March 2024

The Roles of Lower Glycolytic Enzymes and Transporters in Regulating the Integrity of Retinal Vascular Endothelial Cell Barrier

Nicole Oska
Wayne State University School of Medicine, hi9025@wayne.edu

Shaimaa Eltanani
Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI, USA, hb3938@wayne.edu

Mohamed Shawky
Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI, USA, hg0619@wayne.edu

Thangal Yumnamcha
Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI, USA, tyumnamcha@gmail.com

Ahmed S. Ibrahim
Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI, USA, ahmed.ibrahim@wayne.edu

Follow this and additional works at: https://digitalcommons.wayne.edu/som_srs

Part of the Medicine and Health Sciences Commons

Recommended Citation
Oska, Nicole; Eltanani, Shaimaa; Shawky, Mohamed; Yumnamcha, Thangal; and Ibrahim, Ahmed S., "The Roles of Lower Glycolytic Enzymes and Transporters in Regulating the Integrity of Retinal Vascular Endothelial Cell Barrier" (2024). Medical Student Research Symposium. 342.

https://digitalcommons.wayne.edu/som_srs/342

This Research Abstract is brought to you for free and open access by the School of Medicine at DigitalCommons@WayneState. It has been accepted for inclusion in Medical Student Research Symposium by an authorized administrator of DigitalCommons@WayneState.
The Roles of Lower Glycolytic Enzymes and Transporters in Regulating the Integrity of Retinal Vascular Endothelial Cell Barrier

Nicole Oska¹, Shaimaa Eltanani¹, Mohamed Shawky¹,², Thangal Yumnamcha¹, Ahmed S Ibrahim¹,³,⁴*

¹Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
²Department of Biochemistry, Faculty of Pharmacy, Horus University, Egypt
³Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
⁴Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA

Purpose: Damage to the retinal endothelial cells (RECs) is implicated in the progression of retinal degenerative diseases, including diabetic retinopathy and diabetic macular edema. While the role of glycolysis in glucose homeostasis is well-established, its contribution to REC barrier assembly remains unclear. In this study we investigated the importance of lower glycolytic components in maintaining the barrier integrity of human RECs (HRECs).

Methods: Electric cell-substrate impedance sensing (ECIS) technology was employed to analyze the real-time impact of various glycolytic enzymes and transporters on the maintenance of HREC barrier integrity, represented by resistance (R) across the cells. Heptelidic acid was used to inhibit glyceraldehyde-3-phosphate dehydrogenase (GAPDH); NG52 to inhibit phosphoglycerate kinase 1 (PGK1); AP-III-a4 to inhibit enolase; shikonin to inhibit pyruvate kinase M2 (PKM2); galloflavin to inhibit lactate dehydrogenase (LDH); AZD3965 to inhibit monocarboxylate transporter 1 (MCT1); and MSDC-0160 to inhibit mitochondrial pyruvate carrier (MPC). Concentrations of 1 µM and 10 µM were tested for each inhibitor. The viability of the HRECs was evaluated using an LDH cytotoxicity assay at 24 and 48 hours.

Results: R across the HRECs was most significantly decreased with PKM2 inhibition with shikonin and GAPDH inhibition using heptelidic acid, which was not due to reduced cellular viability. Interestingly, inhibition of PGK1 with NG52 had a protective effect on HREC barrier integrity.

Conclusions: This study highlights the critical role of PKM2 and GAPDH...
in maintaining the barrier integrity of HRECs. Understanding the contributions of each glycolytic component to the HREC barrier facilitates the development of targeted interventions to treat retinal endothelial cell dysfunction.