 5), R, and a java editor. If the student data is in JSON format, it 

can be unpacked within R into a data frame and then used for the plots, but none of the included 

R scripts contain code for JSON unpacking. Within Java the user must install REngine and 

Rserve, each java script for the UI contains import script for these packages. Three packages 

available within R must be added to the users library before use: RCircos, Rserve, and plyr. 

When using the UI, indexing of each package occurs within the Rconnection of the java script, 

so they only have to be installed in the operating version of R. However, the Rserve socket must 

be initiated within R before executing the java script. 

Java interface 

 This tool uses a Java UI that implements RConnection to integrate R and Java (Figure 

1.1). The code for the Java UI can be found at the Feig Lab website 

(http://chem.wayne.edu/feiggroup/) The UI affords investigators unfamiliar with R the 

opportunity to make Student Circos plots in a high throughput manner. The interface contains 

two sections; the mandatory input information located at the top and the optional demographic 

selectors located beneath. Possible demographic selectors include: admission semester, 

graduation semester, ACT score, declared major, gender, high school GPA, class and/or semester 

and/or grade, ethnicity, and population cohorts. The major and ethnicity designations, classes 

within each area of study, and population cohorts (i.e stars cohorts) must be customized to other 

institutions. Areas in the code that require this attention have been appropriately annotated. 
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Data Manipulation in R 

 Two user-created R functions achieve the proper data manipulations to generate Student 

Circos plots and can be found within two individual R scripts located at Feig lab website 

(http://chem.wayne.edu/feiggroup/). Both of these functions are accessed within Java and 

executed within R through the Rconnection to generate the desired image(s). The first function 

generates a data frame that termed the “karyotype”, defining the outermost circle of the plots and 

denotes the semesters, classes of interest, and tick marks. The three possible terminations of 

study Current, Graduation, and Stopout remain constant within the karyotype. A Stopout is 

defined as a student who has not registered for a class in over two years. User input of starting 

semester, ending semester, and class track of choice generates the karyotype (Appendix A Figure 

6). The second function takes user defined cohort selectors, either demographic or class/term, to 

generate a list of students who fit into the desired cohort. This function then selects all classes for 

the cohort that fit into the desired class track and transforms the data into a format suitable for 

plotting with RCircos (Appendix A Figure 7). RCircos uses the resulting data frames from each 

function to create the final plots as .pdf files on the desktop (or the working directory in the users 

R). These R scripts will work with any institutions data provided the starting course and 

demographic data are in the same format as ours (Appendix A Figure 8). However, if the starting 

data were in a different format, a small amount of programming time would have to be dedicated 

to transforming the data into appropriate Circos format. Data reported here have been masked for 

the privacy of students and faculty.  

 



	 21	

 
Chapter 2 
Adapting TcdA into a Cell-Specific Protein Delivery Vehicle 
 
Introduction  

The cellular membrane provides a formidable barrier to the intracellular delivery of 

exogenous proteins. Since proteins have the ability to alter biochemical pathways, it would be 

desirable to introduce a cloned protein to analyze its effect on cell processes or cellular 

localization. One strategy for exogenous protein introduction is through expression in situ using 

systems like the T7/lac or tetracycline responsive elements.26, 27 Systems like these often lead to 

protein levels that are not biologically relevant. Recent development of synthetic promoter 

libraries and predictive mRNA design tools has improved the control of gene expression.28, 29 

However, induction over a large concentration range requires creation of multiple constructs and 

ample trial and error. These shortcomings make cellular delivery desirable to exogenous 

expression. Current methodologies for protein delivery rely on appending polycationic tags such 

as the HIV trans activator of transcription (Tat) or Drosophila antennapedia (Antp) to proteins of 

interest.30 These cell-penetrating peptides (CPPs) efficiently achieve cellular delivery, but there 

are drawbacks to these systems. Due to the highly cationic character of CPPs, protein chimeras 

often experience undesired delivery to different cellular compartments such as the nucleus.31 

There has been some evidence that the nuclear localization is predominantly an artifact of the 

fixation process often associated with analyzing delivery of exogenous proteins.32 CPPs also 

have a high level of toxicity associated with treatment.33-35 Finally, due to the general mechanism 

of CPP uptake, these systems also suffer from a lack of cellular specificity, dramatically limiting 
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the in vivo applications. These major drawbacks create a need for a more efficient, less toxic, and 

cellular specific delivery vehicle.  

Clostridium difficile (C. difficile) is a pathogenic spore-forming bacterium most 

commonly associated with pseudomembranous colitis.36 C. difficile is a common nosocomial 

infection often colonizing after the normal flora of the gut is disrupted by antibiotic treatment. C. 

difficile produces two major virulence factors, Enterotoxin A (TcdA) and Entertoxin B (TcdB) 

(Figure 2.1).37 Each of these toxins contains multiple subunits that behave in a well-orchestrated 

fashion to intoxicate epithelial cells of the gut with an active cargo, leading to cell death (Figure 

2.2). Due to the large level of homology and shared mechanism of intoxication, only TcdA will 

be discussed further. TcdA contains a C-terminal repeating oligopeptide (CROP) region that 

elicits endocytosis via cell-surface receptor recognition and aggregation.38-40 Upon endosomal 
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Figure 2.1: Major virulence factors of C. difficile. A) Subunits of Toxin A (TcdA) and Toxin B 
(TcdB) from C. difficile from N- to C-terminus: glucosyl transferase domain (red, GTD), cysteine 
protease domain (blue, CPD), translocation domain (orange, TD), and C-terminal repetitive 
oligopeptide (green, CROP).37 B) Crystal structures of TcdA GTD, CPD, and TD.42. C) NMR structure 
of CROP.38 
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acidification, the translocation domain (TD) undergoes a conformational change inserting itself 

into the endosomal membrane creating a pore.41, 42 Once the pore is formed, the cysteine protease 

domain (CPD) and glucosyltransferase domain (GTD) are translocated from the endosome into 

the cytosol. CPD then binds the eukaryotic-specific inositol hexakisphosphate (IP6) activating the 

protease moiety, cleaving GT from the rest of the toxin.43, 44 Once liberated, GTD is able to 

glycosylate Rho family GTPases inducing actin disregulation, ultimately leading to cell death.45 

TcdA processing within the cell leads to the delivery of an active cargo while the rest of the 

protein is degraded, making TcdA an attractive possibility as a delivery vehicle for cargos other 

than GTD. The tagless delivery eliminates many of the negative CPP-chimera effects. Previous 

reports have shown that by replacing GTD with reporter proteins such as luciferase, the TcdA 

scaffold is capable of delivering non-natural cargo to endothelial cells.46 Additionally, the TcdB 
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Figure 2.2: Mechanism of TcdA intoxication. 1) CROP binds and aggregates epithelial cell surface 
receptors inducing endocytosis. 2) Endosomal acidification causes TD to change conformations and 
form a pore in the endosomal membrane through which CPD and GTD can be fed into the cytosol. 3) 
In the cytosol CPD binds IP6 (black hexagon) and 4) cleaves GTD from the rest of the toxin. 5) 
Remainder of toxin remains in the endosome and degraded.  
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has been used to specifically target neurons by replacing CROP with the receptor-binding 

domain of Botulinum neurotoxin.47 Combining both of these lines of research, the goal was to 

create TcdA chimeras that are cell specific protein delivery vehicles capable of altering cellular 

pathways.  

Chimeric Toxin Design 

 Multiple features have been engineered into the chimeric proteins using the TcdA 

scaffold. Unique digestion sites flanking the cargos and receptor binding domains (RBDs) were 

engineered for swift interchanging of different cargos and RBDs (Figure 2.3A). The chimeras 

also include a C-terminus hexahistidine tag (His6) for affinity purification as well as orthogonal 

labeling sites. An YbbR12 sequence has been placed at the C-terminus of cargos upstream of the 

CPD 48, 49. YbbR12 is a recognition sequence for the Bacillus subtilis phosphopantethein 

transferase Sfp, enabling the labeling of cargos with CoA substrates. The YbbR12 tag is located 

such that the label remains with the cargo upon CPD cleavage, important for visualizing cellular 

delivery and localization of cargo. In addition, the RBDs contain a Sortase A (SrtA) recognition 
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Figure 2.3: Design of chimeric toxins with variable cargos and receptor binding domains (RBD). 
A) Unique digestion sites have been engineered into the chimeric toxins for efficient subcloning 
multiple cargos and RBDs. Each cargo has been subcloned to contain a C-terminal ybbR12 
recognition sequence and the RBDs have a C-terminal SrtA recognition sequence. Together these sites 
allow for orthogonal labeling of the chimeric delivery vehicles. B) Variable cargos and RBDs for 
chimeric toxin production.  
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motif located at the C-terminus between the RBD and His6.50 Sortase A is a transpeptidase that 

appends a substrate containing three N-terminal glycines in place of the terminal glycine in the 

recognition sequence (Figure 2.3A). Together these sites allow for orthogonal labeling of the 

chimeric toxins. A possible application for these sites could be labeling the chimeric toxins with 

a FRET pair of fluorophores as a qualitative means of determining cytosolic delivery efficiency, 

or as a method for tracking intracellular localization of the scaffold and cargo independently.  

Results 

Chimeric Subcloning 

 Caspase 9 (Casp9), Bcl-2-associated X protein (Bax), X-linked inhibitor of apoptosis 

(XIAP), and Cyclin-Dependent Kinase 5 activator 1 (p35) were chosen as cargo proteins (Figure 

2.3B). These proteins were chosen because of their pronounced effect on cellular signaling 

related to apoptosis. Cell death is a convenient qualitative and quantitative measure for active 

cargo delivery. The cell-specific RBDs chosen were epidermal growth factor (EGF), vascular 

endothelial growth factor (VEGF), and the heavy chain of botulinum neurotoxin (BoNT). Well-

characterized cell lines that exhibit positive and negative phenotypes for RBD specific receptors 

are commercially available allowing cellular specificity to be explored. Given the immense size 

of the chimera plasmids (>11 kb), the subcloning process required multiple steps (Figure 2.4). 

First, the RBD (cargo subcloning was carried out by Amit Kumar) were amplified out of 

commercial vectors to introduce the desired digestion sites and labeling tags, then ligated into 

pCR2.1®TOPO® TA vector (TOPO). RBD-TOPO vectors were digested and ligated into a 

modified pWH1520* vector (Figure 2.4A). pWH1520* is a parent vector containing the lab’s 

cloned TcdA constructs and designed for expression within Bacillus megaterium. Digesting the 

RBD-shuttle and ligating with variable Cargo-TcdA constructs created by Amit resulted in 
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Figure 2.4: Subcloning strategy to create Cargo-TcdA-RBD chimeras. A) RBDs EGF, VEGF, and 
BoNT were PCR amplified out of commercial vectors and TOPO cloned. The resulting vectors were 
digested with SpeI and KpnI to insert into a modified MoBiTech expression vector pWH1520*. B) The 
resulting RBD-shuttle vectors were digested with XhoI and SpeI for insertion into Cargo-TcdA-CROP 
constructs created by another member in the Feig lab. 
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Cargo-TcdA-RBDs, the final products ready for expression after DNA sequence verification 

(Figure 2.4B).  

  The subcloning scheme allows for interchanging cargo and RBD moieties efficiently. 

Due to the inherent repetition within the subcloning process each step of Casp9-TcdA-EGF 

(CAE) chimera generation will be included, but only the final alignments are included for all 

other constructs. As stated above, the first step of chimera subcloning required PCR amplifying 

EGF out of the commercial Lambda-EGF116 cDNA vector and ligating the product into TOPO 
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Figure 2.5: Creation and verification of EGF-TOPO vector. Visualization of DNA fragments 
conducted in 1.2% agarose (containing 0.7 ug/mL EB) gels at 75V for 1-1.5 hours. A) PCR product of 
EGF amplification out of Lambda-EGF116 (ATCC). Expected product of 198 bp can be seen and was 
used for TOPO-TA cloning. B) Colony PCR verification for proper EGF insertion into TOPO, 364 bp 
product expected. C) Plasmid map for EGF-TOPO highlighting lone NsiI digestion site located within 
EGF used for digest verification of proper ligation. Expect linearization product of about 4.1 kb. E) 
ApE sequencing alignment for EGF-TOPO verifying insertion and the presence of engineered 
digestion sites and tag.  
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(Figure 2.5A). Colony PCR (cPCR) was conducted to identify colonies with EGF-TOPO and 

plasmids isolated from those colonies were further verified by endonuclease digestion with NsiI, 

whose only recognition site is located within the EGF gene (Figure 2.5B-D). Direct DNA 

sequencing definitively verified the EGF sequence in TOPO with the designed KpnI/SpeI 

digestion sites and SrtA tag (Figure 2.5E).  

The large size of TcdA and chimeras along with codon biases requires expression in B. 

megaterium using the MoBiTech expression system, requiring final constructs be held within a 

modified pWH1520 (pWH1520*) vector.51, 52 EGF was subcloned into the pWH1520* from 

TOPO and digest verified (Figure 2.6). EGF Shuttle was not sequenced because of the small 

 gene size and prior sequence verification, as was true for all the RBD Shuttle constructs. The 

verified EGF-pWH1520* and Casp9-TcdA were digested with MluI and SpeI and the desired 

DNA fragment was gel purified. MluI was only used with the Caspase 9 (Casp9) constructs 

because of an intragenic XhoI site, all other chimeras used XhoI/SpeI. The purified fragments 

were ligated creating Casp9-TcdA-EGF (CAE). Digesting CAE with XhoI and SpeI confirmed 
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Figure 2.6: Subcloning EGF into Shuttle vector. EGF TOPO was digested with SpeI and KpnI and 
subsequently ligated into Shuttle. A) EGF Shuttle (8.5 kb) should have single SpeI and KpnI digestion 
sites. B) Expected 184 bp excision product can be seen verifying EGF Shuttle for ligation into a TcdA 
Scaffold. 
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Casp9-TcdA-EGF CAE
Casp9-TcdA-VEGF CAV
p35-TcdA-EGF PAE
p35-TcdA-VEGF PAV
Casp9-TcdA-BoNT CAV
Bax-TcdA-BoNT BAB

Luciferase-TcdA-EGF LAE
Luciferase-TcdA-VEGF LAV
Luciferase-TcdA-BoNT LAB

Table 2.1:  Complete chimeric constructs 

the proper replacement of CROP with EGF, further verified by DNA sequencing (Figure 2.7, 

Appendix B Figure 1). The subcloning process was repeated for the generation of the constructs 

listed in Table 2.1. Each RBD was cloned from a commercial vector using the appropriate primer 

in Table 2.2 and sequenced with the primers listed in Table 2.3. Sequence alignments can be 

found in Appendix B Figures 2-8.  
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Figure 2.7: Verification of CAE subcloning. A) EGF Shuttle and Casp9-TcdA were digested with 
MluI and SpeI, and ligated together to form Casp9-TcdA-EGF (CAE). B) CAE test digested with 
XhoI and SpeI. Expected 7.3, 5.1, and 0.8 kb fragments evidenced. A digestion band that results from 
an SpeI site within CROP is also absent. The digest verified CAE was then sequence verified. 
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Primer 
Number

Primer Name Sequence Polymerase 
Used

Anneal 
Temp (oC)

Elongation 
Time (min)

Cycles Restriction 
Site

Use

1 VEGF-F
GCTTTAACTAGTACGGACAGACA

GACAGACACC Pfu 63.8 1.5 35 Spe I PCR out of pENTR221

2 VEGF-R gtgatgggtacCTCCAGTTTCTGGTAA 
CCGCCTCGGCTTGTCACATTTTTC

Pfu 63.8 1.5 35 Kpn I PCR out of pENTR221

3 EGF-F GCTTTAACTAGTAATAGTGACTCT
GAATGTCCCCTGTCCC

Taq 68 0.5 40 Spe I PCR out of LambdaEGF116

4 EGF-R gtgatgggtacCTCCAGTTTCTGGTAAG
CGCAGTTCCCACCACTTCAGG

Taq 68 0.5 40 Kpn I PCR out of LambdaEGF116

5 BLyS-F GCTTTAACTAGTATGGATGACTCC
ACAGAAAGGGAGCAG

Taq 68 1.5 35 Spe I PCR out of pMD18-t

6 BLyS-R
gtgatgggtacCTCCAGTTTCTGGTAAC
AGCAGTTTCAATGCACCAAAAAA

TGTGACATC
Taq 68 1.5 35 Kpn I PCR out of pMD18-t

7 SpeI_XIAP_F_v2 TGACAAATGGTCCAAACTAGTAG
ATCTATG

Pfu 64 4 25 SpeI Amplify out of XIAP-CROP to 
ligate into pHis1522

8 SpeI_XIAP_R_v2 AAAGGGATCCCGCCAGTTTACTA
GC

Pfu 64 4 25 BamHI Amplify out of XIAP-CROP to  
ligate into pHis1523

9 TcdC-R CCGAGCCTCGAGATTAATTTTCTC
TACAGCTATC

Pfu 47 1.5 35 XhoI Amplify out of TcdC-pET30a and 
remove residues 1-151

10 TcdC152-F GGAACCCATATGAAAGACGACGA
AAAGAAAGC

Pfu 47 1.5 35 NdeI Amplify out of TcdC-pET30a/TcdC-
pET28a and remove residues 1-152

11 TcdC152N-R
CAGTGCCTCGAGTTAATTAATTTT

CTCTACAGCTATC Pfu 47 1.5 35 XhoI
Amplify out of TcdC-pET28a and 

remove residues 1-153

Table 2.2: Chimera subcloning primers

Primer 
Number Primer Name Primer Sequnce

EGF 
TOPO

BLyS 
TOPO

VEGF 
TOPO CAE CAV PAE PAV PAB CAB BAB LAE LAV LAB

1 M13-F CAGGAAACAGCTATGAC X X X
2 M13-R GTAAAACGACGCCAGT X X X
3 W5 GTTGATGGAT AAACTTGTTC X X X X X X X X X X
4 W3 CATCCAGCCTCGCGTC X X X X X
5 TcdA 2326-R CGCTTGTGTTGAATTCATC X X X
6 TcdA 2326-F GATGAATTCAACACAAGCG X X X X X X X X X
7 TcdA 3065-F CAAAAGTAATGGTGAGTC X X X X X X X X X X
8 TcdA 3727-F CTATTTTAATCATTTGTCTG X X X X X X X X X X
9 TcdA 4258-F GCCAACTATAACTACTAAC X X

10 TcdA 4502-F CTTATTATAGGCAATCAAAC X X X X X X X X X X
11 TcdA 5034-F CCGTATACTCATCTTACC X X X
12 TcdA 5268-F CATCGTCATCTAAAAGCAC X X X X X X X X X X
13 TcdA 5720-F TCATTAGGATATATAATGAG X
14 CF GAACTTCTGCCGTGAGTCC X X X
15 VF GAAGGAAGAGGAGAGGG X X X
16 PF TGTCCCCCACGGACC X X

Table 2.3: Chimera sequencing primers
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Expression and Purification of TcdA and Chimeric Constructs 
Before attempting purification of the new chimera constructs, TcdA was used as practice 

purification following the laboratory protocol. TcdA expression was induced in B. megaterium 

and purified with a Ni-NTA column. The lab purification protocol worked as evidenced by a 

strong TcdA band in the primary elution fraction (E2) (Figure 2.8A). Using the same protocol, 

CAE and PAB were expressed and purified over a Ni-NTA column, but not evidenced in the 

primary elution fractions (Figure 2.8A and B). Expression and lysis conditions were altered after 

multiple attempts to purify chimeras using the protocol for TcdA purification failed to produce 

soluble protein (Figure 2.9). Using PAB, chimera expression was induced at OD600 0.67 or 1.1 

for two hours or induced at OD600 0.4 for 16 or 23 hours. In both instances there was no evidence 

of soluble chimera in the supernatant, suggesting that altered induction conditions do not 

improve PAB expression. In some instances, recombinant proteins require small molecule 

additives to improve expression efficiency 53. Tween (0.01% v/v) and sucrose (5% w/v) showed 

no appreciable difference in PAB expression as determined in the supernatant. It is important to 
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Figure 2.8: Expression of TcdA and chimeric constructs. Expression induced in B. megaterium of 
A) TcdA, 310 kDa B) CAE, 210 kDa C) PAB, 240 kDa and partially purified over Ni-NTA column. 
The primary elution fraction (E2) of each protein prep shows clear evidence of soluble TcdA, but not 
CAE or PAB. 
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note that this result on its own does not definitively conclude a lack chimera expression. TcdA 

exhibits a very minimal amount recombinant protein in the supernatant fraction (Figure 2.8A). 

However, the induction conditions and stabilizing additives study, together with experiments run 

by Amit Kumar in parallel, strongly suggest that the chimeras are not properly expressing.  

Cargos and RBDs within the chimeras are eukaryotic in origin, and the translation of 

these proteins could rely on tRNA that are not abundant within B. megaterium. A codon usage 

table (Kazusa) identified six codons that account for less than 10% of the total codons used for 

that particular amino acid (problem codons) within B. megaterium. The differential usage of the 

problem codons within each cargo and RBD are summarized in Table 2.4. The two chimeric 

constructs purified (CAE and PAB) contain a strong negative bias for the CUG codon in the 

cargo moiety. The heavy negative bias at the N-terminus could be stalling protein translation, 

ultimately leading to termination.54, 55 Amit Kumar attempted to verify this hypothesis by 
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Figure 2.9: Altering expression and lysis conditions attempting to improve PAB isolation. A) 
PAB expression was induced at increased OD600 (0.67,1.1) for the normal duration. Cells were lysed 
and visualized for chimera expression in the supernatant. No appreciable amount of PAB can be seen. 
B) PAB induction was carried out at a decreased temperature for long time periods (25oC for 16/23 
hours), negative for soluble PAB in the supernatant. C) Addition of Tween or sucrose osmolytes 
addition during lysis did not improve PAB isolation. 
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Luc-TcdA 

Cargo-TcdA-RBD 

atg gtc caa act agt aga tct atg aaa 
M V Q T S R S M K 

atg gtc caa act agG aga tct atg act 
M V Q T R R S M T 

 
Figure 2.10: Problem codon introduced near translation start site. During cargo subcloning, 
abolishing a 5’-SpeI site lead to the introduction of the problem AGG codon. Translation start site 
indicated in red, the added nucleotide introduced in subcloning and creating the problem codon is 
capital and underlined. Start of the cargo genes are colored purple. 

expressing chimeras that contain XIAP as the cargo. Despite the lack of negative codon bias 

within XIAP, there was still no evidence of protein expression. Comparing codon usage of 

luciferase-TcdA (Luc-TcdA), a construct expressed previously in this lab, to the new chimeras 

showed the presence of a problem codon near the site of translation initiation (Figure 2.10).  

Cargo subcloning abolished a 5’-SpeI site in Shuttle and in doing so an AGG problem codon was 

introduced. The exact effect of codon bias on translation is under debate and the impaired 

translation could be due to RNA structure and not bias.56 Regardless of mechanism, the current 

hypothesis is introduction of a problem codon causes the lack of chimeric expression, and work 

correcting the codon was started but is incomplete.  

While fixing the problem codon near translation initiation of chimeric proteins, focus 

shifted to expressing luciferase (Luc) containing chimeras in the hopes of investigating cell-

specific delivery and intracellular localization. First, Luc-TcdA-EGF (LAE) was purified using 

Cargo

B. meg 
codon 
usage

Prop. of total 
codons for  
amino acid

Casp9 XIAP p35 Bax 
(native) GT CPD TD CROP EGF VEGF BoNT

CUG (L) 7.7 0.0842 -50 14.1 -67.2 -39.2 5.5 3.8 6.7 -48.1 -48.9 -19.9 5.4
UCC (S) 4.8 0.0745 -21.6 6 -50.6 -16 -1.7 -6.8 1.9 2.5 -14.1 -7.5 4.8
UCG (S) 4.9 0.0761 -7.1 0 -14.6 4.9 4.9 4.9 2 1.5 4.9 -1.2 4.9
CCC (P) 3.1 0.0881 -18.5 4 -23 -22.9 3.1 3.1 3.1 2 -15.8 -30.6 3.1
CGG (R) 2.5 0.0622 -23.9 6 -13.8 -13.1 2.5 2.5 2.5 -0.9 2.5 -31.2 2.5
AGG (R) 3 0.0746 -13.8 12.1 -0.3 -2.2 -3.5 -0.9 3 -0.4 3 -3.1 -8.5

Native TcdA RBD
Differential codon usage

B. meg codon usage = frequency of codon /1000 codons; Prop. of toal codons = (B. meg usage of individual 
codon)/Σ(usage for all codons for amino acid); Differential codon usage = (Usage of domain) – (B. meg usage); 
Highlighted values are considered problematic.

Table 2.4: Negative codon bias of TcdA and chimera domains
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the lab protocol. After the first nickel column, LAE is evidenced in the primary elution fraction 

(E2) (Figure 2.11).  Before completing purification, whole cell lysates were assayed for 

luciferase activity to ensure the chimeras were expressed and active. Additionally, whole cell 

lysates of B. megaterium carrying LAV and a TcdA construct that has GT removed (Cargoless) 

were also assayed. Whole cell lysates were standardized for total protein content by a Bradford 

assay before conducting the experiment. LAE and LAV both exhibited luciferase activity, while 

cargoless had no signal (Figure 2.12). These data suggest that LAE is expressed at a higher level 

than LAV and both constructs are properly expressed and active. Measuring intracellular protein 

delivery with the luciferase assay requires a stable signal over a long time frame. Optimization of 

this assay was done with Luc-TcdA at multiple concentrations, with the addition of 50,75, or 100 

uL of reaction solution (Figure 2.13). The lowest volume of reaction solution had the most stable 

signal over the timeframe studied, but for each concentration of Luc-TcdA the signal decay was 

rapid, losing 50% of the signal within three minutes for 150 nM Luc-TcdA (Figure 2.13A). The 

lower concentration of protein lead to more stable measurements over time but contain large 
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Figure 2.11: Purification of LAE.  LAE (177 kDa) expression was induced in B. megaterium at 
OD600 0.4 for 3 hours, lysed via sonication, and partially purified over a nickel column. Soluble protein 
evidenced in primary elution fraction.  
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amounts of error in the measurements. Difficulties purifying the luc chimeras and inability to 

reproducibly and stably conduct the luciferase assay lead to ceasing work on this project.  
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Figure 2.12: Luciferase activity assay of whole cell lysates. B. megaterium containing LAE, LAV, 
and Cargoless were lysed and clarified. The resulting lysates were measured for total protein using a 
Bradford assay and normalized. LAE and LAV both show luciferase activity, though LAV at a much 
lower level. The negative control shows no activity validating that LAE and LAV are properly 
expressed and active.  Activity expressed as mean +/- standard deviation 
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Figure 2.13: Stability of Luc-TcdA luciferase assay. Luc-TcdA (50,75,100,150 nM) was plated in 
triplicate in a 96 well plate. A) 50 uL B) 75 uL C) 100 uL of reaction solution was added to each well. 
Chemiluminescent signal was measured 35 times over 25 minutes. 50 nM Luc-TcdA had the most 
stable signal for each volume of reaction solution, but the overall signal is very low and poor for a 
cellular assay.  
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The subcloning strategy to make multiple Cargo-RBD chimeras was intended to allow for 

swift interchanging and straightforward work process, which was true for creation of the initial 

constructs. However, introduction of a problematic codon at translation initiation lead to poor or 

absent expression of chimeric proteins that contained XIAP, Casp9, p35 or Bax as the cargo 

moiety. Luc chimeras were able to be expressed as active proteins but could not be purified in 

appreciable quantities. Luc-TcdA was purified completely, but the activity was no reproducible.  

 

Plasmid Code Plasmid Name Digest verified 
(Book,page) Digest Enzymes Sequence Verified Comments

pAB_70401 EGF_TOPO Y (I,49) NsiI Y Amplify out of commercial vector and pass 
into shuttle

pAB_70402 BLyS_TOPO N n.a Y Amplify out of commercial vector and pass 
into shuttle

pAB_70403 VEGF_TOPO N n.a Y Amplify out of commercial vector and pass 
into shuttle

n.a Cas9_TOPO N n.a N incomplete
pAB_80401 EGF_Shuttle Y (I,132) KpnI/SpeI 50:50 ligation with Cargo-TcdA
pAB_80403 VEGF_Shuttle Y (I,132) KpnI/SpeI 50:50 ligation with Cargo-TcdA
pAB_80404 Casp9_TcdA_EGF Y (II,15) XhoI/SpeI Y complete chimera
pAb_80405 Casp9_TcdA_VEGF Y (II,15) XhoI/SpeI Y complete chimera
pAB_80406 p35_TcdA_EGF Y (II,27) XhoI/SpeI Y complete chimera
pAB_80407 p35_TcdA_VEGF Y (II,27) XhoI/SpeI Y complete chimera

pAB_80408_A BoNT_Shuttle Y (II,36) XhoI/PvuI N 50:50 ligation with Cargo-TcdA
pAB_80408 p35_TcdA_BoNT Y (II,40) BamHI/SpeI Y complete chimera
pAB_80410 Casp9_TcdA_BoNT Y (II,42) BamHI/SpeI Y complete chimera
pAB_80411 Bax_TcdA_BoNT Y (II,43 BamHI/SpeI Y complete chimera
pAB_80412 Luc_TcdA_EGF Y (II,112) DraIII Y complete chimera

pAB_80413 XIAP-pHIS n.a n.a n.a New shuttle vetor to alleviate problem codon 
at TSS

pAB_80414 Luc_TcdA_VEGF Y (II,143) SpeI Y complete chimera
pAB_80415 Luc_TcdA_BoNT Y (II,144) SpeI Y complete chimera

n.a Cas9_shuttle N n.a N incomplete
n.a XIAP2_TcdA_EGF N n.a N incomplete

Table 2.5: Chimera subcloning clone reference table
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Chapter 2 Materials and Methods 

Cell pelleting and clarification of lysate carried out on Beckman Coulter Avanti J-E 

centrifuge. SDS-PAGE and agarose gels imaged with Typhoon 9210 variable mode imager. 

Ligations performed with T4 DNA ligase (NEB) according to protocol. FPLC purifications used 

Superdex200 size exclusion column operated by Bio-Rad NGC Chromatography system. 

Sequencing was completed by Applied Genomics Technology Center 

(http://www.agtc.med.wayne.edu). PCR reactions carried out with either Taq polymerase 

(Fisher, 1 mM Taq buffer, 2.5 mM MgCl2, 0.8 mM dNTPs, primers 0.2 µm, 5 units Taq) or Pfu 

polymerase (1x Pfu Buffer, 0.8 mM dNTPs, primers 0.2 µM, 1 unit Pfu), both following 

published protocols using values. Temperature conditions for PCR include 30s/95oC melt, 25s 

anneal time, 78oC elongation temp. Anneal temperature and elongation times included in Table 

2.2. 

Creation of RBD-Shuttles 

EGF (ATCC, 59957), VEGF (Life Technologies, IOH81488), and BLyS (Sino 

Biological, HG10056) were PCR amplified out of commercial vectors with primers 1-6 

according to profile above using values specified in Table 2.2. PCR products purified with 

Microelute cycle-Pure Kit (Omega, D6293-02) and TOPO cloned (Invitrogen, 45-0641) 

according to manufacturer protocol (to introduce 5’-SpeI digestion site and 3’-SrtA tag/KpnI 

digestion site). T-10 electrocompetent cells transformed with ligated RBD-TOPO vectors via 

electroporation using a Bio-Rad micropulser. A synthetic gene for BoNT for nucleotides 2583- 

3888 was purchased (Gene Script) and to contain the same features within pUC57-Kan. After 

isolating plasmids EGF-, VEGF-, and BLyS-TOPO with E.Z.N.A Plasmid DNA Mini Kit II 

(Omega, D6945-02), they were verified via digestion and sequencing. Each RBD was digested 
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out of TOPO with engineered sites and ligated into pWH1520* and transformed into T-10 cells 

via electroporation, then verified via endonuclease digestion creating RBD-Shuttle vectors.  

Creation of Cargo-TcdA-RBD Chimeras 

 p35-TcdA and XIAP-TcdA (created and verified by Amit Kumar) were digested with 

SpeI/XhoI and Casp9-TcdA digested with SpeI/MluI and crystal violet gel purified with E.Z.N.A 

Gel Extraction Kit (Omega, D2500-01). VEGF-, EGF-, and BoNT-Shuttle digested according to 

Cargo-TcdA constructs to be combined and gel purified. Purified fragments were ligated and 

transformed into T-10 cells via electroporation. Constructs were verified by digestion and 

sequencing.  

SrtA Purification 

BL21(DE3) cells transformed pET23 containing SrtA (gracious gift from Dr. Woody 

Guo) were grown to an OD600=0.4 in 1L-LB miller media and induced with 1 µM IPTG for 3.75 

hrs. After induction cells were pelleted (4,000 g, 10 min, 4oC, F10.5 rotor) and stored at -80oC. A 

cell pellet from 0.5L prep thawed with Lysis buffer (50 mM Tris-HCl, 150mM NaCl, pH 8.0) 

containing ¼ tablet of cOmplete, mini, EDTA free protease inhibitor cocktail tablet (Sigma-

Aldrich, 11836170001). Solubilized cells lysed via sonication (Branson Digital Sonifier) for 3 

cycles, 25s pulses, 37% power, 60s rest between cycles. Cell lysate clarified by centrifugation 

(15,000 rpm, 30 min, 4oC, JA-17 rotor) and passed through 0.8µm and 0.2 µm (Pall Corporation 

Acrodisc Syringe Filter, Supor Membrane, 4618/4612). SrtA purified with a HisTrap HP column 

(GE Healthcare). The column was washed with 5 column volumes (CV) H2O, charged with 2 

CV 100 mM NiSO4, washed with 5 CV H2O, and equilibrated with 5 CV Lysis Buffer. The 

filtered lysate was loaded onto the column, washed with 20 CV of Lysis buffer then with 5 CV 

wash buffer (50 mM Tris-HCl, 250 mM NaCl, 25 mM imidazole, pH 8.0). SrtA was eluted with 
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10 CV of elution buffer (50 mM Tris-HCl, 150 mM NaCl, 500 mM imidazole, pH 8.0) collected 

in 10 1mL aliquots. Purification characterized with SDS-PAGE electrophoresis (5% stacking, 

15% running 29:1) at 200V for 40 minutes, visualized with Coomassie stain. Pure fractions were 

pooled and protein concentration was determined with a Bradford assay using Bio-Rad protein 

assay according to protocol 

Purification of RhlBSrtA 

Glycerol stock  of RhlB-BL21(DE3) (a gift from Amit Kumar) containing the SrtA 

recognition sequence used for overnight culture grown in Kanamycin (30 ug/mL) LB from. 500 

mL of LB inoculated with overnight culture to an OD600 = 0.4 and induced with 1 µM IPTG for 

3 hours. Cell pellet sonicated for 3 cycles, 25s pulses, 37% power in lysis buffer (25 mM Tris-

HCl, 300 mM KCl, 10 mM imidazole, pH 8.5) and clarified at 15,000 rpm for 30 minutes at 4oC. 

RhlB was loaded on a HisTrap HP column equilibrated with lysis buffer, washed with 5 CV lysis 

buffer, 5 CV wash buffer 1 (10mM HEPES, 300 mM KCl, 50 mM imidazole, pH 7.5), 5 CV 

wash buffer 2 (10mM HEPES, 300 mM KCl, 1M urea, pH 7.5), 5 CV wash buffer 3 (10 mM 

HEPES, 1M KCl, 10 mM imidazole, pH7.5), and eluted in 8 CV (10 mM HEPES, 300 mM KCl, 

300 mM imidazole, pH 7.5). Dialyzed (10 mM HEPES, 300 mM KCl, 100 µM EDTA, 1 mM 

DTT, pH 7.5) for 12 hours, changing the buffer halfway through.  

SrtA Activity Assay 

 To test SrtA activity, 25uM RhlB and 0,35, or 50 µM GGG-FITC substrate in SrtA 

reaction buffer (50 mM Tris-HCl, 60 mM CaCl2, 150 mM NaCl) reactions were ran at 40 oC 0.5-

7 hours, after which each was treated with a stop solution (10 mM EDTA). Unreacted GGG-

FITC was removed using equilibrated micro bio-spin 6 chromatography columns (BIO-Rad,732-

6200) eluting at 1,000 g for 4 minutes. Filtrates were analyzed for A495 and A280.  
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Bacillus megaterium Transformation and Protein Purification 

All chimeric toxin work was carried out according to Biosafety Level II requirements.  

B. megaterium protoplasts generated as previously described52. Sequence verified 

chimeric toxins were transformed following the MoBitech protocol. Properly transformed cells 

were grown in 1L LB Miller media to an OD600=0.4-0.8 then induced with 0.5% or 1% D-Xylose 

for 2.5-20 hrs at 37oC or 25oC. After induction, cells were pelleted (9,000 g, 10 min, 4oC, F10.5 

rotor) and stored at -80 oC until purification. 1L of pelleted cells were thawed on ice with lysis 

buffer (50 mM Sodium Phosphate, 300 mM NaCl, 10 mM Imidazole, pH 8.0 or 50 mM Tris-

HCl, 150 mM NaCl, 10 mM imidazole, pH 7.5) with ½ protease tablet alone, protease tablet with 

0.01 % Tween 20, or protease tablet with 5% Sucrose. Solubilized cells were sonicated 5 times, 

30s cycles, at 37% power, with 90s rest period between cycles. Samples were then clarified by 

centrifuge (15,000 rpm, 40 min, 4oC, JA-17 rotor). Supernatant was then filtered through 0.8 µm 

filter, then a 0.2 µm filter. Sonication was then analyzed via SDS-PAGE (4% stacking gel and 

10% running gel 29:1) at 165V for 3 hours. Filtered supernatant was then loaded onto HisTrap 

HP column equilibrated with either lysis or binding buffer (50 mM Sodium Phosphate, 300 mM 

NaCl, 20 mM imidazole, pH 8.0). Column washed first with 10 CV lysis or binding buffer and 

then with wash buffer (50 mM Sodium Phosphate, 300 mM NaCl, 50 mM Imidazole, pH 8.0). 

Protein eluted with 10 CV Elution buffer (50 mM Sodium Phosphate, 300 mM NaCl, 250 mM 

Imidazole, pH 8.0), with the first ~0.5 mL being collected, the next 1-5 mL were collected and 

termed primary elution fraction, the final volume was also collected. The column was then 

stripped with strip buffer (50 mM Sodium Phosphate, 300 mM NaCl, 50 mM EDTA, pH 8.0) 

and stored in 20% EtOH. 
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Primary elution fractions were filtered with 0.2 µm filter directly into a 3 mL plastic 

syringe with the bottom sealed by parafilm. The plunger was carefully placed back in the syringe 

and parafilm removed to inject sample into FPLC super loop. All loaded samples were diluted 

with lysis buffer in a second injection into super loop to wash protein from the injection line and 

dilute the sample to prevent overloading the column. Elution fractions from FPLC that contained 

protein were then concentrated over HistTrap HP column and eluted in < 2.5 mL of elution or 

strip buffer.  

His6 Dot Blot Assay 

Immunoblot PVDF membrane (BIO-RAD, 162-0175) permeabilized with 100 % 

methanol and equilibrated in 1x transfer buffer (25 mM Tris-HCl, 192 mM glycine, 0.1% SDS, 

pH 8.3). Protein samples transferred to the equilibrated membrane using a Hybri-slot vacuum 

manifold. Staining for His6 proteins carried out with Thermo Scientific His Probe- HRP 

according to protocol (ThermoScientific, HisProbe: 15165, SuperSignal West Pico 

Chemiluminescent Substrate: 34087).  

Luc Activity Assay 

Luc activity measured with Tecan Genios Plus Plate reader under luminescence setting. 

Assays were carried out according the supplied protocol with Gaussia Luciferase Cellular 

Assays (XACTAGEN, 31001). In short, 20 uL protein samples of varying concentrations were 

added to white 96 well plates. Glum.1 Assay Solution was administered to each well using a 

multichannel pipette a row at a time. Measurements made in kinetic mode for 35 cycles. For 

whole cell lysates total protein was quantified using a Bradford assay normalized with BSA. 

B. megaterium Codon Bias 
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 Codon usage determined using Kazusa Codon Usage Database 

(http://www.kazusa.or.jp/codon/). These data were then used to determine the usage of each 

codon compared to all possible for each amino acid. Codons that account for less than 10% of all 

codons for an amino acid are termed problem codon. Gene sequences for each cargo and RBD as 

well as TcdA analyzed for codon usage. Differential codon usage = (B. megaterium codon usage) 

– (codon usage).  



	 43	

 
Chapter 3 
Mechanism of TcdC control of C. difficile Toxin Expression 
 

Introduction 

In 2011, nearly half a million instances of C. difficile infections (CDI) resulted in almost 

29,000 deaths in the United States.57 With the morbidity and mortality of CDI rising over the last 

two decades, understanding the pathogenesis and mechanism of control for C. difficile virulence 

factors, TcdA and TcdB, is of paramount importance. The genes that produce these two toxins 

are located in an ~18.5 kb region of the genome referred to as the pathogenicity locus (PaLoc, 

Figure 3.1).58 Additionally the PaLoc contains proteins involved in controlling toxin production 

(tcdR, tcdC) and secretion (tcdE). There is consensus that the alternative sigma factor, TcdR, 

increases TcdA/B expression, and higher levels of energy sources such as glucose, biotin, and 

amino acids decrease toxin production.59-62 However, the exact role TcdC plays in controlling 

expression of TcdA/B is unknown. Multiple reports claim that point or frame shift mutations 

lead to hyper-virulence in C. difficile strains.58, 63, 64 Others have found that mutations in TcdC do 

tcdR tcdB tcdE tcdA tcdC 

PaLoc 
2kb 

 
Figure 3.1: Pathogenicity locus of C. difficile. The 18.5 kb pathogenicity locus (PaLoc) of C. 
difficile contains the genes encoding virulence factors TcdA and TcdB. The PaLoc also contains the 
genes for a putative holin-like protein for toxin secretion, TcdE, an alternative sigma factor 
responsible for inducing toxin expression, TcdR, and the putative anti-sigma factor that inhibits toxin 
expression (TcdC).58  
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not predict increased TcdA/B expression or hyper-virulence.65, 66 The field has yet to reach a 

consensus on how or if TcdC affects toxin synthesis.  

 While work continues on elucidating the importance of TcdC in CDI, van Leeuwen et. al. 

have recently reported that TcdC binds DNA fragments adopting the G-quadruplex (G4) 

structure.67 G4s are a class of secondary structure with four guanines hydrogen bonded through 

Hoogsteen base-pairing (Figure 3.2A).68 When these motifs occur in multiples, they stack into a 

highly stable structure (Figure 3.2B). G4s have been linked to many biological processes such as 

transcription, telomere maintenance, prokaryotic evasion of eukaryotic immune system, and 

neurological diseases.69, 70 At first glance, the concept of TcdC binding G4s does not seem 

biologically relevant, given that the C. difficile is an AT-rich genome with 29% GC content, 

compared to 52% GC content of Escherichia coli.71, 72 My goal was to validate the biological 

importance of TcdC’s affinity for G4 nucleic acids and elucidate the mechanism by which TcdC 

controls toxin expression.  

Bimolecular 

A B 

Monomolecular Tetramolecular 

K+ 

 
Figure 3.2: Structure of G-quadruplex. A) Four guanines hydrogen bond through Hoogsteen base-
pairing forming a G-quadruplex (G4). The resulting central cavity is stabilized by a metal cation, most 
often K+, shown here, or Na+. B) Successive G4s stack in a planar fashion and can be composed of a 
single strand of nucleic acid, two strands of nucleic acid, or four stands of nucleic acid 68.  
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Results 

 TcdC’s affinity for G4 DNA lead to the hypothesis that sequences within the C. difficile 

genome leads to transcribed oligonucleotides that contain G4 structures. These sequences, if 

present, are hypothesized to behave as a protein sink, where G4 transcripts bind with TcdC 

inhibiting it from fulfilling the biological role of controlling toxin expression.  

Mining of C. difficile Genome for G4 Plausibility 

 Genomes of three difference C. difficile strains were mined for the G4 motif G4N1-7G4, 

where N is any nucleotide within R using the gregexpr function.73 The resulting 61 predicted G4 

forming sequences between strains 630, CD196, and R20291 are summarized in Table 3.1. The 

identified sequences map to many genes throughout the C. difficile genome of each strain. The 

sequences highlighted are of high interest because they belong to transposon (Tn) 6103.  

The genome of C. difficile has acquired many transposable genetic elements, often 

associated with antibiotic resistance genes.74-77 If G4 sequences exist in C. difficile that bind 

TcdC, it seems more likely that the G4 would be located within an acquired piece of DNA rather 

than the natural AT-rich genome. Using published Tn found within C. difficile, twelve G4 

sequences were identified within predicted transcripts (Table 3.2). From this table, five 

sequences were selected for binding studies (Table 3.3). (+) Ctrl corresponds to the 

oligonucleotide identified previously to bind with TcdC and (-) Ctrl contains no G4 motif. 

G4 Oligonucleotide binding study 

 The oligonucleotides (oligos) in Table 3.3 were validated for the formation of G4 using 

the dye ETC that specifically binds nucleic acids adopting the G4 structure (Figure 3.3A).78, 79 

All of the predicted G4 oligos were stained with ETC and (-) Ctrl failed to stain confirming the 
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Number Sequence Strain
Genome 

Start
Genome 

Stop Hypervirulent?
1 ggggccgggggt 630 31780 31791 no
2 ggggatttggggt 630 55736 55748 no
3 ggggccgggggt 630 130408 130419 no
4 ggggccgggggt 630 130706 130717 no
5 ggggaggtggggga 630 671858 671871 no
6 ggggttgcaggggga 630 775131 775145 no
7 ggggttgctatgggga 630 1016437 1016452 no
8 ggggggttggggt 630 1028455 1028467 no
9 ggggtaaggggc 630 1303284 1303295 no
10 gggggagatttaggggc 630 1605949 1605965 no
11 ggggaaataatgggga 630 1676593 1676608 no
12 gggggggggc 630 2125011 2125020 no
13 ggggaagaaaagggggc 630 2350140 2350156 no
14 ggggagaaagtgggga 630 3414810 3414825 no
15 ggggaaaaactgggga 630 3414843 3414858 no
16 ggggtattattggggt 630 3680768 3680783 no
17 ggggccgggggt CD196 31663 31674 no
18 ggggatttggggt CD196 55619 55631 no
19 ggggccgggggt CD196 134033 134044 no
20 ggggccgggggt CD196 134331 134342 no
21 gggggggagcctgtgggga CD196 474616 474634 no
22 ggggaggtggggga CD196 591183 591196 no
23 ggggttgcaggggga CD196 697627 697641 no
24 ggggttgctatgggga CD196 944160 944175 no
25 ggggggttggggt CD196 956187 956199 no
26 ggggtttttggggga CD196 975274 975288 no
27 gggggagatttaggggc CD196 1464338 1464354 no
28 ggggaaataatgggga CD196 1537913 1537928 no
29 gggggattcttggggt CD196 2840174 2840189 no
30 ggggtattattggggt CD196 3491333 3491348 no
31 ggggaaagggggt CD196 4027844 4027856 no
46 ggggccgggggt R20291 31565 31576 yes
47 ggggatttggggt R20291 55521 55533 yes
48 gggggggagcctgtgggga R20291 471948 471966 yes
49 ggggaggtggggga R20291 588569 588582 yes
50 ggggttgcaggggga R20291 695148 695162 yes
51 ggggttgctatgggga R20291 941776 941791 yes
52 ggggggttggggt R20291 953803 953815 yes
53 ggggtttttggggga R20291 972890 972904 yes
54 gggggagatttaggggc R20291 1461959 1461975 yes
55 ggggaaataatgggga R20291 1535534 1535549 yes
56 ggggtgcaggggc R20291 2062669 2062681 yes
57 ggggtcaaggggc R20291 2062696 2062708 yes
58 ggggacaggggc R20291 2107351 2107362 yes
59 gggggattcttggggt R20291 2920731 2920746 yes
60 ggggtattattggggt R20291 3572064 3572079 yes
61 ggggaaagggggt R20291 4108630 4108642 yes

Table 3.1 Predicted G4 sequences indentified in multiple strains of C. difficile

Highlighted sequences map to Tn6103



	 47	

Name Sequence
(+) Ctrl cgttcgatagggatagggag
(-) Ctrl ggcgatgtcaaacagaatcgt
Tn6103 gccggggtgcaggggcggca

Tn6103-2 gctggggtcaaggggcaacg
Tn6103-3 ggatttaaggggacaggggcag
Tn6110 ggggccggggaaggggcggcg
Tn6073 cctgctggggatatgctggggctt

Table 3.3: Oligonucleotides for TcdC 

 Number G4 Sequence Transposon 
Name

Transposon 
Accesion 
Number

Start Stop Predicted 
QGRS

1 ggggtgcaggggc Tn6103 BK008007.1 22270 22282 5
2 ggggtcaaggggc Tn6103 BK008007.1 22297 22309 5
3 ggggacaggggc Tn6103 BK008007.1 66957 66968 2
4 ggggccgggga Tn6110 BK008009.1 51233 51243 6
5  cccctgtcccct  Tn6110 BK008009.1 17997 18008 2
6  ccccttgacccca  Tn6110 BK008009.1 51388 51400 5
7  cccctgcaccccg  Tn6110 BK008009.1 51415 51427 5
8 ggggatatgctggggc Tn6073 BK008006.1 12681 12696 8
9 ggggatatgctggggc Tn6194Like HG475346.1 12421 12436 7

10 ggggacgggga Tn6215 KC166248.1 4462 4472 1
11 ggggctgccccggggc Tn6215 KC166248.1 6020 6035 3

Table 3.2: Predicted G4 sequences identified in transposons found in C. difficile

QGRS (Quadruplex Forming G-Rich Sequences) determined for the entire transcript that contains predicted G4
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identified G4 oligos form G4 structures and the (-) Ctrl does not (Figure 3.3B). Presence of the (-

) Ctrl oligo was verified using ethidium bromide (EtBr) staining after ETC had been washed out 

of the gel (Figure 3.3C). These data confirm that the oligos selected form G4 and can be used in 

binding assays with TcdC. 

 TcdC containing a C-terminal His6 tag (TcdCC) was purified and used for the initial 

binding studies of (+) Ctrl oligo (Figure 3.4). 32P labeled (+) Ctrl was incubated with TcdCC at 

0oC or room temperature, both resulted in no evidence of binding. Van Leeuwen et. al. 

performed their binding studies with a truncated TcdC by removing the hydrophobic domain 

(Figure 3.5). To more closely replicate their binding experiments, subcloning of a truncated form  
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Figure 3.3: Verification of G4 structure for oligonucleotides intended for TcdC binding studies. 
A) Structure of the G4 specific dye ETC. Native PAGE gel stained with B) EtBr or C) ETC. Positively 
stained (-) Ctrl with EtBr and not with ETC confirms ETC specificity for G4 structure, but does not 
label G4 structures. Each oligo excluding the (-) Ctrl, stained positive for G4. However G4 adopting 
sequences are not positively stained with EtBr. The stability of G4 and presence of internal sodium ion 
likely preventing EtBr to inter-chelate and positively stain. 
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of TcdC containing a C-terminal His6 (TcdC152C) was completed (Alignment Appendix C Figure 

1). Binding reactions described above were replicated using TcdC152C and also failed to bind (+) 

Ctrl oligo (data not shown). A potential explanation for the inability to replicate TcdC binding of 

(+) Ctrl could be too low an oligo concentration. To test this hypothesis binding reactions were 

run in the presence of non-radiolabeled (cold) oligo (Figure 3.6). Increasing the concentration of  

oligo did not lead to binding by TcdC152C. The lack of (+) Ctrl binding by full-length or truncated 

TcdC lead to the hypothesis that the C-terminus His6 could be interfering with the predicted OB-

fold domain. Subcloning was then completed to create TcdC152N that contains the His6 at the N-

terminus (Alignment Appendix C Figure 2). Due to the timescale of subcloning and the 

difficulties in running the assays, (+) Ctrl was labeled with Cy3 rather than 32P for the remainder 

of binding assays. Binding assays were next conducted with the addition of heparin and tRNA, 

limiting nonspecific interactions to promote TcdC152N binding of (+) Ctrl (Figure 3.7). However 

there was still no evidence of TcdC152N binding the oligo. No evidence of TcdCC, TcdC152C, or 
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Figure 3.4: Full length TcdCC binding reaction with (+) Ctrl oligo. A) Purified TcdCC (24 kDa) 
migrates higher on the gel than expected due to the highly positive nature of the protein. Small amount 
of impurity is present. Binding reactions conducted with 0,1,5,10, or 20 uM TcdC incubated at B) 0oC 
or C) room temperature for one hour with 20 kcpm/lane of (+) Ctrl, and reactions were visualized 
using PI exposure cassette. In both cases there is no evidence of TcdCC binding. 

1 30 50 90 130 232 A.A: 

Hyd Dim OB-fold 
 

Figure 3.5: Domains of TcdC. Three predicted domains of TcdC, A.A = amino acid, Hyd = 
hydrophobic domain, Dim = dimerization domain, OB-fold = predicted oligonucleotide binding fold.67  
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TcdC152N binding the (+) Ctrl oligo despite altering reaction conditions, concentrations, and 

addition tRNA/heparin lead to attaining the TcdC construct (TcdC152N*) used previously, which 

initially indicated TcdC’s specificity for (+) Ctrl 67. Using TcdC152N* under the same reaction 

conditions as TcdC152N still did not show any positive signs of binding (+) CtrlCy3 (Figure 3.8). 

To date, this work was unable to replicate the work previously done to demonstrate TcdC affinity 

for G4 containing oligo. This is not to say that the results found previously by Van Leeuwen et. 

al. are not reproducible, only that I couldn’t do it effectively. 

Conclusion 
 The exact biological role of TcdC is still under intense debate. Some reports suggest 

truncation mutations in tcdC leads to an increase in toxin production within C. difficile, while 

others report evidence that TcdC plays no role in toxin production. A report that TcdC binds G4-

forming oligonucleotides opened a new possible mechanism through which TcdC affects on 

toxin production could be altered. Through the work presented here, it is still unclear whether 
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Figure 3.6: TcdC152C binding assay doped with non-radiolabeled oligo. A) Purified TcdC152C. B) 
Binding reaction (520 nM TcdC152C, 20 kcpm/lane 32P-Oligo) doped with non-radiolabeled (cold) 
oligo (24 nM) increasing the concentration within the reaction without altering the kcpm/lane, which 
is constant. With added oligo there is still no evidence of TcdC152C binding (+) Ctrl oligo. 
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TcdC’s affinity for G4 is biologically relevant. Further work will need to be done to validate 

TcdC binding of G4 oligonucleotides, and whether transcripts in C. difficile can adopt this 

structure and alter TcdC function in vivo. 
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Figure 3.7: Oligo binding assay with TcdC152N. A) Purified TcdC152N B) (+) CtrlCy3 (5 uM) in 
binding buffer with and without TcdC152N, tRNA, and heparin equilibrated for 30 minutes and 
developed on 15% PAGE. No evidence of TcdC152N binding (+) CtrlCy3. 
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Figure 3.8: Oligo binding assay with TcdC152N*. A) Purified TcdC152N*B)	 (+) CtrlCy3 (5 uM) in 
binding buffer with and without TcdC152N*, tRNA, and heparin equilibrated for 30 minutes and 
developed on 15% PAGE. No evidence of TcdC152N* binding (+) CtrlCy3	
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Chapter 3 Materials and Methods 

Mining C. difficile genomes for G4 motif 

 C. difficile strains 630, CD196, and R20291 we scanned for the G4 motif (G4-N1-7-G4) in 

R. The identified sequences were analyzed with BLAST to find the genomic locus and proposed 

gene that contains the G4 sequence. Published transposons that are relevant to C. difficile 

(Tn6107, Tn6073, Tn6103, Tn6110) we analyzed for G4 motif as the genomes above. 

Transposons with identified G4s were analyzed for Quadruplex Forming G-Rich sequences 

(bioinformatics.ramapo.edu/QGRS/analyze.php).  

Analysis of G4 Oligos 

 G4 oligos were purchased from Sigma-Aldrich and received as a dried pellet. Oligos 

solubilized in 1x PBS to make 100 uM stock Solutions. G4 formation with and without heating 

and with 0,50,75, or 100 mM KCl developed on 20 % native page (37.5:1) with 1x TBE at 400 V 

for 2 hours. Gels either stained with EtBr (0.5 ug/mL, 15 min with 2 15 min H2O washes) or 

ETC (20 uM in PBS 1 hour with 1X PBS rinse) and then imaged. The same process was applied 

to each of the oligos without added heat or salt. 

TcdC Expression and Purification 

 Rosetta(DE3) cells with a plasmid carrying full length TcdCC or TcdCN were grown in 10 

mL LB containing chloramphenicol (34 ug/mL) and kanamycin (30 ug/mL) for 18 hours at 37 

oC, 250 rpm. Inoculate fresh 10 mL LB with 100 uL of overnight and grow for 6 hours at 37 oC, 

250 rpm. Add full 10 mL into 1L LB and grow for 18 hours at 25oC. Expression induced with 1 

uM IPTG for 3-5 hours. Cells harvested at 5,000 g for 15 minutes and pellets stored at -80oC.  

 Frozen pellets thawed in lysis buffer (20 mM HEPES, 300 mM NaCl, 10 % [w/v] 

glycerol, 250 uM TCEP, pH 8.0) and sonicated 8 cycles, at 40% power, 30s pulse, with 90s rest 
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between pulses. Triton X-100 added to lysate for a final concentration of 0.01% (v/v) and rotated 

end-over-end for ~15 minutes then clarified at 15,000 rpm for 30 min. Supernatant filtered with 

0.8 um then 0.2 um filter and loaded on a Ni-NTA column equilibrated with load buffer (20 mM 

HEPES, 300 mM NaCl, 0.1% [v/v] Triton X-100, 10 % [w/v] glycerol, 10 mM imidazole, 250 

uM TCEP), washed with 30 CV (20 mM HEPES, 300 mM NaCl, 0.1% [v/v] Triton X-100, 10 % 

[w/v] glycerol, 120 mM imidazole, 250 uM TCEP), and eluted (20 mM HEPES, 300 mM NaCl, 

0.1% [v/v] Triton X-100, 10 % [w/v] glycerol, 250 mM imidazole, 250 uM TCEP). Elution 

fractions were pooled and concentrated using Amicon Ultra 15 Centrifugal Filter Device 3,000 

MWCO according to manufacture protocol to a final volume of ~2.5 mL. Protein quantified 

using Bradford assay.  

TcdC152 subcloning and purification 

 TcdC152C amplified out of full length TcdCC-pET30a using primers 26 and 27. PCR 

product digested with XhoI/NdeI and ligated into pET30a. Transformed into T10, verified by 

digest and sequencing then transformed into Rosetta(DE3). 

 TcdC152N amplified out of full length TcdCC-pET30a primers 27 and 28. PCR product 

digested with NdeI/XhoI and ligated into pET28a. Transformed into T10, verified by digest and 

sequencing then transformed into Rosetta(DE3) 

 TcdC152* was a generous gift from Dr. Jeroen Corver from Leids Universitair Medisch 

Centrum. 

 TcdC152C, TcdC152N, and TcdC152*  were expressed and purified according to the protocol 

above for TcdC with the following buffer changes: Lysis buffer (50 mM NaPO4, 250 uM TCEP, 

300 mM NaCl, pH 8.0, 0.1% NP-40 post sonication), load buffer (50 mM NaPO4, 250 uM 

TCEP, 300 mM NaCl, 20 mM imidazole, 5 % [w/v] glycerol, 0.1% NP-40, pH 7.0), wash buffer 



	 54	

(50 mM NaPO4, 250 uM TCEP, 300 mM NaCl, 120 mM imidazole, 5 % [w/v] glycerol, pH 7.0), 

elution buffer (50 mM NaPO4, 250 uM TCEP, 300 mM NaCl, 250 mM imidazole, 5 % [w/v] 

glycerol, pH 7.0), and dialysis buffer (50 mM NaPO4, 250 uM TCEP, 150 mM NaCl, 5 % [w/v] 

glycerol, pH 7.0). Some elution or wash fractions were further purified using FPLC as described 

above for chimeric protein purification when needed.  

Radiolabeling G4-Oligos and TcdC Binding Assay 

 Each G4-Oligo was labeled with Perkin Elmer Adenosine 5’-triphosphate[γ-32P] 

(NEG002A250UC) using PNK from NEB following published protocol and purified by EtOH 

precipitation. Radioactivity of labeled/purified oligos measured with Beckman Coulter LS 6500 

Multipurpose Scintilation Counter. Filter paper was blotted with 1 uL of oligo solution in a 

scintillation vial. 10 mL of Fischer Scientific ScintiSafe Econo 1 Cocktail and samples were 

measured for kcpm/uL.  

 All binding reactions carried out with 20 kcpm Oligo per lane or 703 ng of (+)CtrlFITC in 

oligo binding buffer (20 mM HEPES, 50 mM NaCl, 40 mM KCl, 7% [w/v] glycerol, 1 mM 

EDTA, 0.1 mM DTT at varying concentrations of TcdC in a final volume of 15 or 20 uL. After a 

0.5-1 hour equilibration period reactions developed on pre-ran 20% PAGE (37.5:1) unless 

otherwise stated, at 200V 3-4 hours. For radiolabel experiments gels were dried using BIO-RAD 

Model 583 Gel Dryer at 50oC 4-8 hours then exposed to Amersham Biosciences PI Screen for at 

least 2 hours and then imaged. For (+)CtrlFITC experiments, binding reactions contained tRNA 

mixture (100 ng/mL) and/heparin (5 ug/mL) and the gel was directly imaged after development.  
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	Appendix A: Secondary student data analyses

Class 1.5 Class 2.5 Class 3.5 Class 4.5 
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Figure 1-A: Correlation between ACT Composite score and grade for Class 2.5 cohorts. 
Grades for students attempting Class 2.5 once (OA), retaking Class 2.5 (RGC), and the max 
grade attained by students retaking Class 2.5 (RGC, Max Grade) were plotted against their 
ACT composite score. A linear regression line was then cast on the scatter plots and 
significant correlations were determined by using the Pearson, Kendall, and Spearman tests of 
correlation. Correlations that were statistically significant at the levels stated for all three tests 
are reported here. *** = p-value < 0.01, **= p-value < 0.05. r = Pearson rho.  
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Figure 2-A: Grade by gender for Class	2.5 cohorts. A) Students attempting Class 2.5 once 
B) Student taking Class 2.5 multiple times C) Highest grade attained by students taking Class 
2.5 multiple times. There is no clear trend in grade as it relates to gender between all three 
cohorts.  
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Figure 3-A: Ethnicity summary for Class 2.5 Cohorts. There is no indication that ethnicity 
is a predictor for success in the gateway course Class 2.5. There are a large proportion of 
students that contain missing ethnicity information (OA = 104, RG = 118), limiting the ability 
to draw conclusions from this data. 
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Figure 4-A: Age during Class 2.5 by cohort. A) Students attempting Class 2.5 once B) 
Student taking Class 2.5 multiple times. There is no clear indication that age is a predictor of 
success in Class 2.5. 
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Figure 6-A: Data structure of karyotype. Each class (Chromosome) contains a start and 
stop position for every semester (Band) selected. The color of each semester box is designated 
by the Stain column 

 
Figure 5-A: Student data structure. Students are referenced by a unidentifiable code (ID) 
and each course a student enrolls in is logged along with the semester (termCourse). When the 
student completes a course the grade is recorded (grade) and if the student withdraws before 
any grade is assigned this value is left blank 
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Figure 7-A: Data structure of  student data for plotting. For every student grade entry the 
class is specified (Chromosome), the position within the class is determine by chromStart and 
chromEnd, and the second class (Chromosome.1) position by chromStart.1 and chromEnd.1. 
Student grade in class coded by PlotColor. 

 
Figure 8-A: Student demographic data structure.  
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Appendix B: Chimera sequence alignments 
 Full sequence alignment is included for CAE only. Each chimera is built on the same 
TcdA backbone, so sequence alignments are only included for the variable reagions of each 
chimeric  construct. 
Figure 1-B: CAE alignment 
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Figure 2-B: CAV alignment 
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Figure 3-B: PAE alignment
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Figure 4-B: PAV alignment
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Figure 5-B: BAB alignment
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Figure 6-B: LAE alignment
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Figure 7-B: LAV alignment
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Figure 8-B: LAB alignment



	 90	

 



	 91	

 



	 92	

 



	 93	

 

Appendix C: TcdC sequence alignments 
 
Figure 1-C: TcdC152C alignment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-C: TcdC152N alignment 



	 94	

Works Cited 
	
	

1. C. Romero and S. Ventura (2010). "Educational Data Mining: A Review of the State of 

the Art." IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and 

Reviews) 40(6): 601-618.	

2. R.	 Voorhees	 and	 J.	 Lee	 (2009).	 Basics	 of	 longitudinal	 cohort	 analysis,	 Lumina	

Foundation	for	Education.	

3. D. I. Hanauer and G. Hatfull (2015). "Measuring Networking as an Outcome Variable in 

Undergraduate Research Experiences." CBE Life Sci Educ 14(4): ar38.	

4. P. Wilcox, S. Winn and M. Fyvie�Gauld (2005). "�It was nothing to do with the 

university, it was just the people�: the role of social support in the first�year 

experience of higher education." Studies in Higher Education 30(6): 707-722.	

5. E. J. Krumrei-Mancuso, F. B. Newton, E. Kim and D. Wilcox (2013). "Psychosocial 

Factors Predicting First-Year College Student Success." Journal of College Student 

Development 54(3): 247-266.	

6. J. L. Gazley, R. Remich, M. E. Naffziger-Hirsch, J. Keller, P. B. Campbell and R. McGee 

(2014). "Beyond Preparation: Identity, Cultural Capital, and Readiness for Graduate 

School in the Biomedical Sciences." J Res Sci Teach 51(8): 1021-1048.	

7. B. Dietz-Uhler and J. E. Hurn (2013). "Using learning analytics to predict (and improve) 

student success: A faculty perspective." J Interactive Online Learning 12(1): 17-26.	

8. D. Gašević, S. Dawson, T. Rogers and D. Gasevic (2016). "Learning analytics should not 

promote one size fits all: The effects of instructional conditions in predicting academic 

success." The Internet and Higher Education 28: 68-84.	



	 95	

9. L. L. Baer and D. M. Norris (2016). "A call to action for student success analytics." 

Planning Higher Education Journal: 1-11.	

10. S. Slade and P. Prinsloo (2013). "Learning analytics: Ethical issues and dilemmas." 

American Behavioral Scientist 57(10): 1510-1529.	

11. R.	Alamuddin,	 J.	Brown	and	M.	Kurzweil	(2016).	Student	data	 in	the	digital	era:	an	

overview	of	current	practices,	Ithaka	S+R.	

12. A. M. Shahiri, W. Husain and N. a. A. Rashid (2015). "A Review on Predicting Student's 

Performance Using Data Mining Techniques." Procedia Computer Science 72: 414-422.	

13. J.	Greer,	M.	Molinaro,	X.	Ochoa	and	T.	McKay	(2016).	Proceedings	of	the	1st	learning	

analytics	 for	 curriculum	 and	 program	 quality	 improvment	 workshop,	 Edinburgh,	

UK.	

14. M. Lovett, O. Meyer and C. Thille (2008). "The open learning initiative: measuring the 

effectiveness of the OLI statistics course in Accelerating Student Learning." Journ of 

Interactive Media in Education 13: 1-16.	

15. D. Gillborn (2010). "The colour of numbers: surveys, statistics and deficit�thinking 

about race and class." Journal of Education Policy 25(2): 253-276.	

16. S. B. Garcia and P. L. Guerra (2004). "Deconstructing deficit thinking." Education and 

Urban Society 36(2): 150-168.	

17. J. W. Schofield (2010). "International evidence on ability grouping with curriculum 

differentiation and the achievement gap in secondary schools." Teachers Collge Record 

112(5): 1492-1528.	



	 96	

18. S. E. Bradforth, E. R. Miller, W. R. Dichtel, A. K. Leibovich, A. L. Feig, J. D. Martin, K. 

S. Bjorkman, Z. D. Schultz and T. L. Smith (2015). "University Learning: Improve 

undergraduate science education." Nature 523: 282-284.	

19. .	"Tools	for	evidence-based	action."	Retrieved	11/8/16,	from	http://t4eba.com.	

20. M. Krzywinski, J. Schein, I. Birol, J. Connors, R. Gascoyne, D. Horsman, S. J. Jones and 

M. A. Marra (2009). "Circos: an information aesthetic for comparative genomics." 

Genome Res 19(9): 1639-1645.	

21. S. Claro, D. Paunesku and C. S. Dweck (2016). "Growth mindset tempers the effects of 

poverty on academic achievement." Proc Natl Acad Sci U S A 113(31): 8664-8668.	

22. C. Alexander, E. Chen and K. Grumback (2009). "How leaky is the health career 

pipeline? Minority student achievement in college gateway courses." Academic Medicine 

84(9): 797-802.	

23. L. Gregg-Jolly, J. Swartz, E. Iverson, J. Stern, N. Brown and D. Lopatto (2016). 

"Situating second-year success: understanding second-year STEM experiences at a liberal 

arts college." CBE Life Sci Educ 15: 1-10.	

24. C. C. Archer and M. K. Miller (2011). "Prioritizing Active Learning: An Exploration of 

Gateway Courses in Political Science." PS: Political Science & Politics 44(02): 429-434.	

25. J. Gainen (1995). "Barriers to success in quantitative gatekeeper courses." New 

Directions Teaching Learning 41: 5-14.	

26. J. W. Dubendorff and F. W. Studier (1991). "Controlling basal expression in an inducible 

T7 expression system by blocking the target T7 promoter with lac repressor." J Mol Biol 

219: 45-59.	



	 97	

27. M. Gossen and H. Bujard (1992). "Tight Control of gene expression in mammallian cells 

by tetracycline-responsive promoters." Proc Natl Acad Sci U S A 89: 5547-5551.	

28. K. Hammer, I. Mijakovic and P. R. Jensen (2006). "Synthetic promoter libraries--tuning 

of gene expression." Trends Biotechnol 24(2): 53-55.	

29. S. W. Seo, J. S. Yang, I. Kim, J. Yang, B. E. Min, S. Kim and G. Y. Jung (2013). 

"Predictive design of mRNA translation initiation region to control prokaryotic 

translation efficiency." Metab Eng 15: 67-74.	

30. H. Brooks, B. Lebleu and E. Vives (2005). "Tat peptide-mediated cellular delivery: back 

to basics." Adv Drug Deliv Rev 57(4): 559-577.	

31. J. L. Zaro, J. E. Vekich, T. Tran and W. C. Shen (2009). "Nuclear localization of cell-

penetrating peptides is dependent on endocytosis rather than cytosolic delivery in CHO 

cells." Mol Pharm 6(2): 337-344.	

32. J. P. Richard, K. Melikov, E. Vives, C. Ramos, B. Verbeure, M. J. Gait, L. V. 

Chernomordik and B. Lebleu (2003). "Cell-penetrating peptides. A reevaluation of the 

mechanism of cellular uptake." J Biol Chem 278(1): 585-590.	

33. S. W. Jones, R. Christison, K. Bundell, C. J. Voyce, S. M. Brockbank, P. Newham and 

M. A. Lindsay (2005). "Characterisation of cell-penetrating peptide-mediated peptide 

delivery." Br J Pharmacol 145(8): 1093-1102.	

34. S. El-Andaloussi, P. Jarver, H. J. Johansson and U. Langel (2007). "Cargo-dependent 

cytotoxicity and delivery efficacy of cell-penetrating peptides: a comparative study." 

Biochem J 407(2): 285-292.	

35. A. K. Cardozo, V. Buchillier, M. Mathieu, J. Chen, F. Ortis, L. Ladriere, N. Allaman-

Pillet, O. Poirot, S. Kellenberger, J. S. Beckmann, D. L. Eizirik, C. Bonny and F. Maurer 



	 98	

(2007). "Cell-permeable peptides induce dose- and length-dependent cytotoxic effects." 

Biochim Biophys Acta 1768(9): 2222-2234.	

36. D. E. Voth and J. D. Ballard (2005). "Clostridium difficile toxins: mechanism of action 

and role in disease." Clin Microbiol Rev 18(2): 247-263.	

37. D. J. Reinert, T. Jank, K. Aktories and G. E. Schulz (2005). "Structural basis for the 

function of Clostridium difficile toxin B." J Mol Biol 351(5): 973-981.	

38. P. Papatheodorou, C. Zamboglou, S. Genisyuerek, G. Guttenberg and K. Aktories (2010). 

"Clostridial glucosylating toxins enter cells via clathrin-mediated endocytosis." PLoS 

ONE 5(5): e10673.	

39. A. Greco, J. G. Ho, S. J. Lin, M. M. Palcic, M. Rupnik and K. K. Ng (2006). 

"Carbohydrate recognition by Clostridium difficile toxin A." Nat Struct Mol Biol 13(5): 

460-461.	

40. J. G. Ho, A. Greco, M. Rupnik and K. K. Ng (2005). "Crystal structure of receptor-

binding C-terminal repeats from Clostridium difficile toxin A." Proc Natl Acad Sci U S A 

102(51): 18373-18378.	

41. Z. Zhang, M. Park, J. Tam, A. Auger, G. L. Beilhartz, D. B. Lacy and R. A. Melnyk 

(2014). "Translocation domain mutations affecting cellular toxicity identify the 

Clostridium difficile toxin B pore." Proc Natl Acad Sci U S A 111(10): 3721-3726.	

42. N. M. Chumbler, S. A. Rutherford, Z. Zhang, M. A. Farrow, J. P. Lisher, E. Farquhar, D. 

P. Giedroc, B. W. Spiller, R. A. Melnyk and D. B. Lacy (2016). "Crystal structure of 

Clostridium difficile toxin A." Nature Microbiology 1: 1-6.	



	 99	

43. A. Shen, P. J. Lupardus, M. M. Gersch, A. W. Puri, V. E. Albrow, K. C. Garcia and M. 

Bogyo (2011). "Defining an allosteric circuit in the cysteine protease domain of 

Clostridium difficile toxins." Nat Struct Mol Biol 18(3): 364-371.	

44. I. Kreimeyer, F. Euler, A. Marckscheffel, H. Tatge, A. Pich, A. Olling, J. Schwarz, I. Just 

and R. Gerhard (2011). "Autoproteolytic cleavage mediates cytotoxicity of Clostridium 

difficile toxin A." Naunyn Schmiedebergs Arch Pharmacol 383(3): 253-262.	

45. S. Nottrott, J. Schoentaube, H. Genth, I. Just and R. Gerhard (2007). "Clostridium 

difficile toxin A-induced apoptosis is p53-independent but depends on glucosylation of 

Rho GTPases." Apoptosis 12(8): 1443-1453.	

46. S. M. Kern and A. L. Feig (2011). "Adaptation of Clostridium difficile toxin A for use as 

a protein translocation system." Biochem Biophys Res Commun 405(4): 570-574.	

47. G. Krautz-Peterson, Y. Zhang, K. Chen, G. A. Oyler, H. Feng and C. B. Shoemaker 

(2012). "Retargeting Clostridium difficile Toxin B to Neuronal Cells as a Potential 

Vehicle for Cytosolic Delivery of Therapeutic Biomolecules to Treat Botulism." J 

Toxicol 2012: 760142.	

48. J. Yin, A. J. Lin, D. E. Golan and C. T. Walsh (2006). "Site-specific protein labeling by 

Sfp phosphopantetheinyl transferase." Nat Protoc 1(1): 280-285.	

49. J. Yin, P. D. Straight, S. M. McLoughlin, Z. Zhou, A. J. Lin, D. E. Golan, N. L. Kelleher, 

R. Kolter and C. T. Walsh (2005). "Genetically encoded short peptide tag for versatile 

protein labeling by Sfp phosphopantetheinyl transferase." Proc Natl Acad Sci U S A 

102(44): 15815-15820.	

50. D. A. Levary, R. Parthasarathy, E. T. Boder and M. E. Ackerman (2011). "Protein-

protein fusion catalyzed by sortase A." PLoS ONE 6: 1-6.	



	 100	

51. B. Bunk, A. Schultz, S. Stammen, R. Muench, M. J. Warren, M. Rohde, D. Jahn and R. 

Biedendieck (2010). "A short story about a big magic bug." Bioeng Bugs 1: 85-91.	

52. G. Hadlaczky, K. Fodor and L. Alfoldi (1976). "Morphological study of the revrsion to 

bacillary form of Bacillus megaterium protoplasts." Journal of Bacteriology 125: 1172-

1179.	

53. D. J. Leibly, T. N. Nguyen, L. T. Kao, S. N. Hewitt, L. K. Barrett and W. C. Van Voorhis 

(2012). "Stabilizing additives added during cell lysis aid in the solubilization of 

recombinant proteins." PLoS ONE 7(12): e52482.	

54. T. Doerks, R. R. Copley, J. Schultz, C. P. Ponting and P. Bork (2002). "Systematic 

identification of novel protein domain families associated with nuclear functions." 

Genome Res 12(1): 47-56.	

55. C. Gustafsson, S. Govindarajan and J. Minshull (2004). "Codon bias and heterologous 

protein expression." Trends Biotechnol 22(7): 346-353.	

56. D. B. Goodman, G. M. Church and S. Kosuri (2013). "Causes and effects of N-terminal 

codon bias in bacterial genes." Science 342(6157): 475-479.	

57. F. C. Lessa, Y. Mu, W. M. Bamberg, Z. G. Beldavs, G. K. Dumyati, J. R. Dunn, M. M. 

Farley, S. M. Holzbauer, J. I. Meek, E. C. Phipps, L. E. Wilson, L. G. Winston, J. A. 

Cohen, B. M. Limabago, S. K. Fridkin, D. N. Gerding and L. C. McDonald (2015). 

"Burden of Clostridium difficile infection in the United States." N Engl J Med 372: 825-

834.	

58. B. Dupuy, R. Govind, A. Antunes and S. Matamouros (2008). "Clostridium difficile toxin 

synthesis is negatively regulated by TcdC." J Med Microbiol 57(Pt 6): 685-689.	



	 101	

59. N. Mani, D. Lyras, L. Barroso, P. Howarth, T. Wilkins, J. I. Rood, A. L. Sonenshein and 

B. Dupuy (2002). "Environmental Response and Autoregulation of Clostridium difficile 

TxeR, a Sigma Factor for Toxin Gene Expression." Journal of Bacteriology 184(21): 

5971-5978.	

60. S. S. Dineen, S. M. McBride and A. L. Sonenshein (2010). "Integration of metabolism 

and virulence by Clostridium difficile CodY." J Bacteriol 192(20): 5350-5362.	

61. T. Dubois, M. Dancer-Thibonnier, M. Monot, A. Hamiot, L. Bouillaut, O. Soutourina, I. 

Martin-Verstraete and B. Dupuy (2016). "Control of Clostridium difficile 

Physiopathology in Response to Cysteine Availability." Infect Immun 84(8): 2389-2405.	

62. N. Mani and B. Dupuy (2001). "Regulation of toxin synthesis in Clostridium difficile by 

an alternative RNA polymerase sigma factor." Proc Natl Acad Sci U S A 98(10): 5844-

5849.	

63. S. Matamouros, P. England and B. Dupuy (2007). "Clostridium difficile toxin expression 

is inhibited by the novel regulator TcdC." Mol Microbiol 64(5): 1274-1288.	

64. G. P. Carter, G. R. Douce, R. Govind, P. M. Howarth, K. E. Mackin, J. Spencer, A. M. 

Buckley, A. Antunes, D. Kotsanas, G. A. Jenkin, B. Dupuy, J. I. Rood and D. Lyras 

(2011). "The anti-sigma factor TcdC modulates hypervirulence in an epidemic 

BI/NAP1/027 clinical isolate of Clostridium difficile." PLoS Pathog 7(10): e1002317.	

65. R. Murray, D. Boyd, P. N. Levett, M. R. Mulvey and M. J. Alfa (2009). "Truncation in 

the tcdC region of the Clostridium difficile PathLoc of clinical isolates does not predict 

increased biological activity of Toxin B or Toxin A." BMC Infect Dis 9: 103.	

66. D. Bakker, W. K. Smits, E. J. Kuijper and J. Corver (2012). "TcdC does not significantly 

repress toxin expression in Clostridium difficile 630DeltaErm." PLoS ONE 7(8): e43247.	



	 102	

67. H. C. van Leeuwen, D. Bakker, P. Steindel, E. J. Kuijper and J. Corver (2013). 

"Clostridium difficile TcdC protein binds four-stranded G-quadruplex structures." 

Nucleic Acids Res 41(4): 2382-2393.	

68. V. Brazda, L. Haronikova, J. C. Liao and M. Fojta (2014). "DNA and RNA quadruplex-

binding proteins." Int J Mol Sci 15(10): 17493-17517.	

69. N. Maizels and L. T. Gray (2013). "The G4 genome." PLoS Genet 9(4): e1003468.	

70. A. Cammas and S. Millevoi (2016). "RNA G-quadruplexes: emerging mechanisms in 

disease." Nucleic Acids Res 45(4): 1584-1595.	

71. D. R. Knight, B. Elliott, B. J. Chang, T. T. Perkins and T. V. Riley (2015). "Diversity and 

Evolution in the Genome of Clostridium difficile." Clin Microbiol Rev 28(3): 721-741.	

72. F. Lassalle, S. Perian, T. Bataillon, X. Nesme, L. Duret and V. Daubin (2015). "GC-

Content evolution in bacterial genomes: the biased gene conversion hypothesis expands." 

PLoS Genet 11(2): e1004941.	

73. R.	A.	Becker,	J.	M.	Chambers	and	A.	R.	Wilks	(1988).	The	new	S	language,	Wadsworth	

&	Brooks/Cole.	

74. M. S. Brouwer, P. J. Warburton, A. P. Roberts, P. Mullany and E. Allan (2011). "Genetic 

organisation, mobility and predicted functions of genes on integrated, mobile genetic 

elements in sequenced strains of Clostridium difficile." PLoS ONE 6(8): e23014.	

75. M. Sebaihia, B. W. Wren, P. Mullany, N. F. Fairweather, N. Minton, R. Stabler, N. R. 

Thomson, A. P. Roberts, A. M. Cerdeno-Tarraga, H. Wang, M. T. Holden, A. Wright, C. 

Churcher, M. A. Quail, S. Baker, N. Bason, K. Brooks, T. Chillingworth, A. Cronin, P. 

Davis, L. Dowd, A. Fraser, T. Feltwell, Z. Hance, S. Holroyd, K. Jagels, S. Moule, K. 

Mungall, C. Price, E. Rabbinowitsch, S. Sharp, M. Simmonds, K. Stevens, L. Unwin, S. 



	 103	

Whithead, B. Dupuy, G. Dougan, B. Barrell and J. Parkhill (2006). "The multidrug-

resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome." Nat 

Genet 38(7): 779-786.	

76. J. Corver, D. Bakker, M. S. Brouwer, C. Harmanus, M. P. Hensgens, A. P. Roberts, L. 

Lipman, E. Kuijper and H. C. van Leeuwen (2012). "Analysis of a Clostridium difficile 

PCR ribotype 078 100 kilobase island reveals the presence of a novel transposon, 

Tn6164." BMC Microbiol 12(130): 1-13.	

77. J. Amy, P. Johanesen and D. Lyras (2015). "Extrachromosomal and integrated genetic 

elements in Clostridium difficile." Plasmid 80: 97-110.	

78. Q. Yang, J. Xiang, S. Yang, Q. Zhou, Q. Li, Y. Tang and G. Xu (2009). "Verification of 

specific G-quadruplex structure by using a novel cyanine dye supramolecular assembly: 

I. recognizing mixed G-quadruplex in human telomeres." Chem Commun (Camb)(9): 

1103-1105.	

79. Q. Yang, J. Xiang, S. Yang, Q. Li, Q. Zhou, A. Guan, X. Zhang, H. Zhang, Y. Tang and 

G. Xu (2010). "Verification of specific G-quadruplex structure by using a novel cyanine 

dye supramolecular assembly: II. The binding characterization with specific 

intramolecular G-quadruplex and the recognizing mechanism." Nucleic Acids Res 38(3): 

1022-1033.	

	



	 104	

Abstract	
 

DEVELOPMENT OF STUDENT DATA VISUALIZATION 
TOOL, ADAPTION OF CLOSTRIDIUM DIFFICILE TOXIN A 
INTO PROTEIN DELIVERY VEHICLE, AND ELUCIDATION 

OF TCDC MECHANISM OF TOXIN CONTROL 

ADAM BOYDEN 

August 2017 

Dr. Andrew Feig, Chemistry (Biochemistry), Masters 

 

 Advancing student success in higher education is of paramount importance, and is in 
need for a tool that visualizes student data in a longitudinal manner. Student Circos plots achieve 
this by plotting student data in circular plots, depicting the timeline and grades for students 
selected by demographic or performance information. Cellular delivery of exogenous proteins is 
a bountiful area of research. However, most current systems have limited in vivo applications and 
most lack cellular specificity. By adapting Toxin A from Clostridium difficile, the goal was to 
create a cell specific protein delivery vehicle that would be robust in vivo. However, the chimeric 
constructs produced were unable to be isolated for study. Control of Toxin A and B in C. difficile 
has been linked to the protein TcdC. However , no clear mechanism has been developed and 
there is debate on whether TcdC truly plays a role in toxin production. The goal of this project 
was to identify DNA or RNA molecules within C. difficile that could behave as a protein sink, 
binding TcdC and preventing the native behavior. Recreation of TcdC binding DNA molecules 
that adopt a G-quartet structure was not successful and further analyses was not carried out.  
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