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RESEARCH ARTICLE Open Access

Validation of four candidate pancreatic cancer
serological biomarkers that improve the
performance of CA19.9
Shalini Makawita1, Apostolos Dimitromanolakis3, Antoninus Soosaipillai3, Ireena Soleas3, Alison Chan1,
Steven Gallinger2,4, Randy S Haun5, Ivan M Blasutig1,6 and Eleftherios P Diamandis1,3,6,7*

Abstract

Background: The identification of new serum biomarkers with high sensitivity and specificity is an important
priority in pancreatic cancer research. Through an extensive proteomics analysis of pancreatic cancer cell lines and
pancreatic juice, we previously generated a list of candidate pancreatic cancer biomarkers. The present study details
further validation of four of our previously identified candidates: regenerating islet-derived 1 beta (REG1B), syncollin
(SYCN), anterior gradient homolog 2 protein (AGR2), and lysyl oxidase-like 2 (LOXL2).

Methods: The candidate biomarkers were validated using enzyme-linked immunosorbent assays in two sample sets of
serum/plasma comprising a total of 432 samples (Sample Set A: pancreatic ductal adenocarcinoma (PDAC, n = 100),
healthy (n = 92); Sample Set B: PDAC (n = 82), benign (n = 41), disease-free (n = 47), other cancers (n = 70)). Biomarker
performance in distinguishing PDAC from each control group was assessed individually in the two sample sets.
Subsequently, multiparametric modeling was applied to assess the ability of all possible two and three marker panels
in distinguishing PDAC from disease-free controls. The models were generated using sample set B, and then validated
in Sample Set A.

Results: Individually, all markers were significantly elevated in PDAC compared to healthy controls in at least one sample
set (p≤ 0.01). SYCN, REG1B and AGR2 were also significantly elevated in PDAC compared to benign controls (p≤ 0.01),
and AGR2 was significantly elevated in PDAC compared to other cancers (p < 0.01). CA19.9 was also assessed.
Individually, CA19.9 showed the greatest area under the curve (AUC) in receiver operating characteristic (ROC) analysis
when compared to the tested candidates; however when analyzed in combination, three panels (CA19.9 + REG1B (AUC
of 0.88), CA19.9 + SYCN + REG1B (AUC of 0.87) and CA19.9 + AGR2 + REG1B (AUC of 0.87)) showed an AUC that was
significantly greater (p < 0.05) than that of CA19.9 alone (AUC of 0.82). In a comparison of early-stage (Stage I-II) PDAC to
disease free controls, the combination of SYCN + REG1B + CA19.9 showed the greatest AUC in both sample sets, (AUC of
0.87 and 0.92 in Sets A and B, respectively).

Conclusions: Additional serum biomarkers, particularly SYCN and REG1B, when combined with CA19.9, show promise as
improved diagnostic indicators of pancreatic cancer, which therefore warrants further validation.
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Background
Pancreatic cancer is the tenth most common cancer type
and the fourth leading cause of cancer-related deaths [1].
Diagnosis of small, early-stage tumors that can be surgi-
cally resected offers patients the best chances for survival
and can increase five-year survival rates from ~5% to 20-
30%, or higher at specialized treatment centers [1,2]. Un-
fortunately, given the asymptomatic nature of its early
stages, its aggressive disease course, and limitations of
current detection technologies, fewer than 20% of patients
are diagnosed with resectable disease.
Currently, detection of pancreatic cancer is based largely

on various imaging modalities, such as computed tomog-
raphy (CT), endoscopic ultrasound (EUS) and magnetic
resonance imaging (MRI) [3,4]. More definitive preopera-
tive diagnoses of pancreatic cancer typically requires
invasive means such as endoscopic retrograde cholangio
pancreatography (ERCP) which enables tissue sampling or
endoscopic ultrasound-guided fine needle aspiration
(EUS-FNA) [5,6]. The major drawback of all of these
methods for the optimal management of pancreatic cancer
patients is that they are primarily utilized after the onset
of symptoms (i.e. predominantly after the onset of late-
stage disease). They are also associated with relatively high
operating costs, and can be somewhat time consuming
and/or invasive in nature. In this regard, implementation
of highly sensitive and specific biomarkers or marker
panels for pancreatic cancer can further enhance detection
strategies by offsetting many of the limitations described
above [5,6].
The current clinically used marker for pancreatic cancer

is carbohydrate antigen 19.9 (CA19.9). CA19.9 is a
sialylated Lewis A-active pentasaccharide detected primar-
ily on the surface of mucins in the serum of pancreatic
cancer patients [7,8]. Although elevated CA19.9 levels
have been associated with advanced stages of the disease,
they have also been associated with benign and inflamma-
tory diseases [8-10]. For early-stage pancreatic cancer de-
tection, CA19.9 has a reported sensitivity of ~55% and is
often undetectable in many asymptomatic individuals [7].
In addition, CA-19.9 is associated with Lewis antigen sta-
tus and is absent in individuals with blood group Le(a-b-)
(~10% of the general population) [7,11]. Taken together,
CA19.9 alone lacks the necessary sensitivity and specificity
for pancreatic cancer detection and according to the
American Society of Clinical Oncology Tumor Markers
Expert Panel, CA19.9 is recommended only for monitor-
ing response to treatment in patients who had elevated
levels prior to treatment [12].
With the aim of identifying new biomarkers for pancre-

atic cancer, we previously performed proteomic analysis of
conditioned media (CM) from six pancreatic cancer cell
lines, one ‘normal’ pancreatic ductal epithelial cell line and
six pancreatic juice samples using two dimensional LC-

MS/MS [13]. A total of 3479 nonredundant proteins were
identified with high confidence. Three strategies were then
utilized to mine the list of identified proteins for putative
candidate pancreatic cancer biomarkers: (1) differential
protein expression analysis between the cancer and nor-
mal cell lines using label-free protein quantification, (2) an
integrative analysis, concentrating on the proteins consist-
ently identified in the multiple pancreatic cancer biological
fluids subjected to proteomics analysis, and (3) analysis of
tissue specificity through mining of publically available da-
tabases [13]. Of the candidates identified in our previous
work, the current study details the validation of four can-
didates, REG1B, SYCN, AGR2 and LOXL2. These four
candidates were selected based on commercially available
ELISA kits for validation, as well as preliminary verifica-
tion studies in smaller sample sets as described in our pre-
vious publication for AGR2 [13], and conducted in-house
thereafter for the other three candidates (data not shown).

Methods
Serum and plasma samples
This retrospective study population consisted of 432 indi-
viduals and comprised two sample sets, denoted A and B.
Sample Set A consisted of 100 plasma samples from pa-
tients with established pancreatic ductal adenocarcinomas
(PDAC or pancreatic cancer) and 92 samples from healthy
controls that were non-blood relatives of pancreatic can-
cer patients). The samples were provided by Dr. Steven
Gallinger’s group at the University of Toronto and col-
lected at the Princess Margaret Hospital GI Clinic in To-
ronto, Canada, or from kits sent directly to consented
patients recruited from the Ontario Pancreas Cancer
Study at Mount Sinai Hospital following a standardized
protocol. This protocol for sample collection was ap-
proved by the Institutional Review Boards of University
Health Network and Mount Sinai Hospital. Blood was col-
lected in ACD (anticoagulant) vacutainer tubes and
plasma samples were processed within 24 hours of blood
draw. To pellet the cells, blood samples were centrifuged
at room temperature for 10 minutes at 913 X g. Im-
mediately after centrifugation, the plasma samples were
aliquoted into 250 uL cryotubes and stored in −80°C or li-
quid nitrogen until further use.
Sample Set B consisted of serum samples from the fol-

lowing groups: 82 PDAC patients, 41 patients with benign
diseases (which included 10 patients with intraductal
papillary mucinous neoplasms (IPMNs)), 10 total with
adenomas of the pancreas (n = 8, mucinous/serous cys-
tadenomas) and of tubulovillous adenoma of duodenum
(n = 2), and 21 pancreatitis samples (primarily chronic)), 70
samples from patients with other malignancies (primarily
GI malignancies such as colon, liver and stomach cancer)
and 47 samples from non-cancer/disease-free controls
as per self-reported questionnaires. Sample Set B was
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provided by Dr. Randy Haun at the Winthrop P. Rockefeller
Cancer Institute, University of Arkansas for Medical Sci-
ences. All samples were collected with informed consent
and with approval from the respective Institutional Review
Board of the University of Arkansas. A summary of sample
characteristics is listed in Table 1.

Measurement of AGR2, REG1B, SYCN, LOXL2 and
CA19.9 levels
Commercially available ELISA kits were purchased for
AGR2, REG1B, SYCN and LOXL2 from USCN Life-
Sciences (AGR2: Catalogue # E2285Hu; SYCN: Catalogue
E93879Hu; REG1B: Catalogue # E94674Hu; LOXL2: Cata-
logue # E95552Hu). ELISAs were performed according to
manufacturer’s instructions with slight modifications.
Briefly, 100 uL of sample was incubated in pre-coated 96-
well plates for 2 hours at 37°C, along with standards.
Samples were diluted in phosphate-buffered saline as
instructed, using a 1:10 dilution for SYCN and AGR2,
1:100 dilution for LOXL2 and 1:2000 dilution for REG1B.
Plates were washed twice using the wash buffer provided
in the kits. A biotin-conjugated polyclonal secondary anti-
body specific for each of the proteins (detection reagent A
from USCN kit) was prepared and incubated for 1 hour at
37°C. Following 4 washes, horseradish peroxidase (HRP)
conjugated to avidin (detection reagent B from USCN kit)
was prepared and incubated for 30 min at 37°C. The plates
were washed 4 times and 90 uL of tetramethylbenzidine
(TMB) substrate was added to each well. Wells were
protected from light and incubated at 37°C for 10–15 min
or until the two highest standards were not saturated
(based on visual examination of color change). Fifty

microliters of stop solution (sulphuric acid solution pro-
vided in USCN kit) was added and the color change was
measured spectrophotometrically using a Perkin-Elmer
Envision 2103 multilabel reader at a wavelength of
450 nm (540 nm measurements were used to determine
background). CA19.9 levels were measured using a com-
mercially available immunoassay (ELECSYS by Roche)
and performed according to manufacturer’s instructions.

Statistical analysis
All comparisons of medians between case and control
groups were conducted using the Mann–Whitney-
Wilcoxon test, as the distribution of concentrations
deviated from normality. The Spearman’s rank correlation
coefficient was used to determine association of markers
with age in the healthy control group (n = 92) and
Wilcoxon p-values were calculated to determine associ-
ation of markers with gender in this group. The diagnostic
value of the proteins was further assessed using receiver
operating characteristic (ROC) curve analysis and area
under the curve (AUC) calculations. Confidence intervals
(95%) for AUC were calculated by using DeLong’s method
for two correlated ROC curves. P-values comparing two
AUCs were calculated by taking 2000 stratified bootstrap
samples.
Multi-parametric models for combinations of markers

were evaluated using a logistic regression model. The log2
transformed marker concentrations were used as predic-
tors on a logistic regression model against the outcome
(healthy vs PDAC). The estimated coefficients of the
model were used to construct a composite score for each
observation which was used for the construction of the

Table 1 Sample characteristics

Sample group Source Sample type Sample characteristic Total number of samples Number of females/males Median (Mean) Age

Sample Set A Plasma Healthy n/ab 92 47/45 60.0 (60.7)

PDACa Early Stage (I & II)c 20 6/14 68.5 (67.1)

Total 100 37/63 65.5 (63.7)

Sample Set B Serum Disease-free n/a 47 34/11 51.0 (50.2)

PDAC Early Stage (I & II)c 40 22/18 68.0 (66.1)d

Total 82 44/38 63.5 (63.8)

Benign Neoplasm/adenomae 20 9/11 64.0 (60.0)

Pancreatitisf 21 10/11 59.0 (56.8)

Total 41 19/22 62.0 (58.3)

Other cancers Colon 33 14/19 62.0 (63.0)

Liver 13 9/4 50.0 (56.2)

Stomach 5 2/3 75.0 (71.8)

Otherg 19 7/12 68.0 (62.6)

Total 70 32/38 62.5 (62.3)
a PDAC, pancreatic ductal adenocarcinoma; b Not Applicable; c Stage was available for 47 PDAC samples from Sample Set A and 51 PDAC samples from Sample
Set B; d One sample did not contain age information; e This group included intraductal papillary mucinous neoplasms (n = 10), serous/mucinous cystadenomas
(n = 8), tubulovillous duodenal adenoma (n = 2); f Eighteen of 21 samples were listed as chronic pancreatitis; g Other includes ampullary cancer, Hodgkin’s
lymphoma, renal cell carcinoma.
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ROC curves and subsequent analysis. PDAC versus non-
cancer samples from Sample Set B was used as a training
set from which models were derived and then validated in
the PDAC versus healthy controls of Sample Set A.
Models for early-stage PDAC compared to healthy con-
trols were also assessed.
All parts of the statistical analysis were performed in

the R environment (version 2.14.0) available from http://
www.R-project.org. ROC curve analysis and comparisons
between ROC curves was performed using the pROC
package [14].

Results
Assay precision
Assay precision (reproducibility) was assessed through in-
clusion of four internal controls in each of the ELISA
plates during the validation experiments (Additional file 1:
Table S1). Coefficients of variation (CV) calculated for
each of the four controls across the 7 plates utilized for
each protein are shown in Additional file 1: Table S1.
Overall, very good inter-assay reproducibility was shown
for SYCN, AGR2, REG1B and LOXL2 assays with %
CVs <20%, except for control 1 in AGR2 which had a %CV
of 22% and control 2 in REG1B which had a %CV of 21%.

Performance of SYCN, REG1B, AGR2, LOXL2 and CA19.9
analyzed individually in pancreatic cancer and
control groups
All samples (n = 432) from the two sample sets described
in the Methods section were subjected to ELISA analysis
in parallel and on the same day for each candidate. Statis-
tical analysis was conducted separately for Sample Sets A
and B, as set A contained plasma samples, while set B
contained serum samples, and they were collected/stored

at different institutions. The following comparisons were
made for Sample Set A: PDAC versus healthy controls
(Table 2). The following comparisons were made for Sample
Set B: PDAC versus non-cancer/disease free controls
(Table 2), PDAC versus benign disease (Additional file 1:
Table S2), and PDAC versus other cancers (Additional file 1:
Table S2). Below is a summary of results by candidate tested
from all comparisons made.
SYCN was significantly increased in PDAC when com-

pared to healthy controls/disease-free samples of both
sample sets (p = 8.38E-07 and p = 5.94E-08 for Sample
Sets A and B, respectively) (Table 2). SYCN was also sig-
nificantly increased in PDAC compared to the benign dis-
ease group (p = 0.014, Additional file 1: Table S2). No
significant difference was found between PDAC and the
other cancer group (Additional file 1: Table S2). SYCN
performed best to discriminate PDAC from healthy/dis-
ease-free controls, with an area under the curve (AUC) of
0.79 (95% confidence intervals (CI) of 0.70-0.87) in Sam-
ple Set B.
REG1B performed similarly to SYCN in the tested

samples. REG1B was also significantly elevated in the
comparisons between PDAC and healthy/disease-free
controls of both sample sets (p = 1.20E-08 and p = 4.52E-
08 in Sample Sets A and B, respectively) (Table 2), as well
as the comparison between PDAC and benign disease
(p = 0.0085, Additional file 1: Table S2). Like SYCN,
REG1B also showed no significant difference in PDAC
versus other cancers (Additional file 1: Table S2). REG1B
also performed best in discriminating PDAC from
healthy/disease-free samples with an AUC of 0.79 (95%
CI 0.70-0.86) in Sample Set B.
AGR2 was significantly increased in PDAC compared to

healthy/disease-free controls in one of the two sample sets

Table 2 Significance tests and AUC values for AGR2, SYCN, REG1B, LOXL2 and CA19.9 analyzed in PDAC versus healthy
controls of Sample Set A and B

Comparison group Marker Sample
set

Median
healthy

Median
PDAC

Median
Ratio

Wilcoxon AUCb Lower
95%
CI

Upper
95%
CI

p-value a

PDAC versus healthy controls

SYCN A 3.82 8.22 2.15 8.38E-07 0.71 0.63 0.78

B 3.56 12.72 3.57 5.94E-08 0.79c 0.70 0.87

AGR2 A 184.85 179.55 0.97 0.38 0.46 0.38 0.54

B 117.40 173.90 1.48 0.00129 0.67 0.58 0.76

REG1B A 4364.00 15232.00 3.49 1.20E-08 0.74 0.67 0.80

B 4582.00 25380.00 5.54 4.52E-08 0.79c 0.70 0.86

LOXL2 A 139.45 172.25 1.24 0.019 0.60 0.52 0.68

B 106.8 110.70 1.04 0.449 0.54 0.44 0.64

CA19.9 A 6.00 59.05 9.84 9.54E-16 0.82 0.76 0.88

B 14.75 144.625 9.81 3.46E-10 0.83c 0.76 0.90
a The p-value refers to a comparison between PDAC and Healthy subgroups (Mann–Whitney non-parametric test). Sample sizes are provided in Table 1.
Confidence intervals for AUC were calculated by taking 2000 stratified bootstrap samples; b AUC, area under the receiver operating characteristic curve; PDAC,
pancreatic ductal adenocarcinoma (analogous to use of the term pancreatic cancer elsewhere in this report); c No significant difference in AUC was noted
between the AUCs of SYCN and REG1B with that of CA19.9 (p > 0.4).
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(p = 0.00129 in Sample Set B, Table 2). AGR2 was also
significantly increased in PDAC compared to the benign
disease group and PDAC compared to the other cancer
group (p = 2.11E-06 and p = 4.54E-10, respectively,
Additional file 1: Table S2). Interestingly, amongst all
comparisons, AGR2 performed best in PDAC versus
other cancers with an AUC of 0.79 (95% CI 0.72-0.86),
followed by PDAC versus benign disease (AUC of 0.76).
LOXL2 was significantly elevated in PDAC versus

healthy controls of Sample Set A (p = 0.019, Table 2); how-
ever this marker showed no significant difference in the
comparisons between the other groups. Levels of CA19.9
were also assessed in the 432 samples for comparison pur-
poses. Overall, individually, CA19.9 had the greatest AUC
in comparison to the other tested markers for each com-
parison in both Sample Sets, with an AUC of 0.82 and
0.83 in the PDAC versus healthy/disease-free controls
(Table 2), AUC of 0.87 in the PDAC versus benign disease
group and 0.81 in the PDAC versus other cancer group
(Additional file 1: Table S2). No significant difference in
AUCs was found between SYCN, REG1B and CA19.9 in
discriminating PDAC from disease-free controls (p ≥ 0.4)
of Sample Set B (Table 2), and between AGR2 and
CA19.9 (p = 0.69) in discriminating PDAC from other
cancers (Additional file 1: Table S2).
Since Sample Set A contained plasma samples and Set B

contained serum samples, they were analyzed separately;
however upon performing a combined analysis for verifi-
cation purposes of the healthy (n = 139) and PDAC (n =
132) samples from Sample Sets A and B, a similar trend
was seen, with CA19.9, SYCN and REG1B showing signifi-
cant differences between healthy and PDAC (CA19.9, p =
1.12E-24, AUC of 0.83; SYCN, p = 8.91E-14, AUC of 0.74;
REG1B, p = 5.51E-16, AUC of 0.76).

Association of biomarkers with age and gender
To determine if age had an effect on marker levels, the
Spearman’s rank correlation coefficient was used to exam-
ine the correlation of marker concentrations with age in
the healthy control group (sample set A, n = 92). The
marker levels of none of the candidates (SYCN, AGR2,
REG1B, or LOXL2) showed a significant correlation with
age (Additional file 1: Table S3). CA19.9 levels were also
not correlated with age in the studied samples. Addition-
ally, no significant difference was noted in marker levels
between males and females in this group (Additional file 1:
Table S3).

Biomarker panel modeling
Multi-parametric models for combinations of markers
were evaluated using log2 transformed marker concentra-
tions as predictors on a logistic regression model against
the outcome (healthy vs PDAC). Biomarker panels with
and without CA19.9 were constructed using the non-

cancer (n = 47) versus PDAC (n = 82) groups of Sample
Set B as a training set since sample size of the comparison
groups were smaller, and then applied to the healthy (n =
92) and PDAC (n = 100) groups of Sample Set A for valid-
ation. Models for all two and three marker panels (twenty
models in total) from the training set are listed in Table 3.
Ten models resulted in an AUC that was greater than that
of CA19.9 alone. All models were validated in Sample Set
A, resulting in three combinations, REG1B +CA19.9,
SYCN + REG1B + CA19.9, and AGR2 + REG1B +CA19.9,
which were found to significantly improve the AUC of
CA19.9 alone (p = 0.001, p = 0.030, p = 0.004, respectively)
(Table 4). Figures 1a and b show the ROC curves of these
three models in the training and validation sets, res-
pectively. The models were also applied to PDAC versus
benign and PDAC versus other GI cancer groups
(Additional file 1: Tables S4 and S5); however they did not
improve the accuracy in these other comparisons.

Levels of candidates in PDAC with CA19.9 values within
normal range
CA19.9 is not expressed in approximately 10% of the gen-
eral population that are Lewis antigen negative [7,11]. As
a result, it is not elevated in all PDAC cases. Additionally,
some patients that are Lewis antigen positive do not have
elevated CA19.9. In this regard, we examined levels of our
tested markers specifically in PDAC cases that had
CA19.9 within the normal range (i.e. <37 Units/ mL)
(Additional file 1: Table S6). Of the total 182 PDAC cases
from both sample sets, 69 cases (38%) had CA19.9 levels
that were within the normal range (<37 Units/mL; n = 45
PDAC cases in Sample Set A and n = 24 PDAC cases in
Sample Set B). In this group, SYCN and REG1B were sig-
nificantly increased in a proportion of patients with
PDAC, with SYCN showing the greatest ability to capture
cases missed by CA19.9 with an AUC of 0.67 and 0.84 in
the Sample Sets A and B, respectively. At a cutoff of 13.96
ug/L and 17.4 ug/L, SYCN had a specificity of 90% in
sample sets A and B, respectively, and was able to capture
approximately one third of PDAC cases missed by CA19.9
(Additional file 1: Table S6).

Distribution of candidates in early-stage PDAC
Of the total 182 PDAC samples used in the study, 98
contained clinical information pertaining to stage and
60 were listed as as stage I and II (early-stage pancreatic
cancer according to the American Joint Committee
on Cancer Staging [15]; n = 20 in Sample Set A and n =
40 in Sample Set B). In these samples, CA19.9 and
SYCN performed comparably in discriminating PDAC
from healthy/disease-free controls (AUCSYCN = 0.73 and
AUCCA19.9 = 0.76 (p = 0.81) in Sample Set A and
AUCSYCN = 0.81 and AUCCA19.9 = 0.80 (p = 0.96) in
Sample Set B (Additional file 1: Tables S7 and S8)). The
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combination of SYCN + REG1B + CA19.9 showed the
greatest AUC in both sample sets, (AUC of 0.87 and
0.92 in Sets A and B, respectively) and the following
combinations performed best with sensitivities of 72-
73% in Sample Set B at a specificity of 95%: CA19.9 +
SYCN, CA19.9 + SYCN + AGR2 and CA19.9 + SYCN +
LOXL2 (Additional file 1: Tables S7 and S8). Stage in-
formation for a large number of samples was unknown,
therefore comparison between early and late stage was
not performed.

Discussion
Due to the lack of a single highly sensitive and specific
marker for many diseases, including for various measur-
able outcomes of pancreatic cancer, research has shifted
to the development of panels of markers to achieve im-
proved performance [16]. In the current study, four pan-
creatic cancer biomarker candidates (SYCN, REG1B,
AGR2 and LOXL2) delineated through our previous inte-
grated proteomics analysis of cell line conditioned media
and pancreatic juice [13], were validated in two sample

Table 3 Biomarker modeling in training set (Sample Set B)

Biomarker
combinationa

AUCb of
combination

Lower 95% confidence
interval

Upper 95% confidence
interval

Specificity at 9%
sensitivity

Sensitivity at 95%
specificity

CA19.9 + SYCN +
REG1B

0.926 0.880 0.965 0.509 0.739

CA19.9 + SYCN +
AGR2

0.919 0.869 0.959 0.515 0.771

CA19.9 + SYCN 0.918 0.864 0.958 0.502 0.771

CA19.9 + SYCN +
LOXL2

0.918 0.871 0.959 0.479 0.779

CA19.9 + REG1B +
LOXL2

0.879 0.814 0.936 0.219 0.727

CA19.9 + REG1B 0.878 0.815 0.933 0.261 0.689

CA19.9 + AGR2 +
REG1B

0.877 0.816 0.932 0.268 0.688

CA19.9 + LOXL2 0.844 0.773 0.908 0.065 0.744

CA19.9 + AGR2 +
LOXL2

0.844 0.772 0.910 0.065 0.744

CA19.9 + AGR2 0.835 0.762 0.902 0.046 0.707

CA19.9 0.833 0.757 0.902 0.048 0.699

SYCN + REG1B +
LOXL2

0.826 0.747 0.896 0.250 0.395

SYCN + REG1B 0.823 0.745 0.893 0.248 0.356

SYCN + AGR2 +
REG1B

0.819 0.741 0.891 0.261 0.359

SYCN + AGR2 +
LOXL2

0.800 0.716 0.875 0.149 0.306

SYCN + AGR2 0.794 0.712 0.874 0.159 0.276

SYCN + LOXL2 0.793 0.712 0.870 0.179 0.282

REG1B 0.790 0.705 0.862 0.300 0.326

SYCN 0.790 0.703 0.868 0.201 0.220

AGR2 + REG1B 0.781 0.697 0.859 0.289 0.312

REG1B + LOXL2 0.779 0.694 0.854 0.186 0.369

AGR2 + REG1B +
LOXL2

0.779 0.694 0.853 0.256 0.345

AGR2 + LOXL2 0.675 0.589 0.764 0.106 0.175

AGR2 0.671 0.576 0.763 0.087 0.130

LOXL2 0.540 0.439 0.644 0.033 0.218
a Biomarker models were generated for each of the above combinations for the PDAC (n = 82) versus the disease-free (n = 47) groups of Sample Set B and
ordered from greatest to lowest AUC. Confidence intervals (CI) for AUC were calculated using DeLong’s method. The models from the combinations of two or
three markers were then validated in the PDAC versus healthy groups of Sample Set A (Table 4); b AUC, area under the receiver operating characteristic curve;
PDAC, pancreatic ductal adenocarcinoma.
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sets of serum/plasma containing a total of 432 samples.
Individually, CA19.9 performed best when compared to
the tested candidates; however in combination, three
panels were found to significantly improve the perform-
ance of CA19.9 in discriminating healthy from PDAC in a
training and validation set (Table 4, Figure 1). Addition-
ally, several of the analyzed candidates, particularly SYCN
and REG1B show the ability to capture PDAC cases
missed by CA19.9 (Additional file 1: Table S6). Several
panels were also identified which significantly improved
the diagnostic accuracy of CA19.9 for discriminating
early-stage from disease-free subjects (Additional file 1:
Tables S7 and S8). In terms of distinguishing PDAC from
benign disease and PDAC from other cancers, aside from
CA19.9, AGR2 showed the best discrimination between
these two groups (Additional file 1: Table S2).
Syncollin is a protein that is highly expressed in pancre-

atic acinar granules. Specifically, it is a zymogen granule
protein found on the inner surface of the granule mem-
brane with a role in the concentration and maturation of
zymogens, as well as in the regulation of exocytosis
[17,18]. A few recent studies have described its presence

and function in granules in other tissue types [19].
Syncollin has been identified in a qualitative proteomic
analysis of pancreatic juice from patients with pancreatic
cancer, and was elevated in serum from a murine model
of pancreatic cancer [20,21]; however to our knowledge,
this is the first report of its study and extended validation
through ELISAs in human serum. In the present study
SYCN was significantly elevated in patients with pancre-
atic cancer when compared to healthy controls in both
sample sets, as well as when compared to benign disease
controls. SYCN also showed the ability to best capture
samples which had CA19.9 within normal limits (Figure 2),
and was significantly elevated in early PDAC when com-
pared to healthy controls. Given that the majority of pan-
creatic cancers are believed to arise from ductal cells (or
possibly acinar cells that undergo acinar-to-ductal meta-
plasia) [22,23], elevation of SYCN in the circulation may
be a secondary effect of the growing tumor through local
tissue destruction. In pancreatic cancer, this has been re-
cently studied for the protein transthyretin (TTR), an islet
cell protein that is elevated in pancreatic juice from pan-
creatic cancer patients through destruction of islet cell

Table 4 Biomarker modeling in independent validation set (Sample Set A)

Biomarker
combinationa

AUCb of
combination

Lower 95%
confidence interval

Upper 95%
confidence interval

p-value of AUC of panel compared
to AUC of CA19.9

CA19.9 REG1B 0.875 0.825 0.918 0.001

CA19.9 SYCN REG1B 0.873 0.823 0.918 0.033

CA19.9 AGR2 REG1B 0.869 0.816 0.913 0.004

CA19.9 REG1B LOXL2 0.859 0.803 0.907 0.071

CA19.9 SYCN AGR2 0.858 0.804 0.907 0.117

CA19.9 SYCN 0.857 0.804 0.905 0.157

CA19.9 SYCN LOXL2 0.850 0.792 0.901 0.276

CA19.9 AGR2 0.824 0.764 0.883 0.946

CA19.9 0.824 0.765 0.877 1.000

CA19.9 AGR2 LOXL2 0.805 0.741 0.863 0.296

CA19.9 LOXL2 0.803 0.740 0.864 0.246

SYCN REG1B 0.782 0.716 0.845 0.297

SYCN REG1B LOXL2 0.776 0.707 0.842 0.264

SYCN AGR2 REG1B 0.774 0.708 0.834 0.243

REG1B LOXL2 0.747 0.677 0.813 0.086

AGR2 REG1B LOXL2 0.709 0.636 0.779 0.009

SYCN AGR2 0.706 0.634 0.778 0.009

SYCN AGR2 LOXL2 0.702 0.622 0.771 0.008

SYCN LOXL2 0.701 0.625 0.775 0.011

AGR2 REG1B 0.680 0.600 0.757 0.002

AGR2 LOXL2 0.582 0.493 0.660 0.000
aBiomarker models for two and three marker combinations generated in PDAC versus disease-free controls of Sample Set B and presented in Table 3 were
validated in PDAC (n = 100) versus healthy controls (n = 92) of Sample Set A and ordered from greatest to lowest AUC. Confidence intervals (CI) for AUC were
calculated using DeLong’s method. The top three models showed a significant improvement in AUC to that of CA19.9 alone. P-values were calculated by taking
2000 stratified bootstrap samples; bAUC, area under the receiver operating characteristic curve; PDAC, pancreatic ductal adenocarcinoma.
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Figure 1 Biomarker modeling in training (Sample Set B) and validation (Sample Set A) sets. Biomarker models were generated for all two
and three marker combinations in Sample Set B (Table 3). These models were then validated in PDAC versus healthy/non-cancer group of
Sample Set A (Table 4). Displayed are three models which showed a significant improvement in AUC to that of CA19.9 alone in both training (1a)
and validation sets (1b). Confidence intervals (CI) for AUC were calculated using DeLong’s method. P-values are given in Table 4.
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Figure 2 Performance of SYCN, CA19.9 and the panel of SYCN + REG1B + CA19.9 in early stage (I/II) versus healthy/disease-free.
Biomarker performance was assessed in clinically confirmed early-stage (I/II) PDAC samples compared to healthy controls/disease-free individuals
in Sample Set A (n = 20 PDAC and n = 92 healthy) (a) and Sample Set B (n = 40 PDAC and n = 47 disease-free) (b). Displayed are the ROC curves
for CA19.9 and SYCN, which performed comparably in the two sample sets (p = 0.81 and p = 0.96 showing no significant difference in AUCs of
the two curves in Sample Set A and B, respectively). Also displayed is the ROC curve for the panel SYCN + REG1B + CA19.9, which showed the
greatest AUC of all two and three marker combinations in both sample sets. Confidence intervals (CI) for AUC were calculated using DeLong’s
method. Sensitivity and specificity are given in Additional file 1: Tables S7 and S8.
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architecture in the presence of invasive cancer [24]. A
similar mechanism of local tissue destruction causing in-
creased release of the protein may be occurring with
SYCN. However, the unavailability of stage information
for many of the PDAC cases prevented a comparison of
early versus late stage SYCN levels in the present study
and therefore, firm conclusions cannot be made regarding
this at the present time. REG1B belongs to a family of pro-
teins, encoded by the human REG genes, that is present in
pancreatic acinar cells and promotes regeneration of pan-
creatic islets [25]. REG family members have been associ-
ated with pancreatic cancer or related diseases in the past.
REG1A, a protein that is highly similar to REG1B has
been implicated in pancreatitis, and other REG family
members such as REGIV and hepatocarcinoma-intestine-
pancreas/pancreatitis associated protein I (HIP/PAPI)
have shown potential diagnostic utility for pancreatic can-
cer [26,27]. REGIV and REG1A have also been shown to
be elevated in gastric cancer and may serve as prognostic
indicators [28-30]. Both REG1A and REGIII were also
found elevated in plasma from a mouse model of pancre-
atic cancer [21]. To the best of our knowledge, REG1B ex-
pression in serum has not been studied as a pancreatic
cancer biomarker. In the present study, REG1B was sig-
nificantly elevated in pancreatic cancer serum/plasma
compared to healthy and benign disease controls, and it
was a component of all three panels found to significantly
improve the AUC of CA19.9 in our training and validation
analyses (Tables 3 and 4).
Both REG1B and SYCN were identified in our previous

proteomics discovery work as candidate pancreatic cancer
biomarkers due to their presence in pancreatic juice from
PDAC patients along with their identification as proteins
highly tissue specific to the pancreas based on mining of
several tissue specificity databases [13]. Interestingly, both
proteins performed similarly in the validation study
presented in this paper, being significantly elevated in
comparisons between PDAC and healthy and PDAC and
benign controls; however neither protein was able to sig-
nificantly differentiate other cancers from PDAC in the
studied samples. The ‘other cancer’ group in this study
had a large fraction of serum samples from colon cancer
patients. SYCN has not previously been studied in other
cancers; however REG family gene expression, although
not REG1B specifically, has been shown previously to be
elevated in colon cancer and inflammatory bowel disease
[31,32].
AGR2 is a protein initially identified in Xenopus laevis

that was shown to be crucial during ectoderm develop-
mental stages of embryogenesis for formation of anterior
structures [33]. AGR2 is a member of the protein disulfide
isomerase (PDI) family, found localized to both the endo-
plasmic reticulum and cell surface [33]. Its role in normal
human structures is still somewhat unclear; however it

has been implicated in many cancer types, including pan-
creatic cancer [34-36]. In pancreatic cancer cells, AGR2
has been shown to be involved in invasion and dissemin-
ation through posttranscriptional regulation of cathepsins
D and B [34]. Recently, Chen et al. [37] found AGR2 to be
overexpressed in pancreatic juice from patients with pan-
creatic intraepithelial neoplasia – III (PanIN3) and their
ELISA results showed this protein to have potential diag-
nostic utility for pancreatic cancer in pancreatic juice;
however these findings did not translate into their serum
analysis. AGR2 was highly overexpressed in our previous
integrated proteomic analysis of cell lines and pancreatic
juice as well, and our preliminary verification studies
showed it to be significantly elevated in plasma from pan-
creatic cancer patients [13]. In the present study, although
significantly elevated in one sample set, AGR2 performed
somewhat poorly in discriminating PDAC from healthy/
non-cancer controls; however interestingly, it performed
best, after CA19.9, in discriminating benign and other
cancers from PDAC (Additional file 1: Table S2). AGR2 is
a protein shown to promote tumor growth, cell trans-
formation and migration [38]; however it is unclear as to
why AGR2 was able to distinguish other cancers from
PDAC in this study. As mentioned above, a large number
of samples in the ‘other cancer’ group were colon cancer
samples and it is possible that AGR2 serum levels are in-
creased at higher levels in PDAC compared to colon can-
cer. A study from 2006 [39], also shows AGR2 mRNA
levels to be downregulated in colon cancer; however firm
conclusions cannot be made.
LOXL2 is an extracellular matrix protein involved in the

epithelial to mesenchymal transition of cells and is highly
expressed in desmoplastic/fibrotic stroma [40]. It has been
shown to be upregulated in many cancer types and is be-
lieved to play a role in cancer metastasis. LOXL2 silencing
in pancreatic cancer cells has shown improved sensitivity
to gemcitabine therapy [41] and decreased tumor growth
in gastric cancer [42]. In our serum/plasma analysis, the
general ability of LOXL2 to distinguish PDAC from con-
trols was not significant.
Validation of biomarkers and translation of markers

from the bench to the clinic is a rigorous process [43].
The goal of this study was to preliminarily validate a set of
the candidates identified in our previous proteomics work
[13]. Of the candidates validated, several were able to sig-
nificantly distinguish between case and control groups,
with multiple panels demonstrating the ability to signifi-
cantly improve the performance of CA19.9.

Conclusions
According to recent research, there is at least a ten-year
window during early-stage pancreatic cancer development,
followed by another seven years before it metastasizes
[44]. The greatest applicability of markers for the early
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detection of pancreatic cancer would likely be as a pretest
to an imaging modality in screening and surveillance pro-
grams for detecting developing pancreatic cancers in high-
risk patient groups. One of the limitations of this study
was the lack of staging information for all cases. In this
regard, further validation of the candidates and panels
presented in this study is warranted in larger sample sets
of individuals with early-stage disease, as well as those
with precursor lesions such as PanIN lesions. Additionally,
consideration of the markers/panels presented in this
study for other measurable outcomes of pancreatic cancer,
such as monitoring response to treatment and assessing
disease recurrence is also warranted.

Additional file
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and %CVs of internal controls for each protein - assessment of inter-assay
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AUC values for AGR2, SYCN, REG1B, LOXL2 and CA19.9 analyzed in
Sample Set B for comparisons of PDAC versus benign and PDAC versus
other cancers. Table S3 Association of biomarkers with age and gender.
Table S4 Biomarker modeling in PDAC versus benign disease. Table S5
Biomarker modeling in PDAC versus other cancers. Table S6 Assessment
of marker performance in 69 PDAC samples with CA19.9 levels within
normal limits (<37 Units/mL). Table S7 Marker performance in Early
Stage (I/II) versus Healthy of Sample Set A. Table S8 Marker performance
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