P2Y2 Inhibition Modifies the Anabolic Response to Exercise in Adult Mice

Nickolas Vinokurov
Wayne State University School of Medicine, go4732@wayne.edu

Devin Mendez
Wayne State University School of Medicine, hg8329@wayne.edu

Amit Chougule Dr

Chunbin Zhang

Joseph Gardinier Dr
Henry Ford Health, JGardin2@hfhs.org

Follow this and additional works at: https://digitalcommons.wayne.edu/som_srs

Part of the Medicine and Health Sciences Commons

Recommended Citation
Vinokurov, Nickolas; Mendez, Devin; Chougule, Amit Dr; Zhang, Chunbin; and Gardinier, Joseph Dr, "P2Y2 Inhibition Modifies the Anabolic Response to Exercise in Adult Mice" (2024). Medical Student Research Symposium. 310.
https://digitalcommons.wayne.edu/som_srs/310

This Research Abstract is brought to you for free and open access by the School of Medicine at DigitalCommons@WayneState. It has been accepted for inclusion in Medical Student Research Symposium by an authorized administrator of DigitalCommons@WayneState.
P2Y2 Inhibition Modifies the Anabolic Response to Exercise in Adult Mice

Nickolas Vinokurov¹, Devin Mendez², Amir Chougule¹,²,³, Chunbin Zhang⁴, Joseph Gardinier¹,²,³

¹Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, ²Dept of Orthopedic Surgery, Henry Ford Health System, Detroit, MI
³Dept Physiology, College of Human Medicine, Michigan State University, East Lansing, MI, ⁴School of Medicine, Wayne State University, Detroit, MI

Email of Presenting Author: jgardin2@hfhs.org

Disclosures: Nickolas Vinokurov (N), Devin Mendez (N), Amir Chougule (N), Chunbin Zhang (N), Joseph Gardinier (N)

INTRODUCTION: Osteocytes serve as a sensory network that responds to dynamic loading of the skeleton and play a crucial role in regulating bone mass while maintaining bone quality [1]. Osteocytes’ induction of bone formation in response to loading is extremely age dependent, such that clinical studies have shown exercise to be less effective as we age [2,3]. As a result, modifying osteocytes’ mechanosensitivity may enable older adults to better capitalize on the anabolic nature of exercise to increase bone mass and reduce fracture risk. Based on our previous work, P2Y2 activation down-regulates the mechanosensitivity of bone cells by increasing actin-stress fibre formation, and thereby presents a novel mechanism that limits the anabolic response to loading [4]. Therefore, the central hypothesis states that inhibiting P2Y2 activity can enhance the anabolic response to loading. To test this hypothesis, the anabolic response to exercise was examined by treating adult mice, which typically display a minimal response, with the P2Y2 inhibitor AR-C118925XX.

METHODS: Male 9-month old C57/B16-J mice were divided into 4 weight-matched groups: Sedentary + Vehicle, Exercise + Vehicle, Sedentary + ARC, Exercise + ARC. Mice were treated with a vehicle control (0.8% saline) or AR-C118925XX (ARC, 10mg/kg) via intraperitoneal injection. Exercise groups were subjected to treadmill exercise (15min/m on a 5% incline) for 30 minutes each day for 5 weeks. Tibia samples were isolated for histomorphometry and micro-CT analysis. A second batch of mice were exercised for only 1-week and then euthanized to isolate mRNA samples from osteocyte-enriched cortical bone samples. Primary bone marrow stromal cells (BMSC) were isolated from 9-month old C57/B16 mice and cultured for one day before isolating the non-adherent Hematopoietic stem cells (HSC). The HSC’s were cultured in differentiation media (Rankl + MSCF) supplemented with either DMSO or ARC (10μM). After 9-days, multi-nucleated osteoclasts that stain for tartrate resistant acid phosphatase (TRAP) were counted. Adherent BMSC’s that remained were split and cultured in osteogenic media (100 μM l-ascorbic acid and 2 mM β-glycerophosphate) supplemented with either DMSO or ARC (10μM). The degree of mineral formed a result of histomorphometry we found the increase in bone formation under loading, namely treadmill exercise, to be significant compared to the sedentary controls as well as vehicle treated mice exposed to the same exercise regimen (Fig 1A). Although mineral apposition rate at the periosteaum was unaffected by treatment, the resulting periosteal bone formation rate displayed a similar increase in response to ARC treatment during exercise. MicroCt analysis at the mid-diaphysis found a significant increase in Ct.Ar in response to exercise for both vehicle and ARC treated mice (Fig 1A). For vehicle treated mice cortical thickness (Ct.Th) increased by 6% (0.205 ± 0.014 vs. 0.218 ± 0.009, p<0.05), while ARC mice displayed a 13% increase in Ct.Th following exercise (0.180 ± 0.019 vs. 0.205 ± 0.187, p<0.05). The moment of inertia about the anterior-posterior axis (MOI) also significantly increased in response to exercise for both vehicle and ARC treated mice; however, the MOI for sedentary and exercise mice treated with ARC was significantly greater than either sedentary or exercise vehicle treated mice (Fig 1A). At the cellular level, exercise failed to decrease Sost mRNA expression in vehicle treated mice similar to our previous work [5]. In contrast, ARC treated mice exercise displayed a significant decrease in Sost expression compared to sedentary controls as well as vehicle treated mice exposed to the same exercise regimen (Fig 1B). Independent of loading, ARC had no effect on osteoblast differentiation and mineralization (Fig 1C) or osteoclast differentiation (Fig 1D).

DISCUSSION: These findings suggest that antagonizing P2Y2 function in adults has the potential to increase the sensitivity to loading, namely treadmill exercise. Although the increase in bone formation measured via histomorphometry didn’t lead to greater bone mass (Ct.Ar), the corresponding increase in MOI is likely to enhance bone strength. The increase in bone formation under loading was associated with an increase in osteocyte responsiveness, given that ARC appears to have no direct effect on osteoblast or osteoclast function independent of loading. Future studies will begin to examine how osteocytes’ response to loading, specifically fluid flow is impacted by ARC treatment alongside the interaction between osteocytes with osteoblasts and osteoclasts.

SIGNIFICANCE/CLINICAL RELEVANCE: This study presents a novel use of ARC and its ability to increase bone formation under loading in an aging population. These findings are significant because increasing the responsiveness of bone to loading can reduce fracture risk.

Figure 1: A) Periosteal mineralizing surface (Ps/MS/BS) was measured alongside cortical area (Ct.Ar) and moment of inertia about the anterior-posterior axis (MOI) in the tibia of 9-month old mice treated with vehicle or ARC while being subjected to 5-weeks of exercise (mean ± sdev, n= 7). B) The mRNA expression of Sost was measured after 1-week of exercise or sedentary conditions in 3-month or 9-month old mice treated with vehicle or ARC (mean ± sdev, n=5). Bar indicates significant difference between Vehicle and ARC groups based on student t-test (p<0.05), while * denotes significant difference compared to sedentary control of the same treatment. C)Representative images of primary bone marrow stromal cells cultured for 9-days in normal media (NM) or osteogenic-inducing media (OIM) that was supplemented with or without ARC (10μM). D) Representative images of primary HSC’s cultured for 9-days in Rankl and MCSF while being treated with or without ARC (10μM). The number of TRAP positive osteoclasts in each well were quantified after 9-days (mean ± sdev, n=6).

Figure 1: A) Periosteal mineralizing surface (Ps/MS/BS) was measured alongside cortical area (Ct.Ar) and moment of inertia about the anterior-posterior axis (MOI) in the tibia of 9-month old mice treated with vehicle or ARC while being subjected to 5-weeks of exercise (mean ± sdev, n= 7). B) The mRNA expression of Sost was measured after 1-week of exercise or sedentary conditions in 3-month or 9-month old mice treated with vehicle or ARC (mean ± sdev, n=5). Bar indicates significant difference between Vehicle and ARC groups based on student t-test (p<0.05), while * denotes significant difference compared to sedentary control of the same treatment. C)Representative images of primary bone marrow stromal cells cultured for 9-days in normal media (NM) or osteogenic-inducing media (OIM) that was supplemented with or without ARC (10μM). D) Representative images of primary HSC’s cultured for 9-days in Rankl and MCSF while being treated with or without ARC (10μM). The number of TRAP positive osteoclasts in each well were quantified after 9-days (mean ± sdev, n=6).