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INTRODUCTION 

Oxidative Stress and Health  

Reactive oxygen species (ROS) are constantly produced in cells by cellular metabolism 

and by exogenous agents. They are essential for life because they are involved in cell signaling 

and are used by phagocytes for bactericidal action [1,2]. In a biological field, reactants and 

oxidants are called antioxidants and pro-oxidants. Pro-oxidants are separated into two groups of 

species: reactive oxygen species (ROS) and reactive nitrogen species (RNS) [3,4]. The oxygen 

derived molecules are O
-2

 (superoxide), HO
.
 (hydroxyl), HO2 (hydroperoxyl), ROO

.
 (peroxyl), 

RO
.
 (alkoxyl) as free radicals and H2O2 oxygen as non-radical. Nitrogen derived oxidant species 

are mainly NO
.–

 (nitric oxide), ONOO
.–

 (peroxy nitrate), NO2 (nitrogen dioxide) and N2O3 

(dinitrogen trioxide) [5,6,7].  

Recently, increasing evidence highlights that overproduction of ROS and oxygen-derived 

free radicals may contribute to a variety of pathological effects, for example, DNA damage, 

carcinogenesis and cellular degeneration [8,9].  

Berries contain high concentration in bioactive compounds such as polyphenols, 

including anthocyanin, phenolic acids, tannins, carotenoids, vitamin A, C, E, folic acid and 

minerals such as calcium, selenium and zinc [10,11]. Among them, blueberries became well 

known and often consumed due to their uses for treating biliary disorders, coughs, tuberculosis, 

diabetes and visual disorders [12,13,14]. Blueberries contain high level of anthocyanin and 

phenolic compounds with high in vitro antioxidant capacities compared with other fruits [15,16]. 

The main characteristic of antioxidants is their ability to trap free radicals. Highly 

reactive free radicals and oxygen species are present in biological systems from a wide variety of 

sources. These free radicals can oxidize nucleic acids, proteins, lipids or DNA and initiate 
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degenerative diseases [17,18]. Antioxidant compounds like phenolic acids, polyphenols and 

flavonoids scavenge free radicals such as peroxide, hydroperoxide or lipid peroxyl and thus 

inhibit the oxidative mechanisms that lead to degenerative diseases [19].  

Oxidative stress is an important factor in ischemic stroke, which occurs as a result of an 

obstruction with a blood vessel supplying blood to the brain [20]. Results from a study conducted 

by Sweeney et al. indicated that adding blueberries to the diet of rats could reduce the effects of 

ischemic stroke by half [21]. 

Joseph et al. studied the effect of a diet high in fruit and vegetable extracts on rats [22]. 

The team determined that a diet supplemented with extracts from strawberries, blueberries, or 

spinach improved motor skills and short-term memory loss. Further studies suggested that berry 

supplementation could overcome the genetic predisposition to Alzheimer’s disease [23]. The 

anti-inflammatory potential of the polyphenols in blueberries, including the potent antioxidant 

anthocyanin, was the focus of a 2008 study [24]. When rats with neuronal lesions were fed a 

blueberry-supplemented diet, not only did they perform better in cognitive tests, the 

concentration of several substances in the brain that can trigger an inflammatory response was 

significantly reduced [25, 26]. The polyphenols in blueberries appeared to inhibit the production 

of these inflammatory mediators. 

Antioxidants and Their Mode of Action 

An antioxidant is a chemical that prevents the oxidation of other chemicals. They protect  

the cell components by neutralizing the damaging effects of free radicals, which are natural by- 

products of cell metabolism [3]. 

The oxidative stress induced by reactive oxygen species (ROS) can be described as a 

dynamic imbalance between the amounts of free radicals generated in the body and levels of 
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antioxidants to quench and/or scavenge them and protect the body against their deleterious 

effects [5].  The first strategy of defense against ROS is preventing mechanisms of radical 

formation [25]. Carotenoids, a class of plant pigments, are well-known compounds that can 

quench electronically excited molecules, such as singlet molecular oxygen, thus preventing 

oxidative damage [4]. Grapes contain a natural phytoalexin , resveratrol, which can inhibit 

ribonucleotide reductases known to generate radical substrates [6]. Preventing the initiation of 

chain reactions through binding metal ions is also important in preventing radical formation, 

especially chelating iron and copper ions, a function performed by a variety of natural 

antioxidants. 

In a normal cell, there is appropriate oxidant: antioxidant balance. However, this balance 

can be shifted, when production of oxygen species is increased or when levels of antioxidants are 

diminished. This stage is called oxidative stress [7]. 

An antioxidant defense system is used by the human body to neutralize the excessive 

levels of reactive oxygen species [26]. This system is composed of enzymatic and non-enzymatic 

antioxidants [26]. Some of the antioxidant enzymes that are found to provide a protection against 

ROS are superoxide dismutases, catalases, and glutathione peroxidases, in addition to numerous 

non-enzymatic small molecules distributed widely in the biological system and capable of 

scavenging free radicals [27,28]. These non-enzymatic molecules include glutathione, tocopherol 

(vitamin E), vitamin C, β-carotene, and selenium [28].  

Determining Bioaccessibility of Antioxidants by in vitro Digestion 

Simulating gastric and intestinal digestion for the approach of in vitro digestion of food 

have been used to investigate digestion of proteins, starch, lipids, polyphenols, and carotenoids 

from various matrices [29, 30, 31]. Digestive enzymes including pepsin and pancreatin along 
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with bile salts, time, pH, and temperature can be controlled for a simulated digestion procedure 

[32]. These simulated digestion procedures give information about the stability of compounds 

during gastrointestinal digestion. An in vitro gastrointestinal system has been used to study the 

bioaccessibility of polyphenols and carotenoids in different food sources such as grape seed and 

peel, green tea, carrot, tomatoes, and leafy vegetables [33,34,35]. 

Previous Studies on Blueberry Antioxidants 

Currently, plant sourced antioxidant agents have been attracting special interest because 

they can protect the human body from diseases induced by free radicals[36].  

Vaccinium corymbosum are flowering plants belonging to the large genus of Vaccinium. 

Various members of the Vaccinium genus have been used as traditional medicines for the 

treatment of diabetic symptoms by Quebec traditional practitioners [37,38]. Blueberry leaves are 

primary plant parts that have been used medicinally for generations[39].  

Blueberries (Vaccinium sp.) are a good source of chlorogenic acid, quercetin, kaempferol, 

myricetin, procyanidins, catechin, epicatechin, resveratrol, and vitamin C which participate to 

their antioxidant activity[40]. Blueberries (Vaccinium sp.) are rich in anthocyanins, 

polyphenolics recognized for their ability to provide and activate cellular antioxidant protection, 

inhibit inflammatory gene expression, and consequently protect against oxidant-induced and 

inflammatory cell damage and cytotoxicity[41,42].  

Research has shown that wild  blueberries (Vaccinium angustifolium) are one of the 

highest sources of anthocyanins [43, 44] and have exhibited one of the highest recorded in vitro 

antioxidant capacities of various fruits and vegetables tested [45]. Wild blueberries are relatively 

low in antioxidant vitamins and minerals [46]. Their in vitro antioxidant capacity has been 

attributed to their high concentration of phenolic compounds, particularly anthocyanins [45,46]. 
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More recently, Mazza et al. investigated the absorption of anthocyanins in humans after the 

consumption of a high-fat meal with a freeze-dried blueberry powder containing 25 anthocyanins 

[47]. 19 anthocyanins present in the blueberries were detected in human blood serum. 

Furthermore, the appearance of total anthocyanins in the serum was directly correlated with an 

increase in serum antioxidant capacity[47].  

In recent years, researchers have developed concerns regarding antioxidant 

bioavailability after gastrointestinal digestion. Bioactive compounds should be bioavailable in 

order to perform the desired functions. These compounds are usually subject to series of 

physiological processes such as absorption, metabolism, tissue and organ distribution, and 

excretion [36]. For these reasons, recent research has focused on the stability of these compounds 

against these processes.  

Several studies have examined the bioaccessibility of these compounds after in vitro 

digestion. For example, commercial fruit juices, which are well-known easy-to-get antioxidant 

sources, were analyzed for antioxidant stability after in vitro digestion. The results show that 

gastrointestinal digestion seems to enhance antioxidant activity for some of them [65]. In a 

different study, blackberry polyphenols were tested before and after digestion and the latter is 

efficient in enhancing intracellular capacity [54]. Total polyphenols could be sensitive to 

simulated digestion conditions and some may be modified into favorable health-promoting 

structures [55,62].  
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OBJECTIVE 

The objective of this study was to investigate the effect of in vitro gastrointestinal 

digestion on the antioxidant content and capacity of Vaccinium Corymbosum species. Total 

phenolic content (TPC) assay, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay 

and oxygen radical absorbance capacity (ORAC) assay were used to estimate the antioxidant 

characteristics of the sample with active and inactive enzymatic digestion. Also to study the 

antioxidant methods applied in relation to the total phenolic content.  
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MATERIALS AND METHODS 

Reagents  

Pancreatin, pepsin, Gallic acid, Follin-ciocalteu’s phenol reagent and sodium carbonate 

(Na2CO3) were purchased from Sigma-Aldrich (St. Louis, MO). Acetone, methanol, and formic 

acid were obtained from fisher (Fair Lawn, NJ). Bile salts, hydrochloric acid (HCl) and 

fluorescein were acquired from Fluka (Buchs, Switzerland). 2, 2-diphenyl-1-picrylhydrazyl 

(DPPH) was purchased from Aldrich (Milwaukee, WI). Trolox was purchased from ACROS 

(Geel, Belgium). Ethanol and Acetone were acquired from Decon labs (King of Prussia, PA. 

sodium hydroxide was obtained from Mallinckrodt (Phillipsburg, NJ). 2, 2`-Azobis (2-

midinopropane) dihydrochloride (AAPH) was purchased from Wako (Richmond, VA).  

Samples and standard preparation 

958.74 g of fresh blueberry (Vaccinium Corymbosum) was purchased from a local 

grocery store in Michigan; the sample was stored at -20˚C immediately upon arrival. Frozen 

samples were chopped into small pieces in order to create a larger surface area for freeze-drying. 

They were then stored overnight at -80˚C prior to freeze-drying. Following freeze-drying using 

Labconco lyopholizer Lyph Lock 6 (Kansas City, MO), dried fruits were milled into fine powder, 

which was further divided into two groups (Control and Treatment). 

The two groups labeled Control (C) and Treatment (T) were used for in vitro digestion 

study, after which antioxidant activity assays were performed. The first group was subject to 

treatment of simulated digestion with inactive enzymes whereas the second group was subject to 

digestion treatment with active enzymes.  
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In vitro Digestion  

The bioavailability of antioxidant compounds from blueberries was assessed using an in 

vitro digestion procedure that mimics the physiochemical and biochemical changes that occur in 

the upper gastrointestinal tract.  

A shaking water bath (Pegasus scientific, Rockville, MD) was used to perform the in 

vitro digestion. The method consisted of two sequential steps: an initial pepsin/HCl digestion for 

2 h at 37 °C to simulate gastric conditions followed by a digestion with bile salts/pancreatin for 2 

h at 37 °C to simulate small intestine conditions.  The first step consisted of dissolving 1 g of 

pepsin in 100 mL distilled water to make the pepsin solution, at the same time 0.4 g of pancreatin 

and 2.5 g of bile salts were dissolved in 100 mL distilled water to make the pancreatin-bile 

solution. Control and treatment were treated with these solutions. For the control group, the 

solutions were boiled then cooled down to room temperature before treatment in order to 

inactivate the digestive enzymes. The procedure (for both T and C groups) was as follows: 1 g of 

dried fruit powder was mixed with 2 mL pepsin solution (inactive for C, active for T) and 17 mL 

distilled water.  Then the pH was adjusted to 1.7 - 2 by the addition of concentrated HCl, and the 

samples were incubated in a 37 °C shaking water bath at 100 rpm for 2 h. Following the pepsin 

digestion to simulate small intestine conditions, reaction mixtures were adjusted to pH 8.0 with 

1N NaOH and added with 2 mL of pancreatin-bile salts solution (inactive for C; active for T). 

The mixtures were incubated in the water bath shaker for 2 hours at 100rpm. Following the 

simulated digestion process, solutions were stored at -80˚C overnight then freeze-dried. All dried 

samples were then extracted with 50% acetone and vortexed 3 times for 5 minutes each.  The 

extracts were filtered through a 0.45 µm filter paper and diluted with 50% acetone to a 

concentration of 50 mg/mL. These samples were then used for antioxidant assays: total phenolic 
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content (TPC) assay, DPPH radical scavenging assay, and oxygen radical absorbance capacity 

assay (ORAC).   

Total Phenolic Content (TPC) Assay  

The amount of total polyphenol in the blueberry extracts was determined using modified 

Folin-Ciocalteu colorimetric method. Stock solution of sample extracts were dissolved in acetone 

to make 25mg/mL and further serial dilutions were performed to obtain readings within the 

standard curve made with Gallic acid. The standard curve has a concentration of Gallic acid as 

follow: 0.1, .02, 0.3, 0.4, 0.5 mg/mL in 50% acetone. The measurements were done in triplicate 

and results were expressed as the mean values. Each test tube contained 25 µL of 

sample/standard and 250 µL distilled water. 750 µL of 0.2 N Folin-Ciocalteu’s phenol reagent 

was then added to each tube and mixed thoroughly with a vortex mixer. Then, 500 µL of 20% 

sodium carbonate was added to each tube and vortexed again. After that all samples and 

standards were incubated in the dark for 2 hours at room temperature. The extracts were oxidized 

by the Folin-Ciocalteu reagent and the neutralization was made with Na2CO3, after 5 minutes. 

Detection was achieved at 765 nm in a UV spectrophotometer Total phenolic content assay was 

tested with a Beckman DU 640 spectrophotometer and results were expressed as milligrams of 

Gallic acid equivalents (GAE) per 100 grams fresh fruit weight.  

2, 2-diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Assay 

The DPPH scavenging activity assay was done according to a method reported by Brand-

Williams et al. with modification [48]. This assay measures the ability of blueberry extracts to 

reduce DPPH free radicals. DPPH solution (80 μM) was freshly prepared by dissolving the 

reagent in 50% acetone. Sediment-free sample solutions were diluted to 10 mg/ml using 50% 

acetone and then collect from the supernatant after centrifuged at 7200 rpm for 20 min. A 
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volume of 150 μl of this solution was allowed to react with 100 μl sample in a 96-well 

microplate, and the absorbance was measured at 500 nm every 5 minutes for 2 hours using the 

bio assay reader (HTC 7000 Bio Assay Reader (Perkin Elmer, Norwalk, CT) . All samples were 

run in duplicates. The chemical kinetics of blueberries extract was recorded. The antioxidant 

activity was calculated as follows: 

% DPPH scavenging activity = (Abs control-[Abs sample – Abs sample background]) / 

Abs control × 100 

Oxygen Radicals Absorbance Capacity (ORACFL) Assay  

The protocol followed by Zhou et al. was used to measure the Oxygen Radicals 

Absorbance Capacity of the blueberries sample [49]. Briefly, AAPH was dissolved in 75 mM 

phosphate buffer (pH 7.4) to a final concentration of 0.36 M and made fresh daily. A fluorescein 

stock solution (10000 nM) was made in 75 mM phosphate buffer (ph 7.4) and stored wrapped in 

foil at 5°C. Immediately prior to use, the stock solution was diluted to 8000 nM with 75 mM 

phosphate buffer (pH 7.4).  

Serial dilutions of standard (Trolox) were performed to achieve concentrations of 0, 20, 

40, 80, 100, 200, 300 and 400 µM with 50% acetone. C ant T samples were diluted to a 

concentration of 1.3 mg/mL with 50% acetone. 200 µL of fluorescein and 45 µL of samples or 

standards were placed in each well of a 96-well microplate. The microplate was incubated for 15 

minutes at 37˚C. 60 µL of AAPH was then added to each sample and standard; and fluorescence 

was measured at 37 ˚C in plate reader (HTC 7000 Bio Assay Reader (Perkin Elmer, Norwalk, 

CT). Fluorescence was then monitored kinetically with data taken every 5 minutes for 90 

minutes using an excitation wavelength of 485 nm and an emission wavelength of 520 nm. All 

samples and standards absorbance were measured in triplicates. Radical absorption capacity was 
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calculated using a standard curve established with various concentrations of Trolox. Results are 

presented as mM Trolox equivalent (TE)/ 100 grams fresh weight.  

Statistical Analysis  

Antioxidant data executed from the above performed assays was analyzed via Microsoft 

Excel using independent t-test. Mean and standard deviation (SD) were calculated for each 

parameter. Data is therefore reported as mean ± SD. Outcomes were compared using p ≤ 0.05 as 

a cutoff point for statistical significance.    
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RESULTS 

Total Phenolic Content (TPC) Assay 

The antioxidant capacity of Blueberries was tested with TPC assay. The comparative data 

for total phenolic content of blueberry (C and T) is presented in Figure 1. The total polyphenols 

content was determined using the Folin-Ciocalteu method. Gallic acid was used as calibration 

standard and the results (expressed as Gallic acid equivalents) were expressed as means 

±standard deviation of triplicate analysis. The TPC value in the blueberry extract treated with 

deactivated enzymes was 8.35 g GAE/ 100 g fresh blueberry which showed significant 

difference from 11.29 g GAE/ 100g fresh weight in sample treated with active enzymes. 

Furthermore, the comparison of total phenolic content between C and T showed higher phenolic 

content in Treatment sample (p<0.001).   

DPPH Radical Scavenging Assay 

Antioxidant capacity was then measured by DPPH radical scavenging assay which 

detects percent DPPH radical inhibition by antioxidants from blueberry. The DPPH scavenging 

activity of blueberries extract is presented in Figure 2. It has been obtained significant difference 

(p < 0.05) between the blueberries extracts analyzed, with a higher value for the treatment 

sample (35.14%) compared to control sample (27.93%).  

Oxygen Radical Absorbance Capacity (ORAC) Assay 

ORAC assay is widely used for the detection of free-radical scavenging ability of 

antioxidant against peroxyl radical. Trolox was used as standard and test sample results were 

expressed as micromoles of Trolox equivalent per 100 gram fresh weight of blueberry. Figure 3 

shows a higher peroxyl radical scavenging capacities 3320.52 µmol TE/ 100 g for the sample 

treated with active digestive enzymes, whereas the sample treated with inactive digestive 
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enzymes presented ORAC value of 1829.95 µmol TE/ 100g and found to display significantly 

different peroxyl radical scavenging abilities (p< 0.05).   
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DISCUSSION 

Blueberries are of interest in health and nutritional science because of their high phenolic 

content compared to other fruit crops [50]. The present study investigated antioxidant content 

and activities of Vaccinium Corumbosum blueberry.  

It is widely believed that the antioxidant activity of plant phenolic (e.g., flavonoids, 

tannins, phenolic acids, etc.) resides mainly in their ability to donate hydrogen atoms or electrons 

and there by scavenge free radicals [51]. Plant phenolic compounds are nowadays getting 

increased attention in the diet due to their natural antioxidant potential. Increased consumption of 

phenolic compounds has been associated with the reduced risk of cardiovascular diseases and 

certain cancers [52, 53]. The mean value of total phenolic content of Vaccinium Corymbosum 

blueberry extracted using enzymatic approaches is shown in Figure 1. Therefore, according to 

our TPC results, active enzyme digestion seems to enhance antioxidant content. Figure 1  clearly 

reveals that the sample treated with active enzymes (T) has higher total phenolic contents than 

their inactive enzyme treated counterparts (C). These results indicate that the process of 

enzymatic digestion does not seem to destroy or reduce the antioxidant content of blueberry. 

Instead the antioxidant capacity of the intact fruit is preserved and even enhanced. Other studies 

with different fruits have shown varying results when comparing digested and undigested 

samples [54, 55, 56]. We can conclude from our results that Vaccinium Corymbosum blueberry 

has a higher concentration of antioxidants when digested.  

The DPPH assay is simple, quick and commonly used to assess the antioxidant activity of 

plants and natural compounds, which act as free radical-scavengers or hydrogen donors in vitro 

[57]. Digested blueberry extract demonstrated appreciable scavenging properties against DPPH 

radicals. DPPH scavenging activity was significantly (P<0.05) for sample treated with inactive 
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enzymes than its digested counterpart. Adding an antioxidant-rich sample to a DPPH solution 

causes a gradual reduction in absorbance which implies that DPPH radicals are being scavenged. 

Therefore, the percentages we have presented pertain to DPPH radical scavenging 

capacity which in turn is directly proportional to antioxidant capacity. Our results indicate that in 

the concentration of 10 mg/mL, our digested sample (T) showed higher scavenging ability 

(35.14%) compared to control sample (27.93%) and therefore higher antioxidant capacity, which 

further reinforces TPC results discussed above. These findings also may indicate that the higher 

phenolic content that the digested samples are found to have may be correlated to their higher 

potency in scavenging DPPH radical of digested and undigested variants of fruits [56, 58]. Our 

results therefore present a comparison of such capacity in digested versus undigested blueberry 

that, to our knowledge, has not been reported before.  

The ORAC assay which differs from DPPH radical scavenging assay by the type of 

radical produced, scavenging method and measurement, also showed results that support our 

TPC and DPPH results. AAPH produces peroxyl radicals that are to be scavenged by 

antioxidants found in our fruit sample [59].  A molecular probe, fluorescein, is under peroxyl 

radical attack. The more antioxidants, the more peroxyl radicals being scavenged and the less 

fluorescence is detected (fluorescein is protected by antioxidants from radical attack). Higher 

Trolox equivalents calculated from a sample shows better ability of scavenging AAPH radicals. 

The digested blueberry sample shows a higher peroxyl radical scavenging capacity than the 

undigested one, which further confirms the previously discussed results (TPC and DPPH). 

Several studies support the higher availability of antioxidants in a digested fruit when comparing 

to the raw or undigested fruit [60]. 
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Blueberries as a natural source of antioxidants 

Digested blueberry provides potentially higher antioxidant bioaccessibility that may have 

significant health benefits, when compared to their undigested counterpart. The stability of 

antioxidant capacity following gastrointestinal digestion has been analyzed in other berries [61, 

62]. For instance, antioxidant capacity of chokeberries, strawberries, cranberries and blackberries 

was enhanced following in vitro digestion [63]. These findings support our findings that the 

digestion of some berries can enhance their antioxidant characteristics thus contributing to 

considerable health benefits in humans [64]. However, limited researches have been studies on 

blueberries with antioxidants activities after digestion when compared to other berries [64, 65].  

A comparative study of TPC content of wild and cultivated blueberries has shown that 

the wild blueberry presented higher antioxidant content than the cultivated [66]. TPC content for 

cultivated Romanian blueberries shows that the total polyphenol content ranged from 4.25 – 8.19 

g GAE/ g fresh weight which support our results that the digestion enhances the antioxidant 

content of the blueberry [67].  

In the present study blueberry seems to have a higher DPPH when digested compared to 

other studies that reported a lower DPPH for raw wild and cultivated blueberries [38, 43]  In 

addition, a screening of ORAC in a variety of berries shows lower Trolox equivalents in 100 g of 

fresh weight when comparing to blueberry [67].  

It seems that in the wide variety of fruit crops available, those with deeper colors are 

richer in antioxidant which is the case for blueberries [68]. Research supports deep colored 

berries as potent antioxidant sources [69]. Such berries are also rich in anthocyanin, antioxidant 

compounds that are known for their enhanced stability and bioaccessibility following 

gastrointestinal digestion [70]. 
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In agreement with the above mentioned studies, we report that blueberry is a remarkable 

source of antioxidant compounds when compared to other berries. Our results imply that the 

blueberry has a significantly higher antioxidant capacity when digested.  Also we can confidently 

state that digestion seems to enhance the antioxidant content and activity in blueberry.  
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CONCLUSION 

                 We can conclude that our results are quite valuable, due to the potential importance of 

the studied compounds in human’s health and the relatively high amount present in blueberries 

fruits. The preliminary in vitro simulated digestion showed enhanced antioxidant capacity when 

blueberry subjected to such treatment. This indicated that enzymatic treatment similar to 

digestion would not decrease antioxidant value, which helps contribute to possible increased 

bioavailability. Our results suggest that the gastro-intestinal tract may act as an extractor where 

polyphenols are progressively released from solid matrix and made available for the absorption 

or to exert their biological effects in the gastro-intestinal tract. Further experimentation such as in 

vivo digestion model maybe performed in order to investigate more close correlation to 

human/mammal physiology. Also more research can be carried out to analyze the effect of each 

individual antioxidant compound from blueberry in gastrointestinal digestion.  
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Figure 1 - Total phenolic content of Vaccinium Corymbosum digested by inactive (C) and 

active digestive enzymes (T) (GAE g / 100 g fresh weight). 

 

A significant difference between C and T groups presented higher phenolic contents in the T 

group (p< 0.001). 
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Figure 2 - DPPH radical scavenged in percentage of Vaccinium Corymbosum blueberry 

digested by inactive (C) and active (T) digestive enzymes. 

 

A significant difference in DPPH % between C and T groups with a higher value for T 

group (p< 0.05).  

 

 

 

 

 

 

 

 

 

 

 

0

5

10

15

20

25

30

35

40

C T

%
 o

f 
D

P
P

H
 s

ca
n

va
n

gi
n

g 



21 

 

 

 

Figure 3 - ORAC assay in TE (µmol/ 100g fresh weight) of Vaccinium Corymbosum 

Blueberry digested by inactive (C) and active (T) digestive enzymes. 

 

There is a significant difference between C and T groups and presented higher Trolox 

equivalent in the T group (p<0.05) 
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ABSTRACT 

 

COMPARATIVE PHENOLIC CONTENT AND ANTIOXIDANT ACTIVITIES OF 

BLUEBERRY (VACCINIUM CORYMBOSUM) AFECTED BY IN VITRO DIGESTION 
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Degree: Master of Science  

 

The biological properties of antioxidants depend on their release from the food matrix 

during the digestion process. Blueberry contains a wide range of phenolic compounds which are 

of great significance due to their antioxidant activity. In vitro digestion is a rapid and inexpensive 

method used to determine the availability of nutrients involved in the absorption studies with 

humans. Total phenolic content and antioxidant activity of Vaccinium Corymbosum blueberry 

was studied after in vitro digestion. The digested sample showed significantly higher TPC, 

DPPH and ORAC values compared to undigested sample. Highest antioxidant activity was 

observed in treated in vitro digested blueberry sample as measured by DPPH and ORAC 

methods. Results from this study showed that digestion enhances the availability of antioxidants 

in blueberry, where the digested fruit demonstrate a higher antioxidant content and capacity, with 

p<0.001 for TPC, p<0.05 for DPPH and p<0.05 for ORAC.    
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