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Using Exploratory Factor Analysis for Locating 
 Invariant Referents in Factor Invariance Studies 

 
W. Holmes Finch                  Brian F. French              
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Model identification in multi-group confirmatory factor analysis (MCFA) requires an equality constraint 
of referent variables across groups. Invariance assumption violations make it difficult to locate parameters 
that actually differ. Suggested procedures for locating invariant referents are cumbersome, complex, and 
provide imperfect results. Exploratory factor analysis (EFA) may be an alternative because of its ease of 
use, yet empirical evaluation of its effectiveness is lacking. EFAs accuracy for distinguishing invariant 
from non-invariant referents was examined. 
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Introduction 
 
The use of scores for making decisions about 
persons, be it for job placement, graduation from 
high school, acceptance to graduate school, or 
obtaining a license to operate a motor vehicle, 
relies on the continued accumulation of 
empirical and theoretical validity evidence to 
support such score use (Messick, 1989). One 
form of empirical validity evidence is 
measurement invariance or equivalence. An 
assessment instrument, for example, should have 
the same psychometric properties across groups 
to help ensure that measurement of the specified 
construct is the same across groups. In the 
absence of such evidence, group comparisons on 
the ability of interest may be meaningless, as 
observed differences could be the result of 
ability differences or measurement differences 
(i.e., a lack of invariance).         
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A common method for assessing factor 

invariance, a form of measurement invariance 
(MI), is multi-group confirmatory factor analysis  
(MCFA). MCFA allows for an a priori specified 
latent structure of an instrument to be assessed 
for MI across groups or time (e.g., Alwin & 
Jackson, 1981; Golembiewski, Billingsley, & 
Yeager, 1976). A powerful feature of MCFA is 
the ability to compare specific model features 
(e.g., factor loadings) at the matrix level, as well 
as individual elements of the matrix under 
examination. 

Invariance testing in MCFA involves 
comparing increasingly more restricted factor 
models by sequentially constraining different 
parameter estimates (e.g., factor loadings, error 
variances) invariant or equal across groups or 
time. The presence of MI is determined using 
differences in the chi-square goodness-of-fit 
statistics for more and less restrictive models, 
where a non-significant difference indicates 
invariance. This procedure has been well 
documented both in theoretical and applied 
examples (e.g., Bollen, 1989; Byrne, Shavelson, 
& Muthén, 1989; Jöreskog & Sörbom, 1996; 
Maller & French, 2004; Raju, Laffitte, & Byrne, 
2002; Reise, Widaman, & Pugh, 1993). 

There are several procedural aspects of 
invariance testing that deserve further attention 
before practitioners and researchers have 
complete confidence in such results (Little, 
2000). One of several unresolved issues in 
MCFA is the need to constrain a referent 
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indicator equal across groups (Millsap, 2005). 
Latent factors are constructed on arbitrary 
coordinate systems making comparison of 
models across populations difficult because they 
are not constrained to the same system in 
relation to the other populations or groups of 
interest (Wilson, 1981). 

The model standardization, or 
identification, procedure can solve this problem 
by assigning units of measurement to the latent 
variables (Jöreskog & Sörbom, 1996), generally 
by aligning the latent factors to a scale based on 
the same indicators across groups. To meet 
identification requirements, per factor, either a 
factor variance or a factor loading is set to 1.0 
across groups. Additional methods have been 
suggested (e.g., see Drasgow & Kanfer, 1985; 
Reise, Widaman, & Pugh, 1993), but the factor 
loading method appears to be used most 
commonly (Brown, 2006; Vandenberg & Lance, 
2000). These procedures require the assumption 
that the referent variable constrained equal is, in 
fact, invariant. This assumption cannot be 
directly tested, however, because only the ratio 
of individual factor loadings to the referent can 
be compared across groups (Bielby, 1986; 
Cheung & Rensvold, 1999; Wilson, 1981). 
Furthermore, complications arise as different 
constraint choices may lead to different results 
in terms of model fit and hypotheses concerning 
equality of parameters (Millsap, 2001; Steiger, 
2002; Wilson). 

When the referent parameter is not 
invariant, estimates of other parameters may be 
distorted, which can lead to inaccurate 
conclusions regarding their invariance (Bollen, 
1989; Cheung & Rensvold, 1999; Millsap, 
2005). A circular situation exists with this 
assumption where (a) the referent variable must 
be invariant, (b) invariance cannot be established 
without estimating a model, and (c) model 
estimation requires an invariant referent. Thus, 
we are back to the original invariant referent 
assumption. That is, to assess invariance for a 
given factor loading across groups, for instance, 
an equality constraint (that is actually true) must 
already be placed on another factor loading. This 
circular conundrum is parallel to the ability 
purification process in detection of differential 
item functioning (DIF) (e.g., Holland & Thayer, 
1988; Lord, 1980), another method commonly 

employed to establish MI at the item level. 
Ability purification in DIF analysis attempts to 
identify a set of non-DIF items for use as the 
matching criterion and can lead to more accurate 
DIF detection (Ackerman, 1992; Clauser et al., 
1993). A similar procedure with MCFA would 
seem appropriate with the expected outcome of 
more accurate detection of a lack of MI.       
  A search procedure (i.e., factor-ratio test 
and the stepwise partitioning procedure) was 
designed to identify invariant and non-invariant 
variables (Rensvold & Cheung, 2001). The 
method uses each variable, in turn, as the 
referent in a set of models with each other 
variable constrained to be invariant. The 
iterative procedure tests all pairs of variables 
(i.e., p (p – 1) / 2 pairs) and becomes quite 
complex with many indicators, making it not 
“user-friendly” for practitioners (Vandenberg, 
2002). A moderate length instrument (i.e., 30 
indicators), for instance, requires 435 individual 
invariance tests. Furthermore, empirical 
evaluation of the method demonstrated adequate 
(e.g., acceptable false and true positives) but far 
from perfect performance (French & Finch, 
2006a).  

To overcome these limitations, 
exploratory factor analysis (EFA) may be a 
viable alternative for identifying invariant 
referents, as a purification step prior to a MCFA. 
That is, if a researcher intends to set one loading 
invariant across groups, a single EFA could be 
conducted for each group separately and loading 
estimates compared to ascertain which loadings 
appear to be invariant. With an EFA conducted 
on each group separately, such an analysis may 
be considered a weak test of factorial invariance 
(Zumbo, 2003). 

EFA is not a formal test of invariance, 
but instead is a possible method to examine 
parameter estimates across groups to obtain a 
sense of the differences in the factor loadings 
without need of conducting a large number of 
analyses as is required when using the factor-
ratio test. Specifically, pattern coefficients 
appearing most similar would be eligible for 
serving as a referent variable in the MCFA. Such 
use is in accord with suggestions that EFA be 
used to examine loadings with an “interocular 
eyeball test” (Vandenberg, 2002) to judge 
similarity of loadings to identify appropriate 
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referent variables. However, there does not 
appear to be empirical evaluation of EFA for 
locating potentially invariant referents.    
 The purpose of this study is to assess the 
utility of EFA in identifying non-invariant or 
invariant factor loadings between two groups. 
This procedure would be used prior to the actual 
MCFA as a “purification” process for 
identifying a loading that is likely to be invariant 
for use as the referent parameter. The procedure 
would simply entail conducting one EFA per 
group with one reference group and one 
comparison group. The loadings (i.e., pattern 
coefficients) from the separate analyses would 
be compared visually to determine similarity of 
individual loadings. Loadings that appear 
markedly different would not be used as a 
referent, while loadings appearing most similar 
would be used as the referent. If multiple 
loadings across groups were equally similar, any 
of them could serve as the referent. 
 

Methodology 
 
Simulated data were used to control variables 
that could influence the magnitude of factor 
loading estimates, with 1000 replications for 
each combination of conditions described below. 
Simulations and analyses were completed in 
SAS, V9.1 (The SAS Institute, 2003).  
 
Number of Factors and Indicators    

Data were simulated from both 1- and 2-
factor models, with interfactor correlations set at 
.50 to represent moderately correlated factors. 
The number of indicators per factor was 6. Data 
were simulated to reflect simple structure for 
continuous and normally distributed subtest 
level data.  
 
Sample Size 

The necessary sample size to obtain 
reasonable estimates in factor analysis varies 
depending on the data conditions. For this 
reason, three sample size conditions were 
simulated: 100, 500, and 1000 in order to reflect 
small, medium and large samples. These values 
are consistent with other factor analysis 
simulation studies (e.g., Cheung & Rensvold, 
2002; Lubke & Muthén, 2004; Meade & 
Lautenschlager, 2004), ranging from poor (n= 

100) to excellent (n =1000) (Comery & Lee, 
1992), and may not be of much concern here as 
communalities were high (MacCallum, 
Widaman, Zhang, & Hong, 1999).  
 
Magnitude of Difference with the Non-Invariant 
Indicators 

Six levels of factor loading values for 
the non-invariant indicator were simulated. A 
baseline condition was established where no 
differences in loadings were present, so that the 
first indicator had a loading value of 0.75, as did 
the other variables. The remaining 5 conditions 
were characterized by declines in the target 
loading from 0.10 to 0.50 in increments of 0.10 
(i.e., 0.65, 0.55, 0.45, 0.35, and 0.25). These 
levels were selected as there is no effect size, at 
least to the knowledge of the authors, for what 
represents a meaningful factor loading 
difference (Millsap, 2005) and the range covers 
values used in previous MCFA simulation work 
(e.g., French & Finch, 2006b; Meade & 
Lautenschlager, 2004).  
 
Contamination 
 The location of invariant parameters 
may be influenced by the number of indicators 
that lack invariance (Millsap, 2005). Thus, the 
presence of a factor loading exhibiting a 
difference from 0.75 other than that for the 
target indicator was varied as either present or 
absent. In other words, for half of the simulated 
conditions only the target indicator loading was 
contaminated, while for the other half of the 
simulations a second target indicator loading 
also was contaminated at the same difference as 
the target indicator. This allowed assessment of 
the influence of additional contaminated 
variables. 
 
Analysis 
 All analyses were conducted by group 
using principal axis factoring with PROMAX 
rotation in the 2-factor condition. These settings 
follow recommendations for using EFA for a 
referent indicator search and are more consistent 
with educational and psychological data (e.g., 
presence of measurement error, correlated 
factors; Vandenberg, 2002).  
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Evaluation Criteria 
Factor loadings (i.e., pattern 

coefficients) obtained from the EFA for the 
target variable were compared with 0.75, which 
was the population value for the reference 
group. The assumption of this study was that if a 
researcher were to use EFA to identify invariant 
indicators, the observed loadings would be 
compared between the two groups, as described 
above. Therefore, performance could be judged 
by how well EFA would estimate factor loading 
values for the second group both when they 
differ in the population from that of the 
reference group, and when they do not. Three 
statistics across replications were used to 
operationalize this overall outcome: (a) the mean 
loading for the target variable (loading bias), (b) 
the standard deviation of the target loading, and 
(c) the percent of replications for which the 
observed loading was within 10% of the baseline 
loading of 0.75; i.e. between 0.675 and 0.825. 
This latter criterion was selected because of 
suggestions that bias values less than 10-15% 
may not be considered serious in many latent 
variable modeling situations (Muthén, Kaplan, 
& Hollis, 1987).   
 

Results 
 

Factor loading bias  
Based on the Analysis of variance 

ANOVA (α = 0.05) used to identify the 
manipulated variables and their interactions that 
were associated with factor loading bias, the 3-
way interaction of magnitude of difference by 
number of factors by contamination was the 
highest order significant term. Other 2-way 
interactions involving combinations of these 
three variables also were statistically significant, 
as were the main effects of number of factors 
and the magnitude of the difference. The 3-way 
interaction had an η2 value of only 0.02, while 
the magnitude of loading difference had an η2 of 
0.94. Thus, while the interaction should not be 
ignored, it is clear that the most important factor 
in determining the mean loading is the 
magnitude of the difference from the baseline of 
0.75. For this reason, both terms are discussed 
below. 
 The means of factor loading estimates 
across the magnitude of difference, number of 

factors and level of contamination appear in 
Table 1.  

These values demonstrate that EFA, 
using principal axis factoring and PROMAX 
rotation, accurately estimates the population 
factor loading of 0.75 for both the 1- and 2-
factor conditions when all other loadings also 
are 0.75. Furthermore, the estimates also were 
very close to the population value of 0.75 when 
a loading other than that for the target variable 
was set at 0.65 (i.e., contaminated condition). 
When the target loading was different from 0.75 
in the population, the sample estimate was 
generally very close to the actual population 
value in the 1-factor case, regardless of whether 
other factor loadings were contaminated. This 
result was mirrored in the 2-factor case with no 
contamination. However, when non-target 
loadings were contaminated, the means of the 
target loadings reflect overestimation except 
when the target was 0.65. As expected due to 
high communalities, sample size was not 
significantly related to the mean value of the 
estimated factor loadings.  
 
Standard Deviation 
 The ANOVA identified the interaction 
of sample size by number of factors by 
magnitude of the difference as statistically 
significant for the standard deviation of loading 
estimates. In addition, the main effects of 
magnitude of difference, sample size, number of 
factors, and contamination were also statistically 
significant. It should be noted that the sample 
size accounted for 75.5% of the variation in the 
standard deviation, while none of the other terms 
in the model accounted for more than 4%. 
 Table 2 contains the standard deviations 
of the factor loading estimates by the number of 
factors, sample size, and magnitude of 
difference between the target loading and 0.75. 
An examination of these results suggests that in 
general, larger sample sizes were associated with 
lower variation in the estimates. In addition, as 
the magnitude of the difference increased, the 
standard deviation did as well. This effect was 
slightly more pronounced for smaller samples. 
Finally, the difference in standard deviations by 
sample size was slightly greater in the 2-factor 
case. Again, it is important to note that while 
this interaction was found to be statistically 
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Table 1. Mean of Factor Loadings across Replications by Number of Factors, Sample Size and 
Population Target Loading Value 

 
Loading for Group 2 Contaminated 

1 Factor No Yes 

0.75 0.742 0.741 

0.65 0.647 0.645 

0.55 0.551 0.550 

0.45 0.453 0.454 

0.35 0.353 0.356 

0.25 0.255 0.271 

2 Factor 

0.75 0.735 0.731 

0.65 0.641 0.580 

0.55 0.548 0.578 

0.45 0.451 0.490 

0.35 0.353 0.390 

0.25 0.255 0.339 
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significant, it accounted for less than 5% of the 
variance, whereas sample size accounted for 
75% of the variance in the standard deviation 
values.  
 Logistic regression was used to identify 
significant main effects and interactions that 
were associated with loadings being within a 
10% range of 0.75. In this case, the outcome for 
each replication was coded as either 1 (loading 
was within 10% of 0.75) or 0 (loading was not 
within this range). It is important to keep in 
mind that when the target loading for the second 
group was simulated to be 0.75, the proportion  

 
 
 
of cases not within this 10% range could be 
considered a false positive (incorrect 
identification of difference when no difference 
existed). On the other hand, when the target 
loading was simulated to be some other value 
(e.g., 0.25), the proportion of cases outside of 
the 10% range represent a true positive (i.e., 
correct identification of differences between the 
groups’ loadings). Two separate logistic 
regression models were used:  1) Examining 
only those cases where the target loading was set 
at 0.75 (Model 1) and 2) Examining all other 
target loading conditions (Model 2). 

 
Table 2. Standard deviation of Factor Loadings across Replications by Sample Size and Population 

Target Loading Value 
 

Loading for Group 2 Sample size 

Factor 1 100 500 1000 

0.75 0.049 0.022 0.016 

0.65 0.065 0.029 0.021 

0.55 0.076 0.034 0.024 

0.45 0.089 0.038 0.028 

0.35 0.097 0.043 0.029 

0.25 0.105 0.047 0.033 

Factor 2    

0.75 0.062 0.028 0.026 

0.65 0.084 0.037 0.023 

0.55 0.092 0.041 0.029 

0.45 0.103 0.046 0.033 

0.35 0.114 0.052 0.036 

0.25 0.147 0.052 0.037 
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In the case of Model 1, the only 
statistically significant effects were the 
interaction of the number of factors by sample 
size and the main effect of sample size. Table 3 
contains the proportion of cases within 10% of 
0.75 when the target loading was in fact 0.75 in 
the population, by sample size and the number 
of factors. The results show that for the 1-fatcor 
case, over 87% of the factor loading estimates 
were within the correct range, regardless of 
sample size. In contrast, for the 2-factor case, the 
smallest sample size was associated with a 
somewhat lower proportion of cases within the 
10% range of the 0.75 value compared to the 1-
factor case, otherwise the results across factor 
models were nearly identical.  

In the case of Model 2, the logistic 
regression analysis identified the 3-way 
interactions of number of factors by 
contamination by magnitude of difference and 
number of factors by sample size by 
contamination as significantly associated with 
the proportion of cases within 10% of the 0.75 
loading value. In this context being outside of 
this range would be correct, given that the 
population values for the simulated loadings 
were less than 0.75.  

Table 4 contains the proportion of 
replications within 10% of 0.75 by the 
magnitude of the difference, the number of 
factors and contamination. For the 1-factor case, 
regardless of contamination, the larger the target 
loading was in the population (i.e., less of a  

 

 
 

 
 

difference), the greater the proportion of 
replications for which the estimated value was  
within 10% of 0.75. The largest proportion of 
values within this range occurred for the 
population loading of 0.65 across the number of 
factors and level of contamination.  
Indeed, the results for the 1-factor cases (both 
contaminated and not) and the 2-factor 
uncontaminated case were all very comparable. 
However, in the contaminated 2-factor condition 
with a population loading of 0.65, the proportion 
of replications within 10% of 0.75 (i.e., 0.055) 
was much lower than in the other 3 conditions 
(M = 0.192). For the other loading values, the 
results for the contaminated 2-factor case were 
just slightly higher than for the others simulated. 

Table 5 displays the proportion of 
replications within 10% of 0.75 by the number 
of factors, sample size and contamination 
condition. Overall, the proportions decline in 
conjunction with increasing sample sizes. For 1-
factor these proportions were very comparable 
regardless of whether another loading was 
different from 0.75 (contaminated condition). 
While the pattern of changes in the proportion 
declined with increasing sample sizes in the 2-
factor case, there was a slightly greater 
difference in the proportions between the 
contaminated and uncontaminated conditions, 
leading to the significant interaction described 
above. 
 

 
 

Table 3.  Proportion of Factor Loadings within 10% of 0.75 (0.675, 0.825) when loading was 0.75 
across Replications by Number of Factors and Sample Size 

 
 Factors 

Sample size 1 2 

100 0.875 0.771 

500 0.998 0.979 

1000 1.000 0.996 
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Discussion 

 
The results reported in this study suggest that in 
many instances EFA may be a useful tool for 
identifying potential indicator variables with 
invariant loadings across groups for use in a 
subsequent MCFA. Across most of the 
conditions simulated here, the factor loading 
estimates provided by principal axis EFA with 
PROMAX rotation were very close to the 
population values. Indeed, the only instances 
where simulated values were not approximated 
occurred with 2 factors in conjunction with the 
contamination of one other factor loading. These 
generally positive results would seem to suggest 
that practitioners using EFA can be confident 
that the sample estimate of loadings are unbiased 
 

 
in conditions such as those simulated here. 
 The amount of variation in sample 
estimates was largely a function of sample size. 
While loading estimates had greater variability 
across replications for smaller loading values in 
the population, there were more marked 
differences in variation across the three sample 
size conditions. In addition, this difference in 
variability was largely mitigated by sample size, 
so that for 100 participants the standard 
deviation increased by as much as 0.8 (2 factors) 
as the population loading value declined, while 
for 500 or 1000 participants, this increase was 
always less than 0.03. 

In short, with sufficient sample size, a 
researcher using EFA to identify invariant factor 
loadings can be almost as confident in their 
result whether the loading is at or near 0.75 or 

Table 4. Proportions of Factor Loadings within 10% of 0.75 (0.675, 0.825) across Replications by 
Number of Factors, Sample Size and Population Target Loading Value 

 
Loading for Group 2 Contaminated 

1 Factor No Yes 

0.65 0.194 0.185 

0.55 0.013 0.015 

0.45 0 0.001 

0.35 0 0 

0.25 0 0 

2 Factor 

0.65 0.197 0.055 

0.55 0.031 0.047 

0.45 0.002 0.011 

0.35 0 0.001 

0.25 0 0.001 
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closer to 0.25. Note that a certain sample size 
(e.g., N = 500) requirement is not being 
recommended, but rather that the sample size be 
sufficient given the data conditions (e.g., number 
of variables, communalities), as sample sizes 
requirements for accurate estimate can depend 
on data conditions (e.g., MacCallum et al., 
1999).    
 In terms of the identification of false 
positives (obtaining a sample estimate that was 
more than 10% different than 0.75 when it was 
not in the population), EFA appears to have 
performed better for larger sample sizes, 
particularly in the 2-factor case. Indeed, with a 
sample size of 500 or greater with the population 
loading set at 0.75, the likelihood of making a 
false positive was essentially 0.02 or less. That 
is, the sample estimate was within the expected 
range 98 % of the time or higher. In contrast, the 
rate of sample estimates being within 10% of 
0.75 when they should not have been (i.e. the 
population loading was not 0.75) declined as (a) 
the value of the population loading declined 
increasingly from 0.75, and (b) as sample size 
increased. Given that the results have shown 
generally little or no bias in loading estimates, 
this outcome is not a surprise. Indeed, if the 
target loading was 0.55 or lower in the 
population, the sample estimates were within 
10% of 0.75 in fewer than 5% of cases, 
regardless of contamination condition. Thus, 
supporting that EFA could quite accurately 
detect a non-invariant loading.  
 The identification of an invariant 
referent loading is a crucial step in MCFA. As 
described above, a failure to accurately select an 
invariant parameter value in the model 
identification step could lead to severely biased 
parameter estimates (e.g., factor loadings) which 
in turn could compromise other analyses, such 
as the comparison of latent means. The primary 
method suggested in the literature for identifying 
invariant indicators, or sets of indicators, is the 
factor-ratio test and SP procedure (Rensvold & 
Cheung, 2001), which involves a fairly complex 
and time consuming multi-step analysis. While 
this approach appears to work reasonably well 
for fairly limited models it can become 
intractably time consuming with increasing 
model complexity (French & Finch, 2006a).  

EFA is one approach that has been 
advocated for use in practice and involves 
comparison of factor loading estimates between 
two groups (Vandenberg, 2001; Zumbo, 2003). 
While this method does not have the advantage 
of significance testing that is offered by the 
factor-ratio test, it is much simpler to conduct. 
The results of this study seem to indicate that in 
conditions such as those simulated here, EFA 
generally provides unbiased estimates of factor 
loadings, which can in turn be compared to a 
target value (such as those of another group in 
the MCFA context). 

Therefore, practitioners interested in 
identifying loadings that are invariant across 
groups may find that this simple approach works 
quite well in conditions similar to those 
simulated here. It does seem that greater 
confidence can be placed in EFA factor loading 
estimates that are based on larger sample sizes, 
particularly with respect to false negative 
outcomes when the population loadings for the 
groups differ by 0.10 or more. Under such 
conditions, the EFA approach appears to have 
low false negative rates (below 0.05). In 
addition, the lack of bias and the lower standard 
deviations at sample sizes of 500 or more appear 
to contribute to the ability of EFA to accurately 
estimate loadings within 10% of the target value.   
Study limitations and directions for future 
research 
 As with many simulation studies, the 
generalizabiliy of the results is limited due to the 
conditions under study, which should be 
remembered when interpreting these results. 
First, the factor models simulated were not as 
complex as seen in some invariance studies. 
While the EFA worked well for these somewhat 
simpler models, it will be necessary to assess its 
performance with more complex problems (e.g., 
greater number of factors, different variables, 
various levels of communalities). Second, a 
related area that deserves attention is the 
combination of loadings for the observed 
variables. In this study, all of the loadings were 
set at 0.75 (unless contaminated). Given that this 
is one of the first (if not the first) Monte Carlo 
investigations to examine the use of EFA to 
accurately identify invariant referent variables, 
clarity of result interpretation was considered  
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paramount, and thus non-target loadings were 
not varied. However, it is unclear whether the 
results obtained here would hold for a more 
complex combination of loading values and  
factor models, as well as data conditions (e.g., 
ordinal variables). Thus, although EFA appears 
to be a promising screening or purification tool 
prior to MCFA analysis, future research should 
extend the current work by investigating a 
broader combination of conditions before the 
tool is applied unequivocally.  
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