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knock down target genes in mammalian cells without triggering immune responses; [3] which 

was a very favorable outcome. RNAi can be artificially achieved in three ways: (i) Introducing 

plasmid DNA to the cell that encodes for short hairpin RNA (shRNA) which is cleaved to short 

(21-26 nucleotides) interfering RNA (siRNA) in the cell by the enzyme complex Dicer which 

contains endoribonuclease activity. The resulting siRNA will lead to the cleavage and 

degradation of the target mRNA. (ii) Introducing long double stranded RNA (dsRNA) which is 

endogenously processed inside the cell by Dicer to siRNA. (iii) Directly introducing synthetic 

siRNA to achieve mRNA degradation. The latter approach is of great interest and will be further 

discussed in this chapter. When siRNA is internalized in the cell, the double stranded siRNA 

binds to the RNA-induced silencing complex (RISC) and is unwound into two single strands; the 

sense and anti-sense strand. The sense strand is removed and degraded by nucleases. The anti-

sense strand directs the RISC to the complementary sequence of the mRNA to induce cleavage 

by a catalytic component, Argonaute, and to post-transcriptionally silence the gene as shown in 

Figure 1.1. 

 

 

 

 

siRNA delivery: Introducing short interfering RNA 
(siRNA, 21-26 nucleotides) with a specific sequence to the 
cell in order to induce RNA interferenace (RNAi), and to 
silence a specific target gene. siRNA delivery is used to 
silence overexpressed genes in various diseases including 
lung diseases.   
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The second zone is the respiratory zone where the gas exchange occurs. It consists of the 

respiratory bronchioles and alveoli [7]. Pulmonary delivery of siRNA presents many advantages 

compared to the systemic route such as the localized effect on lung epithelial cells with lower 

administered doses of siRNA, reduced undesired systemic effects, and higher stability due to 

negligible nuclease activity in the lung compared to the blood stream. In addition, the lungs can 

function as a remarkable site of absorption for systemic effects with a rapid and effective 

delivery due to the large alveolar surface area with high vascularization and thin air-blood-

barrier.  Such advantages have promoted pulmonary delivery to be an attractive route of 

administration. However, pulmonary delivery also needs to overcome the barriers associated 

with many parts of the respiratory airways. Coughing and dissolution are important parts of the 

lung's defense against inhaled particles but can prove to be difficult barriers to overcome. The 

ciliated epithelial cells in the lung perform a rapid mucociliary clearance action to remove any 

deposited particles which are eventually swallowed or coughed out. The presence of the mucus 

layer and surfactant proteins is another barrier for uptake. In addition, macrophages present in 

the respiratory airways tend to phagocytose particles between 1 and 3 μm in size and to degrade 

them. Therefore, the lung possesses several anatomical, physiological, and physiochemical 

barriers that can be impaired or more prominent in a disease state and alter the efficiency of the 

delivered agent to the lung [8, 9].  

 

 

 

Mucociliary clearance: a host defense clearing 
mechanism of the airways which is performed 
by coordinated cilia movement to clear particles 
deposited in mucus covering the respiratory 
epithelium.  



5 
 

 

  

For efficient siRNA delivery, a therapeutic agent is required to overcome those barriers 

and successfully reach the lower respiratory tract where the cell layer and the mucus layer are 

significantly thinner than in the upper airways. The site of the particle deposition in the lung 

depends on the size, expressed as aerodynamic diameter, of the administered particle as well as 

the patient’s pulmonary function [10-12]. Large particles with aerodynamic diameters larger than 

6 μm are usually deposited at the back of the pharynx or throat due to their high momentum. 

Thus, they are not suitable for the delivery to lower respiratory sites. Therefore, smaller droplet 

or particle sizes are required to maximize the siRNA deposition in the lung. However, particles 

smaller than 1 μm in aerodynamic diameter were believed to be exhaled during normal breathing 

as their movement is controlled by Brownian motion [10-12]. For efficient deposition in the 

lung, the optimal hydrodynamic diameter has been reported to range between 1 and 5 μm. Newer 

studies show that as the size of the particles decreases below 100nm, the diffusional mobility of 

the particles increases and hence their deposition in the lung increases. Nanoparticles (<100nm) 

can successfully reach and settle in the alveolar site with 55 % and higher fractional deposition 

depending on the particle diameter [13] and pulmonary function in healthy and asthmatic 

subjects [14, 15].  
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the oligoribonucleotides which is pursued mainly to increase the nuclease resistance. In addition, 

chemical modification of siRNA is aimed to increase siRNA specificity and potency as well as to 

reduce the off-targeting and immune response without impairing the ability of siRNA to knock 

down the target gene [36, 37]. Chemically modified siRNA therapeutics succeeded in clinical 

trials. One example is Alynam's ALN-RSV-01 siRNA which is modified by cholesterol 

attachment to the sense strand. The second approach may also employ modified siRNA but 

additionally enhances the siRNA protection by using carrier systems which are divided into viral 

vectors and non-viral vectors. Viral vectors take advantage of the penetration ability of viruses 

through cellular membranes. Examples for viral vectors are retroviruses, adenoviruses, and 

lentiviruses which can transfect cells very effectively. However, they present some safety 

concerns such as toxicity, immunogenicity, tumorigenicity as well as uncontrolled virus 

replication [38]. Despite their toxicity, viral vectors are still considered in clinical trials due to 

their high transfection efficacy. In order to overcome these side effects, however, non-viral 

vectors have gained great interest. They are subdivided into: 

 

 

 

i. Lipid-based delivery vectors, such as liposomes and lipid particles. Positively-charged 

lipids, for example, can interact with negatively charged siRNA oligonucleotides by 

spontaneous electrostatic interaction to form lipoplexes. When aerosolized, lipoplexes may 

underdo structural changes that may lead to premature release of siRNA from the lipoplexes 

Non-viral vectors possess low host 
immunogenicity, however lower transfection 
efficiency compared to viruses. Various 
strategies are followed to design and develop 
non-viral vectors with enhanced transfection 
efficiency.  
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[20, 39]. The drawbacks of these vectors are their toxicity and non-selective activation of 

immune response [40, 41]. Many of the commercially available siRNA transfection agents 

that are engaged in pulmonary delivery are lipid-based, such as lipofectamine® and 

oligofectamineTM. 

ii. Polymer-based delivery vectors, such as synthetic poly (lactic-co-glycolic acid) (PLGA), 

polyethylenimine (PEI), and natural chitosan. This class of vectors can easily be chemically 

modified to avoid the induction of immune responses. In addition polymer-based vectors are 

generally cheap, versatile and easy to modify to gain desirable characteristics such as 

biodegradability and cell- specific targeting effect [42-44]. Polymeric vectors can be further 

subdivided into polycations for electrostatic self-assembly and polymeric solid nanoparticles 

which encapsulate their load. Polycations react with negatively charged siRNA to form 

polyelectrolyte complexes, so called polyplexes. The main concern with polycations is their 

toxicity generated from their charge. Examples for polycations widely used for siRNA 

delivery are polyamide amine (PAMAM) dendrimers [45], PEI [24], and chitosan [46]. The 

characteristics of the delivery system depend on the charge ratio, molecular weight of the 

polymer and method of preparation [47]. Solid polymeric nanoparticles such as PLGA 

nanoparticles encapsulate siRNA. The siRNA can be encapsulated and dispersed completely 

in the nanoparticle core or surrounded by a polymeric shell.  

iii. Peptide transduction domains (PTDs) or cell-penetrating peptides are small positively 

charged molecules (10-30 amino acids). They usually contain arginine and lysine to provide 

positive charges which electrostatically interact with siRNA and enhance the permeability of 

the vector across the cell membrane.  
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A summary of non-viral vectors used in pulmonary siRNA delivery in vivo is presented in Table 

1.1. 

Table  1.1: Examples of in vivo studies of siRNA delivery systems in the lung grouped according 
to the type of delivery system 

Type of 

siRNA 

delivery 

SiRNA/ 

Targeted 

gene 

Route of 

administra

tion 

Animal model Delivery 

system/ 

Polymer used 

Outcome Re|22

22222

22222

22222

22222

22222

Naked siRNA HO-1 Intra-nasal C57BL/6 mice Unmodified 

siRNA 

Knock down of 

endogenous gene 

expression 

[48] 

RSV-P Intra-nasal BALB/c mice Unmodified 

siRNA 

Inhibition of RSV infection [49] 

SiRNA-

cy3 

Intra-nasal C57BL/6 mice Unmodified 

siRNA 

Low distribution of siRNA 

in lung  

[50] 

PAI-1 Intra-nasal C57BL/6 mice Unmodified 

siRNA 

Inhibition of PAI-1 level in 

broncho-alveolar fluid 

[51] 

PAI-1 Intra-

tracheal 

Bleomycin-

treated Male 

Naked siRNA Inhibition of alveolitis and 

pulmonary fibrosis 

[52] 
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Wistar rats 

Fas 

Caspase 8 

Intra-

tracheal 

C57BL/6 mice Unmodified 

siRNA 

Significant reduction in 

expression of Fas and 

caspase 8 in lung 

[53] 

 

 

XCL1 Intra-

tracheal 

C57BL/6 mice Unmodified 

siRNA 

Suppression of XCL1 

mRNA and protein 

expression by 40-50% 

[54] 

KC-MIP-2 Intra-

tracheal 

C57BL/6 mice Unmodified 

siRNA 

Suppression of mRNA 

expression of KC and MIP-

2 in lung by ~40% 

Reduction of IL-6 and 

MPO activity  

[55] 

siSC2-5 Intra-nasal Rhesus macaque Unmodified 

siRNA 

Diminished SARS 

coronavirus (SCV) levels 

in monkey respiratory tract 

Decreased acute diffuse 

alveoli damage 

[56] 

EHV-1 Intra-nasal BALB/c mice Unmodified 

siRNA 

significantly reduced viral 

replication and clinical 

signs 

[57]  
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Ang2 Intra-nasal C57BL/6 mice Naked siRNA Ang2 increases 

inflammation and cell 

death during hyperoxia 

[58] 

SiRNA-

cy3 (2′O-

methyl 

modificatio

n) 

Intra-

tracheal 

C57BL/6 mice Modified siRNA High distribution of 

siRNA- cy3 in lung 

~21% knock down of E-

cadherin  but no significant 

reduction of endothelial 

VE-cadherin 

[50]  

Lipid RSV-P Intra-nasal BALB/c mice Lipid (TransIT-

TKO) 

Inhibition of RSV infection [49] 

E-cadherin 

VE-

cadherin 

Intra-

tracheal 

C57BL/6 mice Liposomes 

(AtuFECT01/D

PhyPE/DSPE-

PEG) 

Enhanced transfection 

efficiency of lipoplex-

siRNA compared to naked 

siRNA 

Lipoplex caused cellular 

inflammation in lung 

[50]  

P38 MAP 

kinase 

Intra-

tracheal 

BALB/c mice Lipid 

(cholesterol) 

Knock down effect not 

enhanced 

Extended duration of 

knock down compared to 

[59] 
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naked siRNA 

SiGLO red Intra-

tracheal 

nude mice with 

orthotopic 

model of human 

lung cancer 

Liposomes 

(DOTAP) 

Higher peak concentrations 

Abundant longer retention 

of liposomes in the lungs 

compared with systemic 

administration 

[60] 

SiGLO 

Green/SPA

RC 

Intra-

tracheal 

C57BL/6 mice Lipid 

(DharmaFECT) 

SPARC siRNA significantl

y reduced gene and protein 

expression  

[61] 

Polymer WT1 Intra-nasal Mice with 

B16F10 lung 

metastasis 

PEI-WT1 

complexes 

Significant reduction in 

tumor foci  

Reduction in size and 

number of tumor blood 

vessels 

[62] 

EGFP Intra-nasal C57BL/6 mice Chitosan  Effective (~37%) EGFP 

knock down in bronchiole 

epithelial cells of mice 

[63] 

GAPDH Intra-nasal BALB/c mice 

C57BL/6 mice 

Imidazole-

modified chit-

osan 

Significant (~45) 

knockdown  of GAPDH 

enzyme in lung  

[64] 
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Akt1 Inhalation- 

aerosol  

 K-rasLA1 mice Poly(ester 

amine) 

Inhibition of Akt-related 

signals and cell cycle 

Significant suppression of 

lung tumor progression 

[65] 

NS1 Intra-nasal BALB/c mice Naonogene 

NG042 

(chitosan) 

Enhanced transfection 

efficiency compared to 

high MW chitosan 

Attenuate RSV infection 

[66] 

EGFP Intra-

tracheal 

C57BL/6 mice PEI and PEI-

PEG 

PEI-PEG formulations 

caused ~42 knock down 

efficiency  

[67] 

Luc Dry 

powder 

Inhalation  

mouse lung met

astasis model 

Chitosan Specific gene silencing 

effect against tumor cells 

[68] 

Peptide P38 MAP 

kinase 

Intra-

tracheal 

BALB/c mice *CPP (TAT and 

penetratin) 

No increase in gene knock 

down effect compared to 

naked siRNA and 

provoked inflammatory 

reaction  

[59]2 

2 

*2CPP: Cell Penetrating Peptide and MW: Molecular weight 
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Schematic illustrations of non-viral siRNA carriers are illustrated in Figure 1.2. As discussed 

later, nanocarriers can be chemically modified in a modular fashion to design multi-functional 

particles which unite therapeutic and diagnostic properties that are target specific.  

 

 

Figure  1.2: Schematic illustration of three classes of siRNA delivery systems; Polymer-, lipid-, 
or dendrimer-based vectors form complexes with negatively charged siRNA via electrostatic 
interaction. siRNA can be encapsulated in the core of the particle or attached to the particle 
surface. Multi-functional nanocarriers can be engineered with multiple components to unite 
multiple functions and to optimize siRNA delivery. Reproduced from [69] with permission from 
copyright holder. 
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prevention. Discovering these new target genes will eventually open new opportunities for 

therapeutic siRNA delivery strategies. Pulmonary siRNA-based therapeutics are heading towards 

fulfilling therapeutic effects in the lung by exploiting smart delivery systems. The development 

of these systems requires a critical understanding of the numerous pulmonary barriers and 

stringent optimization of the carriers in order to achieve maximum results.  

Despite being a new field, reports on siRNA delivery in the literature increase steadily. 

Therapeutics based on siRNA technology have entered clinical trials. Their success in terms of 

safety and efficacy is currently being investigated at different stages. Many trials exploit local 

delivery, including inhaled or intranasally delivered siRNA (Table 1.2).  

Table  1.2: Examples of current siRNA-based clinical trials [84] 

SiRNA 

Delivery 

agent 

Delivery 

agent 

Route of 

administration 

Sponsor Disease Status

ALN-RSV01 Naked 

siRNA 

Intranasal spray Alnylam 

Pharmaceuticals 

*RSV infection Phase 

II 

ExcellairTM unknown Inhalation ZaBeCor 

Pharmaceuticals 

Asthma Phase 

II 

TKM-ApoB Lipid 

nanoparticles 

IV Tekmira 

Pharmaceuticals 

Hypercholesterol

mia 

Phase I

CALAA-01 Cyclodextrin IV Calando Solid tumors Phase I
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nanoparticles Pharmaceuticals 

TD101 Naked 

siRNA 

Intradermal 

Injection 

Pachyonychia 

Congenita Project 

Pachyonychia 

congenita 

Phase 

Ib 

QPI-1007 Naked 

siRNA 

IVT Quark 

Pharmaceuticals 

Chronic optic 

nerve atrophy 

Phase I

PF-655 Naked 

siRNA 

IVT Quark 

Pharmaceuticals 

AMD and 

diabetic macular 

edema 

Phase 

II 

AGN-745 Naked 

siRNA 

IVT Allergan AMD Phase 

II 

QPI-1002 Naked 

siRNA 

IV Quark 

Pharmaceuticals 

Acute Kidney 

injury 

Phase 

II 

Bevasiranib Naked 

siRNA 

IVT Opko Health AMD Phase 

III 

*RSV: Respiratory syncytial virus; IV: Intravenous injection; IVT: Intravitreal injection; AMD: 

Age-related degeneration. 
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from basic research to clinical trials. In 1998, RNAi was discovered in C. elegans worms by Fire 

and Mello, for which they received the Nobel Prize in Physiology and Medicine in 2006.2 Small 

interfering RNA (siRNA) is an intermediate in the RNAi process and is double stranded RNA 

with 21-25 nucleotides in length. Synthetic siRNA can be used to achieve RNAi and to down-

regulate overexpressed genes.3 In 2001, siRNA was reported to induce RNAi in mammalian 

cells.4 To the present day, only a few human clinical trials for siRNA therapeutics are ongoing. 

Among which, two therapeutics are targeting the lung, i.e. ALN-RSV01 and ExcellairTM.5 

The primary challenge of siRNA therapeutics, however, is the hurdle of intracellular 

delivery. siRNA cannot cross a biological membrane due to being a hydrophilic, negatively 

charged macromolecule and highly prone to nuclease degradation.3b Viral vectors achieve high 

transduction but are associated with many safety problems at the clinical level such as immune 

responses and carcinogensis.6 Therefore, safe and effective non-viral siRNA carriers are required 

for pulmonary delivery of siRNA.7  
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limited endosomal escape despite their good proton-buffering capacity.11b It is hypothesized that 

the maximum interaction of siRNA with cations consists of four carbon-bridges. However the 

low molecular weight of spermine limits its siRNA complexation ability.12 Therefore, it was 

necessary that spermine polyamines be modified to increase their molecular weight in order to 

act as building blocks for nucleic acid delivery systems.11a, 13 This suggests that polymerized 

spermines could be capable of condensing siRNA and of disassembling at the target site.14 

Polyspermines showed high buffering capacity.15 Many studies described the linkage of 

spermines through their amino groups by different cleavable linkers such as disulfide bonds or 

esters.11a, 15-16 When polyspermines are degraded to release spermine monomers, sometimes 

fragments of the linker are still attached to spermine monomers which affects their transfection 

properties.17 Very recently, Du et al. compared three polymerized spermines to show that linkage 

structures play an important role in the activity of the polyspermine-based nucleic acid carriers.8b   

Moreover, spermine polymerization allows for multi-step intracellular degradation of a  

biocompatible polymeric platform.14. Several groups have studied spermine-based carriers for 

DNA,18 19 11a siRNA,11a, 20 and short RNA delivery.21 Gene silencing efficiency was shown 

specifically via aerosol delivery.21-22. Spermines have been incorporated in many delivery 

systems such as lipoplexes,20b, 23 conjugates,20a and nanoparticles24 for siRNA delivery to 

enhance the transfection efficiency. Vijayanathan et al. synthesized a series of spermine 

homologues with different methylene chain length separating the secondary amino groups of the 

polyamines. The lower homologues were more efficacious in DNA condensation than the higher 

analogues. These results showed the importance of the regiochemical distribution of the positive 

charge in the polyamines presented by the varying distance of the methylene spacing which 

affected the polyamine ability to provoke structural changes in the DNA and hence strongly 
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obtained from BASF (Lupasol®, Cologne, Germany).  Dicer substrate double-stranded siRNA 

(DsiRNA) targeting firefly luciferase gene (FLUC siRNA, 25/27mer), human glyceraldehyde 3-

phosphate dehydrogenase (hGAPDH) gene, nonspecific control (siNegCon) DsiRNA as well as 

Alexa Fluor®-488 labeled siRNA were bought from Integrated DNA Technologies (IDT, 

Coralville, Iowa). RPMI-1640 medium (1x) with 2.05 mM L-glutamine, HyClone™ trypsin, 

penicillin/streptomycin, 4-(2(hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES), and 

SurePrep™ TrueTotal™ RNA purification kits were purchased from Thermo Fisher Scientific 

(Waltham, MA). Dulbecco's Phosphate Buffered Saline (PBS), Fetal Bovine Serum (FBS) Heat 

Inactivated, D-(+)-Glucose, sodium bicarbonate, sodium pyruvate, 2-mercaptoethanol, dimethyl 

sulfoxide Hybri-Max™ (DMSO, ≥99.7%), ethylenediaminetetraacetic acid (EDTA, 99.4%-

100.06%), trypan blue (0.4%, sterile filtered) and luciferin solution were bought from Sigma-

Aldrich (St. Louis, MO).  Hs_GAPDH_primers and Hs_β-actin-primers were purchased from 

Qiagen (Valencia, CA). Brilliant III SYBR Green QRT-PCR Master Mix was bought from 

Agilent (Santa Clara, CA). And DNAse I reaction buffer and DNase/RNase free water were 

purchased from ZYMO RESEARCH (Irvine, CA). 

2.3.2 Synthesis of Oligospermines 

Three different polycatonic-based oligospermines namely, linear bisspermines, linear 

tetraspermines and dendritic tetraspermines were successfully synthesized as described 

previously.26 Briefly. the process involved 1) the synthesis of the monomer I MPBBSP 

(monoprotected bis-boc spermine), 2) the synthesis of the reactive intermediates of 2-arm and 4-

arm linker, and 3) the conjugation of monomer I to the linkers to get respective protected 

oligospermines. Deprotection of boc groups yielded oligospermines as salts of trifluroacetic acid 
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Where m is the mass of the polymer needed, (n) is the amount of siRNA used per well. The 

total number of nucleotides in DsiRNA is 52. N/P is the ratio between polymer amine groups and 

siRNA phosphate groups.   

Equal volumes of polymer and siRNA solutions were mixed to form the according N/P ratio, 

vortexed for 30 s and incubated at room temperature for 20 minutes. 

2.3.4 Size and zeta (ζ)-potential analysis 

Sizes of polyplexes were evaluated by Dynamic Light Scattering (DLS) analysis. 

Polyplexes were prepared with 40 pmol of FLUC siRNA at N/P 2 and 10 as described above in a 

total volume of 350 μl. Measurements were performed with a Malvern Zetasizer Nano ZS 

(Malvern Instruments Inc., Westborough, MA) in quadruplicates at 25 °C using disposable 

cuvettes (low volume 70 μl, Brookhaven Instruments Corporation, NY, USA) for size 

measurements. Measurements were set up at 173º backscatter angle with 15 runs per 

measurement. For data analysis, the viscosity (0.88 mPa.s) and the refractive index (1.33) of 

water at 25ºC were used. Results are given as Z average in nm +/- standard deviations. 

Polyplexes were then diluted to 700 μl with 5% glucose solution before ζ-potential 

measurements were performed in disposable capillary cells (Malvern Instruments Inc., 

Westborough, MA). Results are given in mV +/- standard deviations. 

2.3.5 Size and Morphology: Transmission Electron Microscopy (TEM) and Atomic Force 

Microscopy (AFM) 

For Transmission Electron Microscopy (TEM), polyplexes were prepared as described 

above at N/P 2 with 40 pmol of FLUC siRNA in a total volume of 20 μl. A drop of particle 
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suspension was dispensed on a copper-coated grid (200-mesh) and left to dry before imaging 

with a transmission electron microscope (JEOL 2010 TEM). Several representative images were 

taken for each sample at different magnifications. Atomic force microscopy (AFM) was 

performed using a Pico LE Atomic Force Microscope (Molecular Imaging, Agilent 

Technologies, Santa Clara, CA). Polyplex suspensions were freshly prepared as described above. 

A drop was incubated on a freshly cleaved mica surface for 5 minutes and rinsed with deionized 

water to remove excess liquid. Samples were allowed to dry at room temperature and imaged in 

contact mode using a Si3Ni4 V-shaped cantilever.   

2.3.6  SiRNA condensation efficiency and stability against polyanions in neutral and 

acidic conditions: SYBR® gold dye binding assays and heparin competition assays  

SYBR® Gold assays were used to evaluate the capacity of the oligospermines to condense 

siRNA at various N/P ratios (0 to 20). SYBR® Gold dye intercalates only with free and 

accessible siRNA and does not fluoresce if the siRNA is condensed and protected by a 

polycation. In a FluoroNunc™ 96-well white polystyrene plate (Nunc, Thermo Fisher Scientific, 

Waltham, MA), 50 pmol of FLUC siRNA per well in 50 μl was complexed with the according 

amount of oligospermine  in the same volume to obtain the corresponding N/P ratios in a total 

volume of 100 μl of 5% glucose solution. PEI (5 kDa) was used for comparison. Formulations 

were incubated at room temperature for 20 minutes. A 4x SYBR® Gold solution (30 μl) was 

added to each well and incubated in the dark for 10 minutes. Fluorescence was measured at 495 

nm/537 nm excitation and emission wave lengths on a Synergy 2 Multi-Mode microplate reader 

(BioTek Instruments, Winooski, VT). For heparin assays, polyplexes were prepared at N/P 2 as 

described above. In addition, experiments were performed in presence of two different media to 
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compare the stability of the polyplexes at different pH and ionic strengths. The media were 5% 

glucose solution (pH 7.4) and sodium acetate buffer (pH 4.5). For the heparin assays, a master 

solution of heparin was prepared (0.1 IU/μL). Serial dilutions of heparin were then prepared (0-1 

IU/well) and added to the wells (10 μl/well). Subsequently, a 4x SYBR® Gold solution (30 

μl/well) was added and incubated for 10 minutes. After different incubation times with heparin 

(20 minutes, 1, 2 and 3 hours) at 25ºC, fluorescence was measured on a Synergy 2 Multi-Mode 

microplate reader (BioTek Instruments, Winooski, VT) at 495 nm/537 nm excitation and 

emission wave lengths. Measurements were performed in triplicates. The relative stability of 

polyplexes was determined by normalizing the fluorescence intensity of the intercalating 

SYBR® gold dye to SYBR® gold only (0%) and SYBR® gold with free siRNA (100%). Results 

are shown as mean values +/- standard deviation and analyzed by Graph Pad Prism5.0 software 

(GraphPad Software, La Jolla, USA).  

2.3.7 Cell culture 

NCI-H1299/LUC cells are derived from a human non-small cell lung carcinoma cell line 

(ATCC®) and transfected to stably expressing the reporter gene luciferase.27 H1299/LUC 

represents an established model for gene knock down studies as shown previously.27-28 Cells 

were cultured and grown in RPMI-1640 cell culture medium (Thermo Scientific Hyclone, 

Pittsburgh, PA) supplemented by sodium pyruvate (1 mM), HEPES (10 mM), 10% fetal bovine 

serum (Thermo Scientific Hyclone, Pittsburgh, PA), and 1% penicillin/streptomycin. Cells were 

grown in 75 cm2 cell culture flasks (Thermo Scientific, Waltham, MA) at 37 °C and 5% CO2 and 

sub-cultured until approximately 90% confluence with changing fresh culture medium every 2-3 

days.  
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2.3.8 Cytotoxicity of polyplexes: MTT assay    

H1299/LUC cells were seeded in a 96-well plate (Thermo Scientific, Waltham, MA) with 

10,000 cells per well in 100 μl of growth medium and incubated for 24 hours at 37 °C and 5% 

CO2 in a HERAcell 150i CO2 incubator (Thermo Scientific, Waltham, MA). Oligospermines 

with varying concentrations (2-1000 μg/ml) were added to the cells in fresh media and incubated 

for 24 hours at 37 °C and 5% CO2. Sterile filtered-MTT solution (5 mg/ml) was added to the 

cells (10 μl/well) and incubated for 4 hours at 37 °C and 5% CO2. Water-soluble MTT is 

enzymatically converted to insoluble formazan particles by metabolically active mitochondria.29 

Subsequently, the cell culture media was removed, and DMSO (200 μl/well, Sigma-Aldrich, St. 

Louis, MO) was added and incubated at room temperature for 10 minutes to solubilize the 

formazan particles. The optical absorbance was measured at 540 nm on a Synergy 2 Multi-Mode 

microplate reader (BioTek Instruments, Winooski, VT). The percentage of cell viability is 

measured as the ratio between the absorbance of a sample and the untreated control cells. Results 

are shown as the mean value +/- standard deviation of triplicates. 

2.3.9 Quantification of cellular uptake by flow cytomtery 

H1299/LUC cells were seeded in 24-well plate (Corning Incorporated, Corning, NY) with 

a density of 200,000 cells per well and incubated for 24 hours at 37 °C and 5% CO2. Polyplexes 

were freshly prepared as described above with 40 pmol of AlexaFluor488-labeled siRNA at N/P 

ratio 2 and 10. Negative controls included untreated control cells. PEI (5 kDa) was used as a 

positive control for comparison. Cells were transfected for 4 hours with 100 μl of cell culture 

medium and 100 μl of polyplexes, after which growth medium was added to a total volume of 
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500 μl, and cells were incubated for another 20 hours. Trypan blue quenching was used to 

extinguish the extracellular fluorescence caused by polyplex binding and to confirm the 

internalization of siRNA in the cells. Trypan blue 0.4% (100 μl per well), a dye that quenches the 

extracellular fluorescence,30 was added to the samples for 5 minutes before trypsinizing the cells. 

Results were compared to those obtained with cells that did not undergo trypan blue staining. 

Cells were rinsed with 1X PBS buffer supplemented with 2 mM EDTA, treated with trypsin and 

incubated at 37 °C and 5% CO2 for 3-4 minutes to detach the cells. Fresh medium (400 μl) was 

added to each well to deactivate the trypsin. Samples were transferred to microcentrifuge tubes 

(Seal-Rite, USA Scientific, Orlando, FL) and centrifuged at 400 g for 5 minutes. Samples were 

washed twice with 1X PBS with 2 mM EDTA. Fluorescence was quantified by flow cytometry 

on an LSR II (BD Biosciences, San Jose, CA) after staining with 4',6-diamidino-2-phenylindole 

(DAPI) for dead cells. Cell fluorescence was measured with excitation at 488 nm and the 

emission filter set to a 530/30 bandpass. Cell gating and data analysis was performed using 

FACSDiVa™ (BD Biosciences, San Jose, CA) software. Measurements were performed in 

triplicates; 10,000 viable cells each were gated and analyzed. Mean fluorescence intensity (MFI) 

results are given as the mean value of three independent measurements. Data analysis was 

performed by Graph Pad Prism5.0 software (GraphPad Software, La Jolla, CA).  

2.3.10 RNA knockdown measured by qRT-PCR  

In 6-well plates (Corning Incorporated, Corning, NY), H1299/LUC cells were seeded with 

a density of 500,000 cells per well and incubated for 24 hours at 37 °C and 5% CO2. Polyplexes 

were prepared with 200 pmol of hGAPDH siRNA at N/P 2 in a total volume of 100 μl and added 

to 1 ml of cell culture medium per well. LF (0.5 μL/10 pmol of siRNA) was used as a positive 
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transfection control. Cells were transfected with samples in fresh medium and incubated for 4 

hours. After 4 hours of incubation, medium was added to a total volume of 3 ml, and cells were 

allowed to incubate for an additional 20 hours. Subsequently, cells were washed with 1X PBS 

and lysed with lysis buffer (SurePrep TrueTotal™ RNA Purification Kit (Fisher BioReagents, 

Fisher Scientific, Waltham, MA). Total RNA was then isolated from cells according to the 

manufacturer’s protocol with supplementary DNase I digestion and reverse transcribed to cDNA 

and amplified in a one-step protocol using Brilliant III SYBR Green QRT-PCR Master Mix . 

Hs_GAPDH-primers primers were used to quantify the gene expression of hGAPDH. Hs_β-

actin-primers were employed as a standard to evaluate the relative gene expression of the two 

genes. Serial dilutions of total RNA of untreated cells were performed to plot calibration curves 

for GAPDH and β-actin mRNA levels.  Measurements were performed on a Stratagene Mx 

3005P (Agilent Technologies, Santa Clara, CA). Ct values were analyzed with the MxPro 

software (Mx 3005P version). Results were shown as mean values +/- standard deviation of 

triplicates and analyzed by Graph Pad Prism5.0 software (GraphPad Software, La Jolla, CA).  

2.3.11 Protein knockdown measured in reporter gene assays 

H1299/LUC cells were seeded at a density of 25,000 cells per well in a 24-well plates 

(Corning Incorporated, Corning, NY) and incubated at 37 °C and 5% CO2 for 24 hours before 

transfection. Cells were transfected with polyplexes with 40 pmol FLUC siRNA or nonspecific 

control DsiRNA at N/P 2 and allowed to incubate for 4 hours. Commercially available LF 

2000™ was used as a positive control. After 4 hours of incubation, medium was added to a total 

volume of 500 µl and allowed to incubate for an additional 44 hours. Cells were washed with 1X 

PBS and lysed with cell culture lysis reagent (CCLR 1X, 100 μl/well, Promega, Fisher Scientific, 
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whereas only a small portion of the secondary amines are  protonated.31 The linear tetraspermine 

has the highest number of secondary amines compared to the other two oligospermines 

suggesting the ability of this polymer to act as a “proton sponge” at the acidic pH of the endo-

lysosomal compartment.32 The structure of linear tetraspermines possesses multiple spermine 

units in a linear arrangement which enables cross-linking of single oligospermine molecules. 

Cross-linked polymers have been reported to better interact with negatively charged regions of 

nucleic acids and can therefore yield enhanced transfection efficiencies.33 

Dendritic structures are also very attractive as gene and drug delivery systems since they can be 

flexible structures with a multitude of end groups. The latter can be exploited to attach ligands, 

which opens various opportunities for cell-specific targeting. Due to their structure, dendrimers 

are believed to be more accessible for electrostatic interaction with RNA.34 In flexible 

dendrimers, the amines located within the inner structure are accessible for protonation which 

results in an increased “proton sponge effect”35 and consequently better transfection efficiency.34 

2.4.2 Size and zeta (ζ)-potential analysis 

To achieve efficient transfection, polyplexes must be well-characterized and reproducible. 

Many of the physico-chemical properties of polyplexes determine if they can overcome 

intracellular and extracellular barriers.36. Their size is an important factor for intracellular uptake 

and transfection. Some reports indicated that particles with a size below 150 nm are required for 

uptake in lung cells by endocytosis.37. However, other reports described that spermine-based 

delivery systems  with a larger size have good transfection efficiency in vivo and are suitable for 

lung cancer gene therapy.21a The ability of oligospermines to condense siRNA and form 

polyplexes with defined structures was therefore evaluated here. Polyplexes prepared with 40 
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pmol of FLUC siRNA at N/P 2, 5, and 10 were compared in terms of hydrodynamic diameters 

and zeta-potentials. The change of size and zeta potential of polyplexes as a function of 

carrier/siRNA ratio was examined to determine a suitable N/P ratio for further investigations. All 

three oligospermines were able to condense siRNA into particles of sizes from 198.7 to 423.1 nm 

in diameter (Figure 2.4A). All polyplexes at N/P 5 were at least slightly larger than those at N/P 

2, which is in line with an earlier report that described N/P ratio dependent trends in sizes of 

siRNA polyplexes.38 Interestingly, both linear oligospermines showed an increase in size with 

increasing N/P ratios. Apparently, these polymers wrapped around the siRNA efficiently at an 

N/P ratio as low as 2 and then formed further layers of polymer on the surface of the polyplex. 

Another indication that supports this hypothesis is the increase of the zeta potential for the linear 

tetraspermine polyplexes with increasing N/P ratio (Figure 2.4B). Although linear 

bisspermine/siRNA polyplexes did not show a significant change in the zeta potential when 

increasing the N/P ratio, the zeta potentials of linear tetraspermine polyplexes increased from 1.5 

mV to 10.6 mV and 12.7 mV for N/P 2, 5, and 10, respectively. 

The dendritic tetraspermine, however formed polyplexes with decreased size at N/P 10 

(225.4 in diameter nm and 17.6 mV). This behavior can be explained by its intertwining structure 

that causes not all amines of the tetraspermine to be available for electrostatic interaction with 

siRNA at low N/P ratios. The comparably high zeta potentials these polyplexes bear also support 

the idea of positively charged dendrimer arms that are unable to be neutralized by the interaction 

with phosphates.39 However, these relatively high zeta potentials could possibly mediate 

cytotoxicity.40 Zeta potentials of dendritic tetraspermines polyplexes increased with increasing 

N/P ratios. Comparing polyplexes of linear and dendritic tetraspermines, the zeta potential of the 
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linear tetraspermine polyplexes were lower than that of the dendritic tetraspermine polyplexes at 

all of the tested N/P ratios (2, 5 and 10, Figure 2.4B).  

The surface charge of polyplexes is a significant factor for transfection efficiency of the 

polymer. Other studies have shown the ability of spermine-based polymers to neutralize the 

negative charge of nucleic acids to yield an overall neutralized to slightly positive charge suitable 

for interaction with the negatively charged cell membrane.13 In our study, all oligospermines 

polyplexes were positively charged (Figure 2.4B).  

Another prerequisite for successful and reproducible transfection, especially in vivo, is a 

narrow size distribution of the polyplexes 39. The polydispersity expressed as the polydispersity 

index (PDI) was low for polyplexes formed with the linear bisspermine (0.14<PDI< 0.3) 

compared to those formulated with the linear tetraspermine (0.26<PDI<0.34) and dendritic 

tetraspermine (0.22 <PDI<0.36, Table SI 1). The broader size distribution of the polyplexes 

obtained with the tetraspermines can be interpreted as a result of interaction between one longer 

polycationic polymer with more than one siRNA molecule, which can cause coalescence of the 

polyplexes.39 Many physical and biological parameters such as the molecular weight play an 

important role in determining the efficiency of a polymer to condense and deliver siRNA,.41. 

Linear tetraspermines (MW 2581.82) and dendritic tetraspermines (MW 2625.87) naturally have 

a higher molecular weight compared to linear bisspermines (MW 1299.40), which affects the 

ability of the polymers to interact with siRNA and to form polyplexes. As reflected by the size 

and zeta potential data shown in Figure 2.4, the structure of the polymer also plays a very 

important role regarding the ability of an oligospermine to interact electrostatically with siRNA.  
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Based on these results, the linear tetraspermine/siRNA polyplexes seemed to be the most 

favorable with the smallest size at N/P 2 (198.7± 22 nm) and a slightly positive zeta potential 

(1.54 mV). These characteristics are caused by (i) a favorable number of positively charged 

spermine units (4 units), and (ii) the linear structure which seems to be important for efficient 

interaction with siRNA and to yield a low positive close to neutral surface charge  that facilitates 

the crossing of the particle across the negatively charged cell membrane barrier. Polyplexes at 

N/P 2 with hydrodynamic diameters of 253.4± 26.3 nm for linear bisspermine polyplexes, 

198.7± 22 nm for linear tetraspermine polyplexes, and 311.5±18.5 nm for dendritic tetraspermine 

polyplexes were therefore selected for further experiments.  
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2.4.3 Size and morphology: Transmission Electron Microscopy (TEM) and Atomic Force 

Microscopy (AFM) 

The morphologies and sizes of the different polyplexes at N/P 2 were imaged by AFM 

(Figure 2.5). The sizes of the polyplexes estimated from the AFM images were 24-73 nm for 

linear bisspermine polyplexes, 101-348 nm for linear tetraspermine polyplexes, and 202-480 nm 

for polyplexes made with the dendritic tetraspermine. The differences between the sizes obtained 

by DLS compared to the AFM images can be explained by the different processes used to 

prepare the samples for DLS or AFM. The hydrodynamic diameters were determined in a 

suspension of the particles while the particles were dried for AFM. It is possible that polyplexes 

coalesced during the drying step. Additionally, the broad size distribution of the polyplexes 

shown by the imaging technique and confirmed by the polydispersity measurements (PDI) can 

explain why the Z average of the hydrodynamic diameters does not reflect the sizes measured by 

AFM. Most importantly, AFM images showed different morphologies of oligospermines 

polyplexes as a result of the different chemical architectures of the polymers used. Both linear 

oligospermines formed spherical particles, while the dendritic tetraspermine complexes show 

less defined morphology. These observations strengthen the hypothesis that linear 

oligospermines wrap around siRNA and condense it efficiently, whereas not all arms of the 

dendritic tetraspermine are involved in siRNA condensation, as shown in the fuzzy morphology 

of the polyplexes.  

TEM showed electron-dense areas in the polyplexes which could be the siRNA and the 

presence of very small particles (about 40 nm) in all polyplex formulations besides larger 

particles of 440 nm, 330 nm, and 189 nm for linear bisspermine, linear tetraspermine and 
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reflected by increasing zeta potentials (Figure 1). With the rise of the zeta potential, the 

electrostatic interaction is enhanced, followed by higher condensation. All oligospermines were 

able to completely condense siRNA at N/P 2 and higher, whereas complete condensation of 

siRNA was only achieved at N/P 5 and higher for low molecular weight PEI. These results 

indicate that oligospermines tend to bind siRNA with higher affinity than PEI at low N/P ratios. 

Noticeably, linear bisspermine/siRNA polyplexes at N/P 2 showed relatively low condensation 

of siRNA compared to the other two oligospermines. This observation can be explained by the 

low molecular weight and short chain length of the bisspermine compared to the tetraspermines. 

The fact that the condensation efficiency did not increase for the bisspermine by increasing the 

N/P ratio additionally corroborates the observation of almost constant zeta potentials. Polyplexes 

with N/P 2 ratio were selected for further experiments based on their small size and overall good 

siRNA condensation. 



 

Figure  2
intercalat

Sta

vectors. 

membran

oligosper

relevant 

(4.5) env

of all po

released 

oligosper

.6. Condens
tion of siRN

ability of cat

Their stabi

ne46 or in se

rmines to p

conditions. 

vironment of

olyplexes d

from the po

rmine polyp

sation efficie
NA at increas

tionic polyp

ility is infl

erum.27 Hep

protect the 

Different pH

f the cytopla

decreased w

lyplexes inc

plexes main

ency of olig
sing N/P rati

plexes is imp

uenced by 

arin assays 

siRNA in t

H condition

asm and end

ith increasin

creased rapid

ntained high

52 
 

 

 

gospermines
os. Results a

portant for d

the presen

were theref

the presenc

ns were chos

o-lysosomes

ng heparin 

dly as a func

her stability 

polyplexes
are given as

determining 

nce of comp

fore perform

ce of polyan

sen to mimi

s, respective

concentrati

ction of hepa

profiles tha

measured b
average of  

their efficie

peting anio

med to confi

nions under

ic the neutra

ely. As expec

ion. The am

arin concent

an PEI (5 

 

by SYBR®
n=3 +/- S.D

ency as non

ons45 in the

rm the abili

r physiologi

al (7.4) or a

cted, the sta

mount of si

tration. How

kDa) polyp

Gold 
D. 

-viral 

e cell 

ity of 

ically 

acidic 

ability 

iRNA 

wever, 

plexes 



53 
 

 

  

against heparin competition, especially at low concentrations of heparin (Figure 4). It is 

important to note that the release profile from low molecular weight PEI complexes needs to be 

seen in the context of its poor condensation at N/P 2. As shown in Figure 3, at N/P 2, 75% of the 

siRNA is not yet condensed by 5 kDa PEI. It is not surprising, therefore, that the same amount of 

siRNA (75%) is found to be accessible for intercalation even in the absence of heparin. The 

remaining 25% of the siRNA are consequently very easily released from the complexes as shown 

in Figure 4.  

At neutral pH, less than 75% of the siRNA was released from the oligospermine complexes 

even at the highest heparin concentration (Figure 2.7A). Since a balance between complexation 

and decomplexation is necessary to release siRNA in the cytosol for efficient incorporation to the 

RNA induced silencing complex (RISC), the release profiles at lysosomal pH were tested also. 

At acidic pH, many amines, especially in PEI, which are not protonated at pH 7.4, were charged 

leading to an increase of the complexation efficiency. However, siRNA was easily released from 

PEI complexes at comparably low heparin concentrations at acidic pH also. In comparison, 

oligospermine complexes displayed better stability again. In the acidic environment, the 

tetraspermine complexes released comparable amounts of siRNA as PEI at high heparin 

concentrations. Only the bisspermine lacked efficient decomplexation properties.  
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polyplexes made of linear spermines, however, results in more quantitative competition with 

siRNA and thus release of the latter.  

2.4.5 Polymer cytotoxicity: MTT assay  

The formulation of non-viral vectors of cationic polymers and anionic nucleic acids is 

constrained by the compromise of high transfection efficiency which is often times only 

achieved at the price of high cytotoxicity.47 Using cationic polymers with high molecular weight 

and charge density can protect the resulting polyplex from destabilization by natural cellular 

polyanions. The trade off, however, is that these positive charges can interact with cell 

membranes, inhibit crucial biological processes and lead to cytotoxic effects. 40 MTT assays 

were therefore used here to evaluate the cytotoxic effect of three cationic oligospermine 

polymers on H1299/LUC cells after 24 hours of incubation with the polymers. Results are 

presented as percentage of cell viability compared to untreated control cells. As expected, the 

cytotoxicity of oligospermines increased with increasing polymer concentration. Moreover, 

increasing the cationic charge of the polymer by increasing the number of spermine moieties also 

increased the cytotoxicity. Linear tetraspermines and dendritic tetraspermines showed a higher 

toxicity at higher concentrations when compared to linear bisspermines. This trend is due to the 

presence of a higher number of positively charged groups at neutral pH in the linear 

tetraspermine (13 positively charged groups) and dendritic tetraspermine (14 positively charged 

groups) compared to linear bisspermine (7 positively charged groups). The dendritic 

tetraspermine polymer was even more toxic than the linear tetraspermine at high concentrations 

(0.5-1 mg/ml) which may be due to its structure. In conclusion, all oligospermines affected the 

cell viability significantly less than PEI (5 kDa, IC50=3.63 µg/ml) and commercially available 
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LF 2000TM (IC50=41.41 µg/ml). At the corresponding polymer concentrations in polyplexes 

used in the following experiments, the cell viability was at least 83% after treatment with linear 

bisspermine, 88% with linear tetraspermine, and 77.3% with dendritic tetraspermine (Figure 2.8). 

It is important to note that the positive charge of the polymers is neutralized after polyplex 

formation with siRNA, so the viability shown here after treatment with polymer only is the 

assumption of a “worst case scenario”.  
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Figure  2.8. Cytotoxicity profiles of oligospermine polymers obtained by MTT assays. 
Percentages of cell viability of H1299/LUC cells are shown as a function of increasing polymer 
concentration after 24 hours of polymer incubation. The table shows the IC50 concentrations of 
the polymers in mg/ml.   
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2.4.6 Quantification of cellular uptake by flow cytomtery 

Cellular uptake was quantified by flow cytometry and compared to PEI (5 kDa) as a 

positive control and untreated cells as a negative control. Polyplexes with 40 pmol of 

AlexaFluor488-labeled siRNA at N/P 2 and 10 were compared. Additionally, trypan blue 0.4% 

was used on the cells to quench the extracellular fluorescence associated with polyplexes that 

bind to the surface but are not internalized. The results were compared to untreated cells. 

Overall, trypan blue-treated cells showed slightly lower mean fluorescence intensities compared 

to cells that did not undergo quenching of bound polyplexes. This indicates that a small fraction 

of the siRNA polyplexes were attached to the cell membrane but are not taken up intracellularly. 

Among the oligospermine polyplexes, the highest cellular uptake was achieved by polyplexes 

made of linear tetraspermine/AlexaFluor488-siRNA at N/P 2 (no trypan blue-treatment) (Figure 

2.9). These results are surprising because linear tetraspermine polyplexes were almost neutral at 

N/P 2 (1.54±0.5 mV), whereas dendritic tetraspermine polyplexes had a more cationic zeta 

potential (12±0.85 mV). For polymers such as PEI, an increase of the zeta potential which is 

obtained by increasing the N/P ratio is expected to mediate stronger siRNA delivery. This trend 

was confirmed here. However, PEI polyplexes at high N/P ratios are known to cause toxicity and 

off-target effects in transfected cells.48 While the siRNA delivery by oligospermine polyplexes 

was comparable to PEI at N/P 2, an increase of the N/P ratio to 10 did not increase their 

efficiency. Linear tetraspermine polyplexes at N/P 2 were found to have the smallest 

hydrodynamic diameters, however. It is possible that this parameter is favorable for uptake and 

crossing of the barrier of the cell membrane. Additionally, the spherical morphology of the linear 
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oligospermine complexes compared to the fuzzy morphology of the dendritic tetraspermine 

polyplexes could have beneficially affected their internalization. 

 

Figure  2.9. Flow cytometry measurements showing the uptake of polyplexes made of 
AlexaFluor-488 labeled siRNA and linear bisspermine, linear or dendritic tetraspermine. Mean 
fluorescence intensities were quantified in H1299/LUC cells after 24 hours incubation with 
polyplexes prepared at N/P 2 and 10. Trypan blue treatment is performed to quench the 
extracellular binding of siRNA polyplexes to the cell. Cells treated with trypan blue showed 
decreased mean fluorescence intensities. 
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2.4.7 RNA knock down measured by qRT-PCR 

Real-time PCR was performed to quantify the knock down on the mRNA level mediated 

by polyplexes made of GADPH siRNA (200 pmol/well) and oligospermines at N/P 2. All 

oligospermines were used to form polyplexes with negative control siRNA (siNC) also. Linear 

bisspermine/siRNA polyplexes did not show gene silencing. This can be attributed to the 

incomplete siRNA release from the polyplex in the endo-lysolomal compartment as shown in 

Figure 4B. The most efficient oligospermine candidate was the linear tetraspermine, which is in 

line with the results of polyplexes size, zeta potentials, and flow cytometry. Linear tetraspermine 

polyplexes were shown to significantly downregulate the RNA expression more effectively than 

dendritic tetraspermines (54.6±17.3% vs. 75.1±1.5% residual GAPDH expression) (Figure 2.10). 

The dendritic structures showed less RNA knock down compared to the linear tetraspermine 

structure which could be explained by its less efficient uptake into the cells. In addition, the lack 

of secondary amines in the dendritic structure contributes to the lack of the “proton sponge 

effect”.35 Comparing the results of the three oligospermine polyplex formulations, we conclude 

that the difference in the architecture of the polymer strongly affected the efficiency of siRNA 

delivery to H1299/LUC cells. The linear tetraspermine structure is favored for successful siRNA 

delivery in lung cancer cells.  
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Figure  2.10. Transfection efficiency in vitro (H1299/LUC cells) of polyplexes at N/P 2 on the 
mRNA level measured by qRT-PCR. Hs_GAPDH-primers were used to quantify hGAPDH gene 
expression. Hs_β-actin-primers were employed as a standard to evaluate the relative gene 
expression of the two genes. Polyplexes made of GADPH siRNA and linear tetraspermine 
showed the best knock down compared to dendritic tetraspermine (54.6% vs. 75.1% residual 
GAPDH expression) and linear bisspermine polyplexes (no knock down). 
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2.4.8 Protein knockdown measured in reporter gene assays 

At pH 4.5, the secondary amines are protonated leading to a strong buffering capacity 

inside the endosomes and thus a further influx of hydrochloric acid and water leading eventually 

to endosomal rupture. This event is believed to release endocytosed polyplexes and to support 

their endosomal escape into the cytosol.31 The silencing efficiency of the luciferase protein 

expression in H1299/LUC cells induced by oligospermines polyplexes at N/P 2 was evaluated 

after transfection with 40 pmol of anti-LUC siRNA after 48 hours of incubation. The results 

were normalized to the relative expression of untreated cells and compared to commercially 

available LF 2000™. LF was used in many studies as a positive control for siRNA mediated 

knock down efficiency.49 As in the mRNA knock down experiments, negative control siRNA 

(siNC) was also used with all oligospermines and LF. Linear tetraspermine/siRNA polyplexes 

showed the best knock down effect of luciferase expression compared to the other 2 

oligospermines (Figure 2.11), which is in agreement with the RT-PCR results. The dendritic 

tetraspermine and LF showed higher cytotoxic effects than the other polymers which can be 

explained by the cytotoxicity results shown in Figure 7. These results suggest that not only did 

the oligospermine architecture affect the interaction of the protonated portions of the polymer 

with the phosphate groups of siRNA, but these different siRNA complexation behaviors also 

lead to different efficiency of gene knock down. Linear bisspermine polyplexes were taken up by 

the cell but, showed neither knock down on the mRNA nor the protein level. This is attributed to 

the lack of amines in the short chain length and low molecular weight of the bisspermine 

structure which does not condense siRNA as quantitatively as the tetraspermines (Figure 2.3.) 

and also does not efficiently decomplex (Figure 2.7). Our results are in line with other reports in 
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which Eliyahu et al. compared two chemically-modified spermine-based delivery systems for 

DNA delivery in terms of the number of spermine moieties and the distribution of charge density 

on the polymer backbone. In their study, a low and a high sperminated polymer were examined. 

The low sperminated polymer showed 56% less spermine per weight and 28% less primary 

amines than the high sperminated polymer. The low sperminated polymer was less efficient in 

neutralizing the negative groups of the nucleic acids and hence showed lower transfection 

efficiency compared to the high sperminated polymer.31 Another study of cationic spermine 

conjugates with different polysaccharides showed efficient in vitro transfection with high 

spermine content (2000 nmol/mg).31  In vivo experiments showed that chemically-modified 

dextran-spermine polyplexes successfully transfected mice with low toxicity and good 

tolerability when combined intramuscular and intranasal administration was performed.33, 50 

However, for efficient transfection, high positive zeta potential of the polyplex and large DNA 

doses were necessary.50 Dendritic structures have been described to be more accessible for 

electrostatic interaction with RNA.34 This is the case if the structurally inner amines are available 

for protonation which then also enhances the “proton sponge effect”,35 the endosomal escape, 

and the transfection efficiency.34 However, our results showed that the amines in short dendritic 

structure are not all available for interaction with siRNA. In comparison with short linear 

structures, short dendrimers are more rigid. The protonated amines in the dendritic structure were 

thus not neutralized which increased the cytotoxicity of the polyplexes. The polyplexes made 

with the dendritic structure did not show strong uptake or gene knock down efficiency which 

may be due to the larger sizes at N/P 2 compared to the other two polymers or the less spherical 

morphology. Therefore, the structural architecture of dendritic tetraspermine was associated with 

increased cytotoxicity and decreased transfection efficiency. 
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decomplexation of siRNA and the carrier’s ability to escape the degradation in lysosomes are 

two main factors in determining the polymer’s transfection efficiency. The spatial availability of 

the positively charged amines in the polymer plays an important role for its electrostatic 

interaction with RNA and thus the shielding and protecting of siRNA. Therefore, the 

oligospermine architecture was shown to affect the transfection efficiency of polyplexes formed 

with siRNA. Consequently, an optimization of the used polymer is necessary. This can be 

achieved in many ways. Here, we investigated the effect of using different numbers of spermine 

monomers. In addition, we examined the effect of two different geometrical structures, namely 

linear and dendritic oligospermines. We found that tetramers of spermine are required to provide 

the adequate positive charge for both uptake and buffering effect for endosomal escape. From the 

comparison of linear bisspermines and linear tetraspermines, we found that increasing the 

number of spermines and charge density within the polymer enhanced the transfection efficiency 

at minimal toxicity. The linear structure is preferred over the dendritic structure, because the 

former seems to interact more efficiently with siRNA as not all amines of the latter are available 

for siRNA condensation leading to a more positively charged surface charge. Showing more 

efficient charge neutralization, the linear tetraspermine polyplexes are less cytotoxic and were 

shown to be more efficiently transfected into lung carcinoma cells (H1299/LUC). Therefore, we 

conclude that linear tetraspermines are very promising siRNA delivery systems. To enhance their 

intracellular uptake, coupling of targeting ligands is currently investigated.  

Supplementary Information contains polydispersity values, TEM images, and the temporal 

development of siRNA release at pH 4.5.  This material is available free of charge via the 

Internet at http://pubs.acs.org. 
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Extensive reviews discussed the effects of surface nanotopography and bio-interfacial 

interaction, which is the interface between the cell and other fabricated material, on cell behavior 

in terms of motility [17], alignment [18], adhesion [19, 20], migration [21], differentiation [22], 

proliferation [23], nerve regeneration [24] and others  [25-29]. Much distinctive behaviour was 

observed for cells cultured on nanopatterns versus micro patterns, especially in anchorage-

dependant cells like neural cells including the dynamics of its membrane, elongation of axonal 

fibers to reach its specific targets, the growth pathway, and the cytoskeletal rearrangement that 

regulates the directional cell motility. Results vary according to the cell type, topography 

nanostructuctures and culture conditions [30]. The methodology applied for scaffold alignment 

also affects the alignment of cells with the nanotopography. Chaurey et al. described that 

fibroblasts oriented similarly on electrospun vs. nanoimprinted scaffolds for fiber larger than 100 

nm. However, cell alignment was more efficient on sub-100 nm nanoimprinted fibers [31]. The 

reason for these differences in cell behaviour is that many peptides which are  ECM components 

(such as laminin [32] and fibronectin) exist in nanoscale. Generally, nanopatterned structures on 

substrate surface were shown to induce cells to change morphology, alignment and adhesion 

compared to flat surfaces [33]. Dalby and coworkers cultured fibroblasts on 13 nm islands. 

Fibroblasts were found to have an increased cell attachment and spreading compared to a planar 

surface which were reflected by up-regulation of specific proliferative genes [33]. Later on, the 

same group used nanotopograhy as a non-invasive tool to understand the mechanism the 

mechano-transduction cascade of gene expression in fibroblasts [34].  

Wieringa et al. studied the effect of nanotopography effect on F11 a root-ganglion derived 

cell line in terms of cell contact guidance. Contact guidance is the induced effect of the 
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anisotropic topographic structures on the cell regarding the alignment and migration in the 

direction of the topographies [35]. F11 is an established model for studying cytoskeletal 

rearrangement, plasticity [36] and differentiation [37]. Wieringa et al. presented the F1 cell line 

as a potential peripheral sensory neuron model for nanotopographical guidance [38]. Substrates 

with two different ridge dimensions of 500 nm and 2000 nm and a constant groove width of 500 

nm were used to culture the cells. Another factor, the percentage of fetal bovine serum (FBS) in 

culture media was considered. In regards to the neurite guidance, no difference was shown 

between patterned and flat surface when cultured with 1% FBS. In contrast, when cells were 

cultured with 10% FBS, it was shown that the patterned surfaces induced the cell alignment with 

a trend of decreasing neurite alignment with increasing ridge width.    This supports the 

hypothesis that the cell alignment on nano-patterns occurs differently than on flat unpatterened 

surfaces and thus might influence the reliability of other aspects such as nerve regeneration. It 

also suggests that sometimes, a set of culture conditions can control the cell response rather than 

only one condition. A different report by Lee et al. describes osteoblast-like cells cultured on 

nano-thin polymer films on which nanopillar features were imprinted with a favourable size of 

200 nm. This process changed the contact angle of the thin film and the surface property from 

hydrophilic to hydrophobic. When cells were cultured on hydrophobic nanopillar surface, they 

showed poor spreading and adhesion, which might be due to the deprived adhesion on top of the 

nanopillars. This represents therefore a cell substrate model that resists the cell adhesion and 

spreading. Additionally, it was found that the most important factor in terms of the contact angle 

of the nanopillar with the plastic thin film is the temperature of imprinting and de-molding of the 

nanostructures and not the imprinting time [39].  
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low viscosity is deposited as drops by ink jet printing without spin coating.  The template is then 

lowered to a contact point with the resist. The resist flows to fill in the gaps between the 

substrate and the template topographies by the capillarity effect. Subsequently, UV irradiation is 

applied to cause polymerisation. The lowest possible pressure (<0.02 atm) among all other 

techniques is used in SFIL. The drop injection renders SFIL useful for patterning on non-planar 

surfaces [71]. Step and flash imprint lithography (SFIL)  is a good example for an optimised 

automated operation with reduced defects and contamination [72]. The alignment accuracy is 

about 10 nm [73]. Glangchai et al. used SFIL to form nanoparticles with uniform 50 nm size and 

shape using macromers. These nanoparticles are enzymatically-triggered to release an 

encapsulated drug. This novel incorporation of nanoimprinting represents a high-throughput 

technique with a precise control of the nanoparticles size. SFIL requires neither high temperature 

nor exposure of UV radiation for a long time. SFIL showed many advantages such as the high 

accuracy of alignment and uniformity. Besides, it can be used to imprint over a pre-patterned 

resist. This property suggests that SFIL can perform multi-layering of resists and form 3D 

scaffolds [74].   

Other developments have been studied to improve the conditions of NIL. The air cushion 

technique used to enhance the uniformity of the applied force was shown to increase the yield as 

well [75]. Other developments were the incorporation of a biological sample as a template in the 

process [76], reduction of temperature and pressure applied [77], polymerisation at room 

temperature [57], and others [78-83]. 
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planarisation is characterised by the average peak-to-valley height of the coated resist. The 

solution used for spin-coating is the parameter that most strongly controls the thickness of the 

layer. By adjusting the degree of surface planarisation after spin-coating, pattern transfer can be 

accomplished in the inking and whole-layer transfer modes at temperatures and pressures as low 

as 30 °C below Tg and 1 MPa, respectively, which is significantly beneficial. At this lower 

temperature, the pattern transfer was found to be strongly dependant on the planarisation degree. 

If the polymer coating is non-planarised on the mould, the protruded areas only will be 

transferred to the substrate, resulting in so called inking pattern transfer. But if the polymer is 

planarised, then the entire polymer coat is transferred to the substrate which is called whole-layer 

transfer. The nature of these two modes only requires minimal dislocation of the polymer film 

which renders RNIL less prone to  polymer flow problems  [55].     

To reduce the high temperature and pressure requirements, Borzenko et al. modified the 

conventional NIL by applying the polymer bonding method. In this method, the polymer is 

applied on both the mould and the substrate to facilitate their bonding at reduced temperature and 

pressure. A specific treatment is used to leave the polymer on the substrate only after cooling. 

However, this method leaves a thick residue layer after the imprinting which complicates the 

subsequent transfer steps [99, 100]. 

• Reverse nanoimprint lithography (RNIL) is similar to T-NIL; however the thermoplastic 

resist is applied on the mould rather than the substrate. RNIL provides opportunities to use 

a variety of flexible polymer substrates which are difficult to be covered with a polymer. 
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(µCP) [102].  The formed nanopatterns were used to grow Hela cells. Results showed alignment, 

elongation as well as preferential localisation of cells at the nanolines formed. Another example 

for the combination of techniques is that of laser interference lithography (LIL) and UV-NIL. 

Although LIL is a simple, quick and easy method to fabricate nanopatterns, it has some 

limitations, namely the non-selectivity of produced patterns and difficulty of size restriction of 

maximum and minimum structures. On the other hand, fabricating master stamps by NIL is 

costly. In order to reduce the costs, LILL is used to fabricate the master stamp, subsequently, 

NIL is performed to form replicas used as cell substrates. Combining both techniques is 

advantageous to limit the non-selectivity of LIL as well [103]. Therefore, Lee et al. used LIL to 

fabricate a master stamp where a quartz wafer was coated with a photoresist of 1 μm thickness. 

Two series of laser exposures were performed at the interference state. The sample was rotated 

by 90 degrees before the second exposure. The photoresist was hard-baked to develop the 

patterns. These nano-patterns were then transferred by a reactive ion etching (RIE) process onto 

a quartz wafer coated with a Cr layer. At this point, a negative replica is produced.  A further 

RIE process was performed onto a quartz substrate to obtain a positive replica. The produced 

replicas are used as substrates for cell culture. Two patterns were obtained, i.e. a dense pattern 

and a scarce pattern. Patterns 1 and 2 are nanopillars round in shape, 123.3 and 130.1 nm in 

diameter, 200 and 500 nm in height, with an interval of 163.6 and 438.7 nm, respectively. The 

ratio percentage between pattern area and unit surface area of original flat surface was�~14.5 for 

pattern 1 and ~4.1 for pattern 2. Human osteoblasts (hFOB1.19) were cultured on the two 

patterns as well as on a flat control surface. Cells on scarce patterns showed good adaptation to 

the pattern and filopodial extension with high directionality. Cells on dense patterns showed 

filopodia with different turning points that indicated difficulty in finding the pathway of 
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migration. The authors concluded that the contact guidance is dependent on the ratio of the 

pattern surface area to the pattern interval [104]. Rajput et al. recently used nanoholes with a 

gradient array of relative spacing ratios on a fused silica layer to form nanoneedles structures. 

Using nanoimprinting, the negative replica of the nanoholes was extracted by a polymer layer, on 

which silica was placed to form nano-needles. The pattern varied from 10 μm to 50 μm in one 

micron increments in both orthogonal directions in a spatial 2D gradient array. When fibroblasts 

were cultured on nanoneedles, an enhancement in cell adhesion was observed compared to flat 

silica surface which is due to the interaction between ECM components and nanoneedles, and 

prevention of cell aggregate formation [105].  

As described in the introduction, the mechanism of cell response to different nanopatterns had 

been poorly understood before the emerging of NIL. Cells cultured on hydrophobic nanopillar 

surfaces had shown poor spreading and adhesion [39]. Later, the role of the type of 

nanotopography in guidance and cell spreading was investigated in 2010 by Hu et al. The 

authors used nanoimprinting followed by demould-induced feature elongation to obtain 

nanopillar topographies with pillars larger than the mold depth. After seeding human foreskin 

fibroblasts on nanopillar topographies with 150 nm, ∼700 nm, or 1 μm in height, these cells also 

spread poorly on both the hydrophobic and hydrophilic nanopillar surfaces due to the restricted 

area at the tops of the pillars which did not suffice for the formation of micron-scale focal 

adhesions between the cells and the surfaces. The authors therefore suggested nanopillar 

topographies for surfaces on which cell spreading needs to be avoided [106].  

In a study by Xie at al., on the contrary, nanopillar arrays were used to pin the position of 

neurons and to serve for better cell attachment. Similary, as in the report described above, the 
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nanopillar dimensions were 150 nm in diameter, and 1 μm in height. However, Si and SiO2 

nanopillar substrates on platinum and quartz material were chosen for biocompatibility. After 

pinning the neurons to the nanopillars, the authors observed inhibited migration of the cell body. 

However, axons and dendrites were observed to freely grow and elongate into the surrounding 

area [107]. It becomes clear that on a similar nanotopography, different cell types can behave 

very differently, and that the substrate material plays an important role also.  

Another example for the fact that the combination of two parameters, rather than one [38], 

namely topography and culturing time, can significantly change the cellular alignment fibroblasts 

was reported by Loesberg et al. The authors determined the orientation angle of cells by 

measuring the angle between the direction of the grooves and the direction of cell growth which 

was determined by the maximum cell diameter to determine cell orientation. Loesberg et al. 

found that fibroblasts seeded on nanogrooved polystyrene (PS) substrates had aligned with the 

nanotopography of the substrates after only 4 h if the grooves were at least 100 nm wide and 75 

nm deep. Contact guidance reflected in fibroblasts orientation according to the grooves was even 

observed in only 35 nm deep grooves 24 h after cell seeding. The authors therefore concluded 

that the grove depth is the most determining parameter, although interdependence with culture 

time becomes obvious [108]. This is in contrast with a value reported by Dalby et al., who 

showed that lamellapodia and filopodia still show interaction with random nano islands as 

shallow as 10 nm [33].  

Nanotopographical substrates were also used to investigate nuclear deformation in human 

mesenchymal stem cells as it is known that nanoscale features can initiate cell-matrix adhesion 

signals that, mediated by the cytoskeletal network, are transduced to the nucleus. Chalut et al. 
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therefore used a combination of soft lithography and T-NIL to obtain nanograted 

poly(dimethylsiloxan) (PDMS) and PS substrates which were coated with collagen for cell 

culture purposes. The authors were able to show by fluorescence microscopy and live cell 

imaging that nuclei of stem cells oriented and extended along the axis of the grating if grown for 

48 h on nanograted the PDMS or PS substrates. They also found that the mechanical properties 

of the substrate were an important parameter as shown by more rapid nuclei elongation on the 

stiffer PS substrates [109]. 

Johansson et al. also found that sympathetic and sensory ganglia cultured close to nano-

printed patterns in polymethylmethacrylate (PMMA)-covered silicon chips showed axonal 

outgrowth on ridge edges and elevations only tone week. The authors used electron beam 

lithography (EBL) and T-NIL to fabricate PMMA-covered silicon wafers and fast Fourier 

transform (FFT) analysis in order to quantify the alignment of the axonal outgrowth of ganglia. 

They described that axons were guided by nanoimprinted polymer patterns of at least 100 nm 

and concluded that the ratio of axon diameter and groove width was the major determinant 

affecting axonal guidance [110]. 

Crouch et al. directly imprinted tissue culture polystyrene (TCPS) with gratings of various 

pitches and depths using T-NIL after preparing their molds by UV contact photolithography and 

inductively coupled plasma (ICP) etching. To obtain 3D collagen-like structures with nano- and 

microstructures, they used double-imprinting. Human foreskin fibroblasts were seeded on the 

substrates and fixed 24 h later and found to align and elongate efficiently at increased aspect 

ratios of the nonpattern width and depth. Although they found that the aspect ratio can describe 
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the cell behaviour, they also acknowledged that differences in cell types, culture conditions, and 

structure variation makes predictions difficult [111]. 

Although by far the most studies investigating cell guidance on nanotopographies have 

employed fibroblasts, other reports describe the growth of cells such as mesenchymal stem cells 

[109], neurons [107, 110, 112], astrocytes [113] or cardiac aorta endothelial cells [114] on 

nanoimprinted substrates. In a study investigating astrocyte reactivity, Ereifej et al. used UV-

NIL and pre-made reflective holographic-grated molds to obtain poly(methyl methacrylate) 

(PMMA) patterned substrates with either a period of 3600 grooves/mm or 1800 grooves/mm. 

The authors found that C6 rat astrocytoma cells seeded on the differently nanopatterened and 

non-patterened substrates showed less protein adsorption, less cell adhesion, proliferation, and 

viability if seeded on the 3600 nanopattern surface. They concluded that this particular 

nanopattern could be beneficial for the fabrication of neural electrodes to avoid glial scarring and 

astrogliosis after microelectrode implanation [113]. 

Similarly, Baranes et al. demonstrated that leech neurons growing on nano-scale line-

pattern ridges develop more simplified neuronal branching tree [112]. Their observations that 

small filopodia attach to the nano-ridges which guides the neuronal growth direction is in line 

with findings by Johansson et al. described above [110].  

In another example of neuronal cell culturing on nanoimprinted substrates, the impact of 

topographical noise, such as protein aggregates [115], and cellular debris [116], on the guided 

growth of neuritis was investigated. Tonazzini et al. used T-NIL to produce noisy nanogratings 

of 500 nm ridge and 500 nm grooves. Different substrates with variable percentage of noise and 
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cell-dependant directionality were fabricated.  Differentiating neuronal PC12 cells were cultured 

on the patterned substrates, and observed for alignment and guidance. Results showed that the 

loss of neurite guidance is not linear to increasing the topographical noise. It is rather a threshold 

effect that is associated with the spatial arrangement and the focal adhesion (FA) maturation. 

Lastly, an antineoplastic drug, that promotes cell contractility, nocodazole, stimulated aligned 

FA maturation when incorporated in the scaffold and hence boosted the alignment. This suggests 

that using specific drugs can modulate the cell culture conditions and cellular growth on cell 

substrates [117].  

In 2009, Idota et al. used graft-polymerisation with an electron beam (EB) lithography 

system to fabricate temperature-responsive micrometer and nanometer-patterned poly(N-

isopropylacrylamide) (PIPAAm) layers with a 200 nm line-width. The authors found that 

fibroblasts and cardiac aorta endothelial cells growth was guided by the pattern orientation at 

temperatures above the lower critical solution temperature (LCST) but detached, shrunk and 

folded along the pattern below the LCST. It was concluded that this nano-scale system may 

allow engineering of functional 3D cell sheets or spheroids [114]. 

Table  3.1: Classification of nanoabrication methods in terms of type of energy sources. For each 
method, important characteristics, polymer used, advantages and disadvanatages are 
summerised. 

Source of 

Energy  

Technique Important 

Characteristics 

Advantages Disadvantages Referenc

es 

Thermal  Thermal NIL 

(T-NIL) 

Physical deformation 

of thermoplastic 

polymer above Tg   

High resolution.  

High throughput. 

Low cost.  

High temperature 

High pressure (50-

100 bar) 

[42] [48] 

[118] 
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Simple set-up. 

Short procedure.  

Mechanical tension  

Reverse NIL 

(RNIL) 

Thermal cure is 

applied to liquid 

resist. Pattern is 

formed on mould then 

transferred to 

substrate. 

Possible for 

substrates that are not 

suitable for spin-

coating and those 

with surface 

topographies. 

Short process.   

No external pressure. 

Pattern transfer can 

be challenging  

[47, 51]

Optical Ultraviolet 

NIL (UV NIL)  

UV curable polymer 

resist dispensed and 

spin-coated on 

substrate.  

Room temperature. 

Low pressure (0-5 

bar). 

Short process. 

Low cost.  

Hard to replicate 

patterns with high 

density and high 

aspect ratio. 

Difficult to release 

pattern from mould.  

[44] 

[118] 

 Reverse UV 

NIL 

UV curable liquid 

resist. Pattern is 

formed on mould then 

transferred to 

substrate. 

Enables 3D 

patterning by 

repeating the process. 

Reduced temperature. 

Reduced pressure. 

Pattern transfer can 

be challenging. 

[98]

Chemical  Microcontact 

printing (µCP) 

Pattern transfer to a 

substrate through 

relative difference 

Simple. 

Low cost.  

Versatile. 

Stamp deformation 

during removal 

from template.  

[101, 

119-121] 



 

Electrica

 

• Com

acc

Mo

sub

adh

 3D3.10.

In r

Several 

lithograp

lithograp

al Electro-

chemical 

deposition

mbining mo

count for opt

ost cell cultu

bstrates that p

hesion, or tha

D patternin

reality, the f

conventiona

phic and non

phy [124] an

betwe

energ

n 

Electr

oxida

betwe

and io

re than one n

timising the r

re substrates

promote cell

at allow for 

ng 

fabrication p

al techniqu

n-lithograph

nd soft litho

een surfa

gies.  

rochemical 

ation/reduction

een conducti

onic interfaces.

nanoimprint

resultant pat

s were fabric

l guidance, t

the growth o

process of a

es can con

hic technique

ography [125

98 
 

 

 

ace Elastomer

afford

mechanic

to print

structures

ive 

.  

Yields

accurate s

t technique a

tterns and el

cated through

that pin cells

of spheroids

3D environm

nstruct com

es. Lithogra

5], capillary

ric stamps 

sufficient 

cal strength 

t 500 nm 

s. 

highly 

structures.  

as well as oth

iminate und

h a combina

s to a certain

are discusse

ment can be

mplex 3D n

aphic techni

y force litho

Lower resolut

patterning 

decreased 

reproducibility

Contamination

uncured fragm

Swelling of s

by organic sol

Only applicab

conductive or

materials.  

her distinct m

desired fabric

ation of meth

n area, that in

ed.  

e expensive 

nanoscaffold

iques includ

ography [126

tion of 

and 

y.  

n with 

ments.  

stamps 

lvents. 

ble to 

r ionic 

[91] [

123] 

methods can

cation steps.

hods, and 

nhibit cell 

and complic

ds, classifie

de electron b

6, 127], pol

122, 

n 

cated. 

ed as 

beam 

lymer 



 

transfer p

[129, 130

lithograp

layer-to-l

Figure  3
polymer 
mould is 
pre-patte
to the su
environm
spin-coat
to form a
repeated 
This proc
growth o

printing, dec

0]. NIL can

phy by eithe

layer stackin

3.4: 3D Pat
resist is disp
thermally o

rned nanostr
ubstrate. A tw
ment. b) Ver
ted on a sub
a nanopattern
to yield ano

cess continu
of cells. Adap

cal-transfer 

n be used to 

er direct nan

ng of resists,

tterning a) 
pensed in th

or UV cured 
ructures to d
wo-level pat
rtical layer-t
strate. A mo
n. The moul
other layer o
ues with the 
pted from [1

lithography

build 3D su

noimprint li

 shown in Fi

Direct nano
he mould to

to fabricate
detach and tr
ttern is form
to- layer sta
ould is embo
ld is released
of pattern wh
number of l
32, 133] 

99 
 

 

 

[128], and

ubstrates wi

thography o

igure 3.4 [94

oimprint lith
occupy the
 a nanopatte

ransfer the se
med. This pro
acking of res
ossed into th
d leaving the
hich is transf
layers essent

ion project

ith inter-con

over pre-pat

4, 131]. 

hography ov
spaces betw

ern. This mo
econdary pa
ocess is repe
sists. A poly

he resist. The
e pattern on
ferred and st
tial to form

tion lithogra

nnected mate

tterned resis

ver pre-patt
ween the mo
ould contacts
atterned resis
eated to form
ymer resist 
ermal or UV
the substrate
tacked on th
a spatial arr

aphy as revi

erial using s

sts or by ve

terned resist
ould cavities
s a substrate
st from the m
m the desire
is dispensed

V cure takes
e. This proc

he previous l
rangement fo

iewed 

single 

ertical 

 

ts. A 
. The 

e with 
mould 
ed 3D 
d and 
place 
ess is 
layer. 
or 3D 



100 
 

 

  

In vivo, cells are exposed to physical directional cascade signals due to their  existence in a 

3D environment with certain topographical noise as discussed above [115, 116]. For example, 

cell guidance is also significantly altered if cells are cultured on a 3D scaffold with more than 

one type of cells. One example for cross-talk between two different filopodia populations was 

reported by Jang et al. The authors provided a 3D model to understand the guidance mechanism 

induced by artificial nanotopographies resembling ECM cues in neuronal cells. They used two 

different populations of filopodia at the growth cone. UV-NIL was used to fabricate arrays of 

parallel ridges (350 nm wide and 350 nm high, separated by grooves of 1, 2, 3, 5 times 350 nm 

width increments). Laminin, an ECM protein, was presented on a line nanopattern. The neurite 

outgrowth was shown to be oriented along the line pattern and the neurite length increased. 

Neurite outgrowth is a conventional behavior of the growth cone involving the two populations 

of the filopodia. The authors described the cross-talk between the two filopodia populations 

which regulated the sensing mechanism of nanotopographical stimuli. This cross-talk happens by 

the integration of the signals originating from the two populations but was not observed on a 

non-topographical substrate [134]. 

Three dimensional moulds can be used in NIL for direct 3D patterning. Li et al. used 3D 

moulds in a single-NIL-step. Moulds were fabricated by a single step electron beam lithography 

and reactive ion etching (RIE), then imprinted in polymer templates to yield three dimensional 

metal T-gates and air–bridge structures of sub 40 nm size [135]. The availability of 3D 

patterning stamps can allow for more opportunities and can reduce the cost of the process. 

Stamps are fabricated by various techniques, mostly electron beam techniques [136] [137], 

focused ion-beam (FIB) milling [138-140], focused ion-beam etching [141, 142] and two photon 
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polymerisation [143, 144]. Other advances have developed to overcome the challenges of 3D 

mould fabrication [145, 146].  

Reverse nanoimprint can be used to construct multi-layer 3D nanostructures as described 

before [94]. Tavakkoli et al. used RNIL to fabricate a uniform nanostructured  discrete-track 

recording media  at a 50 nm track pitch in order to increase the current capacity of the magnetic 

hard disk recording media [147]. This study revealed even more advantages of RNIL over 

conventional NIL, such as the speed of the imprinting process, and a thinner residual layer.  

Multi-layered nanostructures can be built by layer-by-layer stacking of nanostructured 

layers via reverse nanoimprinting which does not require a planarisation layer and therefore is a 

desired technique. Multi-layering has recently been reviewed elsewhere [148, 149]. Multi-

layering by UV curable resists [150] avoids the formation of unfavourable residual layers and 

takes place at relatively low temperature and pressure compared to T-NIL. On the other hand, it 

is not easy to detach the cured structures which are used as templates later in the process. In 

distinction, thermally curable resists are easily detached, however one limitation to this technique 

is the relatively high temperature involved in the pattern transfer step near the glass transition 

temperature Tg of the resist which may cause the flowing and deformation of the bottom layer. 

To overcome this problem, two moulds with different silane treatment can be used to stack the 

two layers [151]. To overcome the high temperature limitation, Bao et al. used reverse thermal 

nanoimprinting with reduced Tg to stack three different polymers [94], however this 

methodology is limited in the type of polymers that can be used and in number of polymer layers 

that can be stacked. Therefore it was necessary to develop a technique to stack multilayers from 

one polymer.   
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Hu et al. used a simple NIL method to imprint 3D nanostructures on the widely used tissue 

culture polystyrene plates (TCPS). The process started by traditional NIL to imprint the first 

layer; however the second step was performed at a reduced temperature and pressure to avoid 

disturbance of the first layer. The second imprint was repeated for multiple layers to fabricate a 

3D scaffold with 350 nm to 10 µm gratings to study the effects of nano versus micro-patterns. 

Bovine pulmonary artery smooth cells (SMCs) were cultured on both patterns. Cell alignment 

and elongation was significantly higher in cells cultured on nano-patterns [152].  

Following a similar strategy, Yoshii et al. developed 3D nano-culture plates (NCPs) by 

imprinting into resinous inorganic sheets that were used to culture tumour cells.  Tumour cells 

grown on NCPs formed cell aggregates and attached to the nano-imprinted scaffold via the 

elongated lamellipodia. Consequently, these tumour cells produced multi-cellular spheroids 

which resemble in vivo tumour conditions. All these properties were lacking in cells grown on 

non-patterned scaffolds.  Also it was found that 17 genes were overexpressed in cells grown on 

NCPs, including hypoxia-induced factors target genes and genes relevant to intracellular 

interaction and multicellular organisation [153].  

Yew et al. used a single polymeric material to fabricate double and three-layer residual-

free nanostructures using reverse T-NIL [133]. A one dimensional grafting with ridges around 

250 nm width and 200 nm depth was transferred from the mould to the substrate in an orthogonal 

arrangement. Using a single material ensured avoiding another bonding material and the need for 

a planarisation layer. The stacking of the layers occurred at the Tg. On the other hand, some 

limitations occurred, such as a 30% compression in the lower layers to guarantee good adhesion 
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between them; however, by optimizing the fabrication conditions, such as the pressure, the 

compression can be avoided.  

Nakajima et al. fabricated multi–layers by applying a differential temperature between the 

lower layer (below Tg) and the upper layer (above Tg) [154]. Another recent technique, named 

reverse contact UV NIL, was developed by Kehagias et al. in 2007, which is a combination of 

nanoimprint lithography and contact printing lithography. The main purpose of combining these 

two techniques is to obtain 3D wood-pile like nanostructures and to transfer this pattern with no 

residual layers. This technique avoided the undesired etching processes that are typically 

necessary to remove the residual layer [155]. In 2013, Han et al. used RNIL to fabricate 3D 

nanostructures with a  UV curable resin and a resin of dispersed zinc oxide (ZnO) nanoparticles 

[131]. The UV-curable resin was transferred from a silicon stamp to a substrate as a 2D dual-

sided pattern layer. In this transfer step, a diluted UV-glue was used to increase the adhesion 

force between the pattern layer and the substrate without generating a thick residual layer. A 

ZnO dual side patterned layer was also fabricated. ZnO nanoparticles of 40 nm in size were used 

as a higher refractive index material to increase the photonic effect. After repeating these RNIL 

steps and stacking the 2D layers, a 3D structure was obtained. Haitainen et al. used T-NIL to 

linearly pattern micro gratings on top of nano pre-patterned structures [85]. Then step and stamp 

nanoimprint lithography (SSIL) was used to regulate the positioning and angle of the stamp 

rotation. 

Inclined nanoimprint lithography (INIL) is another technique used to develop 3D 

nanostructures in a single-imprinting step without the need to use a 3D template or multiple 

steps. In INIL, a polymer with an anisotropic dewetting phenomenon is used where the 
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materials, however, may also develop as more research is performed. So far, applications are still 

limited and very experimental, but an increase in model development, correlation of factors and 

results for a better prediction of successful models, as well as a strong increase in publications 

describing nanoimprinted cell and tissue culture models is expected. 

We believe research in this field is advancing in two main directions. The first one would 

be the optimisation of the polymer and scaffold properties. The second one could involve 

integrating more ECM components into the cell culture conditions, i.e. proteins, lipids, 

glucosamines, and others. Cells interact with ECM via transmembrane receptors called integrins 

which link the ECM to molecular complexes that bind to actin filaments [163]. Interactions 

mediated by integrins regulate cell adhesion, differentiation, migration and metastasis [164, 165]. 

Different integrins interact with different ECM ligands. The amino acid sequence RGD (Arg-

Gly-Asp) is the main adhesive site in the fibronectin binding region [165-167]. Including 

transmembrane ligands in cell culture substrates could augment our understanding of various 

ligand-receptor interactions as described by Schvartzman et al. Their study showed that 

spreading of mouse fibroblasts increased when at least four sites of ligands were placed within 

60 nm or less with no dependency on density [168]. Similar studies with nanoimprinted 

substrates including receptor proteins or ligands could give insights into interactions of cells with 

different receptors. Besides, 3D models would be a step towards mimicking the natural 

conditions of cell growth, but it is anticipated that research will move further towards a complete 

organ scaffold model. One example could be a lung model, designed and manufactured by 

nanoimprinting with detailed structures that can possibly be used in the future for transplantation 

as well as a research model. So far, nanoimprinting has not been employed to fabricate such a 
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In this thesis, delivery systems for siRNA delivery are introduced with special attention to 

non-viral vectors. Many successful vectors used in vivo were reviewed. Our work focused on the 

effect of different architectures of oligospermine polmers on their suitability for siRNA delivery 

in lung cancer cells. Different archituctures showed different polyplex structures and variable 

transfection efficiencies. Moreover, we presented a review on nanoimprint lithography 

techniques with an outlook on possible biological applications in the field of gene and drug 

delivery. 
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