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Chapter 1. Introduction - Inhaled delivery of siRNA

Maha Elsayed', Olivia M. Merkel'**

'Department of Pharmaceutical Sciences, “Department of Oncology, Wayne State University,

Detroit, MI 48201
1.1. Abstract

Inhaled delivery of siRNA using non-viral vectors is a promising tool for the treatment of
diseases associated with overexpressed genes, however many barriers exist in the lung which
need to be overcome. In this chapter, we discuss various types of siRNA carriers and successful
delivery systems for pulmonary delivery in vivo. A few clinical trials targeting the lung exist at
the present time. Therapeutic applications are developing by identifying new target genes in

various lung diseases.
1.2.  siRNA delivery

RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing
mechanism that occurs naturally in the cell to disrupt double stranded RNA (dsRNA) and
regulate RNA expression. RNAI has been artificially utilized in the past two decades to silence
the expression of disease-associated genes and hence has been applied in many versatile areas of
research. RNAi holds the most promise for the treatment of diseases that are caused by
overproduction of certain genes or expression of mutated genes such as cancer [1]. RNAi was
first discovered by Fire and Mello in C.elegans worms in 1998 [2] for which the two scientists

received the Nobel Prize in Physiology and Medicine in 2006. In 2001, RNAi was shown to
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knock down target genes in mammalian cells without triggering immune responses; [3] which
was a very favorable outcome. RNAIi can be artificially achieved in three ways: (i) Introducing
plasmid DNA to the cell that encodes for short hairpin RNA (shRNA) which is cleaved to short
(21-26 nucleotides) interfering RNA (siRNA) in the cell by the enzyme complex Dicer which
contains endoribonuclease activity. The resulting siRNA will lead to the cleavage and
degradation of the target mRNA. (ii) Introducing long double stranded RNA (dsRNA) which is
endogenously processed inside the cell by Dicer to siRNA. (iii) Directly introducing synthetic
siRNA to achieve mRNA degradation. The latter approach is of great interest and will be further
discussed in this chapter. When siRNA is internalized in the cell, the double stranded siRNA
binds to the RNA-induced silencing complex (RISC) and is unwound into two single strands; the
sense and anti-sense strand. The sense strand is removed and degraded by nucleases. The anti-
sense strand directs the RISC to the complementary sequence of the mRNA to induce cleavage
by a catalytic component, Argonaute, and to post-transcriptionally silence the gene as shown in

Figure 1.1.

siRNA delivery: Introducing short interfering RNA
(siRNA, 21-26 nucleotides) with a specific sequence to the
cell in order to induce RNA interferenace (RNAi), and to
silence a specific target gene. siRNA delivery is used to
silence overexpressed genes in various diseases including
lung diseases.
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Figure 1.1. Schematic representation of RNA interference (RNA1) mechanism. Adapted from [4]
with permission from copyright holder.

1.3.  siRNA delivery to the lung

The lung is prone to many diseases because of its physiological function, location and
exposure to various pollutants which may cause diseases such as influenza, asthma or fatal
diseases such as tuberculosis that are transmitted by airborne pathogens [5, 6]. As a result, the
lung has received special attention as a target for siRNA-based therapy. The anatomy of the lung
is divided into two different zones; first, the conducting zone i.e. mouth, nasal cavity, pharynx,

larynx, trachea, bronchi, and bronchioles which are responsible for air conduction and transport.
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The second zone is the respiratory zone where the gas exchange occurs. It consists of the
respiratory bronchioles and alveoli [7]. Pulmonary delivery of siRNA presents many advantages
compared to the systemic route such as the localized effect on lung epithelial cells with lower
administered doses of siRNA, reduced undesired systemic effects, and higher stability due to
negligible nuclease activity in the lung compared to the blood stream. In addition, the lungs can
function as a remarkable site of absorption for systemic effects with a rapid and effective
delivery due to the large alveolar surface area with high vascularization and thin air-blood-
barrier. Such advantages have promoted pulmonary delivery to be an attractive route of
administration. However, pulmonary delivery also needs to overcome the barriers associated
with many parts of the respiratory airways. Coughing and dissolution are important parts of the
lung's defense against inhaled particles but can prove to be difficult barriers to overcome. The
ciliated epithelial cells in the lung perform a rapid mucociliary clearance action to remove any
deposited particles which are eventually swallowed or coughed out. The presence of the mucus
layer and surfactant proteins is another barrier for uptake. In addition, macrophages present in
the respiratory airways tend to phagocytose particles between 1 and 3 pm in size and to degrade
them. Therefore, the lung possesses several anatomical, physiological, and physiochemical
barriers that can be impaired or more prominent in a disease state and alter the efficiency of the

delivered agent to the lung [8, 9].

Mucociliary clearance: a host defense clearing
mechanism of the airways which is performed
by coordinated cilia movement to clear particles
deposited in mucus covering the respiratory
epithelium.
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For efficient siRNA delivery, a therapeutic agent is required to overcome those barriers
and successfully reach the lower respiratory tract where the cell layer and the mucus layer are
significantly thinner than in the upper airways. The site of the particle deposition in the lung
depends on the size, expressed as aerodynamic diameter, of the administered particle as well as
the patient’s pulmonary function [10-12]. Large particles with aerodynamic diameters larger than
6 um are usually deposited at the back of the pharynx or throat due to their high momentum.
Thus, they are not suitable for the delivery to lower respiratory sites. Therefore, smaller droplet
or particle sizes are required to maximize the siRNA deposition in the lung. However, particles
smaller than 1 um in aerodynamic diameter were believed to be exhaled during normal breathing
as their movement is controlled by Brownian motion [10-12]. For efficient deposition in the
lung, the optimal hydrodynamic diameter has been reported to range between 1 and 5 pm. Newer
studies show that as the size of the particles decreases below 100nm, the diffusional mobility of
the particles increases and hence their deposition in the lung increases. Nanoparticles (<100nm)
can successfully reach and settle in the alveolar site with 55 % and higher fractional deposition
depending on the particle diameter [13] and pulmonary function in healthy and asthmatic

subjects [14, 15].
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1.4. Routes of administration for pulmonary siRNA delivery

Several ways are used to administer siRNA to lung. Inhalation is the easiest and most
common method used; where siRNA can be formulated in a liquid formulation (aerosol) or a dry
powder aerosol. Currently available inhalation devices which can be used for inhaled siRNA
delivery with some adjustment and optimization include nebulizers, metered dose inhalers (MDI)
and dry powder inhalers (DPIs) [16, 17]. Although inhaled administration is clinically the most
common method used, very limited studies chose the route of inhalation for siRNA delivery in
animal models. This disparity may be due to the difficulty of preserving the biological and
physicochemical stability of siRNA in inhalers. In order to preserve the properties of siRNA
during the inhalation process, particles can be spray-dried and inhaled in a dry-powder aerosol.
Excellair™™ (ZaBeCor, Bala Cynwyd, PA, USA), is an inhaled siRNA-based treatment that has
entered phase II of clinical trials for treatment of asthma. The intranasal route is another non-
invasive and easily accessible route of administration in which siRNA is administered to the
airways as a nasal suspension in the nasal cavity. It is simple and adaptable; however, some
amount of the administered siRNA can be wasted in the nasal cavity or swallowed [18, 19].
siRNA-based clinical trials include the successful study of ALN-RSVO01 for respiratory syncytial
virus (RSV) treatment which is currently in Phase IIb. The third administration route is the intra-
tracheal one, which is more invasive than the others. Thus, it is only employed in animal studies
and has not been utilized in clinical trials. By far, most animal in vivo studies use either intra-
tracheal or intra-nasal administration. The advantage of the intratracheal route, however, can

ensure more quantitative delivery of siRNA to the lung at reduced risk of swallowing the dose.
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1.5. Intracellular barriers to pulmonary siRNA delivery

Double strands of siRNA are hydrophilic, negatively charged macromolecules. The cell
membrane on the other hand is hydrophobic and negatively charged which causes electrostatic
repulsion of siRNA molecules. Due to this electrostatic repulsion, siRNA is incapable of
crossing the cell membrane on its own in order to reach its target site [20]. Therefore, siRNA
carriers are used to facilitate cell uptake [20, 21]. Internalization of siRNA delivery systems is
mainly mediated via endocytosis [22]. Particles intended for delivery should be smaller than 150
nm in size in order to be endocytosed and to avoid macrophage phagocytosis [23]. Among the
many endocytotic pathways, clathrin-mediated endocytosis is the best characterized pathway in
mammalian cells. Particles are bounded in clathrin-coated vesicles and transported to early
endosomes which fuse with late endosomes and finally into lysosomes where the pH gradually
drops to 5. At this low pH, nuclease enzymes are present which rapidly degrade siRNA
molecules. From a designing perspective, it is desired that the nanocarrier escapes the endosomal
trafficking to lysosomes and is released from the endosomes to the cytosol to protect the siRNA
from enzymatic degradation. One strategy to escape endosomal degradation is to exploit the
“proton sponge effect” that employs a polymer with high buffering capacity. During ripening of
an endosome to a lysosome, the polymer can thus buffer the pH by being protonated. The
buffering of the pH leads to an increased influx of protons and chloride counter ions. This also
provides an osmotic influx of water into the endosomes and subsequently leads to endosomal
rupture and release of siRNA into the cytosol [24]. Another strategy is to use fusogenic peptides

such as INF7 [25], GALA [26], and KALA [27, 28] with pH-dependant structures . At low pH,
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such peptides experience a structural conformational change that disrupts the endosomal

membrane and enables the release of the siRNA [29, 30].

1.6.  siRNA carriers for pulmonary delivery

Over the last years, researchers developed many successful formulations of siRNA
delivery that aim to overcome the delivery challenges described above. An ideal siRNA
formulation is desired to be biocompatible, biodegradable, efficient at condensing siRNA and
able to avoid clearance by macrophages [31]. Once delivered to the cell surface, the siRNA
carrier should facilitate the internalization and cellular uptake into the cell. Afterwards, the
carrier should escape the endosome and release the siRNA to the cytoplasm, where the mRNA is
cleaved after binding to the antisense strand in the activated RISC [32, 33]. Carriers are also
desired to have minimal toxicity and off-target effects. In order to achieve all these parameters,
researchers optimize siRNA carriers in terms of the size, chemistry, surface charge, shape, and
biocompatibility. In addition, it is necessary that the siRNA carrier would be well-incorporated
and compatible with the excipients of an aerosol formulation, i.e. propellants or lyoprotectants
[34, 35]. During further formulation, the siRNA integrity and stability needs to be maintained so

that it may be protected from degradation and the forces generated by aerosolization.

Off-target effects are non-specific responses
which arise when siRNA interacts with RISC and
silence un-intended target genes resulting in
measurable phenotypes and unwanted toxicities.
It is essential to understand the mechanism
behind the off-target effect to minimalize it.

Two main approaches have been developed for delivery of siRNA. The first approach is

the chemical modification of naked siRNA at the sugar, at the ribose backbone or at the base of
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the oligoribonucleotides which is pursued mainly to increase the nuclease resistance. In addition,
chemical modification of siRNA is aimed to increase siRNA specificity and potency as well as to
reduce the off-targeting and immune response without impairing the ability of siRNA to knock
down the target gene [36, 37]. Chemically modified siRNA therapeutics succeeded in clinical
trials. One example is Alynam's ALN-RSV-01 siRNA which is modified by cholesterol
attachment to the sense strand. The second approach may also employ modified siRNA but
additionally enhances the siRNA protection by using carrier systems which are divided into viral
vectors and non-viral vectors. Viral vectors take advantage of the penetration ability of viruses
through cellular membranes. Examples for viral vectors are retroviruses, adenoviruses, and
lentiviruses which can transfect cells very effectively. However, they present some safety
concerns such as toxicity, immunogenicity, tumorigenicity as well as uncontrolled virus
replication [38]. Despite their toxicity, viral vectors are still considered in clinical trials due to
their high transfection efficacy. In order to overcome these side effects, however, non-viral

vectors have gained great interest. They are subdivided into:

Non-viral ~ vectors  possess low  host
immunogenicity, however lower transfection
efficiency compared to viruses. Various
strategies are followed to design and develop
non-viral vectors with enhanced transfection
efficiency.

I.  Lipid-based delivery vectors, such as liposomes and lipid particles. Positively-charged
lipids, for example, can interact with negatively charged siRNA oligonucleotides by
spontaneous electrostatic interaction to form lipoplexes. When aerosolized, lipoplexes may

underdo structural changes that may lead to premature release of siRNA from the lipoplexes
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[20, 39]. The drawbacks of these vectors are their toxicity and non-selective activation of
immune response [40, 41]. Many of the commercially available siRNA transfection agents
that are engaged in pulmonary delivery are lipid-based, such as lipofectamine® and

. . T™M
oligofectamine ™.

ii. Polymer-based delivery vectors, such as synthetic poly (lactic-co-glycolic acid) (PLGA),
polyethylenimine (PEI), and natural chitosan. This class of vectors can easily be chemically
modified to avoid the induction of immune responses. In addition polymer-based vectors are
generally cheap, versatile and easy to modify to gain desirable characteristics such as
biodegradability and cell- specific targeting effect [42-44]. Polymeric vectors can be further
subdivided into polycations for electrostatic self-assembly and polymeric solid nanoparticles
which encapsulate their load. Polycations react with negatively charged siRNA to form
polyelectrolyte complexes, so called polyplexes. The main concern with polycations is their
toxicity generated from their charge. Examples for polycations widely used for siRNA
delivery are polyamide amine (PAMAM) dendrimers [45], PEI [24], and chitosan [46]. The
characteristics of the delivery system depend on the charge ratio, molecular weight of the
polymer and method of preparation [47]. Solid polymeric nanoparticles such as PLGA
nanoparticles encapsulate siRNA. The siRNA can be encapsulated and dispersed completely
in the nanoparticle core or surrounded by a polymeric shell.

iii. Peptide transduction domains (PTDs) or cell-penetrating peptides are small positively
charged molecules (10-30 amino acids). They usually contain arginine and lysine to provide
positive charges which electrostatically interact with siRNA and enhance the permeability of

the vector across the cell membrane.
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A summary of non-viral vectors used in pulmonary siRNA delivery in vivo is presented in Table

1.1.

Table 1.1: Examples of in vivo studies of siRNA delivery systems in the lung grouped according
to the type of delivery system

Type of | SiRNA/ Route of | Animal model Delivery Outcome Re|22
siRNA Targeted administra system/ 22222
delivery gene tion Polymer used 22222
22222
22222
22222
Naked siRNA | HO-1 Intra-nasal | C57BL/6 mice Unmodified Knock down of | [48]
siRNA endogenous gene
expression
RSV-P Intra-nasal | BALB/c mice Unmodified Inhibition of RSV infection | [49]
siRNA
SiRNA- Intra-nasal | C57BL/6 mice Unmodified Low distribution of siRNA | [50]
cy3 siRNA in lung
PAI-1 Intra-nasal | C57BL/6 mice Unmodified Inhibition of PAI-1 level in | [51]
siRNA broncho-alveolar fluid
PAI-1 Intra- Bleomycin- Naked siRNA Inhibition of alveolitis and | [52]
tracheal treated Male pulmonary fibrosis
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Wistar rats
Fas Intra- C57BL/6 mice Unmodified Significant reduction in| [53]
tracheal siRNA expression of Fas and
Caspase 8
caspase 8 in lung
XCL1 Intra- C57BL/6 mice Unmodified Suppression of XCL1 | [54]
tracheal siRNA mRNA and protein
expression by 40-50%
KC-MIP-2 | Intra- C57BL/6 mice Unmodified Suppression of mRNA | [55]
tracheal siRNA expression of KC and MIP-
2 in lung by ~40%
Reduction of IL-6 and
MPO activity
siSC2-5 Intra-nasal | Rhesus macaque | Unmodified Diminished SARS | [56]
siRNA coronavirus (SCV) levels
in monkey respiratory tract
Decreased acute diffuse
alveoli damage
EHV-1 Intra-nasal | BALB/c mice Unmodified significantly reduced viral | [57]
siRNA replication and clinical

signs
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Ang?2 Intra-nasal | C57BL/6 mice Naked siRNA Ang2 increases | [58]
inflammation and  cell
death during hyperoxia

SiRNA- Intra- C57BL/6 mice Modified siRNA | High distribution of | [50]

cy3 (2'0-| tracheal siRNA- cy3 in lung

methyl
~21% knock down of E-

modificatio
cadherin but no significant

n)
reduction of endothelial
VE-cadherin

Lipid RSV-P Intra-nasal | BALB/c mice Lipid (TransIT- | Inhibition of RSV infection | [49]
TKO)

E-cadherin | Intra- C57BL/6 mice Liposomes Enhanced transfection | [50]

tracheal (AtFECTO1/D | efficiency of lipoplex-

VE-

PhyPE/DSPE- siRNA compared to naked
cadherin
PEG) siRNA
Lipoplex caused cellular
inflammation in lung

P38 MAP | Intra- BALB/c mice Lipid Knock down effect not| [59]

kinase tracheal (cholesterol) enhanced
Extended  duration  of

knock down compared to




14

naked siRNA

SiGLO red | Intra- nude mice with | Liposomes Higher peak concentrations | [60]
tracheal orthotopic (DOTAP)
Abundant longer retention
model of human
of liposomes in the lungs
lung cancer
compared with systemic
administration
SiGLO Intra- C57BL/6 mice Lipid SPARC siRNA significantl | [61]
Green/SPA | tracheal (DharmaFECT) | y reduced gene and protein
RC expression
Polymer WT1 Intra-nasal | Mice with | PEI-WT1 Significant reduction in | [62]
B16F10 lung | complexes tumor foci
metastasis
Reduction in size and
number of tumor blood
vessels
EGFP Intra-nasal | C57BL/6 mice Chitosan Effective (~37%) EGFP | [63]
knock down in bronchiole
epithelial cells of mice
GAPDH Intra-nasal | BALB/c mice Imidazole- Significant (~45) | [64]
modified chit- knockdown of GAPDH
C57BL/6 mice
osan enzyme in lung
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Aktl Inhalation- | K-rasLA1l mice | Poly(ester Inhibition of Akt-related | [65]
aerosol amine) signals and cell cycle
Significant suppression of
lung tumor progression
NS1 Intra-nasal | BALB/c mice Naonogene Enhanced transfection | [66]
NG042 efficiency compared to
(chitosan) high MW chitosan
Attenuate RSV infection
EGFP Intra- C57BL/6 mice PEI and PEI-| PEI-PEG formulations | [67]
tracheal PEG caused ~42 knock down
efficiency
Luc Dry mouse lung met | Chitosan Specific gene silencing | [68]
powder astasis model effect against tumor cells
Inhalation
Peptide P38 MAP | Intra- BALB/c mice *CPP (TAT and | No increase in gene knock | [59]2
kinase tracheal penetratin) down effect compared to
naked siRNA and
provoked inflammatory
reaction
2

*2CPP: Cell Penetrating Peptide and MW: Molecular weight
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Schematic illustrations of non-viral siRNA carriers are illustrated in Figure 1.2. As discussed
later, nanocarriers can be chemically modified in a modular fashion to design multi-functional

particles which unite therapeutic and diagnostic properties that are target specific.

Liposome Dendrimer

¥,
2

l he -4

Particulated siRNA Complex:
L _ _nin_ocarriuﬂir ___________________ c_arlie'_r is_iRﬂl& R
(— peptides \

@ vitamins
™ polysaccharides
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ArAAA,  polymers

Multifunctional
nanocarrier

lipids

\ O proteins )

Figure 1.2: Schematic illustration of three classes of siRNA delivery systems; Polymer-, lipid-,
or dendrimer-based vectors form complexes with negatively charged siRNA via electrostatic
interaction. siRNA can be encapsulated in the core of the particle or attached to the particle
surface. Multi-functional nanocarriers can be engineered with multiple components to unite
multiple functions and to optimize siRNA delivery. Reproduced from [69] with permission from
copyright holder.
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1.7. Targeted pulmonary siRNA delivery

2Targeted siRNA delivery aims to reach the target cell types while minimizing the
potential side effects on non-targeted cell populations. Targeted siRNA delivery via cell surface
receptors is achieved by receptor-mediated endocytosis [70]. For example, the overexpression of
transferrin receptors on a majority of cancer cells renders the receptor a good target for siRNA
delivery [71]. In the lung, active targeted delivery can improve the distribution and
pharmcokinetics of siRNA by engineering the surface of the nanocarrier with targeting moieties
that have high affinity to their identified receptors and consequently enhance the uptake of the
targeted delivery systems [72]. Furthermore, targeted nanocarriers can be complemented with
imaging probes which can be used for detection of the targeted tissue concurrently, termed
“theragnostics” [69]. By combining multiple functions in one carrier, so-called multi-functional

nanocarriers can be obtained, as shown in Figure 2.

1.8.  Therapeutic applications

The major advances in the pulmonary delivery of siRNA leading towards clinical research
hold a great potential for treating many lung diseases. siRNA delivery to the lung started in the
early 2000s addressing three lung diseases: severe acute respiratory syndrome (SARS) [73],
respiratory syncytial virus (RSV) [66, 74], and influenza [75]. Subsequently, this work
expanded, and additional endogenous target genes in pulmonary fibrosis [51], lung cancer [76-
79], asthma [80-82], tuberculosis [6, 54], and acute lung injury (ALI) [53, 83] were identified.
Given the growing number of studies proposing siRNA delivery systems, identifying new target

genes besides the already known targets will prove to be invaluable in disease treatment and
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prevention. Discovering these new target genes will eventually open new opportunities for

therapeutic siRNA delivery strategies. Pulmonary siRNA-based therapeutics are heading towards

fulfilling therapeutic effects in the lung by exploiting smart delivery systems. The development

of these systems requires a critical understanding of the numerous pulmonary barriers and

stringent optimization of the carriers in order to achieve maximum results.

Despite being a new field, reports on siRNA delivery in the literature increase steadily.

Therapeutics based on siRNA technology have entered clinical trials. Their success in terms of

safety and efficacy is currently being investigated at different stages. Many trials exploit local

delivery, including inhaled or intranasally delivered siRNA (Table 1.2).

Table 1.2: Examples of current siRNA-based clinical trials [84]

SiRNA Delivery Route of Sponsor Disease Status
Delivery agent administration
agent

ALN-RSVO0I Naked Intranasal spray Alnylam *RSV infection | Phase
siRNA Pharmaceuticals II

Excellair™ unknown Inhalation ZaBeCor Asthma Phase
Pharmaceuticals II

TKM-ApoB Lipid 1A% Tekmira Hypercholesterol | Phase I

nanoparticles Pharmaceuticals mia
CALAA-01 | Cyclodextrin v Calando Solid tumors | Phase |
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nanoparticles Pharmaceuticals

TD101 Naked Intradermal Pachyonychia Pachyonychia | Phase
siRNA Injection Congenita Project congenita Ib

QPI-1007 Naked IVT Quark Chronic optic | Phase I

siRNA Pharmaceuticals nerve atrophy

PF-655 Naked IVT Quark AMD and Phase

siRNA Pharmaceuticals | diabetic macular II
edema

AGN-745 Naked IVT Allergan AMD Phase
siRNA 11

QPI-1002 Naked v Quark Acute Kidney | Phase
siRNA Pharmaceuticals injury II

Bevasiranib Naked IVT Opko Health AMD Phase
siRNA 111

*RSV: Respiratory syncytial virus; IV: Intravenous injection; IVT: Intravitreal injection; AMD:

Age-related degeneration.
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1.9. Summary

*  Pulmonary siRNA delivery is a powerful tool to silence any target gene, thus, it can be
used for treatment of diseases associated with over expression of genes.

*  Pulmonary delivery is associated with many advantages, yet there are many barriers that
challenge successful delivery to the lung.

* siRNA is delivered to the lung by either inhaled, intra-nasal or intra-tracheal
administration.

* siRNA faces several intracellular barriers in order to reach the target site of action.

*  Non-viral delivery of siRNA provides a wide variety of options and opportunities.

* Identifying new target genes, especially in cancer, will open new potentials for siRNA

treatments.
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Chapter 2. The influence of oligospermine architecture on their suitability for

siRNA delivery

2.1. Abstract

Spermines are naturally abundant polyamines which condense and stabilize helical nucleic
acids. They can therefore condense DNA or RNA as non-viral vectors for intracellular nucleic
acid delivery. In this study, we synthesized bis- and tetraspermines with different molecular
architecture to yield linear bisspermine, linear tetraspermine, and dendritic tetraspermine. Self-
assembled polyplexes of oligospermines and siRNA were formed. The structure-activity
relationship of these carriers was evaluated in terms of their efficiency to deliver siRNA in a
non-small cell lung carcinoma cell line (H1299/LUC). Oligospermines displayed minimal
cytotoxicity but efficient siRNA condensation capacity with better stability against polyanions
than polyethylenimine at neutral and acidic pH. The morphology of the polyplexes was strongly
affected by the oligospermine architecture. Linear tetraspermine/siRNA polyplexes showed the
best gene silencing efficiency among the oligospermines tested on both the mRNA and protein
expression levels. In conclusion, the linear tetraspermine had the most favorable structure and is

a promising siRNA delivery vector.

2.2. Introduction

RNA interference (RNAI) is a post-transcriptional gene silencing mechanism (PTGS) that
occurs naturally in the cell in a sequence-specific manner to break down double stranded RNA

(dsRNA) and to regulate RNA expression.' RNAi-based therapeutics have rapidly progressed
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from basic research to clinical trials. In 1998, RNAi was discovered in C. elegans worms by Fire
and Mello, for which they received the Nobel Prize in Physiology and Medicine in 2006.* Small
interfering RNA (siRNA) is an intermediate in the RNAi process and is double stranded RNA
with 21-25 nucleotides in length. Synthetic siRNA can be used to achieve RNAi and to down-
regulate overexpressed genes.” In 2001, siRNA was reported to induce RNAi in mammalian
cells.” To the present day, only a few human clinical trials for siRNA therapeutics are ongoing.
Among which, two therapeutics are targeting the lung, i.e. ALN-RSVO01 and ExcellairTM.’

The primary challenge of siRNA therapeutics, however, is the hurdle of intracellular
delivery. siRNA cannot cross a biological membrane due to being a hydrophilic, negatively
charged macromolecule and highly prone to nuclease degradation.3b Viral vectors achieve high
transduction but are associated with many safety problems at the clinical level such as immune
responses and carcinogensis.® Therefore, safe and effective non-viral siRNA carriers are required

for pulmonary delivery of siRNA.
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Figure 2.1. Schematic illustration of oligospermine/siRNA polyplex formation, cellular entry,
endosomal escape, and gene silencing.

Cationic polymers interact with negatively charged oligonucleoutides via charge
complexation to form poly-electrolyte complexes.® Spermines (SPE) are safe, naturally-
occurring, small linear tetraamines with two primary amines and two secondary amines that aid
to package cellular DNA into a compact state.”. The polyamine structure is required for stable
DNA binding. The interaction between a single cationic amine and anionic phosphate groups of
nucleic acids is relatively week and is further weakened by copetition of salt binding in
biological conditions.'® Exogenous spermine poorly condenses and transfects nucleic acids to

cells which could be due to its low molecular weight (~200 Da).!" In addition, spermines yield
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limited endosomal escape despite their good proton-buffering capacity.''® It is hypothesized that
the maximum interaction of siRNA with cations consists of four carbon-bridges. However the
low molecular weight of spermine limits its siRNA complexation ability.'* Therefore, it was
necessary that spermine polyamines be modified to increase their molecular weight in order to
act as building blocks for nucleic acid delivery systems.'' '* This suggests that polymerized
spermines could be capable of condensing siRNA and of disassembling at the target site.'*
Polyspermines showed high buffering capacity.”” Many studies described the linkage of
spermines through their amino groups by different cleavable linkers such as disulfide bonds or

11 15-16
esters.

When polyspermines are degraded to release spermine monomers, sometimes
fragments of the linker are still attached to spermine monomers which affects their transfection
properties.'” Very recently, Du et al. compared three polymerized spermines to show that linkage
structures play an important role in the activity of the polyspermine-based nucleic acid carriers.™

Moreover, spermine polymerization allows for multi-step intracellular degradation of a
biocompatible polymeric platform.'®. Several groups have studied spermine-based carriers for
DNA," 1 " GiRNA,""™ % and short RNA delivery.' Gene silencing efficiency was shown

21-22

specifically via aerosol delivery.” . Spermines have been incorporated in many delivery

20023 conjugates,”™ and nanoparticles®™ for siRNA delivery to

systems such as lipoplexes,
enhance the transfection efficiency. Vijayanathan et al. synthesized a series of spermine
homologues with different methylene chain length separating the secondary amino groups of the
polyamines. The lower homologues were more efficacious in DNA condensation than the higher
analogues. These results showed the importance of the regiochemical distribution of the positive

charge in the polyamines presented by the varying distance of the methylene spacing which

affected the polyamine ability to provoke structural changes in the DNA and hence strongly
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affected the DNA condensation and size of DNA complexes.”” Different structures of spermine
oligopolymers were studied, for example, when spermine was used as surface groups of a
dendron structure to target human breast carcinoma cells (MDA-MB-231) and murine myoblast
cells (C2C12). Spermine-decorated dendrons were able to transfect DNA to cells only in the
presence of chloroquine which enables the endosomol escape. Since blank spermine is
completely protonated at physiological pH, it is possible that these dendritic structures have only
a limited proton sponge effect. It was concluded that dendritic spermine derivatives act more
similarly to polylysine and not like proton sponge polymers, such as PAMAM or PEL'"

In this study, spermine units were polymerized to synthesize different chemical structures
of oligospermines described as linear bisspermine, linear tetraspermine and dendritic
tetraspermine. These cationic polymers were used to condense siRNA molecules in the form of
polyplexes (Figure 1). Oligospermine/siRNA polyplexes were characterized and evaluated as
non-viral carriers for condensation, stability, transfection of siRNA and gene knockdown in

H1299 human non-small cell lung carcinoma cells. The aim of this study was to identify a

suitable oligospermine architecture for siRNA delivery.
2.3. Experimental
2.3.1 Materials

Linear bisspermine (MW 1299.40), linear tetraspermine (MW 2581.82), and dendritic
tetratspermine (MW 2625.87) were synthesized as described below. Lipofectamine 2000™ (LF),
SYBR® Gold dye, and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)

were purchased from Invitrogen (Carlsbad, CA). Polyethylenimine (PEI, MW 5 kDa) was
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obtained from BASF (Lupasol®, Cologne, Germany). Dicer substrate double-stranded siRNA
(DsiRNA) targeting firefly luciferase gene (FLUC siRNA, 25/27mer), human glyceraldehyde 3-
phosphate dehydrogenase (hGAPDH) gene, nonspecific control (siNegCon) DsiRNA as well as
Alexa Fluor®-488 labeled siRNA were bought from Integrated DNA Technologies (IDT,
Coralville, lowa). RPMI-1640 medium (1x) with 2.05 mM L-glutamine, HyClone™ trypsin,
penicillin/streptomycin, 4-(2(hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES), and
SurePrep™ TrueTotal™ RNA purification kits were purchased from Thermo Fisher Scientific
(Waltham, MA). Dulbecco's Phosphate Buffered Saline (PBS), Fetal Bovine Serum (FBS) Heat
Inactivated, D-(+)-Glucose, sodium bicarbonate, sodium pyruvate, 2-mercaptoethanol, dimethyl
sulfoxide Hybri-Max™ (DMSO, >99.7%), ethylenediaminetetraacetic acid (EDTA, 99.4%-
100.06%), trypan blue (0.4%, sterile filtered) and luciferin solution were bought from Sigma-
Aldrich (St. Louis, MO). Hs GAPDH primers and Hs [B-actin-primers were purchased from
Qiagen (Valencia, CA). Brilliant III SYBR Green QRT-PCR Master Mix was bought from
Agilent (Santa Clara, CA). And DNAse I reaction buffer and DNase/RNase free water were

purchased from ZYMO RESEARCH (Irvine, CA).
2.3.2 Synthesis of Oligospermines

Three different polycatonic-based oligospermines namely, linear bisspermines, linear
tetraspermines and dendritic tetraspermines were successfully synthesized as described
previously.”® Briefly. the process involved 1) the synthesis of the monomer I MPBBSP
(monoprotected bis-boc spermine), 2) the synthesis of the reactive intermediates of 2-arm and 4-
arm linker, and 3) the conjugation of monomer I to the linkers to get respective protected

oligospermines. Deprotection of boc groups yielded oligospermines as salts of trifluroacetic acid
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that were used for biological characterization. All compounds synthesized were characterized
using NMR, MS/MALDI and HPLC to confirm the identity and purity. Oligospermines with
different structures were screened to evaluate their efficiency as siRNA delivery carriers for the

transfection of lung cancer cells.
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Figure 2.2. Schematic representation of oligospermines polymers with different architectures. A)
Spermine B) Linear bisspermines. C) Linear tetraspermines. D) Dendritic tetraspermines.
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Spermine is used as the main building block for the three polymers. SP= Spermine, BSP =
bisspermine.
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Figure 2.3. Chemical structures of A) Linear bisspermine, B) Linear tetraspermine, and C)
Dendritic tetraspermine.Preparation of oligospermines-siRNA polyplexes

The ratio between the polymer amine groups (N) and the siRNA phosphate groups (P) in a
polyplex is defined as the N/P ratio. The N/P ratio obtained after complexation was calculated
based on the molecular weight, number of protonable units of the oligospermines, and number of
base pairs in the siRNA duplexes. Polymer stock solutions (1 mg/ml) were diluted with 5%
glucose solution and siRNA stock solutions (100 uM) were diluted with RNase free-water. All
solutions used were filtered with 0.2 um pore size syringe filters (Fisher Scientific, Waltham,
MA). The amount of oligospermines required to prepare polyplexes with a specific amount of
siRNA and at a specific N/P ratio was calculated as following:

m(polymer)=n(siRNA) X 52 X MW(protonable unit) X N/P (1)
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Where m is the mass of the polymer needed, (n) is the amount of siRNA used per well. The
total number of nucleotides in DsiRNA is 52. N/P is the ratio between polymer amine groups and
siRNA phosphate groups.
Equal volumes of polymer and siRNA solutions were mixed to form the according N/P ratio,

vortexed for 30 s and incubated at room temperature for 20 minutes.

2.3.4 Size and zeta (C)-potential analysis

Sizes of polyplexes were evaluated by Dynamic Light Scattering (DLS) analysis.
Polyplexes were prepared with 40 pmol of FLUC siRNA at N/P 2 and 10 as described above in a
total volume of 350 pl. Measurements were performed with a Malvern Zetasizer Nano ZS
(Malvern Instruments Inc., Westborough, MA) in quadruplicates at 25 °C using disposable
cuvettes (low volume 70 pl, Brookhaven Instruments Corporation, NY, USA) for size
measurements. Measurements were set up at 173° backscatter angle with 15 runs per
measurement. For data analysis, the viscosity (0.88 mPa.s) and the refractive index (1.33) of
water at 25°C were used. Results are given as Z average in nm +/- standard deviations.
Polyplexes were then diluted to 700 pl with 5% glucose solution before C-potential
measurements were performed in disposable capillary cells (Malvern Instruments Inc.,

Westborough, MA). Results are given in mV +/- standard deviations.

2.3.5 Size and Morphology: Transmission Electron Microscopy (TEM) and Atomic Force

Microscopy (AFM)

For Transmission Electron Microscopy (TEM), polyplexes were prepared as described

above at N/P 2 with 40 pmol of FLUC siRNA in a total volume of 20 pl. A drop of particle
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suspension was dispensed on a copper-coated grid (200-mesh) and left to dry before imaging
with a transmission electron microscope (JEOL 2010 TEM). Several representative images were
taken for each sample at different magnifications. Atomic force microscopy (AFM) was
performed using a Pico LE Atomic Force Microscope (Molecular Imaging, Agilent
Technologies, Santa Clara, CA). Polyplex suspensions were freshly prepared as described above.
A drop was incubated on a freshly cleaved mica surface for 5 minutes and rinsed with deionized
water to remove excess liquid. Samples were allowed to dry at room temperature and imaged in

contact mode using a Si3Nis V-shaped cantilever.

2.3.6 SiRNA condensation efficiency and stability against polyanions in neutral and

acidic conditions: SYBR® gold dye binding assays and heparin competition assays

SYBR® Gold assays were used to evaluate the capacity of the oligospermines to condense
siRNA at various N/P ratios (0 to 20). SYBR® Gold dye intercalates only with free and
accessible siRNA and does not fluoresce if the siRNA is condensed and protected by a
polycation. In a FluoroNunc™ 96-well white polystyrene plate (Nunc, Thermo Fisher Scientific,
Waltham, MA), 50 pmol of FLUC siRNA per well in 50 pl was complexed with the according
amount of oligospermine in the same volume to obtain the corresponding N/P ratios in a total
volume of 100 pl of 5% glucose solution. PEI (5 kDa) was used for comparison. Formulations
were incubated at room temperature for 20 minutes. A 4x SYBR® Gold solution (30 pl) was
added to each well and incubated in the dark for 10 minutes. Fluorescence was measured at 495
nm/537 nm excitation and emission wave lengths on a Synergy 2 Multi-Mode microplate reader
(BioTek Instruments, Winooski, VT). For heparin assays, polyplexes were prepared at N/P 2 as

described above. In addition, experiments were performed in presence of two different media to
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compare the stability of the polyplexes at different pH and ionic strengths. The media were 5%
glucose solution (pH 7.4) and sodium acetate buffer (pH 4.5). For the heparin assays, a master
solution of heparin was prepared (0.1 IU/uL). Serial dilutions of heparin were then prepared (0-1
IU/well) and added to the wells (10 pl/well). Subsequently, a 4x SYBR® Gold solution (30
ul/well) was added and incubated for 10 minutes. After different incubation times with heparin
(20 minutes, 1, 2 and 3 hours) at 25°C, fluorescence was measured on a Synergy 2 Multi-Mode
microplate reader (BioTek Instruments, Winooski, VT) at 495 nm/537 nm excitation and
emission wave lengths. Measurements were performed in triplicates. The relative stability of
polyplexes was determined by normalizing the fluorescence intensity of the intercalating
SYBR® gold dye to SYBR® gold only (0%) and SYBR® gold with free siRNA (100%). Results
are shown as mean values +/- standard deviation and analyzed by Graph Pad Prism5.0 software

(GraphPad Software, La Jolla, USA).
2.3.7 Cell culture

NCI-H1299/LUC cells are derived from a human non-small cell lung carcinoma cell line
(ATCC®) and transfected to stably expressing the reporter gene luciferase.”” H1299/LUC
represents an established model for gene knock down studies as shown previously.””** Cells
were cultured and grown in RPMI-1640 cell culture medium (Thermo Scientific Hyclone,
Pittsburgh, PA) supplemented by sodium pyruvate (1 mM), HEPES (10 mM), 10% fetal bovine
serum (Thermo Scientific Hyclone, Pittsburgh, PA), and 1% penicillin/streptomycin. Cells were
grown in 75 cm? cell culture flasks (Thermo Scientific, Waltham, MA) at 37 °C and 5% CO, and
sub-cultured until approximately 90% confluence with changing fresh culture medium every 2-3

days.
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2.3.8 Cytotoxicity of polyplexes: MTT assay

H1299/LUC cells were seeded in a 96-well plate (Thermo Scientific, Waltham, MA) with
10,000 cells per well in 100 pl of growth medium and incubated for 24 hours at 37 °C and 5%
CO; in a HERAcell 150i CO; incubator (Thermo Scientific, Waltham, MA). Oligospermines
with varying concentrations (2-1000 pg/ml) were added to the cells in fresh media and incubated
for 24 hours at 37 °C and 5% CO,. Sterile filtered-MTT solution (5 mg/ml) was added to the
cells (10 pl/well) and incubated for 4 hours at 37 °C and 5% CO,. Water-soluble MTT is
enzymatically converted to insoluble formazan particles by metabolically active mitochondria.”’
Subsequently, the cell culture media was removed, and DMSO (200 ul/well, Sigma-Aldrich, St.
Louis, MO) was added and incubated at room temperature for 10 minutes to solubilize the
formazan particles. The optical absorbance was measured at 540 nm on a Synergy 2 Multi-Mode
microplate reader (BioTek Instruments, Winooski, VT). The percentage of cell viability is
measured as the ratio between the absorbance of a sample and the untreated control cells. Results

are shown as the mean value +/- standard deviation of triplicates.
2.3.9 Quantification of cellular uptake by flow cytomtery

H1299/LUC cells were seeded in 24-well plate (Corning Incorporated, Corning, NY) with
a density of 200,000 cells per well and incubated for 24 hours at 37 °C and 5% CO,. Polyplexes
were freshly prepared as described above with 40 pmol of AlexaFluor488-labeled siRNA at N/P
ratio 2 and 10. Negative controls included untreated control cells. PEI (5 kDa) was used as a
positive control for comparison. Cells were transfected for 4 hours with 100 pl of cell culture

medium and 100 pl of polyplexes, after which growth medium was added to a total volume of
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500 pl, and cells were incubated for another 20 hours. Trypan blue quenching was used to
extinguish the extracellular fluorescence caused by polyplex binding and to confirm the
internalization of siRNA in the cells. Trypan blue 0.4% (100 ul per well), a dye that quenches the
extracellular fluorescence,’® was added to the samples for 5 minutes before trypsinizing the cells.
Results were compared to those obtained with cells that did not undergo trypan blue staining.
Cells were rinsed with 1X PBS buffer supplemented with 2 mM EDTA, treated with trypsin and
incubated at 37 °C and 5% CO; for 3-4 minutes to detach the cells. Fresh medium (400 ul) was
added to each well to deactivate the trypsin. Samples were transferred to microcentrifuge tubes
(Seal-Rite, USA Scientific, Orlando, FL) and centrifuged at 400 g for 5 minutes. Samples were
washed twice with 1X PBS with 2 mM EDTA. Fluorescence was quantified by flow cytometry
on an LSR II (BD Biosciences, San Jose, CA) after staining with 4',6-diamidino-2-phenylindole
(DAPI) for dead cells. Cell fluorescence was measured with excitation at 488 nm and the
emission filter set to a 530/30 bandpass. Cell gating and data analysis was performed using
FACSDiVa™ (BD Biosciences, San Jose, CA) software. Measurements were performed in
triplicates; 10,000 viable cells each were gated and analyzed. Mean fluorescence intensity (MFI)
results are given as the mean value of three independent measurements. Data analysis was

performed by Graph Pad Prism5.0 software (GraphPad Software, La Jolla, CA).
2.3.10 RNA knockdown measured by qRT-PCR

In 6-well plates (Corning Incorporated, Corning, NY), H1299/LUC cells were seeded with
a density of 500,000 cells per well and incubated for 24 hours at 37 °C and 5% CO,. Polyplexes
were prepared with 200 pmol of hGAPDH siRNA at N/P 2 in a total volume of 100 pl and added

to 1 ml of cell culture medium per well. LF (0.5 pL/10 pmol of siRNA) was used as a positive
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transfection control. Cells were transfected with samples in fresh medium and incubated for 4
hours. After 4 hours of incubation, medium was added to a total volume of 3 ml, and cells were
allowed to incubate for an additional 20 hours. Subsequently, cells were washed with 1X PBS
and lysed with lysis buffer (SurePrep TrueTotal™ RNA Purification Kit (Fisher BioReagents,
Fisher Scientific, Waltham, MA). Total RNA was then isolated from cells according to the
manufacturer’s protocol with supplementary DNase I digestion and reverse transcribed to cDNA
and amplified in a one-step protocol using Brilliant III SYBR Green QRT-PCR Master Mix .
Hs GAPDH-primers primers were used to quantify the gene expression of hGAPDH. Hs -
actin-primers were employed as a standard to evaluate the relative gene expression of the two
genes. Serial dilutions of total RNA of untreated cells were performed to plot calibration curves
for GAPDH and B-actin mRNA levels. Measurements were performed on a Stratagene Mx
3005P (Agilent Technologies, Santa Clara, CA). Ct values were analyzed with the MxPro
software (Mx 3005P version). Results were shown as mean values +/- standard deviation of

triplicates and analyzed by Graph Pad Prism5.0 software (GraphPad Software, La Jolla, CA).

2.3.11 Protein knockdown measured in reporter gene assays

HI1299/LUC cells were seeded at a density of 25,000 cells per well in a 24-well plates
(Corning Incorporated, Corning, NY) and incubated at 37 °C and 5% CO, for 24 hours before
transfection. Cells were transfected with polyplexes with 40 pmol FLUC siRNA or nonspecific
control DsiRNA at N/P 2 and allowed to incubate for 4 hours. Commercially available LF
2000™ was used as a positive control. After 4 hours of incubation, medium was added to a total
volume of 500 ul and allowed to incubate for an additional 44 hours. Cells were washed with 1X

PBS and lysed with cell culture lysis reagent (CCLR 1X, 100 pl/well, Promega, Fisher Scientific,
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Waltham, MA) for 10 minutes. Cell lysates were then transferred to microcentrifuge tubes and
centrifuged at 15,000 g for 5 minutes. Luciferase expression was quantified by mechanical
injection of 50 ul luciferase assay buffer, containing 10 mM luciferin, into each well containing
20 pL of cell lysate using a Synergy 2 Multi-Mode microplate reader (BioTek Instruments,
Winooski, VT). Relative light units (RLU) were measured as the mean value of gene expression
relative to untreated cells with full expression (100%) +/- standard deviation of triplicates. Data
was statistically analyzed using Graph Pad Prism5.0 software (GraphPad Software, La Jolla,

CA).

2.4. Results and discussion

2.4.1 Synthesis of oligospermines

Spermine monomers were covalently coupled to yield three different polymers with
different amounts of spermine units and distinct geometrical structures. The three polymers
tested here are linear bisspermine, linear tetraspermine, and dendritic tetraspermine. The
nomenclature of the polymers was based on the structure and number of spermine monomers.
Oligospermine polymers were characterized by NMR and purified by HPLC. Molecular weights
of the polymers were obtained by Mass Spectrometry for linear bisspermines (MW 1299.40),
linear tetraspermines (MW 2581.82) and dendritic tetratspermines (MW 2625.87). The different
architectures of the oligospermines were chosen to obtain differences in the charge distribution
over the different structures. Our aim was to compare the siRNA polyplex formation of linear
and dendritic structures with different cationic charge densities. At neutral pH (7.4) of the intra-

and extracellular environment, it is expected that only the primary amines are protonated,
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whereas only a small portion of the secondary amines are protonated.’’ The linear tetraspermine
has the highest number of secondary amines compared to the other two oligospermines
suggesting the ability of this polymer to act as a “proton sponge” at the acidic pH of the endo-
lysosomal compartment.*® The structure of linear tetraspermines possesses multiple spermine
units in a linear arrangement which enables cross-linking of single oligospermine molecules.
Cross-linked polymers have been reported to better interact with negatively charged regions of
nucleic acids and can therefore yield enhanced transfection efficiencies.™

Dendritic structures are also very attractive as gene and drug delivery systems since they can be
flexible structures with a multitude of end groups. The latter can be exploited to attach ligands,
which opens various opportunities for cell-specific targeting. Due to their structure, dendrimers
are believed to be more accessible for electrostatic interaction with RNA.** In flexible
dendrimers, the amines located within the inner structure are accessible for protonation which

9935

results in an increased “proton sponge effect™ and consequently better transfection efficiency.”*

2.4.2 Size and zeta (C)-potential analysis

To achieve efficient transfection, polyplexes must be well-characterized and reproducible.
Many of the physico-chemical properties of polyplexes determine if they can overcome
intracellular and extracellular barriers.*. Their size is an important factor for intracellular uptake
and transfection. Some reports indicated that particles with a size below 150 nm are required for
uptake in lung cells by endocytosis.’”. However, other reports described that spermine-based
delivery systems with a larger size have good transfection efficiency in vivo and are suitable for

2la

lung cancer gene therapy.”® The ability of oligospermines to condense siRNA and form

polyplexes with defined structures was therefore evaluated here. Polyplexes prepared with 40
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pmol of FLUC siRNA at N/P 2, 5, and 10 were compared in terms of hydrodynamic diameters
and zeta-potentials. The change of size and zeta potential of polyplexes as a function of
carrier/siRNA ratio was examined to determine a suitable N/P ratio for further investigations. All
three oligospermines were able to condense siRNA into particles of sizes from 198.7 to 423.1 nm
in diameter (Figure 2.4A). All polyplexes at N/P 5 were at least slightly larger than those at N/P
2, which is in line with an earlier report that described N/P ratio dependent trends in sizes of
siRNA polyplexes.”® Interestingly, both linear oligospermines showed an increase in size with
increasing N/P ratios. Apparently, these polymers wrapped around the siRNA efficiently at an
N/P ratio as low as 2 and then formed further layers of polymer on the surface of the polyplex.
Another indication that supports this hypothesis is the increase of the zeta potential for the linear
tetraspermine polyplexes with increasing N/P ratio (Figure 2.4B). Although linear
bisspermine/siRNA polyplexes did not show a significant change in the zeta potential when
increasing the N/P ratio, the zeta potentials of linear tetraspermine polyplexes increased from 1.5

mV to 10.6 mV and 12.7 mV for N/P 2, 5, and 10, respectively.

The dendritic tetraspermine, however formed polyplexes with decreased size at N/P 10
(225.4 in diameter nm and 17.6 mV). This behavior can be explained by its intertwining structure
that causes not all amines of the tetraspermine to be available for electrostatic interaction with
siRNA at low N/P ratios. The comparably high zeta potentials these polyplexes bear also support
the idea of positively charged dendrimer arms that are unable to be neutralized by the interaction
with phosphates.”” However, these relatively high zeta potentials could possibly mediate
cytotoxicity.*” Zeta potentials of dendritic tetraspermines polyplexes increased with increasing

N/P ratios. Comparing polyplexes of linear and dendritic tetraspermines, the zeta potential of the
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linear tetraspermine polyplexes were lower than that of the dendritic tetraspermine polyplexes at

all of the tested N/P ratios (2, 5 and 10, Figure 2.4B).

The surface charge of polyplexes is a significant factor for transfection efficiency of the
polymer. Other studies have shown the ability of spermine-based polymers to neutralize the
negative charge of nucleic acids to yield an overall neutralized to slightly positive charge suitable
for interaction with the negatively charged cell membrane."* In our study, all oligospermines

polyplexes were positively charged (Figure 2.4B).

Another prerequisite for successful and reproducible transfection, especially in vivo, is a
narrow size distribution of the polyplexes *°. The polydispersity expressed as the polydispersity
index (PDI) was low for polyplexes formed with the linear bisspermine (0.14<PDI< 0.3)
compared to those formulated with the linear tetraspermine (0.26<PDI<0.34) and dendritic
tetraspermine (0.22 <PDI<0.36, Table SI 1). The broader size distribution of the polyplexes
obtained with the tetraspermines can be interpreted as a result of interaction between one longer
polycationic polymer with more than one siRNA molecule, which can cause coalescence of the
polyplexes.”’ Many physical and biological parameters such as the molecular weight play an
important role in determining the efficiency of a polymer to condense and deliver siRNA,.*".
Linear tetraspermines (MW 2581.82) and dendritic tetraspermines (MW 2625.87) naturally have
a higher molecular weight compared to linear bisspermines (MW 1299.40), which affects the
ability of the polymers to interact with siRNA and to form polyplexes. As reflected by the size
and zeta potential data shown in Figure 2.4, the structure of the polymer also plays a very

important role regarding the ability of an oligospermine to interact electrostatically with siRNA.
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Based on these results, the linear tetraspermine/siRNA polyplexes seemed to be the most
favorable with the smallest size at N/P 2 (198.7+ 22 nm) and a slightly positive zeta potential
(1.54 mV). These characteristics are caused by (i) a favorable number of positively charged
spermine units (4 units), and (ii) the linear structure which seems to be important for efficient
interaction with siRNA and to yield a low positive close to neutral surface charge that facilitates
the crossing of the particle across the negatively charged cell membrane barrier. Polyplexes at
N/P 2 with hydrodynamic diameters of 253.4+ 26.3 nm for linear bisspermine polyplexes,
198.7+ 22 nm for linear tetraspermine polyplexes, and 311.5+£18.5 nm for dendritic tetraspermine

polyplexes were therefore selected for further experiments.
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Figure 2.4. A) Hydrodynamic diameters and B) zeta potential values of siRNA polyplexes made
with the linear bisspermine, linear tetraspermine, and dendritic tetraspermine at N/P 2, 5, and 10

at room temperature. Glucose solution 5% was used as suspension medium.
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2.4.3 Size and morphology: Transmission Electron Microscopy (TEM) and Atomic Force

Microscopy (AFM)

The morphologies and sizes of the different polyplexes at N/P 2 were imaged by AFM
(Figure 2.5). The sizes of the polyplexes estimated from the AFM images were 24-73 nm for
linear bisspermine polyplexes, 101-348 nm for linear tetraspermine polyplexes, and 202-480 nm
for polyplexes made with the dendritic tetraspermine. The differences between the sizes obtained
by DLS compared to the AFM images can be explained by the different processes used to
prepare the samples for DLS or AFM. The hydrodynamic diameters were determined in a
suspension of the particles while the particles were dried for AFM. It is possible that polyplexes
coalesced during the drying step. Additionally, the broad size distribution of the polyplexes
shown by the imaging technique and confirmed by the polydispersity measurements (PDI) can
explain why the Z average of the hydrodynamic diameters does not reflect the sizes measured by
AFM. Most importantly, AFM images showed different morphologies of oligospermines
polyplexes as a result of the different chemical architectures of the polymers used. Both linear
oligospermines formed spherical particles, while the dendritic tetraspermine complexes show
less defined morphology. These observations strengthen the hypothesis that linear
oligospermines wrap around siRNA and condense it efficiently, whereas not all arms of the
dendritic tetraspermine are involved in siRNA condensation, as shown in the fuzzy morphology

of the polyplexes.

TEM showed electron-dense areas in the polyplexes which could be the siRNA and the
presence of very small particles (about 40 nm) in all polyplex formulations besides larger

particles of 440 nm, 330 nm, and 189 nm for linear bisspermine, linear tetraspermine and
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dendritic tetraspermine polyplexes, respectively (Figure SI 1). AFM confirmed such small
polyplexes (about 40 nm). This presence of small particles could explain the rather broad size

distribution of the formulations.

Figure 2.5. AFM images of polyplexes at N/P 2 with the A) linear bisspermine, B) linear
tetraspermine, and the C) dendritic tetraspermine showing different morphologies.
2.4.4 SiRNA condensation efficiency and stability against polyanions in neutral and acidic

conditions: SYBR® Gold dye binding assays and heparin competition assays

Among all the omnipresent cellular polyamines, spermines are more efficient in
condensing and stabilizing DNA than spermidine and putrescine,” Spermine-based delivery
systems condense DNA molecules by electrostatic interactions.” Therefore, SYBR®-Gold
assays were employed to compare the ability of different oligospermines to condense siRNA at
various N/P ratios.** In this assay, free or unbound siRNA is accessible to the intercalating dye
SYBR-Gold® and is subsequently quantified based on the fluorescence emitted. Results were
compared to low molecular weight PEI (5 kDa) as a control. As expected, all the polyplexes
assayed were able to condense siRNA more efficiently with increasing N/P ratio (Figure 2.6). At

higher N/P ratios, the net positive charge of the polyplexes was shown to increase, which is
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reflected by increasing zeta potentials (Figure 1). With the rise of the zeta potential, the
electrostatic interaction is enhanced, followed by higher condensation. All oligospermines were
able to completely condense siRNA at N/P 2 and higher, whereas complete condensation of
siRNA was only achieved at N/P 5 and higher for low molecular weight PEI. These results
indicate that oligospermines tend to bind siRNA with higher affinity than PEI at low N/P ratios.
Noticeably, linear bisspermine/siRNA polyplexes at N/P 2 showed relatively low condensation
of siRNA compared to the other two oligospermines. This observation can be explained by the
low molecular weight and short chain length of the bisspermine compared to the tetraspermines.
The fact that the condensation efficiency did not increase for the bisspermine by increasing the
N/P ratio additionally corroborates the observation of almost constant zeta potentials. Polyplexes
with N/P 2 ratio were selected for further experiments based on their small size and overall good

siRNA condensation.
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Figure 2.6. Condensation efficiency of oligospermines polyplexes measured by SYBR® Gold
intercalation of siRNA at increasing N/P ratios. Results are given as average of n=3 +/- S.D.
Stability of cationic polyplexes is important for determining their efficiency as non-viral
vectors. Their stability is influenced by the presence of competing anions™ in the cell
membrane® or in serum.”’ Heparin assays were therefore performed to confirm the ability of
oligospermines to protect the siRNA in the presence of polyanions under physiologically
relevant conditions. Different pH conditions were chosen to mimic the neutral (7.4) or acidic
(4.5) environment of the cytoplasm and endo-lysosomes, respectively. As expected, the stability
of all polyplexes decreased with increasing heparin concentration. The amount of siRNA
released from the polyplexes increased rapidly as a function of heparin concentration. However,

oligospermine polyplexes maintained higher stability profiles than PEI (5 kDa) polyplexes
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against heparin competition, especially at low concentrations of heparin (Figure 4). It is
important to note that the release profile from low molecular weight PEI complexes needs to be
seen in the context of its poor condensation at N/P 2. As shown in Figure 3, at N/P 2, 75% of the
siRNA is not yet condensed by 5 kDa PEI. It is not surprising, therefore, that the same amount of
siRNA (75%) is found to be accessible for intercalation even in the absence of heparin. The
remaining 25% of the siRNA are consequently very easily released from the complexes as shown

in Figure 4.

At neutral pH, less than 75% of the siRNA was released from the oligospermine complexes
even at the highest heparin concentration (Figure 2.7A). Since a balance between complexation
and decomplexation is necessary to release siRNA in the cytosol for efficient incorporation to the
RNA induced silencing complex (RISC), the release profiles at lysosomal pH were tested also.
At acidic pH, many amines, especially in PEI, which are not protonated at pH 7.4, were charged
leading to an increase of the complexation efficiency. However, siRNA was easily released from
PEI complexes at comparably low heparin concentrations at acidic pH also. In comparison,
oligospermine complexes displayed better stability again. In the acidic environment, the
tetraspermine complexes released comparable amounts of siRNA as PEI at high heparin

concentrations. Only the bisspermine lacked efficient decomplexation properties.
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Figure 2.7. Release profiles of siRNA from oligospermines polyplexes (N/P 2, 50 pmol/well)
compared to PEI as a function of heparin concentration at A) pH 7.4 and B) pH 4.5. Results are
given as mean normalized fluorescence (n=3) +/— S.D.

To study the development of the polyplexes stability against heparin over time, heparin
stability assays were performed for each polyplex after different incubation periods (20 minutes,
1 hour, 2 hours and 3 hours) with heparin at both pH 7.4 and pH 4.5 (Supplementary
Information). At pH 7.4, all polyplexes showed a slight increase of siRNA release over time. The
strongest effects were observed for the linear spermine polyplexes. These differences can be
explained by the structural differences of the oligospermines and their different interaction with
siRNA. While it is hypothesized that the linear oligospermines wrap around the siRNA and are
efficiently neutralized, as reflected by rather low zeta potentials, not all amines of the dendritic
oligospermine seem to be involved in the interaction with siRNA. It can therefore be understood
that an excess of heparin binds to positively charged parts of the dendritic oligospermine before

it displaces siRNA from a complex. Prolonged incubation of high concentrations of heparin with
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polyplexes made of linear spermines, however, results in more quantitative competition with

siRNA and thus release of the latter.
2.4.5 Polymer cytotoxicity: MTT assay

The formulation of non-viral vectors of cationic polymers and anionic nucleic acids is
constrained by the compromise of high transfection efficiency which is often times only
achieved at the price of high cytotoxicity.*” Using cationic polymers with high molecular weight
and charge density can protect the resulting polyplex from destabilization by natural cellular
polyanions. The trade off, however, is that these positive charges can interact with cell
membranes, inhibit crucial biological processes and lead to cytotoxic effects. ** MTT assays
were therefore used here to evaluate the cytotoxic effect of three cationic oligospermine
polymers on H1299/LUC cells after 24 hours of incubation with the polymers. Results are
presented as percentage of cell viability compared to untreated control cells. As expected, the
cytotoxicity of oligospermines increased with increasing polymer concentration. Moreover,
increasing the cationic charge of the polymer by increasing the number of spermine moieties also
increased the cytotoxicity. Linear tetraspermines and dendritic tetraspermines showed a higher
toxicity at higher concentrations when compared to linear bisspermines. This trend is due to the
presence of a higher number of positively charged groups at neutral pH in the linear
tetraspermine (13 positively charged groups) and dendritic tetraspermine (14 positively charged
groups) compared to linear bisspermine (7 positively charged groups). The dendritic
tetraspermine polymer was even more toxic than the linear tetraspermine at high concentrations
(0.5-1 mg/ml) which may be due to its structure. In conclusion, all oligospermines affected the

cell viability significantly less than PEI (5 kDa, IC50=3.63 pg/ml) and commercially available
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LF 2000TM (IC50=41.41 pg/ml). At the corresponding polymer concentrations in polyplexes
used in the following experiments, the cell viability was at least 83% after treatment with linear
bisspermine, 88% with linear tetraspermine, and 77.3% with dendritic tetraspermine (Figure 2.8).
It is important to note that the positive charge of the polymers is neutralized after polyplex
formation with siRNA, so the viability shown here after treatment with polymer only is the

assumption of a “worst case scenario”.
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Figure 2.8. Cytotoxicity profiles of oligospermine polymers obtained by MTT assays.
Percentages of cell viability of H1299/LUC cells are shown as a function of increasing polymer
concentration after 24 hours of polymer incubation. The table shows the IC50 concentrations of
the polymers in mg/ml.
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2.4.6 Quantification of cellular uptake by flow cytomtery

Cellular uptake was quantified by flow cytometry and compared to PEI (5 kDa) as a
positive control and untreated cells as a negative control. Polyplexes with 40 pmol of
AlexaFluor488-labeled siRNA at N/P 2 and 10 were compared. Additionally, trypan blue 0.4%
was used on the cells to quench the extracellular fluorescence associated with polyplexes that
bind to the surface but are not internalized. The results were compared to untreated cells.
Overall, trypan blue-treated cells showed slightly lower mean fluorescence intensities compared
to cells that did not undergo quenching of bound polyplexes. This indicates that a small fraction
of the siRNA polyplexes were attached to the cell membrane but are not taken up intracellularly.
Among the oligospermine polyplexes, the highest cellular uptake was achieved by polyplexes
made of linear tetraspermine/AlexaFluor488-siRNA at N/P 2 (no trypan blue-treatment) (Figure
2.9). These results are surprising because linear tetraspermine polyplexes were almost neutral at
N/P 2 (1.54+0.5 mV), whereas dendritic tetraspermine polyplexes had a more cationic zeta
potential (12+0.85 mV). For polymers such as PEI, an increase of the zeta potential which is
obtained by increasing the N/P ratio is expected to mediate stronger siRNA delivery. This trend
was confirmed here. However, PEI polyplexes at high N/P ratios are known to cause toxicity and
off-target effects in transfected cells.” While the siRNA delivery by oligospermine polyplexes
was comparable to PEI at N/P 2, an increase of the N/P ratio to 10 did not increase their
efficiency. Linear tetraspermine polyplexes at N/P 2 were found to have the smallest
hydrodynamic diameters, however. It is possible that this parameter is favorable for uptake and

crossing of the barrier of the cell membrane. Additionally, the spherical morphology of the linear
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oligospermine complexes compared to the fuzzy morphology of the dendritic tetraspermine

polyplexes could have beneficially affected their internalization.
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Figure 2.9. Flow cytometry measurements showing the uptake of polyplexes made of
AlexaFluor-488 labeled siRNA and linear bisspermine, linear or dendritic tetraspermine. Mean
fluorescence intensities were quantified in H1299/LUC cells after 24 hours incubation with
polyplexes prepared at N/P 2 and 10. Trypan blue treatment is performed to quench the
extracellular binding of siRNA polyplexes to the cell. Cells treated with trypan blue showed
decreased mean fluorescence intensities.
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2.47 RNA knock down measured by qRT-PCR

Real-time PCR was performed to quantify the knock down on the mRNA level mediated
by polyplexes made of GADPH siRNA (200 pmol/well) and oligospermines at N/P 2. All
oligospermines were used to form polyplexes with negative control siRNA (siNC) also. Linear
bisspermine/siRNA polyplexes did not show gene silencing. This can be attributed to the
incomplete siRNA release from the polyplex in the endo-lysolomal compartment as shown in
Figure 4B. The most efficient oligospermine candidate was the linear tetraspermine, which is in
line with the results of polyplexes size, zeta potentials, and flow cytometry. Linear tetraspermine
polyplexes were shown to significantly downregulate the RNA expression more effectively than
dendritic tetraspermines (54.6+17.3% vs. 75.1£1.5% residual GAPDH expression) (Figure 2.10).
The dendritic structures showed less RNA knock down compared to the linear tetraspermine
structure which could be explained by its less efficient uptake into the cells. In addition, the lack
of secondary amines in the dendritic structure contributes to the lack of the “proton sponge
effect”.> Comparing the results of the three oligospermine polyplex formulations, we conclude
that the difference in the architecture of the polymer strongly affected the efficiency of siRNA
delivery to H1299/LUC cells. The linear tetraspermine structure is favored for successful siRNA

delivery in lung cancer cells.
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Figure 2.10. Transfection efficiency in vitro (H1299/LUC cells) of polyplexes at N/P 2 on the
mRNA level measured by qRT-PCR. Hs_ GAPDH-primers were used to quantify hGAPDH gene
expression. Hs B-actin-primers were employed as a standard to evaluate the relative gene
expression of the two genes. Polyplexes made of GADPH siRNA and linear tetraspermine
showed the best knock down compared to dendritic tetraspermine (54.6% vs. 75.1% residual
GAPDH expression) and linear bisspermine polyplexes (no knock down).
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2.4.8 Protein knockdown measured in reporter gene assays

At pH 4.5, the secondary amines are protonated leading to a strong buffering capacity
inside the endosomes and thus a further influx of hydrochloric acid and water leading eventually
to endosomal rupture. This event is believed to release endocytosed polyplexes and to support
their endosomal escape into the cytosol.’’ The silencing efficiency of the luciferase protein
expression in H1299/LUC cells induced by oligospermines polyplexes at N/P 2 was evaluated
after transfection with 40 pmol of anti-LUC siRNA after 48 hours of incubation. The results
were normalized to the relative expression of untreated cells and compared to commercially
available LF 2000™. LF was used in many studies as a positive control for siRNA mediated
knock down efficiency.*” As in the mRNA knock down experiments, negative control siRNA
(siNC) was also used with all oligospermines and LF. Linear tetraspermine/siRNA polyplexes
showed the best knock down effect of luciferase expression compared to the other 2
oligospermines (Figure 2.11), which is in agreement with the RT-PCR results. The dendritic
tetraspermine and LF showed higher cytotoxic effects than the other polymers which can be
explained by the cytotoxicity results shown in Figure 7. These results suggest that not only did
the oligospermine architecture affect the interaction of the protonated portions of the polymer
with the phosphate groups of siRNA, but these different siRNA complexation behaviors also
lead to different efficiency of gene knock down. Linear bisspermine polyplexes were taken up by
the cell but, showed neither knock down on the mRNA nor the protein level. This is attributed to
the lack of amines in the short chain length and low molecular weight of the bisspermine
structure which does not condense siRNA as quantitatively as the tetraspermines (Figure 2.3.)

and also does not efficiently decomplex (Figure 2.7). Our results are in line with other reports in
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which Eliyahu et al. compared two chemically-modified spermine-based delivery systems for
DNA delivery in terms of the number of spermine moieties and the distribution of charge density
on the polymer backbone. In their study, a low and a high sperminated polymer were examined.
The low sperminated polymer showed 56% less spermine per weight and 28% less primary
amines than the high sperminated polymer. The low sperminated polymer was less efficient in
neutralizing the negative groups of the nucleic acids and hence showed lower transfection
efficiency compared to the high sperminated polymer.’’ Another study of cationic spermine
conjugates with different polysaccharides showed efficient in vitro transfection with high
spermine content (2000 nmol/mg).”! In vivo experiments showed that chemically-modified
dextran-spermine polyplexes successfully transfected mice with low toxicity and good
tolerability when combined intramuscular and intranasal administration was performed.””
However, for efficient transfection, high positive zeta potential of the polyplex and large DNA
doses were necessary.”’ Dendritic structures have been described to be more accessible for
electrostatic interaction with RNA.** This is the case if the structurally inner amines are available
for protonation which then also enhances the “proton sponge effect”,”” the endosomal escape,
and the transfection efficiency.** However, our results showed that the amines in short dendritic
structure are not all available for interaction with siRNA. In comparison with short linear
structures, short dendrimers are more rigid. The protonated amines in the dendritic structure were
thus not neutralized which increased the cytotoxicity of the polyplexes. The polyplexes made
with the dendritic structure did not show strong uptake or gene knock down efficiency which
may be due to the larger sizes at N/P 2 compared to the other two polymers or the less spherical

morphology. Therefore, the structural architecture of dendritic tetraspermine was associated with

increased cytotoxicity and decreased transfection efficiency.
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Figure 2.11. Silencing efficiency of firefly luciferase expression in H1299/LUC cells by
oligospermine polyplexes with FLUC siRNA or non-specific control siRNA at N/P 2 after 48
hours of transfection. The relative gene silencing was normalized to blank untreated cells.
Results are the mean value of triplicates +/- S.D.

2.5. Conclusion

We highlighted the importance of the structure-activity relationship (SAR) of cationic

oligospermines and its strong impact on siRNA delivery efficiency. The complexation and
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decomplexation of siRNA and the carrier’s ability to escape the degradation in lysosomes are
two main factors in determining the polymer’s transfection efficiency. The spatial availability of
the positively charged amines in the polymer plays an important role for its electrostatic
interaction with RNA and thus the shielding and protecting of siRNA. Therefore, the
oligospermine architecture was shown to affect the transfection efficiency of polyplexes formed
with siRNA. Consequently, an optimization of the used polymer is necessary. This can be
achieved in many ways. Here, we investigated the effect of using different numbers of spermine
monomers. In addition, we examined the effect of two different geometrical structures, namely
linear and dendritic oligospermines. We found that tetramers of spermine are required to provide
the adequate positive charge for both uptake and buffering effect for endosomal escape. From the
comparison of linear bisspermines and linear tetraspermines, we found that increasing the
number of spermines and charge density within the polymer enhanced the transfection efficiency
at minimal toxicity. The linear structure is preferred over the dendritic structure, because the
former seems to interact more efficiently with siRNA as not all amines of the latter are available
for siRNA condensation leading to a more positively charged surface charge. Showing more
efficient charge neutralization, the linear tetraspermine polyplexes are less cytotoxic and were
shown to be more efficiently transfected into lung carcinoma cells (H1299/LUC). Therefore, we
conclude that linear tetraspermines are very promising siRNA delivery systems. To enhance their

intracellular uptake, coupling of targeting ligands is currently investigated.

Supplementary Information contains polydispersity values, TEM images, and the temporal
development of siRNA release at pH 4.5. This material is available free of charge via the

Internet at http://pubs.acs.org.
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2.8.  Supplementory information

Table SI 2.1: Polydispersity (PDI) values of oligospermines polyplexes at different N/P ratios

Polymer used in polyplex N/P ratio PDI
Linear bisspermine 2 0.301
5 0.293
10 0.141
Linear tetraspermine 2 0.26
5 0.29
10 0.34
Dendritic tetraspermine 2 0.36
5 0.35
10 0.22

Figure SI 1: TEM images of polyplexes at N/P 2 with the A) linear bisspermine, B) linear
tetraspermine, and the C) dendritic tetraspermine showing different morphologies and average
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sizes of 440 nm, 330 nm, and 189 nm respectively. D) Small spherical particles of size about 40
nm were confirmed by both TEM and AFM images in all oligospermine polyplexes.
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Figure SI 2. Development of the stability profiles against heparin polyanions for polyplexes with
A) linear bisspermine, B) linear tetraspermine, C) dendritic tetraspermine, and D) 5 kDa PEI at
pH 7.4 after 20 minutes, 1 hour, 2 hours and 3 hours of incubation of the polyplexes with
increasing concentrations of heparin. All oligospermine polyplexes showed a slight increase of
released siRNA over time at pH 7.4.

At pH 7.4, linear bisspermine polyplexes showed significant increase in siRNA release
(p<0.0001) over time compared to insignificant increases with other polymers (Figure SI 2). At

pH 4.5, polyplexes made with the linear bisspermine and linear tetraspermine showed
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significantly decreased siRNA release (p<0.0001) over time which indicates a dynamic
rearrangement of the polyplexes in presence of heparin. On the other hand, polyplexes made with
the dendritic tetraspermine and PEI (5 kDa) showed significantly increased siRNA release

(p<0.0001) over time (Figure SI 3). These results showed higher stability of polyplexes in

neutral medium than in acidic medium.

A) Linear bisspermines B) Linear tetraspermines
PH 4.5 PH 4.5
=20 min
125 w50 ais 125 o1 hdie
-1 hour -2 hours
1004 - 2 hours 1004 -3 hours
S - 3 hours g
x @
w w
@ @
2 o
w w
2 2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2

0.4 0.6 0.8 1.0
IU heparin/ well (50 pmol siRNA)

IU heparin/ well (50 pmol siRNA)

C) Dendritic tetraspermines

e s D) PEI (5KDa)
e 7 -20min PH4.5
-1 hour 1259
=2 hours
1004 =3 hours il
g < I —— I
= =
g 2 1 3
g o -2 hours
& 50 g sl -3 hours
2 2
251 254
o 0.2 0.4 0.6 0.8 1.0 %0 02 0.4 06 0.8 1.0

IU heparin/ well (50 pmol siRNA) IU heparin/ well (50 pmol siRNA)

Figure SI 3. Development of the stability profiles against heparin polyanions for polyplexes with
A) linear bisspermine, B) linear tetraspermine, C) dendritic tetraspermine, and D) 5 kDa PEI at
pH 4.5 after 20 minutes, 1 hour, 2 hours and 3 hours of incubation of the polyplexes with
increasing concentrations of heparin. For polyplexes with linear bisspermine and linear

tetraspermine, the release of siRNA decreased over the time of incubation. In polyplexes with

dendritic tetraspermine and PEI (5 kDa), the release of siRNA slightly increased over time at pH
4.5.
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Chapter 3. Nanoimprinting of topographical and 3D cell culture scaffolds

3.1. Abstract

The extracellular matrix exhibits several nanostructures such as fibres, filaments,
nanopores, and ridges which can be mimicked by topographical and three dimensional substrates
for cell and tissue culture for an environment closer to in vivo conditions. This review
summarises and discusses a growing number of reports employing nanoimprint lithography
(NIL) to obtain such scaffolds. The different NIL methods as well as their advantages and
disadvantages are described and special attention is paid to cell culture applications. We discuss
the impact of materials, nanotopography, size, geometry, fabrication method, and cell type on
growth guidance and differentiation. We present examples of cell guidance, inhibition of cell
growth, cell pinning, and engineering of 3D cell sheets or spheroids. As currently applications
are limited and not systematically compared for various cell types, this review only suggests
promising substrates for particular applications. The outlook proposes possible directions in

which this field may proceed from here.
Keywords: Nanoimprint lithography, scaffold, substrate, cell culture, cell guidance

» This article reviews different techniques of Nanoimprint lithography (NIL) and their

applications as cell substrates and suggests promising applications.
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3.2. Introduction

Bio-mimicking the natural environment of the cell has attracted great interest. The
extracellular matrix (ECM) of the cell exhibits several nanostructures such as fibres, filaments,
nanopores and ridges [1-5]. The cell interacts chemically and topographically with the ECM
components, thus regulates cell responses like motility, differentiation and proliferation, and
many more. [6-10]. Understanding the morphology and topography of the cells is crucial for
biological, medical and bioengineering research applications. Many techniques have been
presented in the literature, which aim to mimic the ECM by developing topographical
nanostructured scaffolds, in contrast to petri dishes. Among the preparation techniques,
nanoimprinting lithography is a rather new one which attracted much attention recently.
Nanoimprinting technology has many promising applications in the areas of biosensors, tissue
engineering [11], DNA mapping as well as electronics. Nanoimprinting techniques have
advanced to build topographical and even three dimensional 3D substrates which are a critical

for ex-vivo cell and tissue culturing.

The conventional in vitro 2D cell culture does not mimic the cell environment in vivo in
terms of the nanostructure pattern and topography as well as the 3D existence. Nano-sized
substrates can be obtained by a variety of conventional technologies such as electron beam
lithography [12] or holograpy lithography [13]. Non-lithographic techniques that also yield nano-
scale cell culture substrates are emulsion freeze-drying [14, 15] but are not discussed here.
However, the aforementioned technologies have some limitations and drawbacks. As early as
1911, Harrison showed that topography plays an important role in the cell behaviour on fibres of

a spider’s web [16]. Many research groups used nanoimpriting techniques to study such effects.
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Extensive reviews discussed the effects of surface nanotopography and bio-interfacial
interaction, which is the interface between the cell and other fabricated material, on cell behavior
in terms of motility [17], alignment [18], adhesion [19, 20], migration [21], differentiation [22],
proliferation [23], nerve regeneration [24] and others [25-29]. Much distinctive behaviour was
observed for cells cultured on nanopatterns versus micro patterns, especially in anchorage-
dependant cells like neural cells including the dynamics of its membrane, elongation of axonal
fibers to reach its specific targets, the growth pathway, and the cytoskeletal rearrangement that
regulates the directional cell motility. Results vary according to the cell type, topography
nanostructuctures and culture conditions [30]. The methodology applied for scaffold alignment
also affects the alignment of cells with the nanotopography. Chaurey et al. described that
fibroblasts oriented similarly on electrospun vs. nanoimprinted scaffolds for fiber larger than 100
nm. However, cell alignment was more efficient on sub-100 nm nanoimprinted fibers [31]. The
reason for these differences in cell behaviour is that many peptides which are ECM components
(such as laminin [32] and fibronectin) exist in nanoscale. Generally, nanopatterned structures on
substrate surface were shown to induce cells to change morphology, alignment and adhesion
compared to flat surfaces [33]. Dalby and coworkers cultured fibroblasts on 13 nm islands.
Fibroblasts were found to have an increased cell attachment and spreading compared to a planar
surface which were reflected by up-regulation of specific proliferative genes [33]. Later on, the
same group used nanotopograhy as a non-invasive tool to understand the mechanism the

mechano-transduction cascade of gene expression in fibroblasts [34].

Wieringa et al. studied the effect of nanotopography effect on F11 a root-ganglion derived

cell line in terms of cell contact guidance. Contact guidance is the induced effect of the
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anisotropic topographic structures on the cell regarding the alignment and migration in the
direction of the topographies [35]. F11 is an established model for studying cytoskeletal
rearrangement, plasticity [36] and differentiation [37]. Wieringa et al. presented the F1 cell line
as a potential peripheral sensory neuron model for nanotopographical guidance [38]. Substrates
with two different ridge dimensions of 500 nm and 2000 nm and a constant groove width of 500
nm were used to culture the cells. Another factor, the percentage of fetal bovine serum (FBS) in
culture media was considered. In regards to the neurite guidance, no difference was shown
between patterned and flat surface when cultured with 1% FBS. In contrast, when cells were
cultured with 10% FBS, it was shown that the patterned surfaces induced the cell alignment with
a trend of decreasing neurite alignment with increasing ridge width. This supports the
hypothesis that the cell alignment on nano-patterns occurs differently than on flat unpatterened
surfaces and thus might influence the reliability of other aspects such as nerve regeneration. It
also suggests that sometimes, a set of culture conditions can control the cell response rather than
only one condition. A different report by Lee et al. describes osteoblast-like cells cultured on
nano-thin polymer films on which nanopillar features were imprinted with a favourable size of
200 nm. This process changed the contact angle of the thin film and the surface property from
hydrophilic to hydrophobic. When cells were cultured on hydrophobic nanopillar surface, they
showed poor spreading and adhesion, which might be due to the deprived adhesion on top of the
nanopillars. This represents therefore a cell substrate model that resists the cell adhesion and
spreading. Additionally, it was found that the most important factor in terms of the contact angle
of the nanopillar with the plastic thin film is the temperature of imprinting and de-molding of the

nanostructures and not the imprinting time [39].
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However, the mechanism of cell response corresponding to different nanopatterns remains
unclear [40, 41]. Typically, it is a trial and error approach to examine the response of the cell
towards a substrate nanopattern. So far, the literature provides reference to such patterns with
specific cell lines. Over the last decades, many fabrication methods, inspired by the nature of
ECM have been investigated. Some of them are novel techniques. Others are established
fabrication methods that are modified to overcome one or more drawback of an established
method. In this review, we describe basic nanoimprint lithography techniques that can be applied
for patterning of topographical and three dimensional scaffolds for cell and tissue culture and we

discuss the applications and possible future developments.

« Nanotopography significantly affects cell behaviour. In order to mimic the in vivo conditions
of the cell growth, it is necessary to consider the patterns and topography of the extracellular

matrix (ECM) nanostructures and to incorporate them in the proposed cell substrate.

3.3. Nanoimprint lithography (NIL)

Nanoimprint lithography [42] is a top-down nano-patterning technique with sub-100 nm
high resolution and high throughput at low cost. NIL methods are classified as thermoplastic (T-
NIL) and ultra-violet nanoimprint lithography (UV-NIL) methods [43, 44]. Additionally,
variants to those two techniques exist. Nano-patterns can be formed on different substrates such
as glass plates, silicon wafers, flexible polymer resists and non-planar substrates [45]. NIL
exhibits many advantages over other conventional optical lithographic techniques that depend on
electron beam scattering or light diffraction since NIL adapts a different concept which is

causing a uniform mechanical deformation onto the substrates [42]. In NIL, mechanical
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embossing is applied on the resists that later serves as a replica of the original pattern. Using this
technique allows for avoiding the limitations associated by electron beam scattering and light
diffraction such as the lower resolution [46, 47]. Moreover, NIL demonstrated ultrahigh
resolution shortly after its introduction [48]. However, NIL is associated with various etching
and deposition processes [49], which increase the time and the cost of the process. Therefore
NIL is not suitable for commercial large- scale production, however, on the lab-scale, it has

many advantages and applications [50].

» Nanoimprint lithography (NIL) presents many advantages over other conventional
techniques. NIL methods can be subdivided into thermal, ultraviolet and variant NIL

techniques.

3.4. Thermoplastic NIL (T-NIL)

NIL, first introduced by Chou et al in 1995 [42] was called “hot embossing”, and then
developed to what we now understand as NIL. In the thermoplastic NIL (T-NIL), as shown in
Figure 3.1, a fine layer of a thermoplastic polymer is deposited on a substrate which is a silicon
wafer and is spin coated to form the surface of the imprint resist. A hard mould, usually made of
silicon, with pre-patterned nanostructures is embossed in the resist surface by a thermo-
mechanical single step under pressure to stamp the desired nanostructures of the mould into the
polymer resist. The thermoplastic polymer temperature is elevated above its glass transition
temperature (T,) to facilitate the flow of the polymer into the nanocavities of the hard mould [51-
54]. Consequently, the temperature of the polymer is lowered below T, to freeze and solidify the

replicated patterns and to detach the mould, thus leaving the pattern on the substrate [52]. Only
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two years after this initial report, sub-10 nm structures as small as 6 nm were constructed [48].
The high imprinting temperature well above T, and the high pressure (50-100 bar) represent the
main limitations of the T-NIL technique [55], in addition to the mechanical strain involved. At
this high temperature, the polymer exists in a viscous liquid form under pressure, and thereby
can occupy the cavities of the mould. The main principle of NIL is based on squeeze flow of a
sandwiched viscoelastic material between a substrate and a mould. Many attempts to overcome
these limitations were reported, such as room temperature NIL [56-58] and low pressure
nanoimprint lithography [59].
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Figure 3.1: Schematic illustration of thermal NIL. (a) A fine layer of a thermo-plastic polymer is
deposited and spin-coated on the substrate, a silicon wafer. (b) A hard mould, usually made of
silicon, contains pre-patterned nanostructures and is mechanically embossed into the thin
polymer film at high pressure (50-100 bar). The temperature of the polymer is raised above T,
for a few minutes to allow the flow of the polymer resist into the mould cavities. Then the
temperature is lowered to solidify the patterns. The mould is detached to leave the pattern on the
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substrate. A thin residual layer that is originally left on purpose to avoid the direct contact
between the substrate and the hard mould is then removed by reactive ion etching (RIE).
Adapted from [11]
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UV-curable g
pre-polymer™ B N N I I I

Substrate

Figure 3.2: Schematic illustration of UV NIL. (a) The substrate is coated by a UV-curable liquid
polymer resist. (b) A transparent mould (quartz glass) is pressed into the substrate. The imprinted
nanostructures are cured by UV-radiation applied to cross-link the polymer resist and to facilitate
pattern formation on the substrate at room temperature and under reduced pressure (0-5 bar).
Subsequently, the mould is released leaving the imprinted structures on the substrate. Adapted
from [11]

The resist used is a key in the process; usually a polymer curable upon heat or UV-
exposure is used. The material of the resist can be chosen depending on the adhesion desired
between the resist and the template [60]. Variable materials can be used with different properties.

Regarding the mould manufacture, a hard mould is typically fabricated by electron beam

lithography, focused ion-beam etching and dry etching techniques [61], or a variety of other
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innovative techniques to yield a high nano-sized resolution [62]. Many reviews on types of
moulds, resists and conditions of the NIL process [47, 63-65] and commercially available
imprint moulds [66] have been published. Generally, the considerations for the mould fabrication
include the hardness, thermal expansion coefficient and compatibility. Variable parameters such
as the chemical, physical patterning and mechanical aspects as well as the interface interaction
and its effect on mould filling and the de-moulding process [67-69] play an important role in

NIL.

* Thermal nanoimprint lithography (T-NIL) relies on the mechanical embossing of a mould

into a thermoplastic resist. Main limitations are the high temperature and pressure applied.

3.5. Ultra-violet NIL

Ultra-violet nanoimprint lithography (Figure 3.2) is performed by coating the substrate
surface with a UV-curable liquid resist. An optically-transparent mould is used to press into the
substrate, and then UV radiation is applied to solidify the resist. It provides several advantages,
such as reduced cycle time, lower cost, as well as polymerisation at room temperature [44]. All
these factors yield to the success of UV-NIL. However, it is difficult to replicate patterns with
high aspect ratio and high density with UV-NIL. This is due to the high force needed to remove
the pattern formed from the mould. In an attempt to overcome this challenge, an anti-reflective
glassy carbon mould was used to aid in the release of the pattern from the mould. Results showed

that the force of release is dependent on the surface area of the mould [70].

Strong and significant advances have improved the nanoimprinting process throughout the

years. Step—and-flash imprint lithography (SFIL) is one of them. In this technique, a monomer of
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low viscosity is deposited as drops by ink jet printing without spin coating. The template is then
lowered to a contact point with the resist. The resist flows to fill in the gaps between the
substrate and the template topographies by the capillarity effect. Subsequently, UV irradiation is
applied to cause polymerisation. The lowest possible pressure (<0.02 atm) among all other
techniques is used in SFIL. The drop injection renders SFIL useful for patterning on non-planar
surfaces [71]. Step and flash imprint lithography (SFIL) is a good example for an optimised
automated operation with reduced defects and contamination [72]. The alignment accuracy is
about 10 nm [73]. Glangchai et al. used SFIL to form nanoparticles with uniform 50 nm size and
shape using macromers. These nanoparticles are enzymatically-triggered to release an
encapsulated drug. This novel incorporation of nanoimprinting represents a high-throughput
technique with a precise control of the nanoparticles size. SFIL requires neither high temperature
nor exposure of UV radiation for a long time. SFIL showed many advantages such as the high
accuracy of alignment and uniformity. Besides, it can be used to imprint over a pre-patterned
resist. This property suggests that SFIL can perform multi-layering of resists and form 3D

scaffolds [74].

Other developments have been studied to improve the conditions of NIL. The air cushion
technique used to enhance the uniformity of the applied force was shown to increase the yield as
well [75]. Other developments were the incorporation of a biological sample as a template in the
process [76], reduction of temperature and pressure applied [77], polymerisation at room

temperature [57], and others [78-83].



86
» In ultraviolet NIL, a transparent mould is pressed into a photoresist, and then UV radiation
is applied to harden the resist at room temperature. Limitations are the difficulty to obtain

patterns with high density and high aspect ratio.
3.6. NIL variants

Other variants of NIL emerged, such as step and stamp nanoimprint lithography SSIL [84-
87], NIL using wafer stamps [88-90], electro-chemical nanoimprint lithography, reverse
nanoimprint lithography [55], substrate conformal imprint lithography, ultrasonic NIL, roll-to-

roll NIL, and laser assisted direct imprint reverse imprint lithography [63, 64].

Electrochemical nanoimprinting involves using a mould fabricated from a solid electrolyte
or superionic conductor. When the mould contacts the substrate, a voltage is applied to initiate
electrochemical etching that dissolves the metals in the mould. Metal ions formed by
electrochemical etching are then transferred from the film to the mould. A complementary
pattern to the mould with sizes of 50 to 500 nm on metal silver surface are formed [91]. A
continuous roll-to-roll NIL (R2RNIL) technique can imprint nanostructures with high-
throughput and speed. Ahn et al. demonstrated a roll-to-plate imprinting (R2PIL) on a rigid
substrate as well as R2ZRNIL on a flexible web to transfer nano-gratings in a large area of 4 inch
wide with high-throughput. The continuity of the technique provides a uniform applied pressure

on the resists [92]. Continuous UV roll NIL technology was also described [93].

Molecular imprints Inc. introduced the jet and flash imprint lithography™ (J-FIL™, 2009)
which is used to design a nanopattern layer-to-layer alignment in semiconductor and memory

devices with high resolution, extendible to sub-10 nm resolution and low cost production. Low
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viscosity imprint fluids are used, of which a drop is dispensed in a controlled-on-demand-manner
depending on the template pattern desired. These two properties, the adaptive material
dispensing and the low viscosity nanoimprint fluids results in control of the residual layer with
dimension uniformity. This technique is performed at room temperature and uniform low
pressure, which is advantageous. Furthermore, the transparent template used in J-FIL™ is a key

to yield a high resolution layer-to-layer alignment.

* Many variants of NIL have developed to either provide different parameters and

advantages or to avoid specific limitations of established techniques.
3.7. Reverse nanoimprint lithography

Reverse nanoimprint lithography (RNIL) [55, 94] is a relatively recent technique that
inherits the concept of conventional NIL and adapts advantages over it. In conventional NIL, the
substrate is spin-coated by a polymer layer before being stamped by a hard mould to deform the
polymer film and to create thickness contrast. Hence, high temperature and pressure are needed,
typically at least 70°C above T, and pressure of 10 MPa [95-97]. Noticeably, in the reverse
nanoimprinting technique (RNIL), the liquid polymer resist is poured into the mould with no
pressure applied, spin-coated and cured by thermal application. Hence, a replica of the mould
pattern is formed in the polymer resist, then peeled off and transmitted to the substrate at
appropriate pressure and temperature as shown in Figure 3 [11]. This advantage allows for the
usage of substrates which are hard to be spin-coated with a polymer, for example flexible
polymer substrates [55]. Also the reduction of temperature and pressure compared to T-NIL

shortens the time of the imprinting and eases the change of the pattern upon cooling [98]. The
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consequentially transffered pattern is used as a substrate for cell culture or as a negative mould
for a new nano-imprinting process which allows for enhancing the durability of the original

mould.

Viouid
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Figure 3.3: Schematic illustration of reverse nanoimprint lithography (RNIL) (a) A mould with
desired nano-features is used. (b) The liquid resist is poured into the mould structures without
pressure. The resist is spin-coated and cured by thermal or UV cross-linking. (¢) The cured resist
is peeled off and transferred to either a substrate or to pre-patterned resists to form topographical
substrates for cell cultures. The resulting substrate can be directly used as a cell substrate or it
can be used as a negative mould for another imprinting process and can hence increase the
durability of the master mould. Adapted from [11]

Huang et al. successfully transferred the patterns from the mould to the substrate by three
different modes i.e. inking, embossing, and whole-layer transfer. This was done by controlling

both the temperature and the surface planarisation of the polymer resist. The surface
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planarisation is characterised by the average peak-to-valley height of the coated resist. The
solution used for spin-coating is the parameter that most strongly controls the thickness of the
layer. By adjusting the degree of surface planarisation after spin-coating, pattern transfer can be
accomplished in the inking and whole-layer transfer modes at temperatures and pressures as low
as 30 °C below T, and 1 MPa, respectively, which is significantly beneficial. At this lower
temperature, the pattern transfer was found to be strongly dependant on the planarisation degree.
If the polymer coating is non-planarised on the mould, the protruded areas only will be
transferred to the substrate, resulting in so called inking pattern transfer. But if the polymer is
planarised, then the entire polymer coat is transferred to the substrate which is called whole-layer
transfer. The nature of these two modes only requires minimal dislocation of the polymer film

which renders RNIL less prone to polymer flow problems [55].

To reduce the high temperature and pressure requirements, Borzenko et al. modified the
conventional NIL by applying the polymer bonding method. In this method, the polymer is
applied on both the mould and the substrate to facilitate their bonding at reduced temperature and
pressure. A specific treatment is used to leave the polymer on the substrate only after cooling.
However, this method leaves a thick residue layer after the imprinting which complicates the

subsequent transfer steps [99, 100].

* Reverse nanoimprint lithography (RNIL) is similar to T-NIL; however the thermoplastic
resist is applied on the mould rather than the substrate. RNIL provides opportunities to use

a variety of flexible polymer substrates which are difficult to be covered with a polymer.
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3.8. Reverse UV-NIL

In this method, a liquid UV- curable polymer resist is dispensed in a mould which is spin-
coated, and then cured by UV- cross-linking to form the desired nano-patterned structures. The
patterned resist can either be transferred to a substrate to act as a functional cell culture substrate
or can be transferred to a pre-patterned resist to build up a three-dimensional (3D) scaffold [11].
Combining RNIL with UV-NIL enables 3D structuring at reduced temperature and pressure. Hu
et al. fabricated micro and nanostructures of an adhesive material, SU-8, at 50 °C, 1MPa and 1s
of UV exposure. SU-8 is a commonly used epoxy-based negative photoresist. It is highly
transparent in the UV-range which renders it ideal for imaging. Gratings of sizes from 100 nm to
1 um were formed. This process was repeated to yield cavities and channels with sizes ranging
from 400 nm to 10 um [98]. The 3D patterning of nanoimprinted substrates is the first step in the

development of nanoimprinted cell culture scaffolds.

» Reverse ultra violet NIL is related to UV-NIL; however the photoresist is applied on the
mould rather than the substrate.

3.9. Combination of NIL with other techniques for cell culture applications

Many research groups combined both types of NIL with other methodologies to optimise
the results. One of the alternative competitive methods is microcontact printing (WCP) which is a
lithographic method. It is an inking approach in which an elastomeric stamp is used with self-
assembled monolayers (SAMS) which acts as the ink. Consequently, The SAMS are transferred
to the substrate for further characterisation and processing of the chemical surface [101]. Hu et
al. reported the fabrication of a hybrid environment of nano and micro structures using soft UV-

NIL, photolithography, reactive ion etch (RIE) techniques as well as micro-contact printing



91
(uCP) [102]. The formed nanopatterns were used to grow Hela cells. Results showed alignment,
elongation as well as preferential localisation of cells at the nanolines formed. Another example
for the combination of techniques is that of laser interference lithography (LIL) and UV-NIL.
Although LIL is a simple, quick and easy method to fabricate nanopatterns, it has some
limitations, namely the non-selectivity of produced patterns and difficulty of size restriction of
maximum and minimum structures. On the other hand, fabricating master stamps by NIL is
costly. In order to reduce the costs, LILL is used to fabricate the master stamp, subsequently,
NIL is performed to form replicas used as cell substrates. Combining both techniques is
advantageous to limit the non-selectivity of LIL as well [103]. Therefore, Lee et al. used LIL to
fabricate a master stamp where a quartz wafer was coated with a photoresist of 1 pm thickness.
Two series of laser exposures were performed at the interference state. The sample was rotated
by 90 degrees before the second exposure. The photoresist was hard-baked to develop the
patterns. These nano-patterns were then transferred by a reactive ion etching (RIE) process onto
a quartz wafer coated with a Cr layer. At this point, a negative replica is produced. A further
RIE process was performed onto a quartz substrate to obtain a positive replica. The produced
replicas are used as substrates for cell culture. Two patterns were obtained, i.e. a dense pattern
and a scarce pattern. Patterns 1 and 2 are nanopillars round in shape, 123.3 and 130.1 nm in
diameter, 200 and 500 nm in height, with an interval of 163.6 and 438.7 nm, respectively. The
ratio percentage between pattern area and unit surface area of original flat surface was ~14.5 for
pattern 1 and ~4.1 for pattern 2. Human osteoblasts (hFOB1.19) were cultured on the two
patterns as well as on a flat control surface. Cells on scarce patterns showed good adaptation to
the pattern and filopodial extension with high directionality. Cells on dense patterns showed

filopodia with different turning points that indicated difficulty in finding the pathway of
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migration. The authors concluded that the contact guidance is dependent on the ratio of the
pattern surface area to the pattern interval [104]. Rajput et al. recently used nanoholes with a
gradient array of relative spacing ratios on a fused silica layer to form nanoneedles structures.
Using nanoimprinting, the negative replica of the nanoholes was extracted by a polymer layer, on
which silica was placed to form nano-needles. The pattern varied from 10 ym to 50 um in one
micron increments in both orthogonal directions in a spatial 2D gradient array. When fibroblasts
were cultured on nanoneedles, an enhancement in cell adhesion was observed compared to flat
silica surface which is due to the interaction between ECM components and nanoneedles, and

prevention of cell aggregate formation [105].

As described in the introduction, the mechanism of cell response to different nanopatterns had
been poorly understood before the emerging of NIL. Cells cultured on hydrophobic nanopillar
surfaces had shown poor spreading and adhesion [39]. Later, the role of the type of
nanotopography in guidance and cell spreading was investigated in 2010 by Hu et al. The
authors used nanoimprinting followed by demould-induced feature elongation to obtain
nanopillar topographies with pillars larger than the mold depth. After seeding human foreskin
fibroblasts on nanopillar topographies with 150 nm, ~700 nm, or 1 um in height, these cells also
spread poorly on both the hydrophobic and hydrophilic nanopillar surfaces due to the restricted
area at the tops of the pillars which did not suffice for the formation of micron-scale focal
adhesions between the cells and the surfaces. The authors therefore suggested nanopillar

topographies for surfaces on which cell spreading needs to be avoided [106].

In a study by Xie at al., on the contrary, nanopillar arrays were used to pin the position of

neurons and to serve for better cell attachment. Similary, as in the report described above, the
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nanopillar dimensions were 150 nm in diameter, and 1 um in height. However, Si and SiO2
nanopillar substrates on platinum and quartz material were chosen for biocompatibility. After
pinning the neurons to the nanopillars, the authors observed inhibited migration of the cell body.
However, axons and dendrites were observed to freely grow and elongate into the surrounding
area [107]. It becomes clear that on a similar nanotopography, different cell types can behave

very differently, and that the substrate material plays an important role also.

Another example for the fact that the combination of two parameters, rather than one [38],
namely topography and culturing time, can significantly change the cellular alignment fibroblasts
was reported by Loesberg et al. The authors determined the orientation angle of cells by
measuring the angle between the direction of the grooves and the direction of cell growth which
was determined by the maximum cell diameter to determine cell orientation. Loesberg et al.
found that fibroblasts seeded on nanogrooved polystyrene (PS) substrates had aligned with the
nanotopography of the substrates after only 4 h if the grooves were at least 100 nm wide and 75
nm deep. Contact guidance reflected in fibroblasts orientation according to the grooves was even
observed in only 35 nm deep grooves 24 h after cell seeding. The authors therefore concluded
that the grove depth is the most determining parameter, although interdependence with culture
time becomes obvious [108]. This is in contrast with a value reported by Dalby et al., who

showed that lamellapodia and filopodia still show interaction with random nano islands as

shallow as 10 nm [33].

Nanotopographical substrates were also used to investigate nuclear deformation in human
mesenchymal stem cells as it is known that nanoscale features can initiate cell-matrix adhesion

signals that, mediated by the cytoskeletal network, are transduced to the nucleus. Chalut et al.
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therefore used a combination of soft lithography and T-NIL to obtain nanograted
poly(dimethylsiloxan) (PDMS) and PS substrates which were coated with collagen for cell
culture purposes. The authors were able to show by fluorescence microscopy and live cell
imaging that nuclei of stem cells oriented and extended along the axis of the grating if grown for
48 h on nanograted the PDMS or PS substrates. They also found that the mechanical properties
of the substrate were an important parameter as shown by more rapid nuclei elongation on the

stiffer PS substrates [109].

Johansson et al. also found that sympathetic and sensory ganglia cultured close to nano-
printed patterns in polymethylmethacrylate (PMMA)-covered silicon chips showed axonal
outgrowth on ridge edges and elevations only tone week. The authors used electron beam
lithography (EBL) and T-NIL to fabricate PMMA-covered silicon wafers and fast Fourier
transform (FFT) analysis in order to quantify the alignment of the axonal outgrowth of ganglia.
They described that axons were guided by nanoimprinted polymer patterns of at least 100 nm
and concluded that the ratio of axon diameter and groove width was the major determinant

affecting axonal guidance [110].

Crouch et al. directly imprinted tissue culture polystyrene (TCPS) with gratings of various
pitches and depths using T-NIL after preparing their molds by UV contact photolithography and
inductively coupled plasma (ICP) etching. To obtain 3D collagen-like structures with nano- and
microstructures, they used double-imprinting. Human foreskin fibroblasts were seeded on the
substrates and fixed 24 h later and found to align and elongate efficiently at increased aspect

ratios of the nonpattern width and depth. Although they found that the aspect ratio can describe
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the cell behaviour, they also acknowledged that differences in cell types, culture conditions, and

structure variation makes predictions difficult [111].

Although by far the most studies investigating cell guidance on nanotopographies have
employed fibroblasts, other reports describe the growth of cells such as mesenchymal stem cells
[109], neurons [107, 110, 112], astrocytes [113] or cardiac aorta endothelial cells [114] on
nanoimprinted substrates. In a study investigating astrocyte reactivity, Ereifej et al. used UV-
NIL and pre-made reflective holographic-grated molds to obtain poly(methyl methacrylate)
(PMMA) patterned substrates with either a period of 3600 grooves/mm or 1800 grooves/mm.
The authors found that C6 rat astrocytoma cells seeded on the differently nanopatterened and
non-patterened substrates showed less protein adsorption, less cell adhesion, proliferation, and
viability if seeded on the 3600 nanopattern surface. They concluded that this particular
nanopattern could be beneficial for the fabrication of neural electrodes to avoid glial scarring and

astrogliosis after microelectrode implanation [113].

Similarly, Baranes et al. demonstrated that leech neurons growing on nano-scale line-
pattern ridges develop more simplified neuronal branching tree [112]. Their observations that
small filopodia attach to the nano-ridges which guides the neuronal growth direction is in line

with findings by Johansson et al. described above [110].

In another example of neuronal cell culturing on nanoimprinted substrates, the impact of
topographical noise, such as protein aggregates [115], and cellular debris [116], on the guided
growth of neuritis was investigated. Tonazzini et al. used T-NIL to produce noisy nanogratings

of 500 nm ridge and 500 nm grooves. Different substrates with variable percentage of noise and
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cell-dependant directionality were fabricated. Differentiating neuronal PC12 cells were cultured
on the patterned substrates, and observed for alignment and guidance. Results showed that the
loss of neurite guidance is not linear to increasing the topographical noise. It is rather a threshold
effect that is associated with the spatial arrangement and the focal adhesion (FA) maturation.
Lastly, an antineoplastic drug, that promotes cell contractility, nocodazole, stimulated aligned
FA maturation when incorporated in the scaffold and hence boosted the alignment. This suggests
that using specific drugs can modulate the cell culture conditions and cellular growth on cell

substrates [117].

In 2009, Idota et al. used graft-polymerisation with an electron beam (EB) lithography
system to fabricate temperature-responsive micrometer and nanometer-patterned poly(N-
isopropylacrylamide) (PIPAAm) layers with a 200 nm line-width. The authors found that
fibroblasts and cardiac aorta endothelial cells growth was guided by the pattern orientation at
temperatures above the lower critical solution temperature (LCST) but detached, shrunk and
folded along the pattern below the LCST. It was concluded that this nano-scale system may

allow engineering of functional 3D cell sheets or spheroids [114].

Table 3.1: Classification of nanoabrication methods in terms of type of energy sources. For each
method, important characteristics, polymer used, advantages and disadvanatages are
summerised.

Source of | Technique Important Advantages Disadvantages Referenc
Energy Characteristics es
Thermal Thermal NIL | Physical deformation | High resolution. High temperature [42] [48]
(T-NIL) of thermoplastic | High throughput. High pressure (50- | [118]
polymer above T, Low cost. 100 bar)
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Simple set-up.

Mechanical tension

Short procedure.
Reverse NIL | Thermal cure  is | Possible for | Pattern transfer can | [47, 51]
(RNIL) applied to  liquid | substrates that are not | be challenging
resist.  Pattern  is | suitable for spin-
formed on mould then | coating and those
transferred to | with surface
substrate. topographies.
Short process.
No external pressure.
Optical Ultraviolet UV curable polymer | Room temperature. Hard to replicate | [44]
NIL (UV NIL) |resist dispensed and | Low pressure (0-5 | patterns with high | [118]
spin-coated on | bar). density and high
substrate. Short process. aspect ratio.
Low cost. Difficult to release
pattern from mould.
Reverse UV | UV curable liquid | Enables 3D Pattern transfer can | [98]
NIL resist.  Pattern  is | patterning by be challenging.
formed on mould then | repeating the process.
transferred to | Reduced temperature.
substrate. Reduced pressure.
Chemical | Microcontact | Pattern transfer to a | Simple. Stamp deformation | [101,
printing (uCP) | substrate through | Low cost. during removal | 119-121]
relative difference | Versatile. from template.
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between surface | Elastomeric  stamps | Lower resolution of
energies. afford sufficient | patterning and
mechanical strength | decreased

to print 500 nm | reproducibility.
structures. Contamination with
uncured fragments.
Swelling of stamps

by organic solvents.

Electrical | Electro- Electrochemical Yields highly | Only applicable to | [91][122,
chemical oxidation/reduction accurate structures. conductive or ionic | 123]
deposition between conductive materials.

and ionic interfaces.

+ Combining more than one nanoimprint technique as well as other distinct methods can
account for optimising the resultant patterns and eliminate undesired fabrication steps.
Most cell culture substrates were fabricated through a combination of methods, and
substrates that promote cell guidance, that pin cells to a certain area, that inhibit cell

adhesion, or that allow for the growth of spheroids are discussed.

3.10. 3D patterning

In reality, the fabrication process of a 3D environment can be expensive and complicated.
Several conventional techniques can construct complex 3D nanoscaffolds, classified as
lithographic and non-lithographic techniques. Lithographic techniques include electron beam

lithography [124] and soft lithography [125], capillary force lithography [126, 127], polymer
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transfer printing, decal-transfer lithography [128], and ion projection lithography as reviewed
[129, 130]. NIL can be used to build 3D substrates with inter-connected material using single
lithography by either direct nanoimprint lithography over pre-patterned resists or by vertical

layer-to-layer stacking of resists, shown in Figure 3.4 [94, 131].

a) Direct nanoimprint lithography over pre-patterned resists

Mould '
\

Pre-
patterned
| resist

Dispensed
and spin-
coated
polymer

substrate

b) Veritcal layer-to-layer stacking of resists

Figure 3.4: 3D Patterning a) Direct nanoimprint lithography over pre-patterned resists. A
polymer resist is dispensed in the mould to occupy the spaces between the mould cavities. The
mould is thermally or UV cured to fabricate a nanopattern. This mould contacts a substrate with
pre-patterned nanostructures to detach and transfer the secondary patterned resist from the mould
to the substrate. A two-level pattern is formed. This process is repeated to form the desired 3D
environment. b) Vertical layer-to- layer stacking of resists. A polymer resist is dispensed and
spin-coated on a substrate. A mould is embossed into the resist. Thermal or UV cure takes place
to form a nanopattern. The mould is released leaving the pattern on the substrate. This process is
repeated to yield another layer of pattern which is transferred and stacked on the previous layer.
This process continues with the number of layers essential to form a spatial arrangement for 3D
growth of cells. Adapted from [132, 133]
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In vivo, cells are exposed to physical directional cascade signals due to their existence in a
3D environment with certain topographical noise as discussed above [115, 116]. For example,
cell guidance is also significantly altered if cells are cultured on a 3D scaffold with more than
one type of cells. One example for cross-talk between two different filopodia populations was
reported by Jang et al. The authors provided a 3D model to understand the guidance mechanism
induced by artificial nanotopographies resembling ECM cues in neuronal cells. They used two
different populations of filopodia at the growth cone. UV-NIL was used to fabricate arrays of
parallel ridges (350 nm wide and 350 nm high, separated by grooves of 1, 2, 3, 5 times 350 nm
width increments). Laminin, an ECM protein, was presented on a line nanopattern. The neurite
outgrowth was shown to be oriented along the line pattern and the neurite length increased.
Neurite outgrowth is a conventional behavior of the growth cone involving the two populations
of the filopodia. The authors described the cross-talk between the two filopodia populations
which regulated the sensing mechanism of nanotopographical stimuli. This cross-talk happens by
the integration of the signals originating from the two populations but was not observed on a

non-topographical substrate [134].

Three dimensional moulds can be used in NIL for direct 3D patterning. Li et al. used 3D
moulds in a single-NIL-step. Moulds were fabricated by a single step electron beam lithography
and reactive ion etching (RIE), then imprinted in polymer templates to yield three dimensional
metal T-gates and air-bridge structures of sub 40 nm size [135]. The availability of 3D
patterning stamps can allow for more opportunities and can reduce the cost of the process.
Stamps are fabricated by various techniques, mostly electron beam techniques [136] [137],

focused ion-beam (FIB) milling [138-140], focused ion-beam etching [141, 142] and two photon
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polymerisation [143, 144]. Other advances have developed to overcome the challenges of 3D

mould fabrication [145, 146].

Reverse nanoimprint can be used to construct multi-layer 3D nanostructures as described
before [94]. Tavakkoli et al. used RNIL to fabricate a uniform nanostructured discrete-track
recording media at a 50 nm track pitch in order to increase the current capacity of the magnetic
hard disk recording media [147]. This study revealed even more advantages of RNIL over

conventional NIL, such as the speed of the imprinting process, and a thinner residual layer.

Multi-layered nanostructures can be built by layer-by-layer stacking of nanostructured
layers via reverse nanoimprinting which does not require a planarisation layer and therefore is a
desired technique. Multi-layering has recently been reviewed elsewhere [148, 149]. Multi-
layering by UV curable resists [150] avoids the formation of unfavourable residual layers and
takes place at relatively low temperature and pressure compared to T-NIL. On the other hand, it
is not easy to detach the cured structures which are used as templates later in the process. In
distinction, thermally curable resists are easily detached, however one limitation to this technique
is the relatively high temperature involved in the pattern transfer step near the glass transition
temperature T, of the resist which may cause the flowing and deformation of the bottom layer.
To overcome this problem, two moulds with different silane treatment can be used to stack the
two layers [151]. To overcome the high temperature limitation, Bao et al. used reverse thermal
nanoimprinting with reduced T, to stack three different polymers [94], however this
methodology is limited in the type of polymers that can be used and in number of polymer layers
that can be stacked. Therefore it was necessary to develop a technique to stack multilayers from

one polymer.
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Hu et al. used a simple NIL method to imprint 3D nanostructures on the widely used tissue
culture polystyrene plates (TCPS). The process started by traditional NIL to imprint the first
layer; however the second step was performed at a reduced temperature and pressure to avoid
disturbance of the first layer. The second imprint was repeated for multiple layers to fabricate a
3D scaffold with 350 nm to 10 um gratings to study the effects of nano versus micro-patterns.
Bovine pulmonary artery smooth cells (SMCs) were cultured on both patterns. Cell alignment

and elongation was significantly higher in cells cultured on nano-patterns [152].

Following a similar strategy, Yoshii et al. developed 3D nano-culture plates (NCPs) by
imprinting into resinous inorganic sheets that were used to culture tumour cells. Tumour cells
grown on NCPs formed cell aggregates and attached to the nano-imprinted scaffold via the
elongated lamellipodia. Consequently, these tumour cells produced multi-cellular spheroids
which resemble in vivo tumour conditions. All these properties were lacking in cells grown on
non-patterned scaffolds. Also it was found that 17 genes were overexpressed in cells grown on
NCPs, including hypoxia-induced factors target genes and genes relevant to intracellular

interaction and multicellular organisation [153].

Yew et al. used a single polymeric material to fabricate double and three-layer residual-
free nanostructures using reverse T-NIL [133]. A one dimensional grafting with ridges around
250 nm width and 200 nm depth was transferred from the mould to the substrate in an orthogonal
arrangement. Using a single material ensured avoiding another bonding material and the need for
a planarisation layer. The stacking of the layers occurred at the T,. On the other hand, some

limitations occurred, such as a 30% compression in the lower layers to guarantee good adhesion
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between them; however, by optimizing the fabrication conditions, such as the pressure, the

compression can be avoided.

Nakajima et al. fabricated multi—layers by applying a differential temperature between the
lower layer (below T,) and the upper layer (above T,) [154]. Another recent technique, named
reverse contact UV NIL, was developed by Kehagias et al. in 2007, which is a combination of
nanoimprint lithography and contact printing lithography. The main purpose of combining these
two techniques is to obtain 3D wood-pile like nanostructures and to transfer this pattern with no
residual layers. This technique avoided the undesired etching processes that are typically
necessary to remove the residual layer [155]. In 2013, Han et al. used RNIL to fabricate 3D
nanostructures with a UV curable resin and a resin of dispersed zinc oxide (ZnO) nanoparticles
[131]. The UV-curable resin was transferred from a silicon stamp to a substrate as a 2D dual-
sided pattern layer. In this transfer step, a diluted UV-glue was used to increase the adhesion
force between the pattern layer and the substrate without generating a thick residual layer. A
ZnO dual side patterned layer was also fabricated. ZnO nanoparticles of 40 nm in size were used
as a higher refractive index material to increase the photonic effect. After repeating these RNIL
steps and stacking the 2D layers, a 3D structure was obtained. Haitainen et al. used T-NIL to
linearly pattern micro gratings on top of nano pre-patterned structures [85]. Then step and stamp
nanoimprint lithography (SSIL) was used to regulate the positioning and angle of the stamp

rotation.

Inclined nanoimprint lithography (INIL) is another technique used to develop 3D
nanostructures in a single-imprinting step without the need to use a 3D template or multiple

steps. In INIL, a polymer with an anisotropic dewetting phenomenon is used where the
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inclination angle controls the degree of anisotropy. An INIL apparatus induces a zero inclination
angle leading to asymmetry in the polymer flow path, resulting in 3D nanopatterns with different

heights [156].

Despite recent progress in nanoimprinting and the development of many new techniques
and combinations of techniques, overall, more research is needed to optimise the nanoimprinted
3D moulds, substrates, and products as cell culture scaffolds. In summary, multi-layering of NIL
resists offers many advantages; however, the development of new instruments including multi-

layer aligners is required for such improvement.

¢ Three dimensional cell (3D) substrates provide conditions closer to the in vivo environment
and can be obtained by either direct nanoimprint lithography over pre-patterned resists or
by vertical layer-to-layer stacking of resists. Only very few reports in the literature are

available so far.

3.11. Concerns

Addressing the concerns associated with NIL is a step forward towards its success. One
challenge is the template wear, which was addressed by Kumar et al. They showed that
nanomoulding of the template, performed by metallic glasses as amorphous metals can yield sub
100 nm patterns at a reduced cost of the template [157]. Another solution presented was a
programmable re-usable template to reduce the cost of templates and avoid template wear [73].
Another concern is that NIL processes rely on other lithographic techniques such as electron-

beam lithography or focused ion beam patterning to fabricate the mould with high resolution.
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However some self-assembled structures for templates were established by NIL at a high

resolution of sub 10 nm scale [158].

Figure 3.5: Parameters involved in the design of cell substrate. Fabrication aspects include the
composition of mould, resist and substrate, size of nanostructures, texture, wettability, rigidity, as
well as the method used, etc. Fabrication aspects highly influence the resolution and cost of
method. Biological aspects include the cell type and its inter-facial interaction with the substrate.
After given cells are cultured on substrate, many other cell behavioural factors are counted in,
like cell growth conditions, cell migration, alignment, growth, signaling, etc All those
parameters are inter-connected, hence they should be all considered in the optimisation of the
design process. Understanding these parameters can determine which technique is best to be
used.

Here, we report on several approaches to use nanoimprinted scaffolds for cell culture.

However, the optimisation of scaffolds for cell and tissue culture involves not only the NIL
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technique, resist, mould and substrate, but also needs to take into consideration the biological
parameters such as the cell type, cell signalling, perfusion, and many other factors involved. As

shown in Figure 3.5, a multitude of factors interplays with each other.

» Optimising NIL parameters by reducing the template wear, cost and increasing the

resolution is necessary for an effective technique.

3.12. Applications

Nanoimprint lithography is regularly applied in the area of nanofluidics [159] which
studies the complex fluid behaviour confined to nanostructures. A modified nano-imprint
technique was described to develop nanofluidic devices with specific dimensions [160, 161]. In
another approach, the fabrication of an extremely long (1.5 cm) fluidic channels with sub-20 nm
diameter by nano-imprinting mould fabrication is useful in developing biochemical sensors with
higher sensitivity [162]. This report, however, highlights several studies in which nano-
imprinted scaffold were used in cell culture and showed to mimic the natural environment of

cells significantly better than a cell culture flask.

» Nanoimprint lithography (NIL) is applied in diverse and broad research fields, i.e. studying

cell response to substrates, nanofludics, and biochemical sensors.

3.13. Conclusion

Nanoimprinting lithography represents a useful tool to imprint 3D scaffolds due to the high
precision, well controllability and unique flexibility. Different geometries with a wide range of

polymers including biodegradable and biocompatible polymers can be modified to meet the
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needs of the fabrication process and the yielded scaffold. It is certain that the research undertaken
so far to examine the effects of substrate properties on cell responses enhanced our
comprehension. Certainly, topography affected cell morphology, cytoskeletal rearrangement,
adhesion, differentiation, proliferation and gene expression. Not only the surface features, but
also the cell type greatly influences the results. With this knowledge in mind, we can tailor
cellular responses and better implement them to bio-mimic the natural conditions of cell culture.
There is, therefore, a definite need to discover which substrate topography; each cell type
favourably grows on. To attain a highly functional scaffold, many fabrication parameters are
important as reviewed here, which provides a wealth of possibilities. However at this point, there
is no up-front answer to the question of how to optimize topographical scaffolds for cell cultures.
So far, a trial-and-error approach has been followed, which intrinsically limits the outcomes to

what is achievable instead of what is desired.

« Many NIL techniques exist, with variable advantages and disadvantages to suit the used
material, fabrication steps and desired substrate. Hybridisation of techniques allows for

more options.

3.14. Outlook

It becomes obvious that the applications for nanoimprinted scaffolds are very broad.
However, also the choice of techniques for nanoimprinting and the variety of materials are vastly
diverse. With this review, we give an overview of previous and possible nanoimprinting
technique as well as their advantages and disadvantages that partially pose limitations on

combinations of a technique with a certain material. New combinations of techniques and
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materials, however, may also develop as more research is performed. So far, applications are still
limited and very experimental, but an increase in model development, correlation of factors and
results for a better prediction of successful models, as well as a strong increase in publications

describing nanoimprinted cell and tissue culture models is expected.

We believe research in this field is advancing in two main directions. The first one would
be the optimisation of the polymer and scaffold properties. The second one could involve
integrating more ECM components into the cell culture conditions, i.e. proteins, lipids,
glucosamines, and others. Cells interact with ECM via transmembrane receptors called integrins
which link the ECM to molecular complexes that bind to actin filaments [163]. Interactions
mediated by integrins regulate cell adhesion, differentiation, migration and metastasis [164, 165].
Different integrins interact with different ECM ligands. The amino acid sequence RGD (Arg-
Gly-Asp) is the main adhesive site in the fibronectin binding region [165-167]. Including
transmembrane ligands in cell culture substrates could augment our understanding of various
ligand-receptor interactions as described by Schvartzman et al. Their study showed that
spreading of mouse fibroblasts increased when at least four sites of ligands were placed within
60 nm or less with no dependency on density [168]. Similar studies with nanoimprinted
substrates including receptor proteins or ligands could give insights into interactions of cells with
different receptors. Besides, 3D models would be a step towards mimicking the natural
conditions of cell growth, but it is anticipated that research will move further towards a complete
organ scaffold model. One example could be a lung model, designed and manufactured by
nanoimprinting with detailed structures that can possibly be used in the future for transplantation

as well as a research model. So far, nanoimprinting has not been employed to fabricate such a
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model. However, a sophisticated in vitro lung tissue model on a microchip was produced by a
technique called microfabrication to reconstitute the human-alveolar capillary interface. This
device showed similar structural, functional and mechanical properties to alveolar capillary
interface of human lung. It also showed similar physiological effects to nanoparticle absorption
as in mouse lung [169]. Such an approach could possibly be followed by NIL techniques.
Although a nanostructured organ model is not yet feasible, we believe that this is the ultimate
goal in the next years. Developing such macromodels with massive complexity requires the
consideration of critical concerns such as the coordinated arrangement of different cell and tissue
types in a particular architecture, the vascularization of tissues, and biosafety [171]. Therefore
novel solutions are needed to handle those complex macromodels [172]. Also, we expect that in
the future cell culture substrates will be further customised based on the properties of the
proposed cell line or tissue, such as the morphology, rigidity, perfusion, and many other factors.
Examples are cortical bone tissues with concentric cylindrical structure, spongy bone tissues
with spongy-like structure [173], skeletal muscles with cylindrical muscle fibers, longitudinally

aligned to each other [174], and cardiac muscle cells with a leaflet-like morphology [175].

» Nano-imprinted cell substrates hold great potential in diverse fields. More work is needed

to optimise and enrich these applications and to customise the proposed substrate.
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In this thesis, delivery systems for siRNA delivery are introduced with special attention to
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