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in ambient O2 cultured TSC.  Reducing O2 level to 2% will significantly decrease the 

ratio of spontaneous differentiated cells to the whole cells in population.  However, 

proliferation of TSC under 0.5% and 0% O2 is highly inhibited.  Consequently, stem cell-

like colony cannot expand and is hard to maintain their multipotent cell population.  A 

single independent colony that has no contact with nearby colonies can be easily found 

in which TSC start to gradually change their shape.  

As showed in Figure A1.2, differentiated TSC for 7 days exhibit different 

morphologies. TSC differentiate at 20% O2 give rise majorly to TGC while less TGC 

 

Figure A1.2 Morphology of differentiated TSC at different O2 levels for 7 days by 
contrast microscopy. TSC firstly adapted for each O2 level for one day and then were 
cultured at differentiation medium without FGF4 and condition medium at 20% O2 (A) 
2% (B), 0.5% (C) or 0% (D) O2 for 7 days and then micrographed by contrast 
microscopy. 
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can be observed in Figure A1.2B (differentiation at 2% O2).  In addition, clusters of 

tightly packed cells can be easily found in the observing field of microscopy.  On the 

contrary, TSC differentiated at either 0.5% or 0% O2 into many small cells that possess 

single nucleus and clear boundary with adjacent cells that are apparently different from 

TGC in morphology.  

A2.0 Flow cytometry of TSC differentiation at different O2 level 

TSC cells were washed by PBS and then incubated with the solution for accurate 

cell counting (Accumax, AM105, UK) for 10 minutes.  Cells were fixed by 70% alcohol 

and stored at 4°C for use.  Parameters of Flow cytometry will be adjusted by nucleus 

standard kit before measurement.  Date show that pattern of TSC adapted at 2% O2 did 

not exhibit significant difference with that of TSC at 20%.  However, cell number of P7 

(refers to 4N cells) at 0.5% O2 cultured TSC disappeared which means less TSC are in 

S phase.  In other words, proliferation of TSC is inhibited which is consistent with the 

result we found by cell counting.  TSC that differentiate at 20% O2 show 2N cells 

increase while 4N cells decrease from day 0 to day 4, which means decreased 

proliferation of TSC by elongated differentiation day (FigureA2-A). These results agree 

with previous reports.6,131  To our surprise, many cells that cannot be stained beep were 

found at differentiation day 7.  This phenomenon may cause by overgrowth of cells on 

culture dish, which leads to dying or dead cells.  Therefore, we could not see the 

increased polyploidy cells (>8N, representing TGC).  TSC that differentiates at 2% O2 

show similar patterns as those cells differentiating at 20% O2 exhibited (FigureA2-B).  

From day 0 to day 7, there is consistently increase of P6 (2N cell), decrease of P7 (4N 

cell) and P8 (>4N cells).  To our surprise, differentiating TSC at 2% O2 did not show 

more aggressive proliferation than TSC differentiating at 20% O2.  Pattern of TSC that 
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Figure A2. Flow cytometry 
shows different (Steven be 
more clear, say WHAT the 
pattern differences are not 
just that they are different) 
pattern of PI-stained TS cell 
lines cultured in the 
absence of FGF4 at 20, 2, 
or 0.5% oxygen for 7 days. 
TSC cells were cultured at 
different oxygen 
environment for 7 days. 
Before differentiation, cells 
were adapted in the 
environment for 24 hrs. 
After different ion for 0, 2, 
4, or 7 days, cells were 
stained by PI (Propridium 
iodide) and measured by 
flow cytometry (Applied 
biosystems).X axis refers to 
fluorescent intensity; Y axis 
refers to cell count number. 
Left area of P6: cells that 
cannot be stained by PI. 
P6: 2N cells, P7: 4N cells, 
P8: >4N cells. 
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differentiate at 0.5% O2 did not result in significant change by days (Figure A2-C).  The 

possible explanation is that extremely low O2 abolished the proliferation of differentiating 

TSC and prevented the formation of terminally differentiated TGC. 

A3.0 ROS generation on TSC and its effect on pSAPK activation.  

The purpose of our goal is to measure the ROS generation at each given oxygen 

concentration with or without FGF4.  TSC were cultured for two days at 20% O2 with or 

without FGF4, and then assayed for ROS generation.  ROS increased two fold when 

TSC were differentiated by FGF4 removal for two days.  Mitochondrial charge increased 

during differentiation as confirmed by increased ROS.  ROS may be important in 

mediating differentiation.  Methods: TSC grown in 6-well plate (Corning costar) were 

washed with PBS twice and then incubate with 1ml freshly prepared CM-H2DCFDA 

fluorescence dye (8M) in the CO2 incubator for 1hr at 37°C.  Fluorescence intensity of 

cells was observed by Ascent Fluoroskan (Labsystems) (Excitation: 485nm, Emission: 

527nm)).  Results show that differentiation of TSC at 20% O2 can be induced to 

generate higher amount of ROS comparing with multipotent TSC (Figure A3.1).  In 

order to compare ROS generation at different O2 levels, we attempted to measure ROS 

at lower O2 environment by this method (2%, 0.5% or 0%).  However, TSC cultured at 

low O2 either multipotent or differentiating give rise to extraordinarily high ROS (data did 

not show here).  Considering this ROS measurement has to expose to ambient O2 for at 

least half hours before fixation of cells, the accurate measurement of ROS generation 

under low O2 is not able to operate in this way.  Future work is to resolve this problem.  

We are going to use OxyBlot protein oxidation detection kit  
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Figure A3.1. ROS generation at high O2 indicates mitochondrial activity in differentiated 
TSC. TSC were cultured for 2 days at 20% O2 with or without FGF4, then assayed for 
ROS generation. 

(Milipore, Cat No.S7150) by which carbonyl groups, which is a hallmark of the oxidation 

status of proteins, can be measured by immunodetection. 

It was reported that antioxidant reagent can attenuate ROS-mediated apoptosis 

and pSAPK activation in injured spinal cord.202  Therefore, ROS plays a role in actiating 

pSAPK as a stressor.  In our study, our goal is to find out whether ROS aso plays as a 

stimulus to activate pSAPK and at what circumstance take effect.  Data show that there 

is no significant attenuating effect by applying antioxidant catalase after TSC are 

adapted at each given O2 environment (Figure A3.2-A.B) pSAPK activity is different at 

different O2 level.  However, activity of pSAPK increase can be significantly prevented 

during the peroid that TSC were switched from 2% to 20% O2 if TSC was pre-treated by 

catalase before switching (Figure A3.2-C.D). 

These results demonstrate that pSAPK acitivity is effected by ROS during 

changing of O2 environment.  The next step is to test whether ROS generation on TSC  
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FigureA3.2. ROS-activated pSAPK only happened during O2 switch from 2% to 20%. 
(A) TSC  that adpated with different O2 environment were incubate with or without 
catalase (10unit/ml) for 24 hrs and then protein lysates were probed by anti-Rabbit 
pSAPK polyclonal antibody (1:200). (B) Skematic represenation of relative pSAPK 
intensity ratio (pSAPK/Actin) by ImageJ. No significant change of pSAPK betweeen with 
or without catalase group at each O2 environment. (C), TSC adapted at 2% O2 teated 
with or without  catalase(10unt/ml) before switching from 2% to 20% O2 and then 
protein lysates were probed by pSAPK antibody (D) Skematic represenation of relative 
pSAPK intensity ratio (pSAPK/Actin). pSAPK increase is significantly inhibited during 
switch comparing with that of TSC without catalase treatment.   

cultureed at 20% O2 is higher than those cells cultured at 2%.  This results also 

demonstrates that the murineTSC cell line that we are using are adapted cells with 

ambient O2.  Increase of pSAPK activty is completed at the time when TSC are isolated 

from blastocyst that is supposed to reside in a low O2 envrionment where  multipotent 

stem cells without activating pSAPK proliferate optimally. 

A4.0 TLR4 protein induction and Gcm1 mRNA induction in TSC by TSA treatment 

In these studies, we want to demonstrate that whether HDAC inhibitor, TSA, can 
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induced TLR4 induction which is reported that exclusively expressed on 

syncytiotrophoblast cells among the variety differentiated TSC.  Data show that TLR4 

protein is undetectable on TSC but is induced by TSA treatment for 24 hrs (Figure 

A4.1).  Elongation of treatment time from 24hrs to 48hrs does  not significantly  increase  

 
Figure A4.1. TLR4 induction in TSC by TSA treatment. TSC cultured at 20% O2 were 
treated without or with TSA at either 50nM or 100nM for 24hr or 48hrs. Protein lysates 
after experiments were probed by TLR4 antibody (A), (C) (1:500) through western blot. 
Membrane was then re-probed by -Actin (1:1,000) (B), (D). 

 

TLR4 induction in TSC.  Furthermore, syncytiotrophoblast marker Gcm1 was induced 

by TSA treatment at mRNA level in a dose-dependent manner (Figure A4.2), which is 

consistent with the report by Maltepe et al that HDAC inhibitor TSA treated TSA will 

result in differentiation of TSC into syncytiotrophoblast.95  Combined these results 

together, we anticipate that TLR4 will be expressed temporarily or eternally on 

differentiated TSC towards syncytiotrophoblast.  Therefore, TLR4 can be used as 
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membrane surface marker to indicate occurrence of different cell lineage type during 

differentiation. 

 
Figure A4.2. Relative Gcm1 mRNA expression induced by TSA treatment on TSC in a 
dose-dependent manner. TSC were treated by different doses of TSA for 24 hrs and 
then mRNA was extracted. cDNA was prepared by reverse transcription. And then 
relative expression of Gcm1 was detected by real–time PCR analysis. 
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ABSTRACT 

CELL LINEAGE CHOICE DURING DIFFERENTIATION OF TROPHOBLAST STEM 
CELLS (TSC) IS DEPENDENT ON OXYGEN LEVELS, AND MEDIATED BY STRESS 

ENZYME PATHWAYS AND MITOCHONDRIAL FUNCTION 

by 

SICHANG ZHOU 

December 2011 

Advisor: Dr. Daniel A. Rappolee 

Major: Physiology, Concentration in Reproductive Sciences 

Degree: Doctor of Philosophy 

In general, stress is defined as a noxious factor in a broad spectrum (chemical, 

biological or physical).  Stress response of human body can be divided into three levels-

integrate, organ/tissue or cellular response.  Trophoblast stem cell (TSC) is one of the 

earliest differentiated stem cell within blastocyst, which is the stage of preimplantation 

embryo developed from fertilized egg.  Different from another pluripotent embryonic 

stem cell, which is derived from inner cell mass in blastocyst and develop into fetus, 

multipotent TSC will specifically differentiate into all kinds of cell subtypes consisting of 

placenta by which nutrient and oxygen from mom as well as metabolites from fetus can 

be exchanged. 

In our previous studies based upon preimplantation embryo and TSC, four 

parameters for defining stress are identified: 1) decreased cell accumulation; 2) 

increased apoptosis; 3) decreased mutipotent markers and increased cell lineage 

markers; 4) increased activity of stress enzyme SAPK/JNK.  By these parameters 

applying on different O2 cultured TSC, we identified that 2% O2 is the optimal oxygen 

environment for TSC mutipotency maintenance and proliferation. Additionally, TSC 
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cultured in ambient environment in the presence of FGF4 (Fibroblast Growth Factor 4) 

are actually under a stressful status caused by contradictory signals introduced by 

FGF4 and 20% O2. 

Next, we interrogate TSC differentiation at different oxygen levels.  Our data 

show that only TSC differentiated under 20% O2 can complete the terminal 

differentiation while differentiation under low oxygen exhibits reduced terminal 

differentiation by real-time PCR.  Even though 0.5%-0% O2 allowed TSC terminal 

differentiation to some extent, the magnitude of induction of five terminal differentiation 

markers is significantly reduced comparing with 20% O2, especially those makers for 

secondary giant cell and syncytiotrophoblast.  Mitochondrial charge is at low levels in 

TSC maintained by FGF4 at all O2 levels.  Upon FGF4 removal, mitochondrial charge 

undergoes rapid induction at 20% and 2% O2, but remains low level at 0.5% O2. Using 

SAPK inhibitors, we found that lineage markers for syncytiotrophoblast (GCM1) and for 

spongiotrophoblast (Tpbpa) were suppressed by SAPK at all O2 levels, while lineage 

marker for primary giant cell (Hand-1) was promoted by SAPK. Taken together, our data 

suggest that 0.5%-0% O2 impaired terminal differentiation of TSC by suppressing 

mitochondrial activities and ATP production. SAPK play an important role in trophoblast 

lineage decision-making. 
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