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log f2 = 

log
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ij ij ij
i j i j

i i
i

m x m

R m +

− +

+

 
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= ( )
( )

i j ij
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i j i j

i j ij
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 


. 

(17) 
 
Differentiating (17) with μ , iα , jβ  and ijγ , 

results in 
 

2log i j ij
ij i

i j i j i

f e x Rμ α β γ

μ
+ + +∂ = − + +

∂   
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∂
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∂
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∂
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(18) 
and, when (18) is equal to 0 

ˆ
ˆ ij

ij ij i
i

m
m x R

m +

 
= +  

 
.              (19) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Initial estimates of the { ˆ ijm } were considered as 

( )0 ij
ij i

i

x
m m

x +
+

 
=  
 

.                 (20) 

where i i im x R+ += + . 

 
On the first iteration, from (19), 

( )
( )0

1 ˆ
ˆ ij

ij ij i
i

m
m x R

m +

 
 = +
 
 

.             (21) 

So, on the (k+1)th iteration, 

( )
( )

1 ˆ
ˆ

k
k ij

ij ij i
i

m
m x R

m
+

+

 
 = +
 
 

,            (22) 

when k → ∞ , ( ) ( )1ˆ ˆk k
ij ijm m ε+ − ≤ . 

 
If an underlying Binomial sampling scheme is 
assumed, then 

ij
ij

i

x
p

x +

= . 

Therefore, from (20),  
( ) ( )0 0ˆ ˆ

ijij ip m m +=  

and 
( ) ( )0 0ˆ ˆ ij

i j
p m N= . 

 
On the (k+1)th iteration, 

( ) ( )1 1ˆ ˆk k
ij ij ip m m+ +

+=  

and 
( ) ( )1 1ˆ ˆk k

ij
i j

p m N+ += . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Underlying probabilities for a 2x2 table 

Fully Classified Table 
Row 

Supplemental 
Margin 

( )( ) 111 11 λ π−  ( )( ) 121 11 λ π−  ( ) 11 1λ π +  

( )( ) 211 21 λ π−  ( )( ) 221 21 λ π−  ( ) 21 2λ π +  
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Formulation of Newton-Raphson 
From Le (1992), the iterative solution 

for a parameter estimation on (k+1)th iteration 
will be considered as 

( ) ( )1ˆ ˆ ˆk kθ θ θ+ = + Δ ,                   (23) 
 
where θ  is the parameter and 

2

2

ln lnˆ d L d L
d d

θ
θ θ

  Δ = −   
   

. 

Differentiating (7) with ijγ  and equal to 0, then 

results in  
2

2 2

ij ij
ij i

i i

ij ij ij ij
j

j j

m m
m R

m m

m m m m
C D

m m m m

+
+ +
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  
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         + − + −            

(24) 
 
To avoid the confusion of ijm  for (7) and (24), 

let m1ij and m2ij for (7) and (24), respectively. 
For application of the Newton-Raphson 

method in the two-way incomplete contingency 
table, consider 

( )
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(26) 

where ( )0ˆ ijm  is the same with (9) and 
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( )

0
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m
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On the (k+1)th iteration, 
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(29) 

( ) ( )
( )

( )
1 1

ˆ 1
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k
k k ij

ij ij k
ij

m
m m

m
+ = − .                (30) 

For an accelerated convergence, these 
equations were employed to obtain the 
maximum likelihood estimators. 
 
The EM algorithm: Formulation of the EM 
algorithm for contingency table 

The EM approach for incomplete 
categorical data on the basis of Multinomial, 
Binomial and Poisson assumptions is now 
investigated. 
 
Multinomial Distributions 

For Multinomial distributions, the 
complete data log likelihood is 

log Lc(πi) =
1

1

n

i

−

=
  (xi+zi) log πi + (xn+zn) 

log(
11 21 ... nπ π π

−
− − − − ),         (31) 

where unobservable or missing data are referred 
to as zi = (z1, z2, …, zn)

T and zi = ri+ci+di with ri 
being missing column data, ci missing row data, 
and di both row and column missing data on cell 
ith. Differentiating (31) with respect to πi, results 
in 

ˆ i i
i n

n n

x z
x z

π π+=
+

.                      (32) 
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Since 
1

n

i
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 = 1, therefore from (32), 
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where ( )
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+ = N. 

The E- and M-values on the first 
iteration for cell (i, j) were considered as 
follows. 
 
E-step: 
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where ( )1
ijm  is the expected of cell (i, j) on the 

first iteration. 
 
M-step: 

( ) ( )1 1ˆij ijm Nπ = , 

where ( )1
ijπ  is the probability for cell (i, j). 

 
On the (k+1)th iteration, the E- and M-steps were 
defined as follows: 
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M-step: 

( ) ( )1 1ˆ k k
ij ijm Nπ + += . 

 
The E- and M-steps were alternated and repeated 
until 
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Binomial distribution 

For the binomial distribution, the 
complete-data log likelihood is 

 
log Lc( 1ip )=(xi1+zi1)log 1ip +(xi2+zi2)log(1- 1ip ), 

for i = 1, …, n, and zi is referred to as 
unobservable or missing data on the ith row 
where zi1 + zi2 =  zi. Differentiating with respect 
to 1ip  results in 
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From (34), if all rows are summed, the following 
is obtained 
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The E- and M-values on the first iteration for 
cell (i, j) were considered as follows: 
 
E-step: 

( )1
ijm = xij+ Ri+pij 

where ( )1
ijm  is the expected value of cell (i, j) on 

the first iteration and pij  = xij/xi+. 
 
M-step: 

( ) ( ) ( ) ( )( )1 1 1 1
1 2ˆ ij ij i ip m m m= + , 
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On the (k+1)th iteration, the E- and M-steps were 
defined as follows: 
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E-step: 
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M-step: 
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Therefore, when k → ∞ , lim
k→∞

( ) ( )1ˆ ˆk k
ij ijp p+ −  = 0 
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Poisson distribution 

For the Poisson distribution, the 
complete-data log likelihood is 
 
Log Lc(y; θi) =  

( ) ( ) ( )
1

log log !
n

i i i i i i
i

x z x zθ θ
=

+ − − +    

(35) 
 
where z1 + z2 +…+zn is referred to as 
unobservable or missing data. By differentiating 
(35) with respect to θi, 

î i ix zθ = + .                     (36) 

Referring to Figure 1, the E- and M-
values on the first iteration for the cell (i, j) was 
considered as: 
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M-step: 

( ) ( )11
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On the (k+1)th iteration, the E- and M-steps were 
defined as follows: 
 
E-step: 
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where 

( )1k
ijR +

= Ri+

k
ij
k
i

θ
θ +

 
  
 

, ( )1k
ijC +

= C+j

k
ij
k

j

θ
θ+

 
  
 

, and 

( )1k
ijD +

= D
k
ij

N
θ 
  
 

, 

and N is total sample. 
 
M-step: 

( ) ( )11
îj ij ijx zθ = + . 

The E- and M-steps were alternated and repeated 
until 
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Therefore, when k → ∞  
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ij ijk
θ θ

+

→∞
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and it may be said that ( )1ˆ k
ijθ +  = ( )ˆ k

ijθ  = *θ . 

 
Results 

 
The results of MLE, adopting Newton-Raphson 
in MLE and the M-step of the EM algorithm for 
the Poisson distribution are presented in Tables 
4, 5 and 6 respectively. 
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The results of MLE, adopting Newton-
Raphson in MLE and the M-step of the EM 
algorithm for the Multinomial distribution are 
presented in Tables 7, 8 and 9 respectively. The 
results of MLE and the M-step for the Binomial 
distribution are presented in Tables 10, 11 and 
12 respectively. 

Based upon results, both the MLE and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the EM algorithms converge on the 7th iteration 
(see Tables 4 and 6), and both methods give the 
same results. However, by adopting the Newton-
Raphson in the MLE, the results on the 5th 
iteration were obtained (see Table 5). Although 
it seems that the EM algorithm was converging 
the same as the MLE, the EM algorithm 
involves two calculation steps on each iteration. 

Table 4 MLE for Poisson distribution 

Iteration 

Cells 

(1,1) (1,2) (2,1) (2,2) 

1 17.99 10.13 19.23 11.66 

2 17.72 10.05 19.35 11.89 

3 17.67 10.03 19.35 11.96 

4 17.66 10.02 19.34 11.98 

5 17.67 10.02 19.33 11.99 

6 17.67 10.01 19.33 11.99 

7 17.67 10.01 19.33 11.99 

Table 5: Adopting Newton-Raphson in MLE for Poisson 
distribution 

Iteration 

Cells 

(1,1) (1,2) (2,1) (2,2) 

1 17.92 9.7 19.62 11.76 

2 17.68 9.38 19.87 12.06 

3 17.66 9.34 19.78 12.22 

4 17.65 9.34 19.77 12.24 

5 17.65 9.34 19.77 12.24 
 

Table 6: M-step for Poisson distribution 

Iteration 

Cells 

(1,1) (1,2) (2,1) (2,2) 

1 17.99 10.13 19.22 11.66 

2 17.72 10.04 19.35 11.9 

3 17.67 10.02 19.35 11.96 

4 17.67 10.02 19.34 11.98 

5 17.67 10.01 19.33 11.98 

6 17.67 10.01 19.33 11.99 

7 17.67 10.01 19.33 11.99 
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In other words, the EM takes longer to compute 
the results compared with the MLE. After 
adopting the Newton-Raphson in the MLE, it 
was able to give faster convergence without as 
much deviance in the results as the EM 
algorithm. Tables 7 and 8 were obtained by 
considering the last iteration of Tables 4 and 5 
respectively. The results were also the same for 
the Multinomial distribution for the MLE and 
the EM algorithm. By comparing the results of 
Table 8 with the last iteration of Table 9, it is 
observed that the results are not much different. 
However Table 11 was obtained by considering 
the last iteration of Table 10. Results shown in 
Tables 11 and 12 were the same as those 
obtained for the Binomial distribution. 
 
Testing independence 

For two-way contingency tables, the 
null hypothesis of statistical independence is H0 
: πij = πi+ π+j for all i and j. The likelihood-ratio 
statistic, G2 is asymptotically equivalent to 2χ  
when n → ∞ with d.f. = (r – 1)(c – 1) where r is 
the number of rows and c is the number of 
columns in the contingency table. 

According to Schafer (1997), G2=
( ) ( )ˆ2 | |obs obsY Yπ π−    , where ( )ˆ | obsYπ  is the 

unrestricted ML estimate ( π̂ ) and ( )| obsYπ  is 

the restricted ML estimate (π ). Thus,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )| obsYπ  is considered as: 

( )| obsYπ = ( )|A obsYπ + ( )|B obsYπ  

+ ( )|C obsYπ + ( )|D obsYπ . 

For the Multinomial and Poisson distributions 
with the MLE and EM algorithm, 

G2 = ( ) ( )ˆ2 | |obs obsY Yπ π−    . 

For the Binomial distribution, H0: p = pi1, 
therefore 

G2 = 2[ ( ) ( )ˆ | |obs obsp Y p Y−   ], 

where ( )ˆ | obsp Y  is the unrestricted ML estimate 

of p̂  and ( )| obsp Y  is the restricted ML estimate 

of p . For both the MLE and the EM algorithms 

( )| obsp Y  is considered as: 

( ) ( ) ( )| | |obs A obs B obsp Y p Y p Y= +   . 

Therefore, adopting the Newton-
Raphson in the MLE and EM algorithms for 
Multinomial and Poisson distributions, G2=0.02. 
However, for the Binomial distribution, 
G2=0.01. From these results, it may be 
concluded that treatment type is independent of 
the results of treatment for the Multinomial and 
Poisson distributions, and the number of seizure 
pain which is less than five is the same for 
treatment 0 and 1 for the Binomial distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7: MLE for the Multinomial distribution 

Cells 

(1,1) (1,2) (2,1) (2,2) 

0.2992 0.1697 0.3276 0.2032 
 

Table 8: Adopting Newton-Raphson in MLE for 
the Multinomial distribution 

Cells 

(1,1) (1,2) (2,1) (2,2) 

0.2992 0.1583 0.3351 0.2075 
 

Table 9: M-step for Multinomial distribution 

Iteration

Cells 

(1,1) (1,2) (2,1) (2,2) 

1 0.3049 0.1716 0.3259 0.1976 

2 0.3003 0.1702 0.3278 0.2017 

3 0.2995 0.1698 0.3278 0.2027 

4 0.2993 0.1698 0.3278 0.2031 

5 0.2992 0.1697 0.3276 0.2031 

6 0.2992 0.1697 0.3276 0.2032 

7 0.2992 0.1697 0.3276 0.2032 
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Conclusion 
 
The EM algorithm is more complicated than the 
MLE, because the EM algorithm involves the E-
(expectation) and M-(maximization) steps. This 
makes the calculations more complicated and 
also increases the amount of time required to 
calculate results as compared with the MLE, 
which is more straightforward for estimating cell 
probabilities in cases of incomplete categorical 
data. For example when consider a contingency 
table with a Poisson sampling scheme, for MLE, 
the expected value is obtained as in (11) by 
considering the previous iteration of the 
expected value. However, for the EM algorithm, 
before calculating the expected value in the M-
step, the E-step - which involves the estimation 
of initial cell probability first – must first be 
considered. For the Binomial sampling scheme, 
the convergence for estimation of pi1 and p can 
be obtained when first considering Poisson 
sampling employing the MLE procedure. Again, 
if the EM algorithm is considered, the E-step is 
required first in order to obtain an initial 
estimate for pij. Similar explanations may be 
given for Multinomial sampling cases where, if 
MLE is considered, the Poisson sampling must 
be addressed before using the last iteration to 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
obtain ˆijπ . The EM algorithm, however, requires 

step by step convergence starting from the initial 
value for ˆijπ  before convergence is achieved. 

The MLE can better perform by 
adopting the Newton-Raphson method, because 
this method helps to accelerate the convergence. 
When the MLE is adopted with that of Newton-
Raphson, as a convergence method, it is clear 
that the MLE and the EM algorithm are two 
different kinds of algorithms. The MLE 
algorithm provides a direct way to maximize the 
final expected value, while the EM algorithm 
involves expectation before the maximization; 
however, the EM algorithm demonstrates the 
distribution of missing values at each step until 
convergence on the basis of the marginal 
probabilities. 

The MLE is much simpler than the EM 
algorithm when one is interested simply in final 
results. If interest lies in understanding the 
distribution of missing values in more detail, the 
EM algorithm is the better choice. 
 
 
 
 

Table 10: MLE for the Poisson distribution 

Iteration 

Cells 

(1,1) (1,2) (2,1) (2,2) 

1 14.95 8.05 16.42 9.58 

2 14.95 8.05 16.42 9.58 
 

Table 11: MLE for the Binomial distribution 
Cells 

(1,1) (2,1) (+, 1) (1, 2) (2,2) (+, 2) 

0.65 0.6315 0.6402 0.35 0.3685 0.3598 
 

Table 12: M-step for the Binomial distribution 

Iteration

Cells 

(1,1) (2,1) (+, 1) (1, 2) (2,2) (+, 2) 

1 0.65 0.6315 0.6402 0.35 0.3685 0.3598 

2 0.65 0.6315 0.6402 0.35 0.3685 0.3598 
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