March 2024

Tendon Rupture and Tendonitis in Low-Profile Dorsal versus Volar Plating for Distal Radius Fractures: A Systematic Review and Meta-Analysis

Matthew Myhand
Wayne State University School of Medicine

Shreya Balusu
Wayne State University School of Medicine

Alex Lindahl BS
Oakland University William Beaumont School of Medicine

Hardy Evans MD
Henry Ford Health System

Charles Day Dr.
Henry Ford Health, cday9@hfhs.org

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wayne.edu/som_srs

Part of the Orthopedics Commons

Recommended Citation

Myhand, Matthew; Balusu, Shreya; Lindahl, Alex BS; Evans, Hardy MD; Day, Charles Dr.; and Jiang, Eric Dr., "Tendon Rupture and Tendonitis in Low-Profile Dorsal versus Volar Plating for Distal Radius Fractures: A Systematic Review and Meta-Analysis" (2024). *Medical Student Research Symposium*. 327.
https://digitalcommons.wayne.edu/som_srs/327

This Research Abstract is brought to you for free and open access by the School of Medicine at DigitalCommons@WayneState. It has been accepted for inclusion in Medical Student Research Symposium by an authorized administrator of DigitalCommons@WayneState.
Tendon Rupture and Tendonitis in Low-Profile Dorsal versus Volar Plating for Distal Radius Fractures: A Systematic Review and Meta-Analysis

Background:

Dorsal plating of distal radius fractures has historically been associated with high rates of hardware removal, tendonitis, and tendon rupture. Newer generation low-profile dorsal plates are thinner (<1.6mm thick) with improved characteristics. We examine whether low-profile dorsal plates still have higher rates of tendon complications than volar locking plates.

Methods:

We searched Ovid MEDLINE, Web of Science, and EMBASE for published literature describing tendon complications in association with plating of distal radius fractures. Inclusion criteria encompasses any primary study of low-profile dorsal plates that included data on tendon complications. Studies that included both low-profile dorsal and volar plating arms were included in the meta-analysis.

Results:

Nine studies were selected for inclusion. All studies were retrospective cohorts or case series with a total of 446 low-profile dorsal plates. Five studies were included in the meta-analysis with a total of 806 subjects; 584 received volar plates and 222 received low-profile dorsal plates. Meta-analysis showed no significant difference in rates of tendonitis or tendon rupture.

Discussion:

The included studies were all of level III or IV evidence. To our knowledge, this review provides the largest comparison of low-profile dorsal and volar locked distal radius plates to date. Pooled analysis results provide further comparison of low-profile dorsal versus volar plating.

Figure 1: Meta-Analysis results for Tendon Rupture

Figure 2: Meta-Analysis results for Tendonitis
Figure 3: Dorsal Plating Pooled Complications

<table>
<thead>
<tr>
<th>Study</th>
<th>Tendonitis</th>
<th>Tendon Rupture</th>
<th>Hardware Removal</th>
<th>Infection</th>
<th>Carpal Tunnel Syndrome</th>
<th>Complex Regional Pain Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simic et al. 2006</td>
<td>0/50 (0%)</td>
<td>0/50 (0%)</td>
<td>1/50 (2.0%)</td>
<td>0/50 (0%)</td>
<td>0/50 (0%)</td>
<td>0/50 (0%)</td>
</tr>
<tr>
<td>Kamath et al. 2006</td>
<td>NR</td>
<td>0/50 (0%)</td>
<td>2/30 (6.7%)</td>
<td>0/30 (0%)</td>
<td>0/30 (0%)</td>
<td>0/30 (0%)</td>
</tr>
<tr>
<td>Chou et al. 2011</td>
<td>NR</td>
<td>0/22 (0%)</td>
<td>NR</td>
<td>0/22 (0%)</td>
<td>NR</td>
<td>1/22 (4.5%)</td>
</tr>
<tr>
<td>Matschke et al. 2011</td>
<td>1/39 (2.5%)</td>
<td>1/39 (2.5%)</td>
<td>NR</td>
<td>NR</td>
<td>0/29 (0%)</td>
<td>0/29 (0%)</td>
</tr>
<tr>
<td>Yu et al. 2011</td>
<td>6/57 (10.5%)</td>
<td>0/57 (0%)</td>
<td>6/57 (10.5%)</td>
<td>0/57 (0%)</td>
<td>0/57 (0%)</td>
<td>0/57 (0%)</td>
</tr>
<tr>
<td>Wichman et al. 2014</td>
<td>2/60 (3.3%)</td>
<td>1/60 (1.7%)</td>
<td>15/60 (25.0%)</td>
<td>NR</td>
<td>0/60 (0%)</td>
<td>1/60 (1.7%)</td>
</tr>
<tr>
<td>Kumar et al. 2016</td>
<td>3/44 (6.8%)</td>
<td>0/44 (0%)</td>
<td>2/44 (4.5%)</td>
<td>NR</td>
<td>0/44 (0%)</td>
<td>0/44 (0%)</td>
</tr>
<tr>
<td>Matson et al. 2014</td>
<td>8/110 (7.3%)</td>
<td>0/110 (0%)</td>
<td>9/110 (8.2%)</td>
<td>3/110 (2.7%)</td>
<td>0/110 (0%)</td>
<td>1/110 (0.9%)</td>
</tr>
<tr>
<td>Pakizada et al. 2020</td>
<td>5/34 (14.7%)</td>
<td>1/34 (2.9%)</td>
<td>8/34 (23.5%)</td>
<td>0/34 (0%)</td>
<td>0/34 (0%)</td>
<td>0/34 (0%)</td>
</tr>
<tr>
<td>Overall</td>
<td>6.2%</td>
<td>0.7%</td>
<td>9.6%</td>
<td>0.4%</td>
<td>0.0%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>