
Wayne State University

Wayne State University Theses

1-1-2016

Interactive Refinement Of Hierarchical Object
Graphs
Ebrahim Khalaj
Wayne State University,

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_theses

Part of the Computer Sciences Commons

This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne
State University Theses by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Khalaj, Ebrahim, "Interactive Refinement Of Hierarchical Object Graphs" (2016). Wayne State University Theses. 528.
https://digitalcommons.wayne.edu/oa_theses/528

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_theses/528?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages

INTERACTIVE REFINEMENT OF HIERARCHICAL OBJECT
GRAPHS

by

EBRAHIM KHALAJ

THESIS

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

2016

MAJOR: COMPUTER SCIENCE

Approved By:

Advisor Date

DEDICATION

To my family for their unconditional support and encouragement

ii

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Dr. Marwan Abi-Antoun for believing in

me. He cared about this work as much as I did, and this is what makes working with

him enjoyable. He was of great help with his constructive feedback and comments on

my work. When I did not know what to do, he always had the bright ideas for how

to move forward.

Then I would like to thank my other thesis committee members for their valuable

feedback on my work and their useful suggestions: Dr. Vaclav Rajlich with his

attention to detail and encouraging me to focus on more important parts of my work,

Dr. Nathan Fisher with his useful suggestions on how to compare my work with other

related work.

I would like to thank all alumni and current members of the SoftwarE Visualization

and Evolution REsearch (SEVERE) group: Dr. Radu Vanciu for his patience with

me as a first year Ph.D. student who had many questions; he always helped me to

learn something new; Sumukhi Chandrashekar for being a great lab mate and for

sharing useful ideas about my work; Mohammad Anamul Haque for reading some of

my writings and giving me useful feedback; Yibin Wang for his meticulous comments

on my drafts; Wesley Trescott for his valuable feedback as the first user of my tool.

Also, I would like to thank Dr. Andrian Marcus and his students Dr. Laura Moreno

and Oscar Chaparro for being great lab mates. Many thanks to the Department of

Computer Science and its chair Dr. Loren Schwiebert for their support.

Next, I would like to thank my parents, Hojjatollah and Mehri for their uncon-

ditional love and constant support even from far away. Also, many thanks to my

brother Dr. Mohammadreza for being a good friend and a great role model, and to

my sisters Maryam and Monir for their support and encouragement. I would like to

thank my brothers and sister in law for their support, and my beautiful nephews and

nieces of whom I have many sweet memories.

iii

I save my warmest thanks to my wife Nona for her love, support and encourage-

ment. She believed in me and encouraged me to continue, even when I was not sure

about my journey as a graduate student.

Funding. This work was supported in part by Wayne State University through the

Department of Computer Science, and in part by the National Security Agency lablet

contract #H98230-14-C-0140.

iv

TABLE OF CONTENTS

Dedication . ii

Acknowledgements . iii

List of Tables . viii

List of Figures . viii

Chapter 1: Introduction . 1

1.1 Contributions . 3

1.2 Thesis statement . 4

1.2.1 Hypotheses . 4

Chapter 2: Motivation and Background . 6

2.1 Motivation: Abstraction by Hierarchy 6

2.2 Background: Ownership Domains . 8

2.3 Type Qualifiers vs. Object Graphs 8

Chapter 3: Approach . 10

3.1 Interactive Refinement . 10

3.2 Supported Refinements . 11

3.3 Illustrative Example of the Approach 11

3.4 Public Domains Create More Hierarchy 14

3.5 Adaptation of a Public Domain . 16

Chapter 4: Positioning . 18

4.1 Ownership Domains vs. Other Systems 18

4.2 Simple Ownership Domains (SOD) 19

4.3 Relation to Huang et al. [14] . 20

4.3.1 Common Definitions . 20

4.3.2 Handling the Lack of Optimality 22

4.3.3 Instantiating the Framework 23

Chapter 5: Set-Based Solution . 25

v

5.1 Overview of the Inference Analysis 25

5.2 Top-Level Analysis . 30

5.3 Ranking of Qualifiers . 30

5.4 Initial Set Mapping . 32

5.5 Trivial Qualifiers; Initial Object Graphs 34

5.6 Applying Refinements . 34

Chapter 6: Formalization . 37

6.1 Abstract Syntax . 37

6.2 Adaptation Cases . 39

6.3 Transfer Functions . 41

6.4 SOD Type System Constraints . 44

6.4.1 Typing Rules . 44

6.4.2 Higher Level Rules . 45

6.5 Properties of Set-Based Solution . 47

6.6 Finding a Typing In a Set Mapping 49

Chapter 7: Evaluation . 51

7.1 Tool Implementation . 51

7.2 Evaluation Method . 53

7.3 Evaluation Results . 53

7.4 Discussion of Hypotheses . 61

Chapter 8: Related Work . 63

8.1 Challenges . 63

8.2 Specific Approaches . 64

Chapter 9: Discussion and Conclusion . 67

9.1 Implementation Details . 67

9.2 Discussion . 69

9.3 Limitations . 71

vi

9.4 Future Work . 72

9.5 Conclusion . 72

References . 73

Abstract . 76

Autobiographical Statement . 77

vii

LIST OF TABLES

Table. 3.1 Metrics on the object graphs. 16

Table. 4.1 Comparison of modifiers across three ownership type systems . . 19

Table. 7.1 Refinements and heuristics on each test case 56

Table. 7.2 Refinements on each test case . 56

viii

LIST OF FIGURES

Figure. 2.1 Two ways to create hierarchy in an object graph 6

Figure. 2.2 Different qualifiers lead to different object graphs 9

Figure. 3.1 Three possible refinements, illustrated graphically. 11

Figure. 3.2 MicroAphyds: refining a hierarchical object graph 12

Figure. 3.3 Aphyds: pure Ownership Types version. 15

Figure. 3.4 Aphyds: all PD version. 16

Figure. 3.5 Code to illustrate the adaptation of a public domain. 17

Figure. 5.1 Data type declarations for the object graph. 35

Figure. 5.2 Different types of refinement on an object graph 36

Figure. 6.1 Abstract syntax for SOD . 38

Figure. 6.2 Adaptation cases for owner, p and shared. 39

Figure. 6.3 Different adaptation cases of PD 40

Figure. 6.4 General rule for the adaptation of n.PD 40

Figure. 6.5 Transfer functions . 45

Figure. 6.6 Typing rules for SOD. 46

Figure. 6.7 SOD type system constraints. 47

Figure. 6.8 Auxiliary judgements. 47

Figure. 7.1 Snapshot of the current Eclipse prototype. 52

Figure. 7.2 Representations of the object graph for the QuadTree test case. . 55

Figure. 7.3 Expanded and collapsed object graphs for the CourSys test case. 59

Figure. 9.1 Generic collection, code example 68

Figure. 9.2 Adaptation case to support generic types 68

ix

1

Chapter 1: Introduction

In order to evolve object-oriented code, developers must understand its run-time

structure in terms of objects and their relations, as well as they must understand

the code structure dealing with source files, classes and packages. For object-oriented

code, it is hard to understand the run-time structure from looking at the code. Thus,

abstractions of the run-time structure such as points-to graphs or abstract object

graphs can be highly complementary to diagrams of the code structure such as class

diagrams that are readily extracted by many tools. Unfortunately, tools for object

graphs are still immature, compared to tools for the code structure. One reason is

that extracting these object graphs from code is difficult.

To support understanding the runtime structure of object-oriented systems, sev-

eral heap abstractions have been proposed. A heap abstraction can statically ap-

proximate the runtime heap by building a points-to graph or abstract away one or

more snapshots of the runtime heap using graph manipulation [19] or abstraction

techniques [17].

Ideally, the abstraction must be sound, i.e., every runtime object that may occur

in any execution must have a representative in the abstract object graph, within

known limits of unsoundness such as dynamic code loading. To preserve soundness,

developers cannot arbitrarily delete objects or relations between objects, because

doing so may not account for the impact of any transitive communication, for example.

Also ideally, the abstraction must be driven by developers, otherwise, they may

not recognize automatically extracted abstractions. The developers’ input, however,

must not involve a significant manual annotation burden.

For the past several years, we have been investigating a statically extracted heap

abstraction that is a sound, global, hierarchical points-to graph, the Ownership Object

Graph[1]. The object graph uses abstraction by ownership hierarchy and by types,

2

by abstracting each runtime object to a pair consisting of a type and domain, where

a domain is a named, conceptual group of objects. Using abstraction by hierarchy,

objects that are data structures are at the lower levels compared to objects from the

application domain. The object hierarchy cannot be expressed directly in mainstream

languages. Instead, they are expressed using additional annotations in the code. If

the annotations are consistent with each other and with the code, the object graph

abstraction is proven sound [1]. Previous work evaluated if object graphs convey

design intent by comparing them to manually drawn diagrams [3]. The object graph

abstraction is guided using annotations that implement a type system, Ownership

Domains [6], and these annotations are currently being added manually.

Today, the most significant limitation of extracting object graphs is the effort

involved in adding annotations, measured at around 1 hour/KLOC [2]. The effort is

due to the high overhead associated with inserting local ownership annotations into

the code, then refining the annotations both to get them to type-check, and to ensure

that the local annotations capture hierarchy in a way such that the extracted object

graph reflects a global hierarchy that matches the developers’ mental model.

A related issue is bootstrapping the process of extracting an object graph. Today,

developers add most of the annotations and fix all of the high-priority warnings before

they can extract an initial object graph. Only then, based on visualizing the extracted

object graph, they iterate the process of refining the annotations. In other words, to

add better annotations, the developers rely on the knowledge provided by the object

graph.

Another issue is that the process of refining the extracted object graph is currently

somewhat awkward: developers must notice where the object graph does not match

their design intent and identify the cases where there are incorrect annotation in the

code, rather than a mismatch between the as-implemented system and the developer’s

mental model. If the issue is in the annotations, the developers have to change the

3

annotations consistently to reflect the correct design intent, then re-run the static

analysis to extract the object graph.

Today, these issues make the process of extracting and refining object graphs

tedious and time-consuming, and make object graphs less useful to developers. This

thesis addresses these issues by extracting an initial object graph automatically, then

allowing developers to directly and interactively refine the extracted object graph to

make it convey their design intent, while preserving the object graph soundness.

1.1 Contributions

This thesis contributes What You See Is What You Get (WYSIWYG) developer-

driven inference of ownership type qualifiers. Developers preview an abstract object

graph, then manipulate or refine it to express their design intent, and in turn, guide

the inference analysis. The approach infers qualifiers that type-check and as a re-

sult, preserves the soundness of the graph, and the developers do not modify or add

qualifiers directly. This thesis describes the inference analysis behind the graphical

refinements, focusing on the technical feasibility of inferring ownership qualifiers that

typecheck by refining object graphs.

The contributions of this thesis are:

• An approach that supports different types of refinements on an object graph;

• An inference algorithm that infers valid Ownership Domains type qualifiers that

satisfy the requested refinements by developers;

• A formal statement of how the inference algorithm preserves the soundness of

the refined inferred qualifiers and makes them type-check.

• A small-scale quantitative evaluation that counts the number of attempted and

completed manual refinements and the qualifiers of the best and worst results.

4

1.2 Thesis statement

The thesis statement is:

Using a visual approach that infers Ownership Domains type qualifiers that ex-

press both strict encapsulation and logical containment, developers directly and inter-

actively manipulate or refine an abstract object graph by pushing an abstract object

underneath another one. If the code as written supports the refinement, developers

make an abstract object owned-by another abstract object, make an abstract object

part-of another abstract object, or split a merged abstract object in two distinct ab-

stract objects to express their design intent. Behind the scene, an inference algorithm

infers valid Ownership Domains type qualifiers that satisfy the requested refinements

and type-check.

1.2.1 Hypotheses

We create three hypotheses subordinate to the main thesis statement.

H1. Using a visual approach, developers are able to interactively refine an abstract

object graph.

H2. Developers are able to express two types of hierarchy, strict encapsulation

and logical containment.

H3. If the code as written supports the requested refinement, the inference anal-

ysis infers valid qualifiers that satisfy the requested refinement and type-check.

Outline. The rest of this thesis is structured as follows. Chapter 2 provides some

motivation for this work and some background on object graphs. Chapter 3 discusses

the proposed approach. Chapter 4 positions the work in relation to related ownership

type systems. Chapter 5 discusses our inference analysis. Chapter 6 formally describes

the inference analysis, Chapter 7 evaluates our approach on small examples. In

Chapter 8 we discuss related work. Finally, Chapter 9 discusses implementation

5

details, limitations, future work and concludes.

6

Chapter 2: Motivation and Background

We first motivate how we abstract flat object graphs by hierarchy (Section 2.1).

Then we give some background on the qualifiers of Ownership Domains (Section 2.2).

Next, we motivate why we use object graphs to drive the inference (Section 2.3)

instead of asking developers to add qualifiers in the code.

2.1 Motivation: Abstraction by Hierarchy

owned

drawing:

BoardDrawing

propMap:
HashMapX

(a) Strict encapsulation (owned-by).

drawing:

BoardDrawing

figureMap:
HashMap

PD

(b) Logical containment (part-of).

Figure 2.1: Two ways to create hierarchy in an object graph. Box nesting indicates ownership or
containment. The object propMap is in the owned domain of the object drawing, and inaccessible
from the outside. The object figureMap is inside the domain PD and accessible to the outside.

Flat object graphs become very large, and as result, do not convey design intent.

One way to make an object graph manageable is to collapse some objects under

other objects. One way to do so is to use graph manipulation or transformation [19].

Another way to collapse one object under another is to create an object hierarchy,

where one object is the child of another. Instead of letting an object have child objects

directly, we introduce an extra level of indirection, a domain, which is a named group

of objects. So one object has one or more domains and each domain has one or

more objects. Two types of domains express two forms of design intent: 1. strict

encapsulation; or 2. logical containment;

Strict encapsulation (owned-by). An object o1 dominates object o2 if all paths

from roots in the heap (typically a distinguished object and static fields) to o2 go

through o1 [8]. In this scenario, o2 is strictly encapsulated in the abstraction repre-

7

sented by o1, and so we show o2 as owned-by o1, i.e., o2 is in the private domain

owned of o1. For example, the object propMap of type HashMap is strictly encapsu-

lated in the object of type BoardDrawing (Fig. 2.1a). A private domain has a thick,

dashed border. Many ownership type systems enforce this ownership model, also

called owner-as-dominator. Moreover, such a property can be inferred fully automat-

ically. An object is either encapsulated or it is not.

Strict encapsulation, however, is too inflexible to make an object graph more

hierarchical, after the fact, for code that was written without strict ownership in mind.

When developers make an object owned by another, the object becomes inaccessible

to other objects that still need to access it. As a result, if developers do not change

the code, they have to leave the object at the same hierarchy level as other objects,

i.e., more objects will be peers, so they cannot continue making the object graph

more hierarchical. So what is really needed is object hierarchy with fewer restrictions

to enable developers to make the graph more hierarchical.

Logical containment (part-of). Another object hierarchy that developers express

is logical containment. Sometimes, one object o1 is conceptually part-of another object

o2, even if o1 is not dominated or owned by o2. For example, we want to consider the

figureMap of type HashMap part-of the BoardDrawing object (Fig. 2.1b). A public

domain has a thin, dashed border.

In general, it is hard to infer such a relationship from the code, since it is by defi-

nition conceptual and reflects design intent rather than any code relationship. Object

creation can often hint at logical containment, but not necessarily, as is the case with

factory methods. In our approach, developers perform refinements to express this

design intent. We also choose an underlying ownership type system that can express

logical containment, Ownership Domains [6].

8

2.2 Background: Ownership Domains

In Ownership Domains, a class can declare one or more domains using the domain

keyword (Fig. 2.2). Each instance of a class C gets a fresh instance of a domain d

declared on the class; for distinct objects n1 and n2 of type C, the domains n1.d and

n2.d are distinct, which means in the object graph there are two distinct domains

corresponding n1.d and n2.d.

In Ownership Domains, a class can take a number of formal domain parameters.

Here, for simplicity, we allow just two, owner and p, e.g., class C<owner, p> {...}.

A type is a class name and two actual domains, i.e., C<p1,q1>, where p1 and q1

are some domains or domain parameters in scope. Given an object that has a type

C<p1,q1>, the first actual domain p1 denotes the owning domain of the corresponding

object. This is why we use the owner modifier for the name of the first domain

parameter. When used as an actual owning domain on the type of an object o, owner

means that o is in the same domain as the this object. Ownership inference has to

infer the pair of actual domains <p1,q1> for a type, which we call qualifier. Given a

type qualifier t that is a pair, we access the first actual domain of t with t.first , and

the second actual domain with t.second . For t = <owned,p>, t.first returns owned

and t.second returns p.

2.3 Type Qualifiers vs. Object Graphs

To express their design intent, developers can add ownership type qualifiers di-

rectly to the code. However, adding qualifiers manually imposes a significant burden

since each reference of a non-primitive type in the code needs a qualifier in order to

type-check. Therefore, semi-automated or automated approaches for inferring these

qualifiers are needed.

It is also hard for developers to directly understand the object structures from

9

1 class C1<owner, p> { // domain parameters

2 private domain owned; // private domain

3 public domain PD; // public domain

4 obj = new C<owner, p>(); // Make peer of this

5 obj = new C<p, p>(); // Place obj inside p

6 obj = new C<owned, p>(); // Make owned-by this

7 obj = new C<PD, p>(); // Make part-of this

8 obj = new C<shared, p>(); // Place inside shared

9 }

c1:C1

owned

obj:C

c1:C1

PD

obj:C

shared

obj:C

An actual domain

obj:C

c1:C1
An actual

domain
p binds to

this domain

obj:C

obj = new

C<owner, p>()

obj = new

C<p, p>()

obj = new

C<owned, p>()

obj = new

C<PD, p>()

obj = new

C<shared, p>()

Figure 2.2: For the same code, different qualifiers are possible and produce very different object
graphs.

looking at code with qualifiers. Almost every single research paper on ownership

types uses manually drawn object graphs to explain the object structure that the

qualifiers describe or enforce.

To illustrate how hard it is to understand what qualifiers to add to the code,

consider an example (Fig. 2.2) with Ownership Domains qualifiers. For the same

object creation expression, different qualifiers are possible. At line 4, the object

created at the new expression is in the same domain as the object of type C1 (the

declaring class). The object that is created at line 5 is in an actual domain to which

the formal domain parameter of C1 binds. At line 6, the object is in the owned domain

of C1. At line 7, the object is in the PD domain of C1. The object that is created

at line 8 is in the domain shared, which is the global context. Each combination of

actual domains produces a different object graph (Fig. 2.2). By showing the different

object graphs that correspond to the different qualifiers, our WYSIWYG approach

makes it easier for developers to choose qualifiers that express their design intent.

10

Chapter 3: Approach

In this chapter, first, we talk about the proposed approach for the interactive

refinement of ownership object graphs (Section 3.1). Then we discuss the refinements

we support (Section 3.2), and a more interesting refinement example (Section 3.3).

3.1 Interactive Refinement

Since it is hard to add qualifiers directly to the code without visualizing the

object structure being built, we propose a new approach for ownership type inference.

Developers use a graphical user interface and interactively manipulate an abstract

object graph that is a sound abstraction of the runtime structure. Behind the scenes,

an inference analysis infers the corresponding qualifiers that type-check if the code

supports this refinement. Otherwise, the inference analysis does not infer any qualifier

and leaves the object graph unchanged. Based on the inferred qualifiers, an extraction

analysis [1] (not this work’s contribution) extracts the updated object graph that the

developers manipulate further. The ownership type system provides mathematical

guarantees about the soundness of the inferred qualifiers and of the object graph. If

the qualifiers type-check, the object graph is sound [1]. In this thesis, we discuss the

inference analysis only.

To unclutter an object graph, developers can delete abstract objects, but this

makes the object graph unsound, in that it no longer reflects all objects and their

communication. Instead, in our approach, developers use abstraction by hierarchy,

and push an abstract object they no longer wish to see into a domain of another

object.

11

DATA

DOM

DATA

obj1
OWNED

PushIntoOwned

D1

D2

D

D

SplitUp

PushIntoPD

obj1

obj1obj1

obj1

obj2

obj2

obj2

obj2

Figure 3.1: Three possible refinements, illustrated graphically.

3.2 Supported Refinements

Developers perform the following refinements (Fig. 3.1):

• PushIntoOwned: make an abstract object owned by another abstract object

by pushing it into a private domain;

• PushIntoPD: make an abstract object conceptually part of another abstract

object by pushing it into a public domain;

• SplitUp: take one abstract object that merges at least two object creations,

and split it into two abstract objects that are in different domains.

3.3 Illustrative Example of the Approach

We illustrate the refinement of an object graph using MicroAphyds, a tiny example

taken from a larger application, Aphyds [13]. In Fig. 3.2, the edges are points-to edges.

12

SHARED

viewer:

Viewer

circuit:

Circuit
circuit

placer:

Placer
circuit terminalcircuit

node:

Node

Tnode

net:

NetTnet

net

node

nets

nodes
inputs

root:

Main
viewer

placer

circuit sources

(a) Step 1: The flat graph has all objects in shared.

SHARED

�w�e�

r��t:

Mai�

p�a�er:

��a�er

placer

viewer:

�iewer
viewer �ir�uit:

Cir�uit

circuit

circuit

circuit

term:

Termi�a�

��	e:

�	e

Tnode �et:

et

Tnet

circuit

inputs

terminal

sources

net

node
nets

nodes ��
���

���������
��

�����

�����������

��s�����

����������������

(b) Step 2: Push objects into owned of circuit.

SHARED

��� !

��� !

��� !

terminal

"#$e:

N#$e

inputsviewer:

%iewer

&ir&uit:

Cir&uit
circuit

r##t:

Mai"
viewer

p'a&er:

('a&er
placer

circuit

terminal

"et:

Net

sources

circuit

node

net

nodes

nets Tnode

Tnet

circuit

)*+,-

.*/+or<Net>

nodes:

Vector<Node>

sources:

Vector<Terminal>

inputs:

Vector<Terminal>

term:

Terminal

(c) Step 3: Split abstract objects to avoid excessive merging.

SHARED

owned

owned

PD

owned

owned

viewer:
Viewer

net:
Net

node:
Node

circuit:
Circuitplacer:

Placer

nodes:
Vector<Node>

nets:
Vector<Net>

Sources:
Vector<Terminal>

term:
Terminal

Inputs:
Vector<Terminal>root:

Main

(d) Step 4: Pushing objects into PD of circuit.

 SHARED

owned

viewer:
Viewer

circuit(+):
Circuit

root:
Main

placer:
Placer

(e) Step 5: Collapsing circuit.
Figure 3.2: MicroAphyds: refining a hierarchical object graph. Hierarchy enables collapsing several
objects underneath the object of type Circuit.

owned_owned_Viewer
PD2_owned_Net
PD2_owned_Node
owned_owned_Circuit
owned_owned_Placer
owned3_PD2_owned_java_util_Vector_Node_
owned3_PD2_owned_java_util_Vector_Net_
owned13_PD2_owned_java_util_Vector_Terminal_
PD2_owned_Terminal
owned9_PD2_owned_java_util_Vector_Terminal_
DS_Main
owned_owned_Viewer
owned_owned_Circuit
DS_Main
owned_owned_Placer

13

Extracting a flat object graph. An initial rough object graph consists of a flat

graph that is readily extracted without any developer input, by placing all the abstract

objects in the domain shared (Fig. 3.2a). While such a flat graph may be useful if

it has a small number of abstract objects, flat graphs can become too cluttered for

larger systems. In a flat graph, it is hard to find an abstract object or to follow

the communication between different abstract objects. In contrast, in a hierarchical

graph, developers can collapse objects, and reduce the number of visible objects, as

needed.

Another problem of placing objects in the same domain is that it leads the ex-

traction analysis to excessively merge abstract objects of the same type, which makes

the graph less precise. For example, in the flat graph, one abstract object of type

Vector<Terminal> represents two object creation expressions in the code.

Expressing strict encapsulation. Code quality tools such as FindBugs warn when

an object returns an alias to a private field to other objects that may mutate it, a code

quality issue called “representation exposure”. Ownership type qualifiers can express

and enforce this design intent and soundly avoid the representation exposure. In

MicroAphyds, the developers note that the Circuit class has two Vector objects, and

those objects should not be directly accessible to outside objects, which may mutate

them and invalidate data structure invariants. As a result, they push the abstract

objects nodes:Vector<Node> and nets:Vector<Net> into the private domain owned

of circuit:Circuit using two separate PushIntoOwned refinements (Fig. 3.2b). If

the code does not suffer from representation exposure, i.e., there is no public method

that returns an alias to the fields nodes or nets, or if it returns a copy or clone

of the object, the refinement succeeds. If not, the refinement fails, with a message

indicating the expression with the unexpected aliasing. For the refinement to succeed,

developers have to fix the code (remove the representation exposure by returning a

copy) and re-attempt it.

14

Splitting abstract objects. The analysis that extracts the object graph merges

runtime objects of the same type in the same domain into one abstract object. If

an abstract object represents more than one object creation expression in the code,

the developers are able to split the abstract object by pushing one of the abstract

objects that were merged, in a different domain. In MicroAphyds, the developers

split the abstract object of type Vector<Terminal> into two abstract objects of the

same type and push one of them into owned of node:Node as one refinement. Us-

ing another PushIntoOwned, they push sources:Vector<Terminal> into owned of

net:Net (Fig. 3.2c).

Expressing logical containment. Next, developers wish to express that

the abstract objects of types Node, Net and Terminal are logically part of

circuit:Circuit, so they push them into the public domain PD of circuit:Circuit.

They could have equally made them part of some other object, as this is arbitrary

design intent.

The key idea is that logically contained objects are still accessible to the objects

that have access to the parent. For example, the highlighted edges (appear as thick-

/blue) show that the Viewer object accesses the objects of type Node and Net that

are part of Circuit, i.e., inside its public domain (Fig. 3.2d). With this hierarchy,

developers can now collapse the Circuit object, as can be seen in Fig 3.2e, thus hid-

ing the objects it contains in its domains, and reducing the number of visible objects

in the graph. The (+) on an object label indicates a collapsed object sub-structure.

3.4 Public Domains Create More Hierarchy

In this section, we illustrate by example the benefits of public domains for ex-

tracting more hierarchical objects graphs, using the same Aphyds system. We use

an experiment where we add alternate sets of qualifiers. One set of qualifiers follows

Ownership Types [8], and another follows Ownership Domains with public domains

15

only. We then compute metrics on the extracted object graphs.

Object Graph Metrics. We compute the following metrics directly on the extracted

object graphs:

• Top-Level Objects (#TLO): the number of objects in the top-level domain;

• Objects in PD (#OPD): the number of objects in a public domain (PD);

• Objects in PrD (#OPrD): the number of objects in a private domain

(owned);

• Object Depth (OD): the object depth, including the Average (Avg OD),

Minimum (Min OD) and Maximum (Max OD);

• Maximum Depth of Ownership Hierarchy (MXD);

Experiment 1: Ownership Types. One can consider Ownership Types to be a

subset of Ownership Domains. We modified our implementation to infer the Owner-

ship Types subset of Ownership Domains qualifiers, then extracted the object graph.

The graph is very flat (Fig. 3.3). All the following objects are in the same domain:

Placer, Viewer, Circuit, Node, Net and Terminal.

 SHARED

 owned

 owned

 owned

 owned

Sources:
Vector<Terminal>

term:
Terminal

net:
Net

node:
Node

Inputs:
Vector<Terminal>

nets:
Vector<Net>

nodes:
Vector<Node>

circuit:
Circuit

viewer:
Viewer

placer:
Placer

root:
Main

Figure 3.3: Aphyds: pure Ownership Types version.

Experiment 2: only public domains. We modified our implementation to infer

only public domains, then extracted the object graph. We used heuristics and one

PushIntoPD, namely Net into Circuit. The graph is more hierarchical (Fig. 3.4).

The following objects are now children of Circuit: Node, Net and Terminal.

owned13_DS_DS_java_util_Vector_Terminal_
DS_DS_Terminal
DS_DS_Net
DS_DS_Node
owned9_DS_DS_java_util_Vector_Terminal_
owned3_DS_DS_java_util_Vector_Net_
owned3_DS_DS_java_util_Vector_Node_
DS_DS_Circuit
owned_DS_Viewer
owned_DS_Placer
DS_Main

16

 SHARED

 PD

 PD

 PD

 PD

nets:
Vector<Net>

net:
Net

Sources:
Vector<Terminal>

term:
Terminal

nodes:
Vector<Node>

node:
Node Inputs:

Vector<Terminal>

circuit:
Circuit

viewer:
Viewer

placer:
Placer

root:
Main

Figure 3.4: Aphyds: all PD version.

Table 3.1: Metrics on the object graphs.
System #O #TLO #OPD #OPrD MXD AOD Min OD Max OD

Ownership Types only 12 6 0 5 3 0.44 0 6
PD only 12 1 10 0 5 0.44 0 5

Metrics. The comparative metrics are in Table 3.1. With pure Ownership Types,

MXD is 3. With PD, MXD is 5. In other words, the ownership tree is deeper

with public domains. Indeed, public domains create more hierarchy, because putting

an object in owned restricts its accessibility, so the object has to stay at the same

ownership level with more peers.

3.5 Adaptation of a Public Domain

Adding these public domains to the language requires handling additional adap-

tation cases in the analysis. The qualifier of an expression is the result of adapting

its inner qualifier from the view point of its receiver. If a field read, field write or

a method invocation expression has a receiver other than this, the qualifier of the

expression is the result of an adaptation. If an object is trying to access the PD do-

main of another object n, the result of adaptation is n.PD. If an object accesses its

own PD, the actual is this.PD. Therefore, when accessing another object’s PD, this

is substituted with the name of the other object during adaptation. n.PD represents

the actual from the receiver’s viewpoint.

PD25_PD25_PD21_java_util_Vector_Net_
PD25_PD21_Net
PD35_PD25_PD21_java_util_Vector_Terminal_
PD25_PD21_Terminal
PD25_PD25_PD21_java_util_Vector_Node_
PD25_PD21_Node
PD31_PD25_PD21_java_util_Vector_Terminal_
PD21_PD21_Circuit
PD21_PD21_Viewer
PD21_PD21_Placer
DS20_Main

17

1 class C1<owner,p> {

2 public domain PD;

3 C<PD,p> f;

4 }

5 class C2<owner, p> {

6 final C1<owner,p> c1;

7
8 void m() {

9 C<c1.PD,p> c = c1.f;

10 }

11 } Figure 3.5: Code to illustrate the adaptation of a public domain.

Fig. 3.5 shows a small example that illustrates adaptation, when the receiver for

a field read is not this. At line 6, a field c1 is declared in the class C2. Its qualifier is

<owner, p>. At line 9, the field f of c1 is read and assigned to the local variable c.

In order to find the qualifier of the local variable c, which is the qualifier of the field

read expression, an adaptation needs to happen. To access the object stored in the

field f, one should go through c1:C1. Therefore, the qualifier of c is the adaptation

of the qualifier of f from the viewpoint of c1, as it is the receiver of the field read

expression. The qualifier of f is <PD, p> and the qualifier of c is <c1.PD, p>.

18

Chapter 4: Positioning

In this chapter, we compare the Ownership Domains (OD) type system to two

other systems (Section 4.1), then simplify it to make inference tractable (Section 4.2).

Then we discuss how our approach applies the framework by Huang et al. [14] (Sec-

tion 4.3).

4.1 Ownership Domains vs. Other Systems

There are similarities across the three ownership type systems covered in the

closely related inference work [14] and this thesis: Ownership Types (OT) [8], Universe

Types (UT) [11], and Ownership Domains (OD) that we show in Table 4.1. In the

rest of this thesis, we will refer to the type systems by their abbreviated names.

Similarly to OT and UT, OD can express the concept of a strictly encapsulated

object, the concept of an object that has the same owning context, and the concept of

an object in the global context. Similarly to OT, OD has the notion of an ownership

parameter. Compared to OT and UT, OD has the notion of logical containment that

is expressed using a public domain and ranks below a strictly encapsulated object

and above a peer object (see the last row).

In OT and UT, objects own other objects directly, i.e., the ownership context is

an object. In OD, objects do not own other objects directly. Instead, a domain is

an explicit, named, ownership context. Explicit contexts are important during the

graphical refinement of an object graph. In our approach, developers drag an object

and drop it into a named, explicit context. Otherwise, when developers push an

object o1 inside an object o2, it would be unclear whether o1 should be owned by o2,

or part of o2.

This notion of explicit contexts is also useful with public domains. If object o1 is

in a public domain d of o2, we can refer to the explicit context or domain of o1 as

19

Table 4.1: Comparison across three ownership type systems. We show the corresponding modifier
in the type system or “n/a” if the concept is not available in the type system. The preference/ranking
for UT and OT is from Huang et al. [14].

UT OT OD

global owner root norep shared

strict encapsulation rep rep owned

logical containment n/a n/a n.PD

same owner as this peer own owner

ownership parameter n/a p p

readonly + pure any n/a n/a

preference/ranking any> rep > peer rep > own > p owned> n.PD > owner> p> shared

o2.d. For example, the iterator of a collection n can be referred to as the object of

type Iterator inside the domain n.ITERS. It makes sense to refer to a public domain

of an object o2.PD as an explicit context, but not so for a private domain o2.owned,

because the latter is inaccessible from the outside anyway.

In contrast, UT can refer to an object o1 in some other context but with a reference

that cannot be used to mutate the referenced object (the modifier is any). As a

result, UT requires additional purity qualifiers, which have to be either manually

added or inferred using a separate inference analysis. Moreover, the modifier any

does not provide any information about the actual ownership context of an object.

Not knowing the owning context of an object does not suit a visual approach such as

ours, since a sound object graph must show each object in its owning domain.

Our previous empirical evaluation using metrics on a corpus of code of 100 KLOC

with manually added Ownership Domains qualifiers and their extracted object

graphs [22] shows that object hierarchy without encapsulation occurs in practice.

In our preliminary testing (Chapter 7), several cases of automated PushIntoPD re-

finements based on object creation are successful.

4.2 Simple Ownership Domains (SOD)

We simplify the OD type system as follows, and call it Simple Ownership Domains

(SOD): 1. a single private domain per class, hard-coded to be owned; 2. a single public

20

domain per class, hard-coded to be PD; 3. an implicit domain parameter, owner, which

is made explicit in the formalization and in the code examples; 4. a single explicit

domain parameter per class, hard-coded to be p; and 5. default or implicit domain

links [6] that make objects in private domains inaccessible to the outside, objects in

public domains accessible, and objects in sibling domains accessible to each other. In

the rest of this thesis, we use SOD.

Hard-coded domain names. By hard-coding the domain names owned, PD, and

p, we cannot define multiple domains per class, or to let the domain name express

design intent.

Single parameter. SOD supports a single domain parameter to keep the inference

tractable but this reduces expressiveness. Some data structures and programming

idioms require more than one explicit ownership parameter. For example, to express

a standard Hashtable, two ownership parameters are needed: one for the key objects

and one for the value objects [7]. SOD can still express Hashtable with one parameter,

by making more objects (the hashtable itself, the key object, or the value object) be

peers.

4.3 Relation to Huang et al. [14]

Our inference analysis instantiates the framework of Huang et al. and computes a

set-based solution, by starting with sets containing all possible answers and iteratively

removing elements that are inconsistent with the typing rules.

4.3.1 Common Definitions

To clarify our contribution in this thesis, we reuse the terminology of Huang et

al., as follows:

Variable: Denotes all reference types, i.e., local variable, parameter, return, object

21

creation, and field types;

Actual Modifier: A member of the set of actual domains or actuals that can be

used in SOD, namely owned, n.PD (n can be this), owner, p and shared;

Qualifier: A qualifier is a pair of actuals <p, q>. The first element, p, is the owning

domain and the second element, q, is the actual domain that is supplied for

ownership domain parameter;

Maximal Qualifier: A maximal qualifier is the highest ranked qualifier in the set

of qualifiers of a variable that type-checks the variable’s expressions;

General Qualifier: A high-ranked qualifier that type-checks the variable’s expres-

sion, but may not express the specific owning domain of an object;

Typing: Given a program and an ownership type system with a set of possible

qualifiers, a typing is a mapping from each variable in the program to a qualifier.

A valid typing type-checks the program in the type system;

Maximal Typing: A maximal typing is the highest ranked valid typing;

Set Mapping: In a set-based solution, a Set Mapping maps each variable in a pro-

gram to a set of feasible qualifiers in a type system. One set mapping may

contain several valid typings;

Optimality Property: The optimality property holds for a type system and a pro-

gram if and only if the typing derived from the set-based solution by giving each

variable the maximal qualifier from its set, is a valid typing;

Conflict: When assigning the maximal qualifier for each variable does not type-

check the program, the expression in the program that does not type-check is

a conflict. Conflicts happen when the optimality property does not hold for a

program and a type system.

22

4.3.2 Handling the Lack of Optimality

A key insight in Huang et al. is that for certain ownership type systems, one can

derive a unique maximal, i.e., best typing T from the set-based solution S. “The

optimality property holds for a type system F and a program P if and only if the

typing derived from the set-based solution S by typing each variable with the maxi-

mally/preferred qualifier from its set, is a valid typing.” Huang et al. show that this

property holds for UT, but does not hold for OT.

Unfortunately, this property also does not hold for SOD. Still, we use SOD for

the following reasons: (a) We need public domains to get more hierarchical object

graphs (See Section 3.4); (b) One could add a maximal modifier to SOD, which is

currently lacking, then use it to infer maximal qualifiers. A maximal qualifier that is

both the highest ranked and type-checks many expressions is likely to be very general

and imprecise, or one that severely restricts what the code can do with a reference,

similarly to the any modifier in UT that prohibits mutation. Our visual approach,

however, requires a precise typing with precise qualifiers rather than general ones,

for all the variables, to show each object in the corresponding domain in the object

graph, and the edges to or from that object.

Huang et al. support OT, which also lacks this optimality property but they han-

dle it differently. They require that developers guide the inference analysis at certain

points. “A statement s is a conflict if it does not type check with themaximal qualifier

derived from the set-based solution. Given a program P , which may be un-annotated

or partially annotated, the tool runs the set-based solver, and if there are conflicts,

these conflicts are printed. The programmer selects a subset of conflicts (usually the

first 1 to 5), and for each conflict, annotates variables. Then the programmer runs the

set-based solver again. This process continues until a program P0 is reached, where

the optimality property holds for P0. The solver computes a maximal typing for P0.”

In their evaluation, developers provide 2–10 manual annotations per 1 KLOC to

23

infer OT qualifiers. In contrast, our developers just perform refinements and do not

specify qualifiers on variables directly. The optimality property may not hold after

any given refinement, but our analysis does not stop and tries to find a valid typing.

Our analysis looks for a valid typing from the current qualifiers of each variable. It

either infers a valid typing or reports that the refinement is unsupported. In Huang

et al., a developer-annotated variable is initialized with a singleton set that contains

only the developer-provided qualifier. Similarly to Huang et al., where developers

constrain the solution by adding qualifiers to the code, more refinements make more

sets of qualifiers to become singletons for more variables. Our preliminary results

confirm that after each refinement, there are fewer possible valid typings to find (See

Chapter 7).

The value of our WYSIWYG approach, compared to having developers resolve

conflicts by adding qualifiers to some expressions, will be evaluated with user studies.

We also leave it to future work to seamlessly integrate developer-provided, partial

annotations with automatic inference.

4.3.3 Instantiating the Framework

Instantiating the Huang et al. framework for a type system requires the following:

(a) the set of possible qualifiers in the type system; (b) the viewpoint adaptation func-

tions, ⊲, which adapt the type of an expression from the viewpoint of its receiver [11];

and (c) type-system specific constraints.

Huang et al. instantiate their framework with UT and OT only. Instantiating

their framework to support our graphical refinement approach and the underlying

SOD type system has to take into account the following:

• To show each object in a domain in the object graph, our approach needs a

precise—rather than a general—typing, which is often the maximal typing in Huang

et al.;

24

• We add the public domain PD to the initial set of possible qualifiers of each

variable, and have fewer restrictions on the first and the second actual domains of a

qualifier t. For example, the qualifier <PD,owned> is possible in SOD but impossible in

OT (where the actual parameter can never be rep due to static visibility constraints).

As a result, each variable has a larger initial set of possible qualifiers due to more

permutations;

• In SOD, an actual domain can be n.d where n is the name of an object and d is

a domain. n can be this or a final field (or a sequence of final fields) and d can be

a private domain owned or a public domain PD. In contrast, in OT, n is always this

and d is always owned. For SOD, adaptation has to consider the different values of n

and d.

• Since a qualifier can contain this, the adaptation has to be more precise and

distinguish between the inner this and the outer this. To avoid capture during

substitution, we rename the inner this to that, then substitute that later on with

the corresponding object name n;

• There is no subtyping hierarchy between the SOD qualifiers, only equality (sim-

ilarly to OT);

• There is a different ranking for qualifiers, where n.PD is between owned and

owner. Moreover, there is no maximal qualifier that the analysis can always pick

from a set of qualifiers for the unique maximal typing, so it has to follow a different

strategy to extract a typing from a set mapping;

• We handle type system constraints specific to SOD.

25

Chapter 5: Set-Based Solution

In this chapter, we give an overview of the inference analysis (Section 5.1). Then

we show the pseudo-code for the top-level analysis (Section 5.2). Next, we discuss the

ranking of qualifiers (Section 5.3), the trivial qualifiers and the initial object graph

(Section 5.4). Then we discuss the default qualifiers (Section 5.5). Next we discuss

how a refinement invokes the inference analysis (Section 5.6). In the remainder of

this chapter, when we say the analysis for brevity, we mean the inference, rather than

the extraction analysis.

5.1 Overview of the Inference Analysis

In this section, we give an informal overview of the analysis, which is a data

flow analysis. It builds a Control Flow Graph (CFG) and analyzes all the method

declarations of the program. The analysis uses transfer functions for the type of

expression being analyzed, namely object creation, assignment, field read, field write

and method invocation. In the set-based solution, a Set Mapping (SM), S, maps each

variable to a set of qualifiers.

Starting point. In our approach, developers specify the Main class of the application

to analyze as the starting point. The Main class does not declare a domain parameter

p, and an instance of the class is created in shared, as in new Main<shared>().

We refer to every class other than the Main class as an application class. Every

application class declares a domain parameter p and also the local domains owned

and PD.

As the first step, the analysis maps each variable in S to an initial set of qualifiers

that contains all the possible qualifiers (see Section 5.4). The analysis then saves

trivial qualifiers (see Section 5.5) for each variable as annotations to the code. The

trivial qualifiers are guaranteed to type-check. Based on the trivial qualifiers, the

26

extraction analysis extracts an initial flat object graph. This may lead to merging

abstract objects in the shared domain.

Refining the object graph. The developers refine the object graph directly by

drag-and-drop of a source object into a domain of a destination object. Each drag-

and-drop operation is a refinement.

Inferring qualifiers. A refinement specifies only the owning domain of an abstract

object, which can be translated into the first element of the qualifier. In contrast,

some approaches require the developers to specify the full qualifier at all object cre-

ation sites [15] or at a subset thereof [14], which we believe to be a significant burden.

Our analysis translates the refinement by changing the first element of the qualifier

of all the new expressions that the source object traces to. The changed variables

are the target variables of the refinement. Then, the analysis infers the appropriate

second element for all the target variables, from all the possible options (owned, PD,

owner and p). The analysis excludes shared, because it is a global context that all

the objects can access. For each possible value for the second element, the analysis

builds a separate S (Sowned, Sowner, SPD and Sp). For Sq, the analysis changes the set

of qualifiers of the target variables to be a singleton set, where first is dictated by the

type of the refinement and second is q (see Section 5.6).

Transfer functions. Then, the analysis applies transfer functions on each S and

each expression in the program. Each transfer function takes an S, an expression

and produces an output S ′. A transfer function removes the qualifiers that cannot

be in a valid typing (see Section 6.3). The transfer functions run until a fixed point

when the sets of qualifiers of variables no longer change. At the fixed point, an S

contains only qualifiers of valid typings for each variable or the set of qualifiers for

one or more variables is empty. If an S contains an empty set of qualifiers for one or

more variable, the S is discarded and not used any further, since it cannot be used

to save qualifiers that type-check.

27

Respect previous refinements. The analysis respects the previous refinements by

preserving the set of qualifiers of their target variables. All other variables, which are

not target variable of any refinement, are mapped to the initial set of qualifiers, to

impose the fewest restrictions.

No solution. After running the transfer functions, all the S ′s may get discarded. In

that case, then the refinement is unsupported, and the analysis informs the developers.

For an unsupported refinement, the analysis does not save a new set of qualifiers, so

the object graph stays the same.

Multiple solutions. After running the transfer functions, there may be more than

one valid solution for the refinement (multiple S ′s). Each S represents a solution, so

the analysis must select one to continue. To select the S, the analysis uses a strategy

that prefers the solution Sq where q is p, PD, owner and owned in this order. The

analysis prefers a more flexible solution over the others. p is a domain parameter that

can be bound to any domain, so that is the most flexible solution. PD is more flexible

than owner and owned, since an object that is in the public domain of an object

can be accessed by other objects. owned is the least flexible one, since an object in

owned can be accessed only by the object that declares the domain, or by objects in

its sibling PD domain. Before we proceed to any refinement, the analysis selects the

current S based on the above strategy.

Check overriding. The analysis checks that S respects the rules for method over-

riding, namely that an overriding method has the same qualifiers as the overridden

method, for its parameters and for its return type, respectively.

Type-check S. At this point, each variable in the current S maps to a set of

qualifiers. Therefore, to be able to pick between them, the analysis defines a ranking

between the actuals that can be extended to rank qualifiers (see Section 5.3). The

analysis cannot simply save the highest ranked qualifier for each variable. The highest

ranked, or maximal, qualifier is the best qualifier for a variable, but there is no

28

guarantee that the maximal qualifier for each variable type-checks the program (the

optimality property, see Section 6.5). In this thesis, we assert that the optimality

property may not hold for the un-annotated programs and SOD. To ensure that the

maximal qualifiers type-check the program, the analysis does a separate step called

type-checking. During type-checking, the analysis extracts a typing T from S. To do

that, the analysis applies a function f on the set of qualifiers of each variable x in

S. The function f initially uses the max function, which picks the highest ranked,

i.e., maximal, qualifier in the set of qualifiers of x. Therefore, in the typing T , each

variable x receives its maximal qualifier from S. The typing T is a valid typing if, for

each variable x, T [x] type-checks the program. If T is valid, it is saved to the code.

Searching for a valid typing. If the analysis cannot find a valid typing during type-

checking, it searches for a valid typing T in the current set mapping S by changing

the function f . To obtain the qualifier of a variable x in a typing T , for each x in S,

the analysis applies f on S[x], which now uses a next function on the set of qualifiers

of x. The next function picks a single qualifier from S[x]. For any other variable, the

function f uses the max function on its set of qualifiers. This step continues until

for all each variable x, T [x] is defined. If there is no valid typing T , the refinement is

unsupported. If there is more than one valid typing T , the analysis must pick between

them as we discuss next.

Finding the best valid typing based on metrics. To select between all the valid

typings, the analysis ranks them by computing metrics on the qualifiers in each T .

To rank an entire T , the metrics follow the same ranking as for the qualifiers in S

(see Section 5.3). A T that contains higher ranked qualifiers also ranks higher. The

metrics compute the percentages of actuals in the qualifiers in T . The percentages

approximate how hierarchical of an object graph the qualifiers will produce. For

example, if many qualifiers contain domain parameters (owner or maybe p), they will

produce objects that are peer in the graph. Alternatively, if many qualifiers are local

29

domains (owned or PD), the graph will be more hierarchical. Since extracting the

object graph is another whole-program analysis that runs until a fixed point, it is

also time consuming to extract object graphs for more than one T . So the metrics

are a lightweight strategy to pick the T to save, as opposed to extracting graphs and

computing metrics on the graphs. Finally, the analysis picks the highest ranked T

and saves it.

Heuristics to increase automation. We define heuristics to automatically suggest

refinements based on structural properties in the code. To suggest a PushIntoOwned

refinement, an Abstract Syntax Tree visitor identifies variables that are potentially

strictly encapsulated, using the standard visibility modifiers. Moreover, when object

o1 creates another object o2, it is likely that o2 is conceptually part of o1. Therefore,

another heuristic suggests a PushIntoPD refinement, namely pushing o2 into the

public domain PD of o1. If at least a few heuristics succeed, the developers start from

an object graph that already has some hierarchy rather than a flat graph and refine

it further.

The heuristics can be unsound since they do not perform an alias analysis. So

every suggested refinement must be fully validated, as if it were a manual refinement,

following the steps above. For example, the heuristics may suggest a PushIntoOwned,

but that object may not be strictly encapsulated. This arises, for instance, when the

corresponding variable has the private visibility, but a public method returns an

alias to the object, either directly, or through a series of assignments. In that case,

the PushIntoOwned refinement will be unsupported. If the developers want that

refinement to succeed, they have to manually change the code to fix the representa-

tion exposure—return a copy of the object rather than an alias, then re-apply the

refinement.

30

5.2 Top-Level Analysis

We show the pseudo-code (Algorithm 1) for the analysis. The signatures of the

functions that are called from the top-level analysis are shown in Algorithm 2. The

pseudo-code starts with the initial S, where all the variables are mapped to the

initial set of qualifiers. When the developers do a refinement, the analysis changes

the qualifiers of the target variables of the refinement and infers the qualifiers for the

other variables by running transfer functions. The extraction analysis extracts a new

object graph based on the new set of qualifiers inferred by the analysis.

5.3 Ranking of Qualifiers

We define a ranking between the qualifiers that the analysis may infer. The

criterion for the ranking is to make the object graph more hierarchical. First we define

a ranking between all the actuals of SOD (the domains and domain parameters). So,

owned is the highest ranked actual, since it creates hierarchy and an object in owned is

strictly encapsulated. The next ranked domain is n.PD, which also creates hierarchy,

but is less restrictive. Every object in owned can be in PD, but the reverse does not

hold. In n.PD, n can be this. The third rank is owner, which is a domain parameter

and makes objects peers. The next ranked domain is p, which is also a domain

parameter, and it can bind to any domain. The lowest ranked is shared, the trivial

modifier, used to obtain the initial flat graph.

owned > n.PD > owner > p > shared

The ranking is extended to the qualifiers. To determine the ranking of a qualifier,

the analysis first considers the first element, then the second element of a qualifier.

31

Algorithm 1 Pseudo-code for the top-level analysis.
function runAnalysis(E eroot, CT CT) // initial run

initialSM ← initializeSM() // with initial qualifier set

saveTrivialQualifiers()

G ← extractObjectGraph(eroot, CT)

function runAnalysis(E eroot, CT CT, OGraph G, Refinement ref) // given G
and ref

currentSM ← getPreviousSM() // result of the previous ref is the new

currentSM
currentSM ← resetSM() // preserve previous refs

Set<S> smx // set of SMs with different second
Set<T> typings // set of valid typings

smx ← applyRefinement(ref, currentSM) // attempt ref

for all si ∈ smx do

if hasEmptySet(si) then

smx.remove(si) // remove discarded si
currentSM ← pickSM(smx) // multiple solutions strategy to set currentSM
currentSM ← postProcess(currentSM)

T typing ← typeCheck(currentSM)

if RunTFs(typing) != null then

saveQualifiers(typing)
else

typings ← findValidTypings(currentSM)

typingToSave ← applyMetrics(typings) // pick a typing to save

saveQualifiers(typingToSave)
G ← extractObjectGraph(eroot, CT)

function applyHeuristics(E eroot, CT CT, G)

if inferHeuristics then

targetVars ← runVisitors() // finding target vars

for all var: targetV ars do

heu ← new Heuristics(var)
runAnalysis(eroot, CT, G, heu)

function applyRefinement(ref, sm)

Set<S> smSet
for all q ∈ {owned, PD, owner, p} do

smq ← sm.clone()

for all var ∈ smq do

if var is a target variable then

smq[var] ← {<ref,q>} // modify the set

smSet.add(smq)

for all sm ∈ smSet do

sm′ ← runTFs(sm) // run TFs until fixed point

smSet.replace(sm,sm′) // replace old S with the new S
return smSet

32

Algorithm 2 Signature of the functions that are called in the top-level analysis.
function resetSM : S // Respect the previous refinements

// Return: a reset SM in which all the variables that are not target

variables of the previous refinement are mapped to the initial set of qualifiers

function runTFs(S sm) : S //Run the TFs on a set mapping

// Input: a SM

// Return: a SM that reflects the set of qualifiers of each variable at

fixed point

function runTFs(T typing) : T // Run the TFs on a typing

// Input: a typing

// Return: the input typing if it is valid, otherwise returns null

function pickSM(Set<S> setSs) : S
// Input: a set of SMs

// Return: a SM that is the preferred one based on being more reusable

function postProcess(S s) : S
// Input: a SM

// Return: the SM, after post-processing

sm = checkOverriding(s)

function checkOverriding(S s) : S
// Input: a SM

// Return: a SM where parameters and return of overridden and overriding

methods have the same set of qualifiers

function typeCheck(S s) : T
// Input: a SM

// Return: a typing, discarded if it is not a valid type-checked

function findValidTypings(S s) : Set<T>
// Input: a SM

// Return: a set of valid typings

function applyMetrics(Set<T> tSet) : T
// Input: a set of typings

// Return: the preferred typing, based on ranking the typings

Therefore, to compare two qualifiers, the one that is higher ranked has a higher

ranked first . If two qualifiers have the same first , then the one that has a higher

ranked second is ranked higher.

5.4 Initial Set Mapping

In the initial S, the analysis maps each variable to an initial set of qualifiers,

which contains all the possible qualifiers for a variable, by considering the type system

constraints related to SOD. The initial set of qualifiers of a variable in application

classes contains 18 members, which are created by the actuals owned, PD, owner, p,

33

and shared, as follows:

{<this.owned, this.PD>,<this.owned, owner>,<this.owned, p>,<this.owned, shared>,

<this.PD, this.PD>,<this.PD, owner>,<this.PD, p>,<this.PD, shared>,<owner, this.PD>,

<owner, owner>,<owner, p>,<owner, shared>,<p, this.PD>,<p, owner>,<p, p>,<p, shared>,

<shared, shared>}

In the initial set of qualifiers, we have this.owned as the second element of a

qualifier, if its first element is this.owned. The reason is that owned is the private

domain of current object, and using it as a domain parameter is incorrect, since it is

inaccessible to the objects that are not in the peer PD domain. Moreover, if the first

element of a qualifier is shared, then the second element must be shared, because

all the objects can access an object in shared.

For a variable in the Main class, the initial set of qualifiers is smaller, because

Main does not declare the domain parameter p. Moreover, the owning domain of the

root object is shared, so the domain parameter owner binds to the domain shared.

Therefore, there is no need to have qualifiers containing owner. The initial set of

qualifiers for each variable in the Main class is:

{<this.owned, this.owned>,<this.owned, this.PD>,<this.owned, shared>,

<this.PD, this.owned>,<this.PD, this.PD>,<this.PD, shared>,<shared, shared>}

The domain owned of Main does not have the properties of a private domain.

So, the qualifier <this.PD, this.owned> is correct, since we want the root object to

describe two top-level domains, to express the design intent of a two-tiered design.

34

The root object is in shared, and there may be other objects in shared that may

access objects in its owned. Therefore, we treat owned in Main as a public domain,

while keeping the other simplifications to OD that we discussed earlier.

5.5 Trivial Qualifiers; Initial Object Graphs

To extract an initial object graph, we need trivial qualifiers that are easy to

compute without running the transfer functions and that are guaranteed to type-

check. The analysis saves the trivial qualifiers to the code, and the extraction analysis

extracts the initial graph based on them. For the variables in the Main class, the trivial

qualifier is <shared, shared>, since all the objects in the initial object graph should

be in shared. The analysis assigns <p, p> for the variables in each application class

where p is the ownership domain parameter of that class. Alternatively, we can use

<owner, owner> everywhere. This initial object graph is flat. If some heuristics

succeed, however, developers rarely see this flat graph.

5.6 Applying Refinements

There are three refinements that developers use to refine the object graph: Push-

IntoOwned, PushIntoPD and SplitUp. The first two have similarities so we generalize

them into a PushIntoX, where X can be owned or PD.

Each refinement operates on an OGraph G, and has a source OObject Osrc and a

destination OObject Odst (Fig. 5.1). The detailed representation of an OObject is used

only by the extraction analysis [1] and is not needed here. The analysis translates

the requested refinement in terms of variables, changes the set of qualifiers for the

target variables in S, and runs the transfer functions to infer changes to the qualifiers

of other variables.

PushIntoX. The PushIntoX (Fig. 5.2, rule r-piX) refinement pushes a source object

35

G ∈ OGraph

D ∈ ODomain

O ∈ OObject

Figure 5.1: Data type declarations for the object graph.

Osrc into the X domain of a destination object Odst. The analysis finds the target

variables that Osrc traces to, x. Then it creates four instances of S, Sowned, SPD,

Sowner and Sp. The set of qualifiers of each changed variable is modified to have one

member in which the first element is X and the second element is the same as the

subscript of the corresponding S. For example, in SPD, for a PushIntoOwned, the set

of qualifiers of a target variable is {<this.owned,this.PD>}. For a PushIntoPD, it

is {<this.PD,this.PD>}. The analysis excludes shared and does not create Sshared,

since shared is a global domain, and all objects can access it. Moreover, if a target

variable is in the Main class, then the analysis creates only two instances of S, Sowned

and SPD. There is no domain parameter p in the Main class, and owner is the same

as shared in Main, so there is no need to create Sowner and Sp. Using the auxiliary

judgement mdbody(), the analysis accesses the body of a method declaration (see

Section ??). The analysis runs the transfer functions (highlighted in the rule) on

each created Sq and all the expressions of the program to validate the changes and

infer the other changes.

SplitUp. In the extracted object graph, objects of the same type and in the same

domain get merged in one abstract object. In a flat object graph where all the objects

are in shared, an abstract object may merge many object creation expressions in the

code. The developers may want to split the abstract object into different abstract

objects in different domains. To do so, they may select one specific object creation

expression and push the object that traces to that expression into another domain

Ddst of another object, Odst.

In doing so, they invoke a SplitUp (Fig. 5.2, rule r-spu). The analysis modifies the

36

set of qualifiers of the selected variable (xsrc) only to be a singleton set, then it creates

four instances of S, Sowned, SPD, Sowner, and Sp. It is important for the analysis to not

change the set of qualifiers of the variables of the other object creation expressions of

the same type, because the goal of split up is to put the abstract objects that trace

to them in different domains. In the modified set, the first of each qualifier, X can

be owned or PD depending on the destination domain of the refinement. The second ,

q can have four possible values for an actual (owned, PD, owner and p).

r-piX
Osrc ∈ G Odst ∈ G

x = getV ars(Osrc) ∀xi ∈ x Qi = S[xi]
∀q ∈ {this.owned, this.PD, owner, p} ∃ Sq s.t. Q′

i = {<X, q>} ∈ Sq

(xi → Q′

i)Sq

∀C ∈ CT,md ∈ C, e ∈ md, Γ;Sq;nthis ⊢ e, S′

q

S
PushIntoX(G,Osrc,Odst,X)
−−−−−−−−−−−−−−−−−→ S′

x

r-spu
Qxsrc

= S[xsrc] X = getDomain(Odst,Ddst)
∀q ∈ {this.owned, this.PD, owner, p}
∃ Sq s.t. Q′

xsrc
= {<X, q>} ∈ Sq

(xsrc → Q′

xsrc
)Sq

∀C ∈ CT,md ∈ C, e ∈ md, Γ;Sq;nthis ⊢ e, S′

q

S
SplitUp(G,xsrc,Odst,Ddst)
−−−−−−−−−−−−−−−−→ S′

x

Figure 5.2: PushIntoX: for PushIntoOwned, X=this.owned, and for PushIntoPD, X=this.PD.
SplitUp splits and pushes the source variable xsrc to the X domain of the destination object
(X=this.owned or X=this.PD).

37

Chapter 6: Formalization

First, we show the abstract syntax that the analysis is based on (Section 6.1).

Next, we formalize the adaptation functions for the SOD qualifiers (Section 6.2) and

then discuss the transfer functions that analyze the different types of expressions

(Section 6.3). Then we discuss SOD type system constraints (Section 6.4), properties

of set-based solution (Section 6.5) and finding a typing in a set mapping (Section 6.6).

Assumptions. The inference runs, after the fact, on an existing Java-like program

that type-checks, and inserts the ownership type qualifiers. In a formalization of SOD,

in contrast to a formalization of a Java-like language, a type T = C<p, q> has two

orthogonal components: the class name C and the ownership type qualifier <p, q>.

Please note we overload T to mean either a typing or a type. The meaning should be

clear from the context. Similarly to Huang et al., we treat the ownership type system

as orthogonal to or independent from the Java type system. As a result, the inference

rules for the transfer functions (Fig. 6.5) do not include the Java sub-typing checks.

Those are in the type-checking rules (Fig. 6.6). Running our inference analysis on a

Java-like program that does not type-check may lead to undefined inference results.

6.1 Abstract Syntax

We formalize our analysis by adapting Featherweight Domain Java (FDJ), which

models a core of a Java-like language with Ownership Domains [6]. To enable com-

parisons with Huang et al., we simplify FDJ to the A-normal form and assume that

each method has a single parameter, and each class has a single field. Of course,

our implementation handles the general case. We also simplify FDJ to reflect the

SOD simplifications such as hard-coded domain names and default domain links (See

Section 4.2).

In our abstract syntax (Fig. 6.1), C ranges over class names; T ranges over types;

38

CT ::= cdef
cdef ::= class C<owner, p> extends C′<owner, p>

{ domain owned; dom; T f ; md }
dom ::= public domain PD;
md ::= TR m(T xm) {T y e; return ym; }
e ::= e; e | x = new C<p, q>() | y = x.f | y = this.f

| x.f = y | this.f = y | x = y | x = y.m(z)
| x = this.m(z)

n ::= x | v
p, q, r ::= owner | p | n.PD | this.owned | shared

T ::= C<p, q> type
t ::= <p, q> qualifier

x, y, z ∈ variables
Γ ::= x → T Static typing context
S ::= ∅ | S ∪ {x 7→ {<p, q>}} Set Mapping (SM)

Figure 6.1: Abstract syntax for SOD, adapted from Featherweight Domain Java (FDJ) [6].

t ranges over qualifiers; f ranges over field names; v ranges over values; e ranges

over expressions; x ranges over variable names; n ranges over values and variable

names; the set of variables includes the distinguished variable this of type Tthis used

to refer to the receiver of a method invocation, field read or field write; m ranges over

method names; p and q range over formal domain parameters, actual domains, or the

global domain shared, i.e., all the possible values for the actuals used in SOD; an

overbar denotes a sequence; the fixed class table CT maps classes to their definitions;

a program is a tuple (CT , e) of a class table and an expression; Γ is the typing

context; and S defines a map from each variable to a set of qualifiers. A qualifier

consists an owning domain and a domain parameter, <p, q>; S[x] denotes reading

the set of qualifiers for x in S; S ′ = [x 7→ Q]S denotes updating the set of qualifiers

for x in S.

Since in n.PD, n can be this, the adaptation has to distinguish between the inner

this and the outer this. To avoid capture during adaptation, we substitute that for

the inner this using [that/this], in transfer functions and after doing adaptation,

that is substituted with this ([this/that]) for the inner this, and the outer this

is substituted with the corresponding object name n, using [n/this], if there is n.PD

in the resulting set of adaptation.

39

6.2 Adaptation Cases

The qualifier of an expression is the result of an adaptation when the receiver

of the expression is not this. In each adaptation case, there is an inner qualifier,

a receiver qualifier and a result or outer qualifier. More formally, we say tout is the

result of adapting tin from the viewpoint of trcv.

trcv ⊲ tin = tout

In Fig. 6.2, we include adaptation cases for owned, owner, p and shared, which

are similar to the cases in Huang and Milanova [15] for OT, and rep, own and p and

norep, respectively.

Adapt-O-O
t1 = <owner, owner> t2 = <p0, q0>

Γ;nthis;nrcv ⊢ t2 ⊲ t1 = <p0, p0>

Adapt-O-A
t1 = <owner, p> t2 = <p0, q0>

Γ;nthis;nrcv ⊢ t2 ⊲ t1 = <p0, q0>

Adapt-A-A
t1 = <p, p> t2 = <p0, q0>

Γ;nthis;nrcv ⊢ t2 ⊲ t1 = <q0, q0>

Adapt-O-S
t1 = <owner, shared> t2 = <p0, q0>

Γ;nthis;nrcv ⊢ t2 ⊲ t1 = <p0, shared>

Adapt-A-S
t1 = <p, shared> t2 = <p0, q0>

Γ;nthis;nrcv ⊢ t2 ⊲ t1 = <q0, shared>

Adapt-S-S
t1 = <shared, shared> t2 = <p0, q0>

Γ;nthis;nrcv ⊢ t2 ⊲ t1 = <shared, shared>

Figure 6.2: Adaptation cases for owner, p and shared.

An inner qualifier can be the qualifier of a field, a method parameter or a method

return. Qualifiers that contain this.PD or n.PD can occur as the inner qualifier.

Therefore, the analysis handles them with an adaptation case. We show the general

case for handling this.PD as the inner qualifier in Fig. 6.4. t1 is the inner qualifier

that contains PD. For t1, we substitute this with that, since t1 is the inner qualifier,

and the corresponding variable is declared in another class. Later on, in the transfer

functions, that is substituted with this again. t2 is the qualifier of the receiver of

40

the expression and it can be any qualifier, so we show it as <p0, q0>. The result of

adaptation, t3 is based on t1 and t2. Writing this in inference rule format leads to

near identical rules. Instead, we use this tabular form to show t1, t3 and the name of

the individual cases in Fig. 6.3. Moreover, We do not have any restriction over the

values of first and second of a qualifier, so we add an extra case for adaptation where

the inner qualifier is <p, owner>.

For example, in the rule Adapt-D-D1, t1 has that.PD as its first and second .

Therefore, independently of the elements of t2, t3 is <n.PD, n.PD>, and n is a final

field of the same type as the receiver (C2) declared in current class. In the other rule,

Adapt-D-O1, the second element of t1 is owner, so in the result qualifier, the first

element of t2 is selected as second , and t3 is <n.PD, p0>.

The judgement form for adaptation is as follows:

Γ;nthis;nrcv ⊢ <px, qx> ⊲ <py, qy> = <pz, qz>

t1 t3 rule name
<p, owner> <q0, p0> Adapt-A-O
<that.PD, that.PD> <n.PD, n.PD> Adapt-D-D
<that.PD, owner> <n.PD, p0> Adapt-D-O
<that.PD, p> <n.PD, qo> Adapt-D-A
<that.PD, shared> <n.PD, shared> Adapt-D-S
<owner, that.PD> <p0, n.PD> Adapt-O-D
<p, that.PD> <q0, n.PD> Adapt-A-D
<shared, that.PD> <shared, n.PD> Adapt-S-D

Figure 6.3: Different adaptation cases of PD. t1 is the inner qualifier and t3 is the result qualifier.

Adapt-D-X
Γ;nthis ⊢ nthis : Cthis<pthis, qthis>

t2 = <p0, q0> final(n)

Γ;nthis;n ⊢ t2 ⊲ t1 = t3

Figure 6.4: General rule for the adaptation of n.PD. We show a case analysis for t1 and t3 in
Fig. 6.3. p0 and q0 can be of the form n′.PD.

Set-level adaptation. In the set-based solution, in order to handle all the possible

adaptation cases, each transfer function uses three types of adaptation functions that

41

work on sets of qualifiers. First, Adapt-Out (⊲o) adapts qualifiers of the outer

variable by accepting qualifiers of the inner and the receiver (nrcv) variables as input.

Second, Adapt-In (⊲i) adapts qualifiers of the inner variable by accepting qualifiers

of the outer variable and the receiver variable as input. Third, Adapt-Rcv (⊲r)

adapts qualifiers of the receiver variable by accepting qualifiers of the outer variable

and the inner variable as input.

The judgement form for set-level adaptation is as follows, where Qi is a set of

qualifiers:

Γ;nthis;nrcv ⊢ Q1 ⊲X Q2 = Q where X = o or X = i or X = r

6.3 Transfer Functions

In this section, we formalize our transfer functions, some of which generalize the

transfer functions in Huang et al. A transfer function accepts an expression and

an S. It extracts the variables included in the expression and accesses the set of

qualifiers of the extracted variables in S. By intersecting the sets of qualifiers of

different variables, a transfer function removes the invalid qualifiers from the set of

qualifiers of the variables of the expression. Then it updates the sets of qualifiers of

the corresponding variables in S and creates S ′. Fig. 6.5 shows the inference rules for

each transfer function. We reuse the transfer functions that do not require adaption.

For the transfer functions that require adaptation, we handle qualifiers that contain

n. We visually highlight the key differences in the extended rules. The judgement

form for the transfer function over an expression e is as follows:

42

Γ;S;nthis ⊢ e, S′

Object creation expression. The rule TF-New transfers over a new expression

that consists of a left-hand side variable x and a call to the constructor of the class C.

The qualifier <p, q> contains the actual owning domain and actual domain parameter,

and together with the class C, forms the type of the object being created. The rule

intersects the set of qualifiers of x with the qualifier <p, q>, which means the qualifier

of x is <p, q>. At the end, the rule creates S ′ by updating the set of qualifiers of x

in S.

Assignment expression. The rule TF-Assign extracts the set of qualifiers of the

left-hand side (x) and right-hand side (y) variables and intersects them. Then, it

updates the sets of qualifiers of both variables in S and creates S ′.

Field read and write expressions. For field read and write expressions (the rule

TF-FieldRW), there is one transfer function. The rule extracts all the variables

in the expression and finds their set of qualifiers in S. First, the rule substitutes

this with that for the qualifiers of the field f , since f is declared in the class of

the receiver x. To compute the updated set of qualifiers for y, Adapt-Out finds a

set of qualifiers, Qo. For each qualifier to in Qo, if to contains x.PD as first element,

or second element or both, and if there is a qualifier t in set of qualifiers of y (S[y])

where instead of x.PD, t contains this.PD, the rule substitutes this with x for t. Then

the rule intersects Qo with the set of qualifiers of y, and the result is the new set of

qualifiers for y, Qy. To compute the new set of qualifiers of the field f , Adapt-In

finds a set of qualifiers, Qi using Qy. Then, the rule intersects Qi with the set of

qualifiers of f . The result is Qf , which is the new set of qualifiers for f . Next, for the

receiver x, Adapt-Rcv finds a set of qualifiers using Qy and Qf , which is Qr. The

43

rule intersects Qr with the set of qualifiers of x. The resulting set is the new set of

qualifiers for x, named Qx. In Qf , the rule substitutes this with that and updates

the set of qualifiers of the variables in S to generate S ′.

Field read and write expressions with this as the receiver. When the receiver

of a field read or a field write expression is this, there is no need for adaptation.

Therefore, the rule TF-ThisFieldRW extracts the left-hand side variable for field

read or the right-hand side variable for the field write (y), along with the field variable,

and finds their set of qualifiers in S. Then, it intersects the sets of qualifiers of the

left-hand or the right-hand sides with the set of qualifiers of the field. The rule creates

S ′ by updating the set of qualifiers of the variables in S.

Method invocation expression. In the input expression of the rule TF-Invk, x

is the left-hand side variable, and y is the receiver. ym represents the return of a

method as a reference type that needs a qualifier. The variable z is the argument of

the method invocation. By calling themdbody() auxiliary judgement (see Section ??),

the rule extracts xm that is the formal method parameter. First, the rule substitutes

this with that in the sets the qualifiers of xm and ym, since they declared in the class

of the receiver y. The rule does Adapt-Out using the sets of qualifiers of y and xm

and the resulting set is Q1o. For each qualifier t1o in Q1o, if t1o contains y.PD as first

element, or second element or both, and if there is a qualifier t1 in set of qualifiers of

z (S[z]) where instead of y.PD, t1 contains this.PD, the rule substitutes this with y

for t1. The rule does the same and Q2o is the result of Adapt-Out using the sets

of qualifiers of y and ym. Again, the rule substitutes this with y for each qualifier

t2 in S[x], when there is a corresponding qualifier t2o in Q2o that contains y.PD. By

intersecting Q1o with S[z] and Q2o with S[x], the rules computes the new sets of

qualifiers for z and x, which are Qz and Qx respectively. By applying Adapt-In on

Qz and S[y], the rule finds a set of qualifiers Q1i and the result of intersecting it with

S[xm] is the new set of qualifiers for xm, which is Qxm
. Again, by applying Adapt-In

44

on Qx and S[y], and intersecting the result with S[ym], the rule finds the new set of

qualifiers of ym, which is Qym . For the receiver y, the rule does Adapt-Rcv and finds

the result using Qz, Qf , Qx and Qm. Then, it intersects the result of Adapt-Rcv

with the set of qualifiers of y and gets Qy, the new set of qualifiers for the receiver y.

For the xm and ym variables, that is substituted with this in the resulting sets of

qualifiers. Then, the rule outputs S ′ by updating the set of qualifiers of each variable

in S.

Method invocation expression with this as the receiver. When the receiver

of a method invocation is this, there is no need for adaptation. Therefore, the rule

TF-ThisInvk intersects the set of qualifiers of the formal method parameter with

the actual method argument and updates the sets of the corresponding variables with

the resulting set in S. Also, it intersects the set of qualifiers of the left-hand side and

the method return variable and updates their sets of qualifiers in S with the resulting

sets and creates S ′.

6.4 SOD Type System Constraints

In this section we talk about typing rules that type-check a program in SOD.

Typing rules work at the level of expressions. Next, we introduce some rules that

work at the level of methods and classes.

6.4.1 Typing Rules

We adapt the typing rules for SOD to this framework (Fig. 6.6). We expand the

rules from Ownership Domains [6] to include special cases for when the receiver is

this, as for the transfer functions. Most crucially, we adapt the rules to use viewpoint

adaptation instead of substitution of formals to actuals in FDJ [6]. In SOD, there

is no subtyping between qualifiers, just qualifier equality. Also, SOD imposes its

45

TF-New
S′ = [x→ (S[x] ∩ {<p, q>})]S

Γ;S;nthis ⊢ x = new C<p, q>(), S′

TF-Assign
S′ = [x→ (S[x] ∩ S[y]), y → (S[x] ∩ S[y])]S

Γ;S;nthis ⊢ x = y, S′

TF-FieldRW
Γ;nthis;x ⊢ S[x] ⊲o [that/this]S[f] = Qo

∀to ∈ Qo s.t. to = <x.PD, q> or to = <p, x.PD> or to = <x.PD, x.PD> ∃t ∈ S[y] s.t. [x/this]t = to
Qo ∩ (S[y]← to) = Qy Γ;nthis;x ⊢ Qy ⊲i S[x] = Qi Qi ∩ S[f] = Qf

Γ;nthis;x ⊢ Qy ⊲r Qf = Qr Qr ∩ S[x] = Qx S′ = [y → Qy, f → [this/that]Qf , x→ Qx]S

Γ;S;nthis ⊢ x.f = y or y = x.f, S′

TF-ThisFieldRW
S′ = [y → (S[y] ∩ S[f]), f → (S[y] ∩ S[f])]S

Γ;S;nthis ⊢ this.f = y or y = this.f, S′

TF-Invk
mdbody(m) = (xm, ym)

Γ;nthis; y ⊢ S[y] ⊲o [that/this]S[xm] = Q1o
∀t1o ∈ Q1o s.t. t1o = <y.PD, q> or t1o = <p, y.PD> or t1o = <y.PD, y.PD> ∃t1 ∈ S[z] s.t. [y/this]t1 = t1o

Q1o ∩ (S[z]← t1o) = Qz Γ;nthis; y ⊢ Qz ⊲i S[y] = Q1i Q1i ∩ S[xm] = Qxm

Γ;nthis; y ⊢ S[y] ⊲o [that/this]S[ym] = Q2o
∀t2o ∈ Q1o s.t. t2o = <y.PD, q> or t1o = <p, y.PD> or t2o = <y.PD, y.PD> ∃t2 ∈ S[x] s.t. [y/this]t2 = t2o

Q2o ∩ (S[x]← t2o) = Qx Γ;nthis; y ⊢ Qx ⊲i S[y] = Q2i Q2i ∩ S[ym] = Qym

Γ;nthis; y ⊢ Qz ⊲r Qxm
= Q1r Γ;nthis; y ⊢ Qx ⊲r Qym

= Q2r
Q1r ∩Q2r ∩ S[y] = Qy

S′ = [z → Qz, xm → [this/that]Qxm
, x→ Qx, ym → [this/that]Qym

, y → Qy]S

Γ;S;nthis ⊢ x = y.m(z), S′

TF-ThisInvk
mdbody(m) = (xm, ym)

S′ = [z → (S[z] ∩ S[xm]), xm → (S[z] ∩ S[xm]), x→ (S[x] ∩ S[ym]), ym → (S[x] ∩ S[ym])]S

Γ;S;nthis ⊢ x = this.m(z), S′

Figure 6.5: Transfer functions. We use . . . to break a long premise on multiple lines.

own type system constraints, such as prohibit object creation with an owner being

p (T-New). An object can be created only in a local domain of this or its own

domain.

6.4.2 Higher Level Rules

Two rules work on a higher level than variables or expressions (Fig. 6.7).

MethOK ensures that for an overriding method the qualifier of the method param-

eter is the same as the qualifier of the method parameter of the overridden method,

and similarly, for the return type. Moreover, if method is a public method, then its

46

T-New
Γ(x) = Cx<px, qx> C <: Cx

<px, qx> = <p, q>
px ∈ {owned, PD, owner, shared}

Γ ⊢ x = new C<p, q>()

T-Assign
Γ(x) = Cx<px, qx> Γ(y) = Cy<py, qy>

Cy <: Cx <px, qx> = <py, qy>

Γ ⊢ x = y

T-Write
Γ(x) = Cx<px, qx> Γ(y) = Cy<py, qy>

Tf f ∈ CT (Cx) Tf = Cf<pf , qf> Cy <: Cf

<px, qx> ⊲ <pf , qf> = <py, qy> pubsig(f)

Γ ⊢ x.f = y

T-ThisWrite
Γ(y) = Cy<py, qy> Tf f ∈ CT (Cthis)

Tf = Cf<pf , qf> Cy <: Cf

<pf , qf> = <py, qy>

Γ ⊢ this.f = y

T-Read
Γ(x) = Cx<px, qx> Γ(y) = Cy<py, qy>

Tf f ∈ CT (Cy) Tf = Cf<pf , qf> Cf <: Cx

<py, qy> ⊲ <pf , qf> = <px, qx> pubsig(f)

Γ ⊢ x = y.f

T-ThisRead
Γ(x) = Cx<px, qx> Tf f ∈ CT (Cthis)

Tf = Cf<pf , qf> Cf <: Cx <pf , qf> = <px, qx>

Γ ⊢ x = this.f

T-Invk
mdtype(m) = Tm → Tr Γ(x) = Cx<px, qx>
Γ(y) = Cy<py, qy> Γ(z) = Cz<pz, qz>
Tm = Cm<pm, qm> Tr = Cr<pr, qr>

Cr <: Cx Cz <: Cm

<py, qy> ⊲ <pm, qm> = <pz, qz>
<py, qy> ⊲<pr, qr> = <px, qx> pubsig(m)

Γ ⊢ x = y.m(z)

T-ThisInvk
mdtype(m) = Tm → Tr Γ(x) = Cx<px, qx>
Γ(z) = Cz<pz, qz> Tm = Cm<pm, qm>

Tr = Cr<pr, qr> Cr <: Cx

Cz <: Cm <pz, qz> = <pm, qm>
<pr, qr> = <px, qx> pubsig(m)

Γ ⊢ x = this.m(z)

Figure 6.6: Typing rules for SOD.

parameter or its return type cannot have owned in their qualifiers. ClsOK checks

that a public field cannot be owned, and that all the methods in a class are valid

based on MethOK.

The auxiliary judgements mdType() and mdBody() return the type and the body

of a method, respectively. The auxiliary judgement pubsig() enforces the SOD con-

straints on the qualifiers of public methods and fields. First, pubsig(C, f) checks

47

ClsOK
T f pubsig(C, f) md OK in C

class C<owner, p> extends C′<owner, p>... OK

MethOK
CT (C) = class C<owner, p> extends C′<owner, p> . . .

override(m,C′<owner, p>, T → TR)
T = C<p1, q1> TR = Cr<p2, q2>

mdtype(m) = T ′ → T ′

R

T ′ = C′<p3, q3> T ′

R = C′

r<p4, q4> pubsig(m)
<p1, q1> = <p3, q3> <p2, q2> = <p4, q4>

TR m(T x) { T y e; return ym; } OK in C

Figure 6.7: SOD type system constraints.

Aux-mdtype
(TR m(T x) {T y e; return ym; }) ∈ md

mdtype(m) = T → TR

Aux-mdbody
(TR m(T x) {T y e; return ym; }) ∈ md

mdbody(m) = (x, ym)

Aux-mpublic
public(m) mdtype(m) = T → T ′

T = C<p, q> T ′ = C′<p′, q′>
p 6= owned q 6= owned

p′ 6= owned q′ 6= owned

pubsig(m)

Aux-fpublic
T f ∈ CT (C) public(f)

T = C′<p, q>
p 6= owned q 6= owned

pubsig(C, f)

Figure 6.8: Auxiliary judgements.

if the field f in the class C has the visibility modifier public, its qualifier cannot

contain owned. Also, pubsig(m) checks if a method is public, then the qualifier for

its method parameter or its return cannot contain owned (Fig. 6.8).

6.5 Properties of Set-Based Solution

Similarly to Huang et al., we define some properties for our set-based solution. We

adapt their Proposition 1 and show it holds for our set-based solution. Proposition 1

states if the set-based solution removes a qualifier from the set of qualifiers of a

variable, then there is no set of qualifiers that type-checks the program and contains

the removed qualifier. We also discuss the optimality property, which states that, at

the fixed point, the highest ranked qualifier of the set of qualifiers of each variable

type-checks the program.

48

Proposition 1. Let S be the set-based solution. Let x be any variable in a program

P , and let <p, q> be any qualifier in SOD. If <p0, q0> 6∈ S[x0] for some x0, then there

does not exist a valid typing T for program P in SOD such that T [x] = <px, qx> and

<px, qx> ∈ S[x] for all x and T [x0] = <p0, q0>.

Proof. (Sketch) We say that <p, q> is a valid qualifier for x if there exists a valid

typing T , where T [x] = <p, q>. Let x0 be the first variable that has a valid qualifier

<p0, q0> removed from its set S[x0] and let fe be the transfer function that performs

this removal. Since <p0, q0> is a valid qualifier for variable x0 in expression e, for the

other variables in e, there exist other valid qualifiers <p1, q1>,...,<pn, qn> that make

e type-check in SOD. If <p1, q1> ∈ S[x1], ..., <pn, qn> ∈ S[xn], then by definition of a

correct transfer function, fe would not have removed <p0, q0> from S[x0]. So one of

x1, . . . , xn must have had a valid qualifier removed from its set before the application

of fe. This contradicts the assumption that x0 is the first variable that had a valid

qualifier removed from its set of qualifiers.

Optimality Property. The optimality property does not hold for unannotated

programs for SOD, so in our approach, developers refinements provide additional

information for the analysis. For the optimality property to hold, the analysis needs

enough information, which one refinement may not provide. Therefore, the developers

have to do more refinements until the optimality property holds. In contrast with

Huang et al., which ask for certain amount of manual qualifiers for optimality property

to hold, our approach does not ask for more refinements until the optimality property

holds. Our approach tries to find some valid typing even after one refinement, by

enumerating the variables and their sets of qualifiers. The reason that our approach

cannot save the highest ranked qualifier for each variable is in SOD there are multiple

maximal typings. Therefore, if the analysis picks the highest ranked qualifier in the set

of qualifiers of each variable, one qualifier may get picked from a maximal typing T1,

and another qualifier may get picked from another maximal typing T2. The typings

49

T1 and T2 may not be the same, so saving qualifiers based on two typings may lead

to programs that do not type-check.

Soundness of the transfer functions. There is a transfer function fe for each

expression e. Each transfer function fe takes as input a set mapping S, and outputs

an updated mapping S ′. Let fe be the transfer function that removes the invalid

qualifiers from the set of qualifiers of each variable xi ∈ e. After the application of fe,

for each variable xi ∈ e, and each <pi, qi> ∈ S ′[xi], there exists <p1, q1> ∈ S ′[x1],...,

<pi−1, qi−1> ∈ S ′[xi−1], <pi+1, qi+1> ∈ S ′[xi+1], . . . , <pn, qn> ∈ S ′[xn], such that

<p1, q1>,...,<pn, qn> type-check with the rule for e in Fig. 6.6. Making e type check

requires that the typing rule for e holds.

∀xi ∈ e, S ′[xi] = {<pi, qi>|

<pi, qi> ∈ S[xi] and

∃<p1, q1> ∈ S ′[x1], . . . , <pi−1, qi−1> ∈ S ′[xi−1],

<pi+1, qi+1> ∈ S ′[xi+1], . . . , <pn, qn> ∈ S ′[xn] s.t.

<p1, q1>, . . . , <pn, qn> type-check with the rule for e}

6.6 Finding a Typing In a Set Mapping

To extract a typing T from a Set Mapping S, we need a function f such that for

any variable x:

T [x] = f(S[x])

In Huang et al., f = max, which selects the maximal typing. In our case, the following

holds:

50

T [x] = f(S[x]) where f = max for some x

or f = scalar if |S[x]| = 1

or f = next otherwise

where next picks one element in S[x], and scalar converts a singleton set (of cardi-

nality |S| = 1) to a single value.

51

Chapter 7: Evaluation

In this Chapter, first, we discuss the implementation of the inference analysis tool

(Section 7.1). Then, we discuss the method (Section 7.2) and results (Section 7.3)

of evaluating our approach on several small examples. At the end of this chapter,

we discuss how our evaluation addresses the proposed hypotheses of the thesis (Sec-

tion 7.4).

7.1 Tool Implementation

We implemented the inference analysis on a dataflow analysis framework, Crys-

tal [20], which handles building the Control Flow Graph, the Three-Address Code

representation, and invoking the transfer functions we supply. The analysis saves

qualifiers as annotations in the code, using language support for annotations. We

have an independent type-checker that reads the annotations and type-checks them,

and a separate extraction analysis that uses the annotations to extract the object

graph. We manually run the independent type-checker to validate the inferred qual-

ifiers. We also integrated the analysis into a user interface.

Below, we show a screenshot of a working prototype of the refinement tool

(Fig. 7.1), on the same MicroAphyds example. The refinement tool is an Eclipse

plugin.

The left side shows the ownership tree. Starting from the SHARED root domain,

each object contains zero or more domains, and each domain contains zero or more

objects. By default, we create one private domain, called owned, and one public

domain, called PD, per object.

For illustration purposes, we list below the tree the refinements that have been

applied. The first column shows the refinement type, the middle columns show the

arguments of the refinement, such as the source object, the destination object, and

52

Figure 7.1: Snapshot of the current Eclipse prototype. The outcomes of attempted heuristics and
proposed refinements (Completed or Unsupported) are shown below the ownership tree (bottom
left).

the domain name. Finally, the last column shows the status of applying the refine-

ment and running the inference analysis. If a refinement is successful, it appears

as Completed in the Status column. A disallowed refinement has its status set to

Unsupported. Refinements can be exported and re-applied to a system.

The middle part of the screen shows in the Eclipse Java editor the code with the

annotations that are saved by the inference analysis. The annotations use language

support for annotations available in Java 1.5 or later. The @Domains keyword lists

the domains that a class declares. The @DomainParams keyword lists the domain

parameters of a class. The @Domain("p<q>") annotation on a field, local variable,

method parameter, or method return type, saves the inferred qualifier <p,q> for

that variable. A separate type-checker can optionally check that the code and the

annotations are consistent with each other and report any warnings in the Eclipse

Problems window. The right side shows the refined graph based on running the

graph extraction analysis on the code with annotations. The graph is visualized

using nested boxes, which allow expanding or collapsing objects to reveal or hide

lower-level objects.

53

7.2 Evaluation Method

We first explain the evaluation method. We ran the implemented tool on the test

cases. When we ran the tool, we turned on the heuristics for inferring owned and PD.

However, for some test cases, the AST visitors do not find any target variable, so there

is no applicable heuristics. On the initial graph, we did a few refinements on each test

case. We selected the refinements based on the design intent of the test case that we

created or reused. After the refinements, we reported the total number of refinements

and heuristics, the completed ones and the total number of valid typings that the

tool found after all the heuristics and after each refinement. Moreover, we showed

the metrics for the best and the worst typing to illustrate the significant differences

between them.

7.3 Evaluation Results

In this section, we discuss the results of running our tool on several test cases in

detail. The measurements in this section are described in Table 7.1 and Table 7.2.

The notation used in the table, ref(C1>C2), means that ref is the refinement type,

C1 is the type of the source abstract object, C2 is the type of destination abstract

object. ref can be pio for PushIntoOwned or pip for PushIntoPD. For SplitUp, we

use the notation spu(var,C,domain) where var is the name of the target variable,

C is the type of the destination object and domain is the destination domain, which

can be owned or PD.

Stack. This test case is inspired by the XStack example in [14] and illustrates a

stack data structure implemented using a linked list. Each element of the stack has

a pointer that points to the next element, and a data item to represent the data that

is stored in each element. One difference with the XStack example is that we extend

the test case to have a wrapper class over the data item of the elements of the stack.

54

Therefore, the wrapper object should be part of each element, and it should be in the

PD domain. Also, the stack data structure has the top of the stack as a field. The

approach cannot find any target variable for a heuristic to run for this test case. We

refine that initial object graph to push the wrapper object into PD of the abstract

object that represents an element (pip(XOwner>Link)). We also push top into the

owned domain of the stack (pio(Link>XStack)). As the last refinement, we push the

stack object into PD of the root object (pip(XStack>Main)).

By doing pip(XOwner>Link), the approach finds 16 valid typings to save to the

code. It means the approach found 16 ways to insert qualifiers to the code to fulfill

the refinement. The approach saves the best one that has two more owned qualifiers

instead of two shared qualifiers. After doing pio(Link>XStack), there is one valid

typing to save and the approach saves that one. Having only one typing means the

optimality property holds after the second refinement for the program and SOD. The

pip(XStack>Main) refinement leads to one valid typing that has five owned and seven

PD modifiers. In the valid typing, there are only two shared qualifiers.

QuadTree. Recursive types are tricky for the extraction analysis, which creates a

cycle in the object graph to ensure that the graph is finite. This test case checks that

the inference analysis also handles recursive types. The class QuadTree has a field of

its own type. By splitting up the abstract object of type QuadTree and pushing the

target variable (the field) into owned of QuadTree, the inference analysis pushes the

abstract object of type QuadTree into the owned domain of another abstract object of

the same type. The recursive type leads to a cycle in the object graph, as expected.

In this example there is one valid typing to save.

MicroAphyds. This test case was taken from a larger pedagogical circuit layout

application, Aphyds [13]. The test case illustrates a circuit that contains a Vector

of Node and a Vector of Net. Each Node and each Net also containing a Vector of

Terminal. The design intent is to make the Vector objects strictly encapsulated to

55

 SHARED

 owned

 owned

nwQT:
QuadTree

aQT:
QuadTree

main:
Main

(a) Nested boxes.

SHARED

main:
Main

owned

aQT:
QuadTree

aQT

owned

nwQT:
QuadTree

nwQT

(b) Internal
representation.

Figure 7.2: Representations of the object graph for the QuadTree test case.

distinguish between them. Node and Net and Terminal are parts of Circuit. We also

show two tier architecture by pushing Circuit and Placer in one top-level domain

and Viewer in another top-level domain. By having heuristics to infer owned and

PD, the approach attempts seven heuristics to infer owned, and four thereof succeed.

The completed heuristics push the Vector objects into owned domain of the abstract

objects that traces to declaring class of the Vector objects. So, the initial object

graph for this test case is not flat. We also refine the object graph by pushing the

abstract object of type Node into PD of the abstract object of type Circuit. As

a result, abstract objects of types Net and Terminal are also be pushed into PD

of Circuit. After this refinement, there is one typing to save. We do two more

refinements and push the abstract objects of types Circuit and Placer in PD of the

root object and push the abstract object of type Viewer into owned of root object.

CourSys. This larger test case is a fully working example of size 1.4 KLOC that is

used in a software architecture class. It is a course registration application: the classes

Student and Course contain information related to students and courses, respectively.

The Student class has a list of completed, and another list of registered courses. The

owned6_owned4_QuadTree
owned4_owned4_QuadTree
DS2_Main
DS2
DS2.Main
owned4
owned4.owned4.QuadTree
owned6
owned6.owned4.QuadTree

56

Table 7.1: Total and completed number of heuristics and refinements for each test case.

test case Heus Refs
PIO ComPIO PIP ComPIP PIO ComPIO PIP ComPIP SPU ComSPU

Stack 0 0 0 0 1 1 2 2 0 0
Aphyds 7 4 0 0 1 1 2 2 0 0

QuadTree 0 0 0 0 0 0 0 0 1 1
CourSys 33 12 5 5 0 0 3 1 0 0

SM 19 11 0 0 3 0 8 5 3 1

Table 7.2: Refinements for each test case and the best and worst S to save. owd=owned,
owr=owner, shd=shared, ALPlayer = ArrayListPlayer, LTile = LetterTile, DLSlot= DoubleLet-
terSlot, TWSlot = TripleWordSlot, TLSlot = TripleLetterSlot, NSlot = NormalSlot, ALSlot =
ArrayListSlot

Test case/Refs. Typings BestTyping WorstTyping
owd pd p owr shd owd pd p owr shd

Stack
heuristics n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
pip(XOwner>Link) 16 2 1 9 2 14 0 1 11 0 16
pio(Link>XStack) 1 11 1 13 1 2 11 1 13 1 2
pip(XStack>Main) 1 5 7 13 1 2 5 7 13 1 2
Aphyds
heuristics 1 14 0 30 24 0 14 0 30 24 0
pip(Node>Circuit) 1 14 12 18 24 0 14 12 18 24 0
pip(Circuit>Main) 1 8 18 18 24 0 8 18 18 24 0
pio(Viewer>Main) 1 9 17 24 18 0 9 17 24 18 0
QuadTree
heuristics n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
spu(nQT>QuadTree,owned) 1 5 0 1 0 2 5 0 1 0 2
CourSys
heuristics 412 28 10 131 90 182 11 10 109 3 307
pip(Student>Data) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
pip(Course>Data) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
pip(Logic>Main) 415 20 18 130 87 186 7 10 106 3 298
ScrabbleModel
Heuristics 274 30 0 19 21 428 14 0 15 1 468
pio(Player>ALPlayer) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
spu(tmpAry>Game,owned) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
spu(delAry>Dictionary,owned) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
spu(plyAry>Game,owned) 275 31 0 18 23 428 15 0 18 3 464
pip(LTile>TileBag) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
pip(DLSlot>Board) 266 29 1 21 21 428 15 1 19 3 462
pip(TWSlot>Board) 257 27 2 21 22 428 15 2 20 3 462
pip(TLSlot>Board) 248 25 3 23 21 428 15 3 19 1 460
pip(NSlot>Board) 239 23 4 22 23 428 15 4 22 3 456
pip(ALSlot>Board) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
pip(Game>Main) 236 19 8 23 22 428 15 4 25 6 448

Course class has the list of registered students for the course. The idea here is to

distinguish between different list objects with different design purposes. There is

another class Data that provides access to student and course data including reading

57

the record information and writing registration information. The Logic class contains

the main logic of the system, and the Client class is responsible for accepting user

input, executing the corresponding logic methods and displaying the results. There

are also classes that provide logging and read/write lock management.

This test case is valuable because this pedagogical system has been used in demon-

strations and tutorials for adding Ownership Domains qualifiers manually, and using

a type-checker to check the validity of the qualifiers. According to the tutorials, it

takes over one hour to inspect the system and add the qualifiers by hand. Using the

refinement tool, and by turning on the heuristics, we were able to analyze the system

in a few minutes. This system uses many classes from the Java standard library such

as the java.util collections and java.io.File, so we manually generated stubs for

those classes to use in the evaluation.

Out of 33 attempted heuristics to infer owned, 12 of them are completed. It is

interesting to see from the completed heuristics to infer owned that there are several

cases of strict encapsulation. E.g., a log object encapsulated a lock object. However,

a high number of attempted heuristics and a low number of completed ones mean

many objects are nearly encapsulated, or that our heuristics visitors are not very

precise. For example, the collection of Course objects is protected in the Data

class, but a public method returns an alias to it.

The approach also attempts five heuristics to infer PD and all of them are com-

pleted. In particular, those heuristics distinguish between different collection objects

and split them up, even though they are not strictly encapsulated. The resulting

graph distinguishes between the list of students in the Course object that indicates

the list of students who are registered for the course, and the list of students in the

Data object that indicates the list of all the students in the system. So, using object

creation as a heuristic to infer public domains seems to match the design intent.

By doing pip(Logic>Main), there are 415 valid typings. The metrics show drastic

58

difference on the qualifiers of the best and the worst typing (Table 7.2). There are two

false positives, refinements that are possible by adding the qualifiers manually, but

the tool does not allow them (pip(Student>Data) and pip(Course>Data)). The

reason is the tool always prefers Sp over SPD, but for those refinements it should

select SPD. Heuristics and each refinement take around 1.5 minutes. In total, it takes

5 minutes to complete the test case using the tool.

In summary, using the tool, we were able to infer most of the qualifiers that we

typically add manually. The heuristics matched the design intent in most cases. Only

a few, manual refinements are needed in addition to the heuristics to match the design

intent. Moreover, using the tool was significantly faster than adding the qualifiers by

hand, even when using an earlier tool that propagates most of the boilerplate code.

Moreover, we took the manually added qualifiers from the example solution and

compared them to the inferred qualifiers. In terms of the quality of the qualifiers

inferred by the tool, the tool’s qualifiers are equally as precise and in some cases,

even more precise when compared to the manual qualifiers. In Fig. 7.3, we show the

expanded (Fig. 7.3a) and collapsed (Fig. 7.3b) versions of the final object graph.

ScrableModel. In this next test case, the refinements express the design intent of

the original system designer. ScrableModel (SM) is the application logic of a complete

game implemented by an undergraduate student as a course project for a software

design class, covering object-oriented concepts and design patterns. The game is

the Scrabble board game, where players earn points by forming valid words from

a set of letter tiles. ScrabbleModel does not include the user interface part of the

implementation, which is based on the Java Swing library, which we cannot analyze

yet since we do not support all language features, such as anonymous classes. The

size of the program is around 2 KLOC.

There is a Game class that contains the Board, TileBag, current Player and a

Dictionary that contains the valid words. The Board class implements the logic of

59

 SHARED

 PD

 owned

 owned

 PD

 PD

 owned

 PD

 owned

 owned

 owned

 owned

vRegistered:
CourseSequence

course:
Course

vCompleted:
StringSequence

objTokenizer:
StringTokenizer

student:
Student

objTokenizer:
StringTokenizer

vRegistered:
StudentSequence

objCourseFile:
BufferedReader

fileReaderCourses:
FileReader

vStudent:
StudentSequence

vCourse:
CourseSequence

objData:
Data

inputStreamReader:
InputStreamReader

objReader:
BufferedReader

objClient:
Client

objLogic:
Logic

_mutex:
Objectlock:

RWLock

logFileWriter:
FileWriterlog:

Logging

date:
Date

system:
Main

Unexpected exception:
String

(a) Expanded object graph.

 SHARED

 PD student(+):
Student

course(+):
CourseobjData(+):

Data
objClient(+):

Client
objLogic(+):

Logic
system:

Main

Unexpected exception:
String

(b) Collapsed substructures of some objects shown with (+).

Figure 7.3: Expanded and collapsed object graphs for the CourSys test case.

adding letters to the board and removing letters from it. The TileBag class contains

the LetterTiles that the players use. Player owns a TileTray.

The student received detailed tutorials on Ownership Domains that had been

used in a classroom setting over multiple lectures. We then asked him to practice

on his own by manually adding qualifiers to some examples, i.e., do the practice labs

associated with the tutorials, while using a type-checker. Next, we asked the student

PD33_DS24_courses_CourseSequence
DS24_DS24_courses_Course
PD33_DS24_courses_StringSequence
owned34_DS24_java_util_StringTokenizer
DS24_DS24_courses_Student
owned40_DS24_java_util_StringTokenizer
PD39_DS24_courses_StudentSequence
owned28_DS24_java_io_BufferedReader
owned28_DS24_java_io_FileReader
PD27_DS24_courses_StudentSequence
PD27_DS24_courses_CourseSequence
PD25_PD25_courses_Data
owned50_DS24_java_io_InputStreamReader
owned50_DS24_java_io_BufferedReader
PD25_PD25_courses_Client
PD25_PD25_courses_Logic
owned46_DS24_java_lang_Object
owned44_DS24_courses_RWLock
owned48_DS24_java_io_FileWriter
owned44_DS24_courses_Logging
owned44_owned44_java_util_Date
DS24_courses_Main
DS24_java_lang_String
DS24_DS24_courses_Student
DS24_DS24_courses_Course
PD25_PD25_courses_Data
PD25_PD25_courses_Client
PD25_PD25_courses_Logic
DS24_courses_Main
DS24_java_lang_String

60

to add qualifiers to the CourSys system (used above), but he struggled with the task

and did not complete it. However, we did not record any information, about the

training of the student, or the time that we spent on it.

The student then received some informal instruction on using the interactive re-

finement tool. He was asked to come up with refinements that reflect his design

intent. He was able to draw some object hierarchies by hand. He seemed to under-

stand those concepts, but struggled with some subtle points. For example, at some

point, he attempted to push objects into the public domain of a collection object,

so he had to be reminded that a collection does not hold on to arbitrary objects in

its public domain, since a collection is typically parameterized by the domain of the

objects it holds, and is intended to be very reusable. He was then asked to draw the

system’s conceptual architecture on a whiteboard, which he was able to do. It then

became much easier for him to use the tool, and by looking at the object graph, he

was able to refine the object graph until it closely matched the conceptual diagram

he drew.

The student used an earlier version of the implementation which had some limita-

tions that we have addressed since. For example, he was frustrated when many objects

shifted around during a refinement; that is why we respect previous refinements, dur-

ing each refinement. It was quite interesting that the student, who struggled with

adding qualifiers to the code manually, was able to complete the task using the refine-

ment tool and looking at the object graphs, thus reinforcing our belief in the potential

benefit of what you see is what you get object graphs.

For the results in the table, we re-did the student’s refinements, on the latest

implementation of the analysis. Out of 19 attempted heuristics to infer owned, 11 of

them are completed. The 25 refinements provided by the student and the completed

heuristics are included in the list. There are several cases of strict encapsulation.

For example, the object of type Board is encapsulated by the object of type Game.

61

However, there are some cases of near encapsulation, which fail some the heuristics

or refinements. To express design intent, there are several PushIntoPD refinements.

For example, in this game there are different types of slot that may be placed on the

Board. Those objects are parts of the object of type Board, so they must be in its

PD. We refine the object graph by doing four PushIntoPDs to push the corresponding

object of different types of slot into PD of Board. Another refinement is to push the

top-level object of type Game into the PD of the root object. By doing that refinement,

all the objects underneath Game and the other objects underneath them move with

Game.

Another interesting point is that by doing more refinements, the number of valid

typings decreases (as shown in the first column). The reason is that refining the

object graph more leads to more constraints on the sets of qualifiers. So, there are

fewer qualifiers that are valid for some variables and therefore, for the whole program.

Running all the heuristics takes around 2 minutes; each refinement also takes around

2 minutes, with the majority of the time spent in searching for valid typings. In total,

it takes around 15 minutes to complete the test case using the tool.

7.4 Discussion of Hypotheses

In this section we revisit the three hypotheses that we introduce in Chapter 1 and

discuss how our evaluation addresses each one.

H1. Using a visual approach, developers are able to interactively refine an abstract

object graph.

We designed and implemented a tool that is able to interactively refine an ab-

stract object graph. The hypothesis is true, because the tool has interaction with

developers in the process of refining the object graph. Developers do a refinement

and the tool shows the refined object graph. Developers do the next refinement on

the resulting object graph and the tool shows them another refined object graph.

62

Therefore, developers apply each refinement on a refined object graph that reflects

the previous valid refinements.

H2. The developers are able to express two types of hierarchy, strict encapsulation

and logical containment.

Our evaluation results show that this hypothesis is true. In Table 7.2 we show

that for different test cases, we are able to do different types of refinements to create

the two types of hierarchy in the object graph. For example, for the test case Stack,

we refine the object graph by pushing the object of type Link into the owned domain

of the object of type XStack. That refinement illustrates the strict encapsulation in

the object graph. Moreover, we refine the object graph by pushing an object of type

XOwner into the PD domain of the object of type Link. That refinement expresses a

logical containment relation between those objects. Since Huang et al. [14] do not

support public domains, they are not able to express this type of hierarchy in the

object graph.

H3. If the code as written supports the requested refinement, the inference anal-

ysis infers valid qualifiers that satisfy the requested refinement and type-check.

On all the tests cases, there are no serious warnings but a few minor warnings

left. The type-checker warnings that we encountered during development of the tool

helped identify bugs in the transfer and adaptation functions.

63

Chapter 8: Related Work

In this chapter, first we explain the challenges that every ownership inference

approach should address (Section 8.1). Next, we discuss specific approaches and

argue how they address the challenges (Section 8.2).

8.1 Challenges

Any approach to infer ownership qualifiers must address the following challenges.

• Soundness: Sound qualifiers implement a type system. A sound approach must

infer qualifiers that type-check [7, 15, 12, 18, 21, 14, 10];

• Precision: An approach must select the most precise qualifier between valid

qualifiers. The precision can be defined based one a preferred ranking over the

qualifiers [15, 14] or the depth of the inferred ownership structure [18, 21, 25, 10].

• Trivial qualifiers: An approach must have a way of selecting a trivial qualifier

that always type-checks and does not require expensive computation. The triv-

ial qualifiers can be considered as a starting point for an approach, especially

the ones that show the results of inference in graphical forms [18, 21, 25].

• Interactive vs. fully-automated: An approach can work in a fully-automated

mode [7, 18, 12, 25] or in an interactive mode [15, 14, 10, 21]. An interactive

approach may accept partial qualifiers and infers the remaining, or accepts

graphical interactions.

• No solution: An approach must handle the case when it cannot find any solution

that type-checks. An approach may not save qualifiers [14, 10], or may produce

meaningful error messages [21].

• Multiple solutions: An approach may infer more than one valid solution for a

program, and it must be able to pick one. An approach may use metrics to

pick between different solutions [25]. Another approach may show the different

64

solutions to the developers and asks them to pick one [21].

• Reusable code: Parameters are often introduced to make code more reusable.

Although it is hard to infer where the code is intended to be reusable automat-

ically. Some approaches do not infer parameters, but at the cost of restricting

the ownership model [12, 18]. Inferring an arbitrary number of parameters is

often problematic [7]. For simplicity, an approach may infer one parameter,

which is still suitable to express a number of programs in practice [15, 14].

8.2 Specific Approaches

We organize related approaches into four groups based on their output and the

type of the program analysis they use.

Static analysis/saves qualifiers. Huang and Milanova [15] present an approach

to infer OT. It is an interactive approach, since the developers require adding quali-

fiers for a subset of variables. The approach utilizes a sound set-based solution and

uses transfer functions that analyze all the expressions. The transfer functions elim-

inate the invalid qualifiers. The approach infers a single ownership parameter. The

approach terminates with an error when there is no solution.

Huang et al. [14] present a framework to infer qualifiers of type systems. The

framework can be instantiated using three parameters: a set of qualifiers, viewpoint

adaptation functions, and type-system-specific constraints. Huang et al. instantiate

the approach for OT and UT. They introduce the notion of best qualifier by defining

heuristics that rank the qualifiers using objective functions. For OT, the developers

add qualifiers for some of the object creation expressions in the code, so the optimality

property holds.

Vakilian et al. [21] propose a universal framework that takes a type system as

input and produces an inference for that. Although, it requires a checker on top of

the Checker framework [9] for the type system. The inference tool is interactive and

65

is inspired by speculative analysis that helps the developer in the process of decision

making, by showing the consequences of their decisions ahead of the time. It builds

a tree that consists of two types of nodes: error and change nodes.

Dietl et al. [10] build a tunable static type inference for Generic UT. It can work

on fully un-annotated Java codes or on partially annotated ones. By traversing the

AST, the approach generates different types of constraints for variables and solves

the constraints by reusing a max-SAT solver tool. Although, the max-SAT solver

makes the approach does not scale. The approach has more than one strategy where

there are multiple solutions: adjusting heuristics by changing the weights, or requiring

developers to input partial qualifiers. If there is no solution, the inference produces

no result.

Aldrich et al. [7] present a type system called AliasJava and an algorithm to infer

its qualifiers. AliasJava is similar to OD, but it does not support public domains.

To infer alias parameters for each class, the algorithm conducts a constraint system

including three sets of constraints, equality, component, and instantiation that guar-

antee soundness of the approach. The algorithm solves the constraint system and

integrates the result with other qualifiers based on a defined ranking. However, over

50% of the inferred qualifiers are shared. The main problem of this approach is that

it infers many ownership parameters, sometimes one for each field of a class.

Dymnikov et al. [12] present an ownership inference containing an ownership in-

ference and an ownership checker. The ownership inference infers owned qualifiers for

the fields of a class. The inference system implements some heuristics to infer strictly

encapsulated fields in a class, so it is not a sound approach.

Static analysis/visualizes ownership. Milanova and Vitek [18] present a static

analysis that infers OT, and the result is an ownership tree that illustrates the owner-

as-dominator ownership model. First, it creates points-to sets using a points-to anal-

ysis. Second, an object graph is created using transfer functions that create different

66

types of edges, which indicate the ownership relation between nodes of the graph.

Third, a dominance boundary analysis creates dominance boundaries as subgraphs

of the object graph.

Zhu and Liu [25] present a sound constraint-based ownership inference, Cypress

that uses an application of linear programming. The goal of Cypress is to generate a

hierarchical decomposition of the heap statically. The hierarchy is based on ownership

relations between the objects. The approach follows the ”tall and skinny” principle

and favors heap decompositions that are taller and skinnier. The result of Cypress is

a visualized decomposed heap. The approach is fully-automated.

Dynamic analysis/saves qualifiers. Dietl and Müller [24] present an approach

that analyzes the execution of programs and infers ownership qualifiers from the

executions. The approach consists of five steps. In step 1, it builds the representation

of object store that is called Extended Object Graph containing all the objects that

ever existed in the store and their modification information. In step 2, it creates

the dominator tree using the fact that in UT, all the modifications of an object

should be initiated by its owner. In step 3, it resolves the conflicts with UT. In step

4, it harmonizes different instantiations of a class, and at the final step it outputs

the qualifiers. The approach is fully-automated, but is not sound and may generate

qualifiers that do not type-check.

67

Chapter 9: Discussion and Conclusion

In this chapter, first, we discuss some implementation details (Section 9.1). Then

we discuss some important points about the analysis (Section 9.2). Next, we talk

about some limitations of the work (Section 9.3), some future (Section 9.4) work and

conclude (Section 9.5).

9.1 Implementation Details

In this section, we talk about some implementations details. First we argue how

we handle library code. Next, we discuss how we support generic types.

Library code. The current implementation handles library code in two ways. The

first requires generating stubs for library classes. The inference analysis analyzes the

stubs and infers qualifiers for them. However, these qualifiers may not be general

enough to be reused across multiple applications. The second assumes that each

library variable receives the initial set of qualifiers below:

<owner, owner>,<owner, p>,<p, p>

Support generic types. For expressiveness, we need to support generic types,

e.g., a Vector<T>, as used in the Aphyds example, e.g., nets of type Vector<Net>

(Fig. 9.1). Our inference analysis infers one additional “inner” parameter for a generic

collection class with one generic type parameter. This is needed to express an object

of type Vector<T> containing objects with the qualifier <q, w>. The Vector object

is in some domain p and has an actual parameter <q, w>. Effectively, the qualifier

of Vector is <p, q<w>>

We define a new adaptation case for one generic type parameter. In the rule that

68

1 class Vector<T><owner, p> {

2 // T: generic type parameter

3 // owner, p: ownership parameters

4 T<p> obj; // the "trick" is to use one actual here

5 // obj is virtual/ghost field that summarizes Vector

6 }

7 class Circuit<owner, p> { // domain parameters

8 private domain owned; // private domain

9 public domain PD; // public domain

10 net = new Net<PD,p>();

11 nets = new Vector<Net><owned, PD<p> >();

12 // 1. <PD,p> is qualifier of Net object

13 // 2. owned is actual for Vector’s owner

14 // 3. PD<p> is actual for Vector’s p

15 ...

16 nets.add(net); // Add object to collection

17 net = nets.obj; // Field read

18 }

Figure 9.1: Generic collection with one generic type parameter requires a qualifier with an in-
ner/nested domain.

Adapt-X-Gen
t1 = <p> t2 = <p0, <q0, w0>>
nrcv : Trcv isGeneric(Trcv)

Γ;nthis;nrcv ⊢ t2 ⊲X t1 = <q0, w0>

Figure 9.2: Adaptation case to support generic types. X can be o for Adapt-Out, i for Adapt-
In, and r for Adapt-Rcv.

is shown in Fig. 9.2, the type variable qualifier, t1, has only the first element. The

reason is the receiver type is of a parameterized type, so it has to have an inner

element and for the type argument second and inner work like first and second .

Therefore, for the receiver qualifier, t2, there are p0 as first , q0 as second and w0 as

inner . In order to determine if a receiver type is a generic type, we use the auxiliary

judgement isGeneric(Trcv) that accepts the type of the receiver.

In Fig. 9.2, we show one parametric rule, Adapt-X-Gen. When X = o, it finds

the result qualifier based on the inner and receiver qualifiers. When X = i, it finds the

inner qualifier based on the result qualifier and the receiver qualifier. When X = r,

it finds the receiver qualifier based on the result and the inner qualifiers.

69

9.2 Discussion

We believe it is easier to do refinements using a visual approach on the object

graph than to add type qualifiers in the code. So the developers never switch to

the code to add qualifiers. Adding type qualifiers is harder due to the fact that the

developers need to specify both the owning domain and the domain parameter. We

believe this is particularly the case for novice developers who are not familiar with the

procedure of type-checking an expression, but they do know about the design intent

of their programs. Using our tool, the developers only specify the owning domain by

doing a refinement, and the tool finds the correct ownership domain parameter.

The fact that the tool finds at least one valid typing after each refinement means

the developers do not have to resolve conflicts by adding qualifiers to the code or

doing more refinements. As the designers of the tool, we think it is easier for novice

developers to wait for the tool to find a valid typing than resolve conflicts by adding

qualifiers manually or doing more refinements. This way, teaching ownership types

to undergraduate students can be easier. Of course, this claim requires more careful

evaluation with a controlled experiment.

We also think that supporting public domains in SOD enables developers to ex-

press more design idioms. Using public domains, the developers are able to impose

more hierarchy on the object graph with fewer restrictions. In SOD, the develop-

ers can express the part-of relation between objects without making the child object

inaccessible to the other objects. Therefore, developers get more hierarchy on the

object graph, which makes them more manageable.

We believe the tool should be as flexible as possible in terms of the supported types

of refinements. It means the developers should be able to do any type of refinement,

as they could add qualifiers to the code. Therefore, the other types of refinements can

come into play, such as PushIntoShared, which places an object in the global domain

shared, or PushIntoOwner, which makes object peer of another object.

70

Moreover, there are some usability issues with using a tool to infer ownership

qualifiers. Using our tool, some of the refinements, which are possible by adding

qualifiers to the code manually, are unsupported. One reason is a previous refinement

can make a current refinement unsupported. This means the previous refinement

conflicts with the current one. We consider a refinement that is doable manually, but

cannot be done by the tool to be a false positive. As the designers of the tool, it

was a tradeoff for us between respecting previous refinements and having some false

positives, or not respecting the previous refinements and having more refinements

completed. If we do not respect previous refinements, then after each refinement,

objects shift around between different domains and it would be hard for developers

to keep track of them. So we chose to respect the previous refinements to make the

tool easier to use at the cost of having some false positives.

Another reason is that our strategy to pick one solution between multiple solutions

may be introducing more false positives. When the tool selects one solution, the other

ones get discarded. Some of the false positives could be avoided by selecting another

solution for a previous refinement. To prevent this, the tool can support the notion

of undoing a refinement, so if a previous refinement conflicts with a current one, the

user can prefer the current refinement over the previous one by undoing the previous

refinement.

Another usability issue is the fact that the tool should be able to give useful

information about the unsupported refinements to developers. When developers do

a refinement, most of the time, they believe it should work. By showing the reason

of the refinement being unsupported, developers may be able to understand how to

fix the problem. For example, if the tool shows the expression in the code that is

responsible for the refinement being unsupported, the developers may understand if

they have to change the code, or do not apply a previous refinement in the next run

of the tool.

71

9.3 Limitations

Next we discuss some limitations of this work.

One ownership parameter. The approach currently supports the implicit owner

and the explicit p parameter. Extending our approach to infer more than one pa-

rameter is left to future work. Huang et al. experimented with instantiating their

framework for OT with 2 and 3 ownership parameters, then concluded to restrict the

system to one ownership parameter.

Final fields. In SOD, the code can refer to the public domain of an object through

a final field n, using the construct n.d. If the variable n is not final, it may be re-

assigned, and the type system would lose track of the relationship between an object

and the objects contained in its public domain. In other ownership type systems,

where n is always this, this is not an issue. In SOD, it also possible to refer to a

public domain through a sequence of final fields n1.n2...d, though that is not part of

our current formalization. The adaptation and the inference analysis also introduce

these qualifiers. If n is not final, then a type system extension is needed to handle

that situation. In particular, the qualifier n.d becomes an existential domain since

the type system cannot track the instance to which the domain is tied. Adding this

existential domain to Ownership Domains is future work.

Side effects of a refinement. Using the set-based solution, when the developers

do a refinement, some other objects may also shift into different domains in the re-

sulting object graph. Those changes are asked by the refinement, but they are part

of the inferred typing. We call those changes auto-refinements. In our current imple-

mentation, we do not respect the auto-refinements, so by doing the next refinement,

the developers may see different auto-refinements. It may be a good idea to respect

auto-refinements, to avoid showing developers object graphs that differ dramatically

after each refinement.

72

9.4 Future Work

Partial annotations. We plan to allow developers to add some partial annotations

for some of the variables and the analysis will read the annotations and use them.

This feature is available in many inference tools [10, 15, 14].

User study. This thesis shows the technical feasibility and details. Evaluating the

WYSIWYG claim and the visual aspect of inference requires a user study, which is

left for future work. So far, a preliminary exploratory study with one undergraduate

student showed promising results (see the ScrabbleModel test case in Chapter 7).

9.5 Conclusion

We propose and implement an approach where developers express their design

intent by refining an object graph directly, while an analysis infers valid ownership

type qualifiers in the code. These qualifiers are used by a separate extraction analysis

to extract an updated graph. Such a tool can increase the adoptability of ownership

type qualifiers, to reap their benefits in improving code quality, such as identifying

cases of representation exposure, or exposing shallow versus deep cloning [4]. Such

a tool also has pedagogical applications to help novice developers understand object

structures and some structural object-oriented design patterns. Also, this work in-

creases the adoptability of reasoning about security policies at the level of object

graphs with security properties and constraints [5, 16, 23].

73

REFERENCES

[1] Abi-Antoun, M., and Aldrich, J. Static Extraction and Conformance Anal-

ysis of Hierarchical Runtime Architectural Structure using Annotations. In OOP-

SLA (2009).

[2] Abi-Antoun, M., Ammar, N., and Hailat, Z. Extraction of Ownership

Object Graphs from Object-Oriented Code: an Experience Report. In QoSA

(2012).

[3] Abi-Antoun, M., and Barnes, J. M. Analyzing Security Architectures. In

ASE (2010).

[4] Abi-Antoun, M., Giang, A., Chandrashekar, S., and Khalaj, E. The

eclipse runtime perspective for object-oriented code exploration and program

comprehension. In Proceedings of the 2014 Workshop on Eclipse Technology

eXchange (2014), ETX ’14, pp. 3–8.

[5] Abi-Antoun, M., Khalaj, E., Vanciu, R., and Moghimi, A. Abstract

runtime structure for reasoning about security: Poster. In Proceedings of the

Symposium and Bootcamp on the Science of Security (2016), HotSos ’16, pp. 1–

3.

[6] Aldrich, J., and Chambers, C. Ownership Domains: Separating Aliasing

Policy from Mechanism. In ECOOP (2004).

[7] Aldrich, J., Kostadinov, V., and Chambers, C. Alias Annotations for

Program Understanding. In OOPSLA (2002).

[8] Clarke, D. G., Potter, J. M., and Noble, J. Ownership Types for

Flexible Alias Protection. In OOPSLA (1998).

74

[9] Dietl, W., Dietzel, S., Ernst, M., Muslu, K., and Schiller, T. Build-

ing and using pluggable type-checkers. In ICSE (2011).

[10] Dietl, W., Ernst, M., and Müller, P. Tunable static inference for generic

universe types. In ECOOP (2011).

[11] Dietl, W., and Müller, P. Universes: Lightweight Ownership for JML.

Journal of Object Technology 4, 8 (2005).

[12] Dymnikov, C., Pearce, D. J., and Potanin, A. Ownkit: Inferring modu-

larly checkable ownership annotations for java. In Australian Software Engineer-

ing Conference (2013).

[13] Hauck, S. Aphyds: The academic physical design skeleton. In Proceedings of the

2003 International Conference on Microelectronics Systems Education (2003).

[14] Huang, W., Dietl, W., Milanova, A., and Ernst, M. Inference and

checking of object ownership. In ECOOP (2012).

[15] Huang, W., and Milanova, A. Towards effective inference and checking of

ownership types. In IWACO (2011).

[16] Khalaj, E., Vanciu, R., and Abi-Antoun, M. Is there value in reasoning

about security at the architectural level: A comparative evaluation. In Proceed-

ings of the 2014 Symposium and Bootcamp on the Science of Security (2014),

HotSoS ’14, pp. 30:1–30:2.

[17] Marron, M., Sanchez, C., Su, Z., and Fahndrich, M. Abstracting Run-

time Heaps for Program Understanding. TSE 39, 6 (2013), 774–786.

[18] Milanova, A., and Vitek, J. Static dominance inference. In International

Conference on Objects, Models, Components, Patterns (TOOLS) (2011).

75

[19] Mitchell, N. The Runtime Structure of Object Ownership. In ECOOP (2006).

[20] PLAID Research Group. The Crystal Static Analysis Framework, 2015.

http://code.google.com/p/crystalsaf.

[21] Vakilian, M., Phaosawasdi, A., Ernst, M. D., and Johnson, R. E.

Cascade: a universal programmer-assisted type qualifier inference tool. In ICSE

(2015).

[22] Vanciu, R., and Abi-Antoun, M. Object Graphs with Ownership Domains:

an Empirical Study. 109–155.

[23] Vanciu, R., Khalaj, E., and Abi-Antoun, M. Comparative evaluation

of architectural and code-level approaches for finding security vulnerabilities.

In Proceedings of the 2014 ACM Workshop on Security Information Workers

(2014), SIW ’14, pp. 27–34.

[24] Werner, D., and Müller, P. Runtime Universe Type Inference. In IWACO

(2007).

[25] Zhu, H. S., and Liu, Y. D. Heap decomposition inference with linear pro-

gramming. In ECOOP (2013), pp. 104–128.

76

ABSTRACT

INTERACTIVE REFINEMENT OF HIERARCHICAL OBJECT
GRAPHS

by

EBRAHIM KHALAJ

December 2016

Advisor: Dr. Marwan Abi-Antoun

Major: Computer Science

Degree: Master of Science

Developers need to understand the runtime structure of object-oriented code, and

abstract object graphs can help. To extract abstract object graphs that convey design

intent in the form of object hierarchy, additional information is needed to express this

hierarchy in the code using ownership types, but adding ownership type qualifiers after

the fact involves manual overhead, and requires developers to switch between adding

qualifiers in the code and looking at abstract object graphs to understand the object

structures that the qualifiers describe. We describe an approach where developers

express their design intent by refining an object graph directly, while an inference

analysis infers valid qualifiers in the code. A separate extraction analysis then uses

these qualifiers and extracts an updated object graph. We implement and test the

approach on several small test cases and confirm its feasibility.

77

AUTOBIOGRAPHICAL STATEMENT

EBRAHIM KHALAJ

EDUCATION

• Master of Science (Computer Science), December 2016
Wayne State University, Detroit, MI, USA

• Master of Science (Software Engineering), October 2011
Sharif University of Technology, Iran

• Bachelor of Computer Engineering, November 2008
Shahid Beheshti University, Iran

PUBLICATIONS

1. Abi-Antoun, M., Khalaj, E., Vanciu, R., and Moghimi, A. Abstract
Runtime Structure for Reasoning about Security. Poster at Symposium and
Bootcamp on the Science of Security (HotSoS) (2016).

2. Abi-Antoun, M., Wang, Y., Khalaj, E., Giang, A., and Rajlich, V
Impact Analysis based on a Global Hierarchical Object Graph. In 22nd IEEE
International Conference on Software Analysis, Evolution, and Reengineering
(SANER) (2015).

3. Khalaj, E., Vanciu, R., and Abi-Antoun, M. Is There Value in Reasoning
about Security at the Architectural Level: a Comparative Evaluation. Poster
at Symposium and Bootcamp on the Science of Security (HotSoS) (2014).

4. Vanciu, R., Khalaj, E. and Abi-Antoun, M. Comparative Evaluation of
Architectural and Code-Level Approaches for Finding Security Vulnerabilities.
In Workshop on Security Information Workers (SIW), co-located with the ACM
Conference on Computer and Communications Security (CCS) (2014).

5. Abi-Antoun, M., Giang, A., Chandrashekar, S., and Khalaj, E.
The Eclipse Runtime Perspective for Object-Oriented Code Exploration and
Program Comprehension. In Eclipse Technology eXchange Workshop (ETX)
(2014).

	Wayne State University
	1-1-2016
	Interactive Refinement Of Hierarchical Object Graphs
	Ebrahim Khalaj
	Recommended Citation

	thesis.dvi

