ETS-Related Gene (ERG) is Differentially Expressed in Dermatofibroma (Fibrous Histiocytoma) As Compared with Dermatofibromasarcoma Protuberans and Hypertrophic Scars: A Pilot Immunohistochemical Study

Meredith Hengy
gt7906@wayne.edu

Jesse Veenstra
Henry Ford Health System, Department of Dermatology

Kyle Perry
Henry Ford Health System, Department of Pathology

David M. Ozog
Henry Ford Health System, Department of Dermatology

Ben Friedman
Henry Ford Health System, Department of Dermatology

Follow this and additional works at: https://digitalcommons.wayne.edu/som_srs

Part of the [Dermatology Commons](https://digitalcommons.wayne.edu/som_srs), and the [Medical Pathology Commons](https://digitalcommons.wayne.edu/som_srs)

Recommended Citation

Hengy, Meredith; Veenstra, Jesse; Perry, Kyle; Ozog, David M.; and Friedman, Ben, "ETS-Related Gene (ERG) is Differentially Expressed in Dermatofibroma (Fibrous Histiocytoma) As Compared with Dermatofibromasarcoma Protuberans and Hypertrophic Scars: A Pilot Immunohistochemical Study" (2022). *Medical Student Research Symposium*. 126.
https://digitalcommons.wayne.edu/som_srs/126

This Research Abstract is brought to you for free and open access by the School of Medicine at DigitalCommons@WayneState. It has been accepted for inclusion in Medical Student Research Symposium by an authorized administrator of DigitalCommons@WayneState.
Abstract

Immunohistochemical staining can be of great utility in differentiating various cutaneous spindle cell neoplasms, particularly when the histomorphological appearance of the lesions is inconclusive. Nuclear staining for ETS-related gene (ERG), a highly sensitive endothelial cell marker, has seldom been studied in the context of cutaneous spindle cell neoplasms. Little is known about its specificity for vascular differentiation. In this pilot study, immunohistochemical analysis for ERG was performed on fifteen dermatofibromas (DF), ten keloids, and nine dermatofibrosarcoma protuberans tumors (DFSP). Consistent nuclear expression of ERG was found in DF [100% (15/15) of the lesions demonstrated >50% labeling of tumor cells with moderate to strong intensity]. However, ERG expression was largely absent in DFSP [89% (8/9) of the lesions demonstrating <50% labeling staining, generally of mild intensity] and hypertrophic scars-keloids [80% (8/10) without expression]. Based on the results of this pilot study, immunohistochemical staining for ERG may prove useful in helping to differentiate DF from DFSP and hypertrophic scars in the context of partial biopsy sampling. If replicated in a larger number of samples, this finding could mitigate the use of costly sequencing panels and potentially avoid unnecessary re-excisions in certain contexts.

Introduction

Dermal-based spindled cell neoplasms comprise a heterogeneous group of tumors arising from divergent cell lineages. These are characterized by the presence of elongated cells in various configurations on light microscopy. [1] Similar to their soft tissue counterparts, these neoplasms may demonstrate either benign, intermediate-grade, or malignant phenotypes. [2] Dermatofibroma (DF), also known as fibrous histiocytoma, is the most commonly encountered
benign cutaneous mesenchymal tumor. Malignant spindled cell sarcomas in the skin are much more infrequent (less than 1% of malignant tumors in the skin), with the most common being dermatofibrosarcoma protuberans (DFSP), pleomorphic dermal sarcoma, and leiomyosarcoma.\[1\] A pattern-based diagnostic approach is often taken when differentiating these neoplasms, which includes consideration of tumor location, architectural features such as size, depth, stroma, cellular configuration and cytomorphology.\[1, 3\] These parameters alone are usually sufficient for the distinction between various entities, though immunohistochemical staining is not infrequently required for additional diagnostic support.\[4\]

ERG is the nuclear protein product of the ETS-related gene (ERG), which serves as a transcriptional regulator and affects angiogenesis and endothelial cell migration.\[5, 6\] ERG as an immunohistochemical stain has several uses in clinical practice, most notably serving as a highly sensitive endothelial cell marker.\[7\] It also exhibits positive staining in several chondrogenic tumors, prostate adenocarcinomas, and other tumors with ERG gene rearrangements (e.g., ERG-rearranged Ewing sarcoma).\[8-12\] The current use of ERG in dermatopathology has primarily been limited to supporting vascular differentiation. However, strong and diffuse nuclear expression of ERG has recently been reported in the setting of EWSR1-SMAD3 rearranged fibroblastic tumor (ESFT), a newly described superficial-acral spindle cell neoplasm.\[13, 14\] Similarly, diffuse staining for ERG has been reported in a few case studies of pseudomyogenic hemangioendothelioma and epithelioid sarcoma.\[15-17\] With these few exceptions, data regarding its overall specificity for vascular differentiation in the setting of commonly encountered cutaneous spindle cell neoplasms is lacking.
Our group recently reported a case of cellular DF arising on an acral surface that demonstrated strong nuclear expression of ERG, but ancillary testing failed to detect an EWSR1-SMAD3 fusion. [18] This result further questions the specificity of ERG for vascular tumors and provides the basis for the current study. In this pilot study, the expression pattern of ERG was explored in a larger sample of conventional and cellular forms of cutaneous dermatofibromas, hypertrophic scars-keloids, and DFSP. It was hypothesized that there would be increased expression of ERG in dermatofibromas in comparison to the other two neoplasms.

Materials and Methods

After institutional review board approval (#15028), immunohistochemical analysis for ERG (EP111, prediluted, Dako) was performed on fifteen sequentially encountered cases of dermatofibroma (both conventional and cellular types) from routine clinical practice. Only cases in which the bulk of the tumor was captured in the biopsy or excision specimens were assessed. Ten keloid scars and nine DFSPs were also stained as control comparators. Slides were prepared on a PT Link and Autostainer Link 48 (Dako). Primary antibody was visualized using peroxidase as a detection system (Dako). ERG protein showed nuclear localization. Immunoreactivity was scored as percentage positivity (S0: no staining, S1: <10% staining, S2: 10%-50% staining, S3: >50% staining) and intensity (I0: none, I1: mild, I2: moderate, I3: strong).[19] The nuclear staining intensity of normal endothelial cells was used as a positive control, as has been previously described.[20] Descriptive statistical analyses were performed using Microsoft Excel software.

Results
Immunohistochemical analysis for ERG was performed on fifteen DFs, ten keloids, and nine DFSPs. Patient age, sex, and tumor location for all three neoplasm types were consistent with characteristic findings for these lesions (Table 1). Biopsies of all three entities revealed classic histomorphological features on hematoxylin and eosin staining (Figures 1-3). Conventional DFs demonstrated plate-like epidermal acanthosis overlying a heavily collagenized dermis containing interstitial stellate-appearing spindled cells with peripheral collagen trapping. Cellular DFs contained similar epidermal changes and peripheral collagen trapping but with a more tightly packed and often fascicular arrangement of plumper spindled cells. DFSPs were characterized by a storiform arrangement of tightly packed monomorphous spindled cells, often with extension into the fat lobules. Hypertrophic scars-keloids demonstrated a haphazard arrangement of heavily collagenized and edematous fascicles with few interweaving fibroblasts and myofibroblasts.

Consistent nuclear expression of ERG was found in DFs, with all fifteen specimens demonstrating >50% of staining (S3). There was variability in the intensity of the staining with over half the DF specimens displaying a strong pattern (I3) (8/15, 53%), 33% demonstrating a moderate pattern (I2) (5/15), and 13% demonstrating a weak pattern (I1) (2/15) (Figure 1 and 4). DFSPs demonstrated no staining (S0) in a third of the specimens (3/9, 33%), <10% staining in 22% of the specimens (2/9), 10%-50% staining in 33% of specimens (3/10), and >50% staining in 11% of specimens (1/9). For DFSPs with positive staining, the intensity was mild (I1) for all lesions (Figure 2 and 4). In keloids, no staining (S0) was found in 8/10 (80%) of the tissue specimens, with the remaining 2/10 displaying <10% staining (S1) of mild intensity (I1) (Figure 3 and 4).
Discussion

Dermatofibroma, the most commonly encountered cutaneous mesenchymal spindle cell neoplasm, is most often diagnosed based on histomorphological criteria alone. Numerous subtypes have been recognized, including conventional, cellular, hemosiderotic, aneurysmal, heavily lipidized, deep-variant, and atypical (with monster cells).\[21-26\] The differential diagnosis most commonly includes DFSP, dermatomyofibroma, hypomelanotic blue nevus, and scar. Immunohistochemistry is seldom necessary but can be useful in superficially-sampled specimens precluding complete architectural evaluation. Panels with some combination of: myogenic markers (smooth muscle actin [SMA], desmin), endothelial markers (CD31), melanocytic markers (HMB-45, Melan-A), and other markers: (Factor 13a, CD34, Stromelysin 3, D2-40) have historically been used to help distinguish between DF and other potential mimickers.\[4, 27\]

In particular, differentiating DF from DFSP can occasionally be problematic despite the utility of the above markers. There is a tendency for dermatofibroma to express CD34 at its periphery and lose expression of Factor 13a in its cellular forms, making a distinction from DFSP challenging.\[28\] Moreover, rare cases of DFSP may lose CD34 expression, most commonly in the context of fibrosarcomatous transformation.\[29\] In recent years, there has been increased utilization of next-generation sequencing panels to confirm the presence of relevant fusions in this context (such as COL1A1-PDGFB) to increase diagnostic accuracy. However, these assays remain costly and are not readily available in many small community-based practices.

In this small pilot study, we found that DFs demonstrate consistent immunohistochemical expression of ERG. This was in contrast to DFSP and hypertrophic-keloidal scars, which demonstrated negligible expression on the basis of both percent positivity and staining intensity.
This finding is significant for several reasons. First, the skin-derived cell of origin in DF and DFSP remains largely unknown. DFs are reported to follow trauma in approximately one-fifth of patients, which would suggest a reactive process for initial development.[30] The presence of strong ERG expression in DF might imply that this tumor is derived from a pluripotent stem cell with the potential to proceed down an endothelial or fibrohistiocytic pathway (with trauma perhaps activating the latter). On the other hand, dermatofibrosarcoma protuberans is thought to originate from an undifferentiated mesenchymal stem cell with neurologic, muscular, and fibroblastic components or from a dermal stem cell.[30] The negligible expression of ERG in DFSP evident in this study lends further support to the hypothesis that these two tumors are more distinct than they are similar in regard to their biological derivation.

ERG may prove to be a useful stain in the clinical setting of a partial biopsy specimen when DF and DFSP are both considerations based on histomorphology. Additionally, the newly described acral spindled cell ESFT may not be unique in its expression of ERG and could theoretically exist on the spectrum of fibrous histiocytoma, albeit with an additional characteristic genetic event more likely to occur on an acral site. Finally, the lack of unique ERG expression in ESFT demonstrates that ERG staining may not be a helpful adjunct in differentiating this entity from other cutaneous spindle cell neoplasms. Limitations of this study are its small sample size, particularly the fewer cases of DFSP examined. Additionally, only two variants of dermatofibroma were analyzed. Further studies with larger cohorts and assessment of additional DF variants will be required to validate these findings.
Figure Legends

Figure 1. ERG staining of Dermatofibroma. (A) Conventional type dermatofibroma with bland spindle cells arranged in a storiform pattern with hyalinized collagen bundles. ERG immunohistochemistry: >50% staining (S3) is demonstrated with strong intensity (I3). (B) Cellular type dermatofibroma with uniform spindle cells arranged in a storiform pattern. ERG immunohistochemistry: >50% staining (S3) is demonstrated with strong intensity (I3). Low and high power fields. Left: Hematoxylin and eosin (H&E). Right: immunohistochemical staining for ERG.

Figure 2. ERG staining of Dermatofibrosarcoma protuberans. (A-B) Representative DFSP biopsies. ERG positivity of 10-50% is demonstrated in both sections. Low and high power fields. Left: Hematoxylin and eosin (H&E). Right: immunohistochemical staining for ERG.

Figure 3. ERG staining of keloid scars. (A-B) Representative keloid biopsies. Absent to minimal ERG positivity is demonstrated. Low and high power fields. Left: Hematoxylin and eosin (H&E). Right: immunohistochemical staining for ERG.

Figure 4: ERG Immunoreactivity as demonstrated by intensity and percent positivity. Dermatofibromas consistently demonstrated high ERG positivity of >50% staining regardless of intensity score, with all lesions having an intensity score of 1 or greater, compared to keloids and dermatofibrosarcoma protuberans.

Table 1. Patient Demographics and Lesion Location
<table>
<thead>
<tr>
<th>Tissue Type</th>
<th>Mean Age (+/- SD)</th>
<th>Sex</th>
<th>Location Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermatofibroma (n=15)</td>
<td>45 (+/- 15.2)</td>
<td>M: 3</td>
<td>Thigh (40%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F: 12</td>
<td>Lower leg (13%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forearm (20%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hip (7%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cheek (7%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shoulder/back (13%)</td>
</tr>
<tr>
<td>Keloid (n=10)</td>
<td>32 (+/- 17.9)</td>
<td>M: 3</td>
<td>Helix (40%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F: 7</td>
<td>Earlobe (50%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Jaw (10%)</td>
</tr>
<tr>
<td>Dermatofibrosarcoma protuberans (n=9)</td>
<td>45 (+/- 12.6)</td>
<td>M: 4</td>
<td>Shoulder/back (56%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F: 5</td>
<td>Scalp (11%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thigh/buttock (22%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Abdominal wall (11%)</td>
</tr>
</tbody>
</table>
References

Copyright © 2021, StatPearls Publishing LLC.: Treasure Island (FL).