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Chapter 1 – Introduction 

1.1 Neurotransmission 

Neurotransmission is one of the most important and fundamental processes of life. Every 

action, though, movement, emotion, internal life sustaining and homeostatic mechanism 

depends on neurotransmission. The process of neurotransmission relies on neurons to carry 

electrical signals to and from the brain in response to stimuli. 

 Neurons are comprised of three components: dendrites, the cell body, and axon (Figure 1). 

When stimulus is applied to a neuron; ion channels open up to allow the flow of sodium ions 

into the cell causing a partial depolarization. This depolarization generates an electrical signal 

which is known as an action potential. The action potential travels along the axon until it 

reaches the pre-synaptic terminal on the far end of the axon. Once at the terminal, the action 

potential triggers neurotransmitter-containing vesicles to fuse with the pre-synaptic membrane 

and release their contents from the pre-synapse into the synaptic cleft.  

 

Figure 1. Basic overview of a neuron.[1] 
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The neurotransmitters then diffuse into the synaptic cleft, where some 

neurotransmitters will drift onto the post-synaptic neuron (located on the dendrites of the 

subsequent neuron), binding with their respective receptor. The binding of neurotransmitters 

to the post-synapse will trigger an excitatory or inhibitory response from the post-synaptic 

neuron to either fire or stop firing, respectively. The bound neurotransmitter is then released to 

diffuse back into the synaptic cleft. Any neurotransmitters remaining in the synaptic cleft that is 

not bound are quickly reabsorbed by the presynaptic neuron by one of several mechanisms to 

be repackaged or degraded. Alternatively enzymes in the cytoplasm will rapidly degrade the 

neurotransmitter in the extracellular fluid.[2.3] 

1.2 Serotonin 

Serotonin (5-hydroxytryptamine, 5-HT) is considered one of the most important 

neurotransmitters for life. In vivo synthesis of serotonin involves the conversion of tryptophan 

into 5-hydroxytryptophan by tryptophan hydroxylase which is then decarboxylated by L-amino 

acid decarboxylase (Figure 2).[4]  
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Figure 2. Biosynthesis of Serotonin 

 Serotonin’s primary role in the human body is designated to the gut and central nervous 

system, is to forces smooth muscle, arteries, and veins to contract. As a neurotransmitter, 

serotonin plays a key role in immunity functions, survival behaviors, and maintaining 
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homeostasis. Notably, serotonin is typically associated with emotional balance, appetite, and 

sleeping patterns, and it is known colloquially as the “feel good” molecule.[5]  

Mental illnesses such as depression, anxiety, obsessive compulsive disorder, aggression, 

and behavioral instability, eating and sleeping disorders, schizophrenia, autism, and Parkinson’s 

disease are associated with serotonin imbalance. Between 2006 and 2008 over 9.7 million 

Americans have been diagnosed with depression and of those afflicted 1 million commit 

suicide, yearly, due to depression issues.[6]   

There are several theories proposed to explain their pathophysiological basis of 

depression. The most popular attempt at an explanation comes from the monoamine 

hypothesis of depression. This hypothesis proposes that the physiological basis of depression 

stems from a depletion of the amount of monoamine neurotransmitters such as serotonin, 

norepinephrine, and dopamine in the brain.[2] In order to combat depression, pharmaceutical 

industries have developed antidepressants to increase monoamine concentrations in the brain.  

A common family of antidepressants used to combat depression is Selective Serotonin 

Reuptake Inhibitors (SSRIs). SSRIs work by blocking the reuptake transport channels on 

presynaptic neurons, thereby preventing the presynaptic neurons from clearing excess 

serotonin from the cytoplasm. As a result, higher concentrations of serotonin are observed in 

the synaptic cleft, ultimately resulting in increased binding to receptors.  

Over the last decade, global usage of SSRIs has increased and through several 

mechanisms, including low adsorption in the body or discarding unwanted medication in 

general refuse, low but significant levels of several SSRIs are now found in many natural water 

systems.[7-9] As a result, many aquatic species are inadvertently ingesting notable quantities of 



4 
 

 
 

antidepressants leading to severe changes in survivability.[8] The increase of serotonin in 

aquatic species can lead to erratic behaviors, such as a loss of predator avoidance behavior or a 

lack of autonomic responses.[9] This contamination of natural waters can lead to ecological 

catastrophes, including complete collapse of ecologic systems if left unchecked.  Furthermore, 

the ingestion of SSRI by water-dwelling animals has the potential to bioaccumulate. 

1.3 Fast Scan Cyclic Voltammetry 

Fast Scan Cyclic Voltammetry (FSCV) is a relatively new technique allowing for real-time 

analysis and sub-second electrochemical analysis of an analyte.[10-12] Since its inception in the 

early 1980s, FSCV has been rapidly gaining popularity due to its high temporal resolution, ease 

of use, and range of applications, namely quantification of electrochemically active 

species.[11.12] FSCV improves upon traditional cyclic voltammetry by increasing the capable scan 

rate to above 100 V·s-1 and applied at frequencies between 10-1000 Hz. This process allows for 

the collection of hundreds of voltammograms that can be assembled into a single 3-

dimensional false color plot for sub-second temporal resolution. 

Until recently, FSCV not commonly used due to limitations in hardware and software. A 

large, non-Faradaic current is generated at the electrode’s surface because of the high scan 

rates, lead to the charging of a double layer as the potential ramp switches direction. This can 

obscure the signal generated by the analyte.[11-13] With the recent increase in computing power 

and improved software incorporating the technique of background subtraction, FSCAV has 

become a practical analytical technique. This integration of background subtraction with FSCV 

has made the technique a widely accepted electroanalytical technique throughout the 

neuroanalytical community providing a rapid response and high sensitivity.   
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Fundamentally, FSCV applies a potential waveform to a CFME. This waveform (Figure 3) 

is a rapid change of potential, typically in a triangular fashion, in regular intervals. Between 

scans, the electrode is held at a specified potential that allows for the adsorption of analyte. 

The sweeping of a potential voltage window induces oxidation and reduction of the adsorbed 

analytes. These oxidation cycles generate a flow of electrons to and from the electrode which 

generates a small (nA) Faradaic current.  

 

Figure 3. Visualization of a FSCV Waveform 

Conversion of the x-axis from voltage to the time domain (Figure 4) generates a 

voltammogram that can be stacked together with numerous scans taken over the course of a 

run. Stacking of the current vs. time plots yields a 3-dimensional plot that can relate current, 

voltage, and time, known as a false color plot. Analysis of the false color plot in the y-axis 

generates information about the current vs. voltage. Analysis in the x-axis generates the current 

generated vs. time (Figure 5). 
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Figure 4. Conversion of voltage to time domain of a Current vs. Voltage plot to yield a Current 
vs. Time plot. 

A  

B   C 

Figure 5. A) Construction of 3-dimensional false color plot by stacking consecutive current vs. 
time plots. B) False color plot. Green coloring indicates an increase in current (oxidation) and 

blue indicated a decrease in current (reduction). C) Top-down view. 
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Chapter 2 - The Role of 5-Hydroxytryptamine in the Phototactic Dive Reflex of Daphnia 

2.1 Introduction 

2.1.1 Daphnia magna 

Cladocera (Daphnia magna), as seen in Figure, are small (1-5 mm), robust planktonic 

crustaceans that are well established model organisms for measuring the ecological effects of 

contaminants, or environmental stressors.[10] Daphnia have an innate ability to adapt to 

changes in their environment physiologically, behaviorally, and/or morphologically.[14] 

 

Figure 6. Female Daphnia magna. [15] 

These daphnids demonstrate a phototactic response to light stimuli which induces an 

involuntary “dive reflex” in which the Daphnia instinctively moves away from the source of 

light. As their predators typically live in shallower waters and are mostly active during the day 

their dive reflex is accepted to be a defense mechanism developed by the Daphnia to avoid 

predation and remain in the safety of deeper and darker waters.[15, 16] The neurochemistry and 

physiology behind their dive reflex is not fully known, but it has been speculated that the 

chemistry underlying this mechanism is mediated mostly by histamine.[12]  
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2.1.2 Preliminary Data  

 Initially, our efforts in studying Daphnia were focused on the detection and 

quantification of the release of histamine upon exposure to light. As such, electrodes of 150 μm 

length were implanted into the brain of Daphnia, and analysis was carried out using the 

histamine-selective waveform (HSW): -0.7 to +1.1 V at 600 V s-1 [17]. Using this waveform, the 

expected oxidation peak would occur at +0.3 V vs. Ag/AgCl.  

A                                                                    

B                                                                                 

C  

Figure 7. Preliminary current vs. time and current vs. voltage data of Daphnia’s response to light 
stimulation using HSW at A) high intensity (1.0 mW/cm2) B) medium intensity (0.54 mW/cm2) 

and C) low intensity (0.31 mW/cm2). 
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As seen in Figure 7, the expected histamine oxidation peak at +0.3 V is not very 

prevalent in the votammagram, but a relatively strong current was generated at a potential of 

+0.6 V. Furthermore, the current generated appeared to be directly proportional in amplitude 

with increasing amounts of light intensity and the timing of the spikes in current appeared to be 

dependent on the application of light stimulations. This preliminary data indicates that 

serotonin, which oxidizes at +0.6 V, may play a larger role in the phototactic response. As such, 

we re-evaluated the neurotransmission using the serotonin waveform: -0.1 to 1.0 V at 1000 V s-

1 with a 0.2 V holding potential. 

2.2 Behavioral Studies  

To further determine if serotonin is a factor in the dive reflex of the Daphnia, we began 

with behavioral studies where Daphnia were stimulated with light, in the presence and absence 

of SSRIs. 5 Daphnia were placed in a column with two regions, Region 1 and Region 2. They 

were allowed to aggregate without stimuli. Light was then applied and the number of Daphnia 

in each area was manually counted. The index number (ratio of Daphnia in region 1 vs. region 2) 

was then calculated for the intensity of light applied.  As the intensity of light increased a direct 

correlation to the number of Daphnia that retreated to the deeper waters of region 2 was 

observed (Figure 8). 
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A                      B  

Figure 8. A) Schematic of light stimulus apparatus for behavioral trials.  B) Daphnia response to 
stimulus without application of SSRI. 

 
After these baseline measurements, Daphnia were subjected to water containing 5 μM 

and 10 μM Fluoxetine, a commonly used SSRI, for 18 and 30 hours. The Daphnia were then 

placed in the stimulus apparatus and exposed to the same levels of light. The Fluoxetine at 5 

μM appeared to have had no effect on the dive reflex of the Daphnia. However, at 10 μM the 

dive reflex seemed to diminish as a large portion of Daphnia remained in region 1. While this 

data gives some insight to serotonins role in the phototactic reflex, this behavioral study was 

only carried out twice. As such, more testing needs to be done in order to state the significance 

of this data, 
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Figure 9. Phototactic dive reflex response for Daphnia after exposure to 5 μM and 10 μM 
Fluoxetine at low and high light stimulus. 

 
 These preliminary findings lend credence to the assumption that serotonin might 

influence the phototactic dive mechanism present in the Daphnia. At this point, our attention 

directed toward two objectives: calibration and characterication of electrodes in vitro and 

measurement of serotonin release during the stimulation of the dive reflex in vivo.  

2.3 In vitro calibrations 

2.3.1 Chemical Environment 

 In vitro measurements began with fabrication of 150 nm electrode. Next, we considered 

ideal composition of the buffer for these experiments. Because the Daphnia used in these 

experiments were raised in COMBO buffer solution, we initially focused on executing FSCV in 

this buffer. COMBO buffer solution is EPA synthetic water (see Experimental Method) with the 

addition of a vitamin package of 4x10-4 μM B12, 2x10-3 μM Biotin, and 0.3 μM Thiamine. 

Physiological ranges of serotonin typically fall between 20-100 nM [18] therefore, 20-mL aliquots 
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of 100 nM, 50 nM, and 20 nM solutions were created by diluting 100 μL, 50 μL, and 20 μL of 20 

μM of serotonin to 20 mL, respectively.  

COMBO buffer solution was injected into the flow cell at a rate of 2 mL/min for 

approximately 5 minutes to allow for the equilibration the electrode. Once at equilibrium, the 

serotonin/COMBO solutions were injected, one at a time, for 10 seconds per injection. After 

each injection, COMBO solution was again applied to re-equilibrate the electrode. 

Analysis proved difficult because the oxidation peak for serotonin at physiological 

concentrations was virtually undetectable in this medium. To further complicate the analysis, 

the electrodes were prone to fouling even after application of a Nafion® coating. We 

hypothesize that the vitamins in COMBO were interfering with serotonin’s detection. 

Therefore, EPA Synthetic water was tested as a replacement. Unfortunately, the same 

shortcomings seen in the COMBO buffer solution were present with EPA synthetic water 

(Figure 10).  

A B  

Figure 10. 5-HT signal detection in A) COMBO and B) synthetic EPA water.                 
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Ultimately, 1X Tris buffered saline was selected. The Tris buffer range falls between pH 

7-9, which matches pH levels found inside biological mediums and has been extensively used in 

neuroanalytical measurements.[18] 

Although the use of COMBO and EPA synthetic water were not viable for in vitro 

experimentation, Daphnia used for in vivo trials depend on COMBO buffer as a habitat for 

survival. Therefore, once secured to the pedestal, COMBO buffer solution was allowed to flow 

through the chamber as a measure to prolong the life of the subject for a complete analysis. 

As we saw before, the serotonin signal was undetectable in COMBO and EPA synthetic 

water while in vivo analysis depended on COMBO to keep the Daphnia alive. The electrode 

length for in vitro measurements had to be adjusted to compensate for the length of carbon 

fiber that is not exposed to the in vivo location. High resolution imaging showed that 

approximately 70% of the 150 μm electrode is inserted into the Daphnia. Therefore, electrodes 

fabricated for in vitro analysis were cut to approximately 100 μm in order to reflect the amount 

of electrode surface exposed in the site of analysis (Figure 11).  
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Figure 11. Electrode insertion in Daphnia detailing the length of carbon fiber not exposed to 
internal environment vs the length inserted into the experimental site. 

2.3.2 Sample Introduction 

Measurements in the flow cell apparatus were inconsistent. Analysis of the same 

sample measured in triplicate yielded three very different results (Figure 12). These large 

deviations could be attributed to many of different factors, including flow rate, electrode 

placement in the cell, and contamination. With these large deviations for a single concentration 

as well as a related shifting in the serotonin oxidation peak, this technique was deemed to be 

too problematic and the method of analysis used needed to be reevaluated. In order to 

successfully quantify the release of serotonin, the in vitro method needs to mimic 

neurotransmission events that occur in the brain. 



15 
 

 
 

 

Figure 12. Current vs. Time plots for three successive scans of 100 nM 5-HT in COMBO buffer in 
flow cell. Stimulation applied at 5 seconds and removed at 15 seconds for the first two plots 

and 10 to 20 seconds for the final plot. 

  Neurotransmitters are released from the presynaptic membrane into the synaptic cleft, 

then diffuse across the cleft and bind with the receptor on the postsynaptic membrane.[19] This 

process occurs without the use of any mixing or flow. Since the release of serotonin in the brain 

is not analogous to a flow cell, the experimental setup was redesigned. The new experimental 

setup consisted of manual injection of serotonin solutions into a beaker filled with 20 mL of 

pure Tris buffer. This method allowed for the electrode to stabilize in the buffer solution which 

then allowed for changes in the chemical environment to be detected. To compensate for 

dilution of the analyte via injection, the concentration of serotonin injected was calculated by 

determining the final desired concentration in 20 mL buffer. Once the injection volume was 

determined, an equal amount of Tris buffer was removed from the beaker to prevent over 

dilution of the analyte. 
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A B  

Figure 13. A) Average waveform generated from 100 nM 5-HT in Tris buffer solution. 

Initial results showed higher signal, stability, and reproducibility of the 5-HT signal under 

these conditions (Figure 13).  Once stability was determined, selectivity to the analyte was 

established against several potential interferents known to be present. 

2.3.3 Potential Interference from Other Neurotransmitters 
 

Octopamine, tyrosine, and histamine are all electrochemically active neurotransmitters 

that have previously been reported to be present in Daphnia.[20] Their presence could 

potentially cause interference with 5-HT measurements leading to higher signals, or other 

forms of obfuscation. To determine the effects of these interferents on serotonin, 50 nM 5-HT 

signals were compared to the signals of potential interferents at concentrations within 

physiological ranges. The individual neurotransmitters that could cause interference of the 

serotonin signal were analyzed using the serotonin waveform. Their voltammograms were the 

overlaid on the 5-HT voltammagram to prove that they did not overlap with serotonin’s signal 

(Figure 14). Once selectivity was determined, in vitro measurements were conducted to 

determine sensitivity to 5-HT as well as to construct calibrations to establish the repeatability of 

measurements. 
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Figure 14. Averaged Serotonin CV vs Octopamine, Tyrosine, and Histamine. 

2.3.4 Serotonin Calibration Curves 

Solutions of 5, 10, 20, 50, and 100 nM serotonin were tested by injecting 5, 10, 20, 50, 

and 100 μL of 20 μM serotonin into a beaker of Tris buffer to make a total of 20 mL for each 

solution. Each concentration was measured four times and the maximum current generated 

was recorded for each trial and then averaged. The average currents were then normalized to 

allow for comparisons to other electrodes.  
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Figure 15. Response of an electrode through consecutive scans. 

 During these trials, stability and sensitivity of the electrodes diminished greatly (Figure 

15). As such, electrodes were visually inspected after conducting trials, and it was observed that 

substantial fouling has occurred on the electrode surface (Figure 16). The fouling of the 

electrode accounts for the wide range of signals generated from repetitious sampling of a single 

analyte concentration. We hypothesize that the biomass accumulated on the surface can act as 

a trapping layer preventing the movement of serotonin to and from the bulk solution and the 

surface of the electrode.  
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Figure 16. 500x image of fouling of CFME submerged in Tris buffer solution for 1 hour (taken 
though optical lens with a cellular phone.) 

 
Previous studies have shown that Nafion® coated carbon fiber micro electrodes are 

highly stable for the detection of serotonin in Tris buffer. This indicates that the fouling may 

have come from contamination of any reagents or equipment used during solution preparation. 

Furthermore, prepared 1X Tris buffer became cloudy if left overnight while the 10X Tris 

remained clear. 

 Since Tris buffer solutions are highly stable and are fairly resistant to microbial attack, 

they should remain viable for use for up to two weeks after.[21. 22] The clear appearance of the 

10X Tris buffered saline stock and cloudy appearance of 1X Tris buffered saline indicates that 

the contaminant was appearing in the preparation of the 1X buffer solution. Inspection of the 

pH probe used to adjust the buffer solution showed contaminant growth on the surface of the 

electrode which could leach into the Tris solution when submerged in the buffer.  
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The pH electrode was then cleaned and decontaminated. Fresh 1X Tris buffer was then 

prepared and allowed to sit overnight to determine if the contamination from the pH probe 

was completely removed. As expected, the 1X Tris buffer solution remained clear the next day.  

Data collection began again. New data started to show the expected linearity of the 

calibration curve as seen in Figure 17. While exploring the source of contamination, another 

setback occurred. The headstage used for all experimentation up to this point failed to operate. 

A suitable replacement could not be found in the time frame for analysis to be completed. As 

such, in vitro experimentation has ceased for the immediate future.  

 

Figure 17. Normalized calibration curve for 5-HT detection (n=2). 

2.4 Future Outlook 

 Both systems designed for this experiment were built identically. In order to continue to 

compare data between the two systems, the calibrations for the serotonin will need to be 

completed with a new 5 MΩ headstage. Solutions for the physiological concentration of 

serotonin, 10-100 nm, will need to be re-made and run. This method of analysis has been 

validated by  previous and ongoing studies from the Hashemi group.[23-25] Although the linearity 

of serotonin has been demonstrated previously, the change in length of the CFME will have an 
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effect on the current generated as the signal is proportional to exposed surface area of the 

electrode. The change in electrode length reduces the amount of surface area exposed to the 

chemical environment and new calibrations are required to reflect the change in surface area.  

Once linearity is re-established, the method needs to validate that the potential 

interferents and metabolite of serotonin, 5-hydroxyindoleacetic acid (HIAA), at physiological 

levels, does not affect the serotonin signal and that linearity is preserved. Since each analyte, 

excluding HIAA, has been independently tested using this method the next step in this process 

would be to make mixtures of a set concentration of 5-HT with varying levels of octopamine, 

tyrosine, histamine, and 5-HIAA at the extreme high and low concentration of their respective 

physiological ranges.  Once these measurements have been completed, focus can be shifted 

towards in vivo experiments.  

2.5 In Vitro Experimental Method 

T-650 carbon fibers (Goodfellow, Coraopolis, PA) were aspirated into glass capillaries of 

0.4 mm ID and pulled on a vertical pipette puller (Narishige Group, Tokyo, Japan). Electrodes 

were then cut to a length of 100 ± 5 μM. Next, electrodes were dipped in a 5% v/v Nafion® 

solution (Liquion-1105-MeOH, Ion Power, DE) by completely submerging exposed fiber and 

applying a constant potential of -1.0 V vs Ag/AgCl for 10 seconds.[24] The newly coated 

electrodes were then air dried for 10 min at room temperature, then cured for 10 min. at 80 °C. 

EPA synthetic water was prepared from µM 250 CaCl2·2H2O, MgSO4·7H2O, 150 µM 

MgSO4·7H2O, 50 µM K2HPO4, 1000 µM NaNO3, 150 µM NaHCO3, 100 µM Na2SiO3·9H2O, 388 µM H3BO3 

100 µM KCl, 11.7 µM Na2EDTA·2H2O, 3.7 µM FeCl3·H2O, 0.9 µM MnCl2·4H2O, 0.004 µM CuSO4·5H2O, 0.08 
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µM ZnSO4·7H2O, 0.05 µM CoCl2·6H2O, 0.09 µM NaMoO4·2H2O, 0.012 µM H2SeO3 0.01 µM Na3VO4, 7.3 

µM LiCl, 0.6 µM RbCl 0.07, 0.57 µM SrCl2·6H2O, 0.16 µM NaBr, and 0.02 µM KI.  

Tris buffer was prepared in 10X concentration (0.15 M Tris Hydrogen chloride, 1.41M 

NaCl, 32.6 mM KCl, 13 mM anhydrous CaCl2, 12.5 mM sodium phosphate monobasic 

monohydrate, 12.2 mM MgCl2, and 20 mM anhydrous Na2SO4) then diluted to 1X concentration 

and buffered to a pH of 7.4. The 200 μM stock serotonin solutions were prepared by addition of 

2.2 mg of serotonin hydrochloride (Sigma-Aldrich St. Louis, MO, USA) to 50 mL of the pH 

buffered 1X Tris buffer solution. From this stock, a 20 μM solution was created for use in 

analysis.  

An electrochemical potential was applied from -0.1 to 1.0 V at a rate of 1000 V s-1 at 10 

Hz. Application of the waveform and monitoring were carried out using WCCV (Knowmad 

Technologies LLC, Tucson, AZ) written in LabVIEW (National Instruments, Austin, TX) with a 

Chem-Clamp potentiostat fitted with a 5 MΩ headstage (Dagan Corporation, Minneapolis, MN). 

To interface the software with the instrument, a DAC/ADC card was employed (NI USB-6341, 

National Instruments).  
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2.6 In Vivo Analysis 

A   B  

Figure 18. A) Experimental setup for in vivo analysis. B) Placement of CFME in Daphnia’s brain. 

 During stimulation with high, medium, and low intensity light an oxidation current was 

observed at +0.6 V proportional to the strength of light emitted. To determine if this current 

was a result of noise generated from operation of the light source, trials were conducted in 

which the light source was directed away from the subject. During the latter trials, no current 

was generated, indicating that the current generated in the light exposure experiments is a 

result of serotonin release and not a product of interference from the mechanical switch to 

turn on the light.  

 Once confident that there was no interference from the electrical and mechanical 

devices operated during the trials, stimulation trials were carried out to determine the 

refractory period of the dive reflex. Simulation patterns were developed by applying maximum 

intensity light stimulus in 1 and 5 minute intervals as seen in Figure 19. Preliminary data shows 

that at after 5 minutes the signal generated is mostly stable, but further optimization is 

required.  
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High intensity stimulus of the phototactic response yielded positive results with an 

increase in current and an oxidation peak around +0.5 V. Although 5-HT oxidizes at +0.6 V it is 

known that the redox peak can shift relative to the Ag/AgCl reference due to the unique 

changes chemical microenvironment.[24] Stimulation with low intensity light was more difficult 

to quantify as apparent interferences prevented the stabilization of the baseline. Although an 

oxidation peak was present around +0.6 V, the drifting baseline obfuscated the signal, resulting 

in an apparent decrease in current from the peak (Figure 20). As this side of the project was 

working with animal subjects, the issue of electrode placement becomes critical. In order to 

more accurately quantify the release of 5-HT at low intensity stimulation levels, the placement 

of the electrode needs to be more precise.  
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2.7 Future Work 

 As in vivo testing is still in its infancy there is much more work to be done. To 

successfully determine if serotonin is responsible for the phototactic response, more behavioral 

trials should be carried out. Since the preliminary data gathered relied on 2 trials, more data 

needs to be collected in order to prove serotonin’s involvement. To successfully quantitate the 

amount of 5-HT released, there are several tasks that need to be completed. First, the 

placement of the electrode will need to be optimized. Currently, the operation of implantation 

involves placement through visualization using a microscope. As the Daphnia brains are very 

small, it is difficult to confirm the exact placement of the electrode. Use of a stereotaxic device 

might improve consistency in placement of the electrode.  
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 To further improve the accuracy of the measurements, electrode length will need to be 

reduced in order to calibrate post-animal analysis. In vitro research has shown that 5-HT signals 

cannot be generated in COMBO solutions. Therefore, any electrode surface not inside the 

Daphnia does not contribute to the analysis. This is acceptable for in vivo work but in order to 

quantify the amount of 5-HT released, each electrode will need to be calibrated after analysis. 

 During the post-calibration of the electrode. The surface which was outside of the 

Daphnia did not contribute to analysis. When submerged into Tris buffered saline it will then 

become active and have the ability to interact with 5-HT. By reducing length of the electrode to 

match in vitro experimentation, this should ensure proper fit of the electrode in the Daphnia 

with minimal unexposed surface, further improving the accuracy of future measurements.  

2.8 In Vivo Experimental Methods 

T-650 carbon fibers (Goodfellow, Coraopolis, PA) were aspirated into glass capillaries of 

0.4 mm ID and pulled on a vertical pipette puller (Narishige Group, Tokyo, Japan). Electrodes 

were then cut to a length of 150 ± 10 μM. Electrodes were dipped in a 5% Nafion® solution 

(Liquion-1105-MeOH, Ion Power, DE) by completely submerging exposed fiber and applying a 

constant potential of -1.0 V vs Ag/AgCl for 10 seconds.[24] The newly coated electrodes then 

were air dried for 10 min at room temperature, then cured for 10 min. at 80 °C. 

Daphnia were extracted from a combo buffer solution via pipette and mounted laterally 

on a custom made pedestal by applying a small amount of polyacrylate glue. The pedestal was 

then placed in the experimental apparatus flow cell with COMBO medium flowing at a rate of 2 

mL/min. A lancet was mounted onto an actuator and used to pierce a hole in the carapace. This 

process was visualized under a microscope. Once through the carapace the lancet was 
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retracted and replaced by a CFME, which was inserted into the hole. The CFME was left to 

equilibrate for 10 minutes using the Serotonin Selective Waveform with a frequency of 60 Hz. 

The frequency was then adjusted to 10 Hz for data collection. To ensure proper placement, 

several files were taken to detect the release of serotonin.  

The Daphnia’s dive reflex was stimulated using a Fiber-Lite High Intensity Illuminator 

Model 170D (Dolan-Jenner, Boxborough, MA). Light intensities were calibrated to NIST 

traceable light measurement via ILT-1400A Radiometer Photometer (International Light 

Technologies, Peabody, MA).  
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Chapter 3 - Pretreatment of Carbon Fiber Microelectrodes for Serotonin Selectivity 

3.1 Introduction 

3.1.1 Fast Scan Controlled Adsorption Voltammetry  

 While Fast Scan Cyclic Voltammetry has widely been accepted as an excellent method 

for analysis of neurotransmitters, it has limitations. FSCV can only measure changes in the 

amount of analyte present. That is, while excelling in measurements of analyte as a function of 

change in concentration, basal level measurements are not possible. To address this issue the 

method of Fast Scan Controlled Adsorption Voltammetry (FSCAV) was developed by Heien and 

colleagues in 2013 to directly measure the basal concentration of analytes.[26]  This method 

employs a technique which allows for controlled adsorption by holding the electrode at a 

constant potential without the need to cycle the waveform.  

 FSCAV can be broken down into three fundamental steps: minimized adsorption 

(stripping), adsorption of analyte, and FSCV analysis. During the minimized adsorption phase, 

the electrode is cycled with the analyte specific waveform applied at an over-oxidizing potential 

with frequency of 100 Hz. This step strips the electrode’s surface of any analyte, effectively 

refreshing the electrode’s surface and preventing substantial adsorption. The second step 

involves application of a constant potential for a specified amount of time, allowing for 

adsorption of analyte onto the surface of the electrode. In the final step, the analyte-specific 

waveform is applied, resulting in the oxidation and reduction of the analyte, as in FSCV. The 

oxidation/reduction peak can then be integrated with respect to time using Faraday’s Law to 

calculate the concentration of analyte on the electrode’s surface.  
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3.1.2 Electrochemical Modification of Carbon Fiber Microelectrode 

 The technique of electrode modification to increase selectivity has widely been used for 

many different applications. The most common technique for neurotransmitter detection is  

electrodeposition of a thin layer of Nafion® on the surface. This technique allows for precise 

control over the thickness of the coating, rapid modification, and ease of use.[27] 

 When serotonin is cleared from the synaptic cleft, it happens in one of two ways. The 

remaining serotonin is either uptaken by the presynaptic cell to be packaged back into vesicles, 

or enzymes in the synaptic cleft metabolize the serotonin to 5-hydroxyindoleacetic Acid (5-

HIAA). 5-HIAA is a negatively charged compound in at physiological conditions (carboxylic acid 

pKa=4.54) with a high affinity to carbon fiber, is present at 200 to 1000 times the concentration 

of serotonin, and has nearly identical electrochemical properties to serotonin.  

As a waveform is applied to a bare electrode, 5-HIAA will irreversibly bind to the surface, 

causing a fouling effect. With these characteristics, analysis of serotonin becomes impossible 

without electrode modification. Nafion® is a negatively charged compound which when 

deposited on the surface of the electrode can repel 5-HIAA, and increase the selectivity to 5-HT.  

In our analysis of serotonin via FSCV, the need for a new modification technique arose when 

analysis of mixtures of 5-HT and concentrations of 5-HIAA near the upper extreme of the 

physiological range appeared to be skewed by the increasing amounts of 5-HIAA. 
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A                                      B     

C  

Figure 21. A) Submerged CFME before application of ECO waveform. B) Attraction of oxygen 
functional groups to the CFME during ECO waveform. C) Increased sensitivity to serotonin due 

to the oxygen functional groups. 

3.2 Electrochemical Modification of Carbon Fiber Microelectrode 

3.2.1 Overview 

Bare CFME were submerged into Tris buffer solution with pH adjusted to 7.40. Once 

submerged and checked for good capacitance, the electrochemical oxidation waveform (-0.5 to 

+1.8 V, 400 V s-1) was applied at a frequency of 10 Hz for two minutes. By applying this large of 

a potential, compounds in solution are decomposed and generate oxygen functionnal groups 

which then randomly and irreversibly is adsorbed to the surface of the electrode (Figure 21). 

Once the oxygen functional groups are bound, the electrode becomes slightly negatively 
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charged. Like Nafion®, this negative charge further increases selectivity by simultaneously 

attracting the positively charged 5-HT and repelling the negatively charged 5-HIAA. 

The electrode was then placed in a solution of 100 nM 5-HT and 100 µM 5-HIAA. The 

electrode was allowed to equilibrate, with no waveform, for 5 minutes. Using a modified 

Selective Serotonin Waveform, with a 0.1 V holding potential, the FSCAV waveform was applied 

at a rate of 5 minutes and a “cleaning” waveform (-0.1 to 1.3, 0.1 holding potential) was applied 

at 100 Hz for 30 seconds immediately after each scan was completed to ensure the surface was 

refreshed.[28] The addition of the oxygen functional groups greatly increased the capacitance of 

the electrode; which slowly decreased with each successive trial. This led to the need of an 

ageing process in which the FSCAV sequence was applied until the capacitance and resulting 

signal stabilized as seen in Figure 22. While the charge is stabilized, this process greatly 

increases the length of the calibration process. 

 

Figure 22. Response to 5-HT during ageing of the electrode. 
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3.2.2 Characterization 

 As the electrochemical pretreatment relies on the random nature of adsorption of 

oxygen functionality, signals vary from electrode to electrode. The normalized signal for the 

response generated by 5-HT, seen in Figure 23, proved linear within the physiological ranges of 

the specimen. As such the next step of characterization was to measure the signal generated 

from 5-HIAA to observe how the electrode responded to the metabolite.   

A       B  

Figure 23. A) Linear range of 5-HT. B) Normalized signal for 5-HIAA. 

 As 5-HIAA ranges from 200 to 1000 times the amount of 5-HT[18] the performed analysis 

extended beyond this range in order to obtain a more complete picture. Below a concentration 

of 20 nM there is a large spike in sensitivity to the metabolite. The response to 5-HIAA appears 

to plateau from the bottom-end of the physiological level and extend beyond the upper limit. 

Finally, mixtures of 5-HT at selected physiological levels and 5-HIAA at physiological extremes 

were analyzed to prove the minimal effects of 5-HIAA on analysis. As suspected, the amount of 

5-HIAA had little to no effect on the generated 5-HT signal as the data points for each 5-HIAA 

concentration with a static amount of 5-HT appeared to be virtually identical (Figure 24). 
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Figure 24. Representative calibration curve. Red squares and blue diamonds represent the 
extreme lower and upper physiological ranges of 5-HIAA, respectively. Green diamonds are the 

averaged response between the extremes. 

3.2.3 Calibration of Electrodes  

 In order for in vivo analysis of serotonin to work properly, each electrode needs to be 

calibrated and characterized individually, due to the random nature of the electrochemical 

modification. Calibrations were carried out in a similar manner to the 5-HIAA interference on 5-

HT as mixtures of serotonin, within physiological range, were mixed with the extreme limits of 

physiological 5-HIAA. The signals were checked to ensure a cohesive response between the 

varying 5-HIAA mixtures against static 5-HT levels, the linear response from 5-HT was 

consistent, and the signal generated was sensitive enough to discern minute changes in 

concentration. Electrodes that did not meet the aforementioned criteria were rejected as the 

electrochemical modification’s random nature made re-treating the electrodes impossible.   
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3.3 Evaluation of the Electrochemical Modification Method 

 After the initial method for the electrochemical modification was completed, the 

technique was moved to the University of South Carolina with the Hashemi group to continue 

to be evaluated as a viable method for analysis. During this time it was discovered that the 

integration parameters were improperly selected, as the 5-HT and 5-HIAA peaks were not 

completely resolved. As the signals were not fully separated, the technique did not account for 

information that was buried within the 5-HIAA signal. As such, the viability of this method came 

into question.  

 Comparing the electrochemical modification to the Nafion® technique showed several 

issues. First, the electrochemical modification technique required each electrode to be 

individually characterized before in vivo analysis could begin. This process took upwards of 6 

hours to fully test and characterize a single electrode. In the event of successful in vivo analysis, 

the electrode then had to be calibrated after the analysis to prove the data generated was 

accurate.  In comparison, Nafion® modification required only 11 minutes to prepare and, as the 

Nafion® forms a uniform surface, only require post-calibrations to ensure accuracy. With this 

data in hand, the technique was determined to be unsuccessful and subsequently abandoned.   
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Chapter 4 – Conclusion 
 

Fast Scan Cyclic Voltammetry has proven to be a highly viable method for in vivo 

quantification of neurotransmitters. Its ability to be modified in a multitude of ways can 

increase the capability of CFMEs to sense and differentiate between a variety of different 

chemical species. Although in vitro testing in “The Role of 5-hydroxytryptamine in the 

Phototactic Dive Reflex of Daphnia” project has stopped, research is ongoing and the outlook is 

optimistic. Application of the aforementioned future work could definitely pave the way for a 

novel method for detection of antidepressants in natural water sources and open up a new 

area of research to explore.  

Although the “Pretreatment of Carbon Fiber Microelectrodes for Serotonin Selectivity” 

project failed it further narrows the list of acceptable methodologies to chemically separate 

serotonin from 5-HIAA. As the project involved a lengthy process, the continuation for a new 

analysis has shifted back to Nafion® pretreatment due to time constraints.  
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APPENDIX 

 

Figure S1. Representative False Color Plots of 100 nM 5-HT in COMBO buffer solution 

 

Figure S2. Representative False Color Plots of 100 nM 5-HT in EPA Synthetic Water 

  

Figure S3. Representative False Color Plots of 100 nM 5-HT in Tris Buffered Saline. 
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Fast Scan Cyclic Voltammetry has been proven to be a highly valuable technique in 

analysis and detection of neurotransmitters. With this technique, two novel applications are 

being explored to protect natural water sources as well as furthering the efficacy of 

antidepressants. Despite setbacks, promising data has been collected to further understand the 

mechanisms involved in the phototactic response observed in Daphnia Magna. Electrochemical 

modification of carbon fiber microelectrodes has proven to be inefficient as a means to 

effectively differentiate between serotonin and its metabolite. As such, this unsuccessful 

attempt has further narrowed down the list of candidates to electrochemically differentiate 

between 5-HT and 5-HIAA.       
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