Effect of Trazodone on Upper Airway Resistance in Chronic Spinal Cord Injury

Geoffrey M. Ginter
Wayne State University, fx5129@wayne.edu

Sean Carroll
Wayne State University, scarrol@wayne.edu

Abdulghani Sankari
Wayne State University, atarbich@med.wayne.edu

Safwan Badr
Wayne State University, mbadr@dmc.org

Follow this and additional works at: https://digitalcommons.wayne.edu/som_srs

Part of the Internal Medicine Commons, Pulmonology Commons, *and the* Sleep Medicine Commons

Recommended Citation
Ginter, Geoffrey M.; Carroll, Sean; Sankari, Abdulghani; and Badr, Safwan, "Effect of Trazodone on Upper Airway Resistance in Chronic Spinal Cord Injury" (2021). Medical Student Research Symposium. 58. https://digitalcommons.wayne.edu/som_srs/58

This Research Abstract is brought to you for free and open access by the School of Medicine at DigitalCommons@WayneState. It has been accepted for inclusion in Medical Student Research Symposium by an authorized administrator of DigitalCommons@WayneState.
Effect of Trazodone on Upper Airway Resistance in Chronic Spinal Cord Injury

Geoffrey Ginter, Sean Carroll, Abdulghani Sankari, M. Safwan Badr

Background:

Spinal cord injury (SCI) is a known risk factor for sleep-disordered breathing. While device-based therapies such as CPAP are beneficial in these individuals, adherence to these treatments is often low; consequently, pharmacotherapies for sleep-disordered breathing in patients with SCI are in high demand. Trazodone is an atypical antidepressant with a complex mechanism of action, including alpha adrenergic agonist activity and inhibition of serotonin reuptake. Serotonin (5-HT) is a known modulator of respiratory circuitry, which has been shown to influence the ventilatory drive. Trazodone is commonly prescribed as a sleep aid, but its impact on breathing during sleep is still unclear.

Methods:

We randomized 9 participants with chronic spinal cord injury and sleep-disordered breathing to receive either placebo or trazodone 100 mg for seven days. On day 7, participants underwent polysomnography with a supraglottic pressure catheter to determine upper airway pressure. Participants then underwent a 1-week washout period before crossing over to the other medication and repeating the same protocol. Parameters of interest included apnea-hypopnea index (AHI), obstructive apnea index (OAI), central apnea index (CAI), oxyhemoglobin desaturation index (ODI), and upper airway resistance (RUA).

Results:

7 participants completed polysomnography on both medications, 5 of which had adequate data to calculate RUA. Trazodone did not result in significant improvement in AHI (47.86±24.27 on placebo vs 28.73±28.79 on trazodone, p=0.10), OAI (9.29±9.48 vs 2.86±3.39, p=0.13), CAI (1.14±1.46 vs 1.71±3.30, p=0.52), ODI (25.00±28.39 vs 19.44±33.61, p=0.34), or RUA (2.47±0.92 vs 8.98±11.02, p=0.23).

Conclusion:

Based on our preliminary data in a small number of subjects, trazodone is not effective in treating sleep-disordered breathing in individuals with spinal cord injury. Due to the limited sample size, our data may not accurately represent the clinical utility of trazodone, and further study in a larger number of patients is warranted.