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Abstract 

Bayesian methods have been adopted by anthropologists for their utility in resolving complex 

questions about human history based on genetic data. The main advantages of Bayesian methods 

include simple model comparison, presenting results as a summary of probability distributions, 

and the explicit inclusion of prior information into analyses. In the field of anthropological 

genetics, for example, implementing Bayesian skyline plots and approximate Bayesian 

computation is becoming ubiquitous as means to analyze genetic data for the purpose of 

demographic or historic inference. Correspondingly, there is a critical need to better understand 

the underlying assumptions, proper applications, and limitations of these two methods by the 

larger anthropological community. Here we present a review of Bayesian skyline plots and 

approximate Bayesian computation as applied to human demography, as well as provide 

examples of the application of these methods to anthropological research questions. We also 

review the two core components of Bayesian demographic analysis: the coalescent and Bayesian 

inference. Our goal is to describe their basic mechanics in attempt to demystify them. 
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Background 

Understanding the demographic history of populations is one of the central research interests of 

anthropological geneticists. Some of the most exciting anthropological genetic studies have 

demographic history questions at their core, such as understanding the structure of modern 

human populations (e.g., Ramachandran et al. 2005; Wang et al. 2007), the routes taken by our 

human ancestors as they migrated across the planet (e.g., Macaulay et al. 2005), major 

population migrations such as the Bantu expansion (e.g., Berniell-Lee et al. 2009), migrations 

associated with the spread of Indo-European languages (e.g., Ammerman and Cavalli-Sforza 

1984), or understanding the origins of modern populations such as Native Americans (e.g., 

Bonatto and Salzano 1997a; Bonatto and Salzano 1997b; Tamm et al. 2007). The importance of 

demography to anthropology has driven the implementation of dedicated analytical methods, 

including Bayesian skyline plots (BSP) and approximate Bayesian computation (ABC). 

BSP and ABC methods are built around a simple mathematical model; the coalescent (or 

n-coalescent, Kingman 1982a). The coalescent explores the history of a population by creating a 

gene-genealogy (or genealogical tree) representing the relationship between individuals, using 

methods similar to the study of phylogenetics (Wakeley 2009).  The history of a population can 

be represented by a single genealogical tree, but different hypotheses of how a population has 

evolved are represented as a set of many possible trees. The goal of Bayesian demographic 

analyses is to determine the adequacy of each genealogical tree to represent the true biological 

history of a population, as best supported by the empirical data.  

To appreciate how competing models of evolution are discriminated in any demographic 

study, it is important to understand how probability is assigned to a genealogical tree, the 

probability that one tree represents true biological history. This probability is referred to as the 
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likelihood, or likelihood function, and can be calculated through various statistical approaches 

(Box 1). Regardless of the selected statistical approach, likelihood calculations are difficult and 

become computationally prohibitive as evolutionary histories depend on more and more 

unknown parameters (Bertorelle et al. 2010). The second theoretical component of Bayesian 

demographic analyses is thus the statistics approach behind it, known as Bayesian inference.  

Bayesian inference expands on the likelihood framework, by adopting the use of prior 

probabilities through Bayes’ Theorem (Box 2). Bayesian inference allows for user-modified 

priors which simplify the estimation of probability calculations, at least enough to be viable 

under current computational resources. In addition, the Bayesian philosophy is not concerned 

with identifying the single best demographic model, but instead summarizes the adequacy of 

competing models as a distribution of probabilities (Konigsberg and Frankenberg 2013), which 

is a more realistic approach to modeling natural processes, as often our models are only 

approximations of reality. This summary distribution has the added benefit of functioning as an 

intuitive way to incorporate uncertainty into the presentation of results. The popularity of the 

Bayesian approach has resulted in the development of software capable of powerful-yet-simple 

analyses (Table 1). Most of these software packages are distributed freely, but nevertheless, 

require specialized expertise to use effectively.  

The goal of this review is to familiarize the anthropological geneticist audience with two 

commonly used methods in Bayesian demographic analysis: 1) Bayesian skyline plots, a popular 

demographic model of variable population size trajectories over time, and 2) approximate 

Bayesian computation, a promising method for exploring diverse evolutionary scenarios 

employing simulated data. Yet as the theoretical foundations of both the neutral coalescent and 

Bayesian inference are critical to meet the above objectives, they are reviewed here as well. 
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These methods have become increasingly prevalent in anthropological literature; therefore, a 

working understanding of their theoretical fundamentals is of value for both maintaining the 

transparency and dissemination of results. We conclude by presenting some case studies of how 

these methods can be used to address anthropological questions about demographic changes in 

the human past. 

 

The Coalescent 

In 1982, John Kingman derived a mathematical model describing the process of lineages 

merging -or coalescing- back in time, eventually reaching a common ancestor (Kingman 1982a; 

1982b), which has since been called the Kingman coalescent, or n-coalescent (Box 3). The 

coalescent can be understood as a representation of the historical relationship between related 

individuals, conceptualized as a genealogical tree, that models the effects of genetic drift looking 

backwards in time (Rice 2004). From a biological perspective, the coalescent is concerned with 

tracing copies of genetic elements back in time to a single ancestral copy, the most recent 

common ancestor (MRCA) of that stretch of DNA. The coalescent is a powerful approach: it 

allows for the inference of unknown biological processes from a small sample of individuals as 

long as they share a common history. Understanding how the coalescent generates demographic 

information is paramount to conceptualizing how to relate its conclusions to biological questions: 

thus, there is a need to summarize and understand classic coalescent theory (for in-depth 

summaries, see Rice 2004; Wakeley 2009). 

The coalescent parallels the Wright-Fisher population model, which provides an 

accessible mathematical foundation (Hudson 1983; Tajima 1983). Under the Wright-Fisher 

model, a population of size N is assumed to be finite and constant over time. As a consequence 
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of random, neutral fluctuations in reproductive success, some lineages will be lost. In the 

Wright-Fisher model, this is known as genetic drift, but from the perspective of lineages merging 

back in time, this process produces the coalescent. Importantly, we need only consider the direct 

ancestors of extant individuals in a population when considering the coalescent process going 

backward in time. This makes coalescent analysis very computationally efficient relative to 

forward-in-time methods, which must track a greater number of individuals. This is one reason 

coalescent theory is a major theoretical framework for modern population genetics. Moreover, it 

allows for flexibility in accommodating various biological models, providing the ability to 

explore diverse evolutionary processes under a single theoretical umbrella (Wakeley 2009, Box 

3). 

The basic model for the coalescent is a sample of two alleles whose lineages coalesce 

back in time into their most recent common ancestor (MRCA). What is of primary interest in this 

process is estimating how many generations back in time as required until the lineages coalesce. 

This time is determined by a coalescent rate, which is inversely proportional to the size of the 

population, N, from which the alleles were drawn. For two alleles drawn from a population of 

diploid organisms, the probability of coalescing in the previous generation is 𝑃𝐶 =
1

2𝑁
 and the 

complementary probability of not coalescing is 𝑃𝑁𝐶 = 1 −
1

2𝑁
 (note that the rates for haploid 

organisms or genomes, as for example with mtDNA, are 1/N and 1 – 1/N). To estimate the 

probability of coalescing at time t (PC,t), one calculates the probability of not coalescing at all 

times in previous generations, t-1, and then multiplies that by the probability of coalescing in the 

next generation, generation t: 𝑃𝐶,𝑡 =  (1 −
1

2𝑁
)

𝑡−1
∗

1

2𝑁
 (Rice 2004). This equation forms the 

basis of coalescent theory and defines how genealogies and waiting times between coalescent 
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events provide information about population sizes. For an expanded explanation of coalescent 

theory see Box 3. 

The basic coalescent is derived from an idealized population, such as a Wright-Fisher 

population, with several important properties. These include no intra-locus recombination, no 

selection, a single population (i.e., no population substructure or migration), and a constant 

population size. Genealogies that deviate from expectations are indicative of populations that do 

not conform to the assumptions of a Wright-Fisher ideal population. Coalescent theory allows 

those deviations to be quantified. Importantly, the basic coalescent model can be extended by 

relaxing the assumptions of the Wright-Fisher model. Coalescent models now exist that handle 

fluctuations in population size, complex population structures (including migration and 

metapopulation models), recombination, and natural selection. Some applications of these 

modifications to the basic coalescent include estimates of inbreeding between modern human 

and Neanderthal populations (Serre et al. 2004), migration rates between Asian and Native 

American populations (Ray et al. 2010), and natural selection in modern human populations with 

complex evolutionary histories (Akey et al. 2004). To summarize, the key insight from 

coalescent theory is that all biological processes affecting a population can be studied under one 

theoretical umbrella, with a single standardized unit: waiting times between coalescent events. 

 

Bayesian Inference 

The coalescent does not necessitate the use of Bayesian inference, however the structure and 

logic of the Bayesian philosophy comport well with coalescent analysis (Box 2). For example, 

population parameters can be estimated either using maximum likelihood (ML), another 

commonly used statistical approach, or Bayesian inference. As a toy example, for the parameter 
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θ (the population mutation rate, equal to four times the effective population size multiplied by 

the mutation rate, 4Neμ) an ML estimate would be determined by finding the value of θ that 

maximizes the probability of the data (i.e., the likelihood function P(D|θ)). This single value of θ 

would comprise the ML estimate. A Bayesian estimate of θ also involves the likelihood function 

P(D|θ), however this probability distribution is modified by a distribution of expected values of θ 

(i.e., the prior distribution, P(θ)). The two composite probability distributions, when multiplied 

and "normalized" so that the product integrates to 1.0, produce the probability distribution of θ 

from the data (i.e., the posterior probability, P(θ|D), see Box 2). The goal of Bayesian inference 

is the consideration of the complete posterior probability distribution of θ, which is quite unlike 

the goal of ML of finding the point estimation for the best fitted θ. The Bayesian method 

involves updating the model (the prior probability of θ, P(θ)) after observing some data (the 

likelihood function, P(D|θ)) and producing a continuous distribution of θ values with their 

associated probability density. As an added benefit, providing a distribution of probabilities 

explicitly defines uncertainty around any single point estimate. Konigsberg and Frankenberg 

(2013) provide an excellent review of Bayesian inference applied generally to anthropology 

outside of anthropological genetics. 

There are three aspects of Bayesian inference which prove advantageous. First, the ability 

to select a prior distribution reflects belief that some values of the parameter of interest are more 

probable than others, which is reasonable given the progressive nature of science. Thus, a 

posterior distribution from a previous study may serve as the prior for a new study. Second, the 

posterior distribution is used to test the reasonableness of the prior distribution, which allows for 

model improvement by recursively adjusting the priors. Thirdly, model comparison is simple in 

Bayesian inference. Different priors can be compared and evaluated using the Bayes factor test, 
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which provides the ratio of the probability of two models having generated the observed data, 

thus, allowing for the selection of the best fitting model (Box 2). As an additional benefit over 

ML, Bayesian model comparisons can occur between two wholly unrelated (non-nested) models 

(Kass and Raftery 1995).  

Managing results as density functions in Bayesian inference is of particular utility for 

coalescent analysis. It is a reasonable assumption that for any population of individuals there will 

be a multitude of probable genealogical arrangements and patterns of ancestry. The use of a 

distribution of possible genealogies accounts for uncertainty, by integrating across all probable 

parameter values. In a Bayesian coalescent analysis, the likelihood function is the likelihood of 

the genealogy given the genetic data. Prior probability distributions are placed on all model 

parameters, from mutation rates to amino-acid substitutions (e.g., nucleotide base frequencies 

and transition-transversion ratios) to population sizes. The posterior probability is a collection of 

the likelihoods of all genealogies modified by the product of all the priors. 

 

Demographic Inference (Bayesian Skyline Plots) 

One aspect of demography that has been of particular interest is ascertaining historical changes 

in population size. The coalescent, as originally conceived, assumes a population does not 

change in size. We know that for many populations and species this is not true, and could not be. 

When a population undergoes a change in size, the coalescent is forced to accommodate this as a 

change in the waiting time between coalescent events. Thus, unexpected or unusual wait times 

can be re-interpreted as changes in effective population size. There have been many extensions 

of the coalescent to include populations that grow or shrink with deterministic demographic 

functions (Griffiths and Tavare 1994; Donnelly and Tavare 1995; Wilson and Balding 1998; 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final version. 

Beaumont 1999), or sudden shifts between demographic trajectories (e.g., Shapiro et al. 2004). 

These extensions of the basic coalescent models are used to reveal the past dynamics of a 

population history. 

Perhaps the most popular demographic model in use today is the Bayesian skyline plot 

(BSP), which allows the effective population size to change in a piecewise fashion at coalescent 

events (Ho and Shapiro 2011; Drummond et al. 2012). The predecessors to the BSP, classic 

(Pybus et al. 2000) and generalized skyline plots (Strimmer and Pybus 2001), estimate changes 

in effective population size over time based on a single genealogy, similar to maximum 

likelihood inference. The BSP improved on these models by estimating changes in effective 

population size from a distribution of genealogies in a Bayesian fashion, using Markov Chain 

Monte Carlo (MCMC) algorithms (Box 4). This both integrates over the uncertainty in 

genealogies as well as allows for the calculation of credibility intervals (Box 1) for effective 

population size (Heled and Drummond 2008). Another advantage of a BSP, perhaps one that is 

just as pivotal for its popularity among authors, is the ability to render its output in a visually 

pleasing graphical format (Fig 1b). This is the familiar plot found at the center of many studies of 

historical human population dynamics (e.g., Kitchen et al. 2008; Mulligan et al. 2008; Atkinson 

et al. 2009). 

Under a BSP demographic model, effective population size is allowed to change an 

arbitrary number of times. The BSP model assumes that effective population size remains 

constant between change points, but can instantaneously change at coalescent events 

(Drummond et al. 2005). The change points are determined by grouping neighboring coalescent 

events such that each group is associated with a single constant population size that persists 

across all coalescent events, with changes occurring at the transition from one group to another. 
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The minimum number of groups is 1, which reduces the BSP to a constant population 

demographic function, and the maximum is n-1 for a sample of n individuals, which provides for 

as many changes in effective population size (Ne) as there are coalescent events. The number of 

groups is fixed a priori, and though for most data sets use of an intermediate number of groups 

(such as 5 or 10) does not affect the analysis, an excessive number of groups will inhibit efficient 

MCMC performance. On the other hand, too few groups will not capture complex population 

histories. In these extreme cases, it is necessary to evaluate manually how the number of groups 

affects the fit of the model, which is often a slow and lengthy process.  

It should be noted that choosing a BSP demographic model is itself a prior, in the sense 

that the user is allowing for piece-wise changes in population size. More stringent demographic 

models exist, such as constant population size, exponential growth, or logistic growth. These 

models can even be combined manually, and tested against each other (Pybus and Rambaut 

2002). Simpler models often fit the data better than models allowing for “free” population size 

change, such as a BSP. However, testing each and every demographic model can be extremely 

time consuming, with no guarantee that an adequately fitting model will be found (Drummond et 

al. 2005). The BSP provides an easy alternative, in which user input is reduced to deciding on the 

number of groups of coalescent events. It is noteworthy that, as a BSP is in itself a prior, it is 

recommended that the fit of the empirical data to the model be tested by performing a Bayes 

factor model comparison (Box 2) with at least a few other demographic priors, such as the 

constant population model and the exponential model. This comparative step is important to 

ensure that biological conclusions are driven by the data, and not by model selection. 

The nature of the basic BSP, in which the number of transitions in effective population size is 

determined a priori, with no governing principle, can be problematic. First, a poor choice in the 
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number of groups may lead to large credibility intervals or even prevent convergence of the 

analysis on an accurate estimate, reducing any confidence in the results (Heled and Drummond 

2008). Secondly, a few large transitions in effective population size between groups (in the 

fashion of steps) are an artificial representation of the historical reality of a natural population, in 

which transitions are expected to be gradual. To address this problem, extensions on the BSP 

have been made to specifically remove the necessity of a strong prior determining the number of 

transitions over time. The extended Bayesian skyline plot (EBSP) is a modification of the BSP in 

which the genetic data are referenced at each coalescent event to estimate a new effective 

population size, by the same means of variable selection as would apply to any other parameter 

(Heled and Drummond 2008). In an EBSP, transitions in effective population size are not 

reported for each coalescent event, but instead, there is a pass-fail test calculated from the 

likelihood function at each transition, for which the effective population will either remain the 

same as the previous interval, or it will change to reflect the newly calculated parameter. The 

decision to change or not change the population size is predicated on probability, rather than 

being deterministic. Thus, the EBSP keeps with the tenants of Bayesian philosophy, where 

changes in effective population size are reported as a distribution with associated probabilities. 

By their nature, Bayesian analyses revolve around model improvement as a means to 

approximate natural processes, even when data are uninformative or incomplete. Under these 

circumstances, a poorly resolved likelihood function will still yield parameter estimation, which 

will be driven by the prior distribution rather than the data, resulting in incorrect biological 

inference (Konigsberg and Frankenberg 2013). For this reason, it is important to test the 

statistical power of any analysis. A commonly used metric of statistical power is the Effective 

Sample Size (ESS), which estimates the average number of independent (non-correlated) data 
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points in the posterior distribution of sampled genealogies, ensuring that the MCMC chain has 

sampled a diverse mix of genealogies. While there is no hard-limit on how large an appropriate 

ESS should be, values under 200 are not recommended (Kuhner 2009). Software packages such 

as TRACER (Drummond and Rambaut 2007) provide the tools for ESS estimation, and other 

simple qualitative estimations of analysis appropriateness, including comparisons of the outputs 

of multiple independent replicate analyses, providing a visual check of the convergence of 

posterior distributions on similar values across the runs. Finally, it is important here to caution 

that different software packages use different functions for ESS calculation which may lead to 

different values of ESS. 

 

Approximate Bayesian Computation 

As whole-genome and whole-exome sequencing becomes more common, and sampling of 

previously underrepresented human populations is underway, our ability to answer questions 

about human origins is progressively becoming limited by computational power rather than data 

availability. The advantage of Bayesian inference over traditional model resolution lies in the 

incorporation of short-cuts into the calculations of complex likelihoods. For example, MCMC 

(Box 4) integration rarifies the sample of possible genealogical trees, necessitating a simplified 

likelihood equation. However, as data becomes more complete, questions of human history 

become more detailed, and models become more realistic, the resolution of likelihood functions 

becomes computationally intractable (Beaumont 2010; Bertorelle et al. 2010). As a compromise, 

advanced Bayesian methods can provide further short-cuts, at the cost of increased mathematical 

and statistical understanding on the researchers, reviewers, and audience. 
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Approximate Bayesian computation (ABC), a model rejection approach, has become 

widely adopted for its ability to discriminate between complex models of demographic history 

(Chan et al. 2006; Ramakrishnan and Hadly 2009; Csillery et al. 2010). ABC bypasses solving 

likelihood functions by instead simulating data based on prior hypotheses of population 

evolution. ABC then compares the output of simulations to the empirical data, assigning each 

hypothesis a probability and generating a distribution of parameters and probabilities akin to a 

Bayesian posterior distribution (Buzbas 2015). ABC is furthermore simplified by limiting data 

comparison to summary statistics (see below), which represent useful characteristics of the data 

in simplified form (Fig. 2). 

Applying ABC for demography, complete genealogies are simulated computationally to 

produce sets of sequences, in most cases using the coalescent as a foundation. These simulations 

are constrained by prior input from the user. Programs such as SimCOAL (Excoffier et al. 2000), 

Serial SimCOAL (Anderson et al. 2005), FastSimcoal (Excoffier and Foll 2011; Excoffier et al. 

2013), the R package ABC (Csilléry et al. 2012), DIYABC (Cornuet et al. 2014), and BaySICS 

(Sandoval-Castellanos et al. 2014) facilitate the simulation of sequences and provide tools for 

model fitting analysis as well. Other programs such as MSprime (Kelleher et al., 2016) and SliM 

(Haller et al., 2019) can be used to generate simulations, although they require external means 

for model comparison. 

 

Summary Statistics 

Summary statistics aim to distill the largest amount of information into the simplest possible 

form (Csillery et al. 2010). Changes in population demography are expected to generate specific 

patterns of nucleotide variation, reflected in summary statistics calculated from a given 
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genealogy. Hence, past demographic events can be inferred from these summary statistics (Chan 

et al. 2006; Ramakrishnan and Hadly 2009). The cornerstone of ABC lies in selecting simulated 

genealogical trees which fit closely to summary statistics of the empirical data, reflecting the true 

demographic history by approximation.  

The selection of summary statistics for use in an ABC analysis is not trivial, as each 

statistic is more or less susceptible to various evolutionary processes (Miro-Herrans and 

Mulligan 2012). For example, FST values are useful for estimating migration between 

populations, but are not informative when migration is absent from a model. Conversely, 

Tajima’s D (Tajima 1989) and its component summary statistic: segregating sites (S), and the 

average pairwise differences (Π), all provide insight into recent demographic events such as 

bottlenecks or population expansions, but do not capture the effects of migration, and so on. 

During model comparison, a first impulse might be to include any and all information possible; 

including summary statistics which have no impact on the analysis. This line of thought, 

however, is incorrect. The addition of summary statistics increases the complexity of the analysis 

multiplicatively (Bertorelle et al. 2010). The addition of more information decreases the accuracy 

of model fitting methods, making discrimination between models much more difficult.  

Unfortunately, there are no general principles governing the proper number of summary 

statistics for a given ABC analysis (Bertorelle et al. 2010). While it is common wisdom to limit 

the number of statistics to two or three (Chan et al. 2006; Csillery et al. 2010), each analysis 

should be optimized individually to find balance between complexity and accuracy (see the 

section “Power analysis to optimize ABC” below).  

A final word of caution, if the selected summary statistics lacks sufficiency, the resulting 

posterior introduces further approximation. A summary statistic is sufficient for a parameter if it 
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provides just as much information to estimate the parameter as would the full dataset (Csillery et 

al. 2010). In practice, most summary statistics are not sufficient, therefore it is important to keep 

in mind that as epsilon is reduced, the resulting posterior may not necessarily approach to the 

truth. 

 

Model Fitting Algorithm 

Once the number and identity of appropriate summary statistics have been selected, simulations 

are ranked based on their closeness to the summary statistics derived from the empirical data. 

The most commonly used method for estimating the distance between summary statistics is a 

simple standardized Euclidean error: 

√∑ [
𝑆𝑛−𝑆𝑛 (𝑜𝑏𝑠)

𝑆𝐷 𝑆𝑛
]

2
  (Equation 0.1) 

where the distance between each simulated data set and the empirical data is the normalized sum 

of squares of the summary statistics from a simulation (Sn) and a corresponding summary 

statistic drawn from the empirical data (Sn (obs)), divided by the standard deviation of the 

summary statistics from a simulation (SD Sn). Once a distance is associated with each simulated 

data set, they can be easily sorted from smallest to largest. Notice that, typically, it is not a single 

simulation that is selected, but a fraction of the total simulations, from which a distribution of 

parameters can be generated (for example, the 1000 closest simulations), in which case, the cut-

off value of accepted simulations is referred to as epsilon (ε).  

Epsilon is user defined, and determining an appropriate cut-off value can be difficult, as 

once again there are no strict rules governing how it should be set. In most cases, epsilon is 

chosen independently of the distance values in the simulations themselves: most choose to select 

a static epsilon value prior to analysis, for example, the top 0.001% of all simulations. It is 
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informally acceptable to estimate parameter values from such a small fraction, as typically, the 

number of simulations tends to rank on a scale of 106 or larger. It is important to note, that if the 

chosen epsilon is very small, then a large number of simulations are discarded. On the other 

hand, if epsilon is too large, the posterior distribution will be poorly characterized. Of course, 

generating an appropriate number of simulations can be computationally intensive as well, in 

which case there are other methods available for parameter estimations such as Approximate-

Approximate Bayesian Computation (see Buzbas and Rosenberg 2015), and more recently 

various Machine Learning methods, beyond the scope of this review. 

 

Parameter Estimation 

The estimation of parameters through ABC presents the same advantages as Bayesian inference. 

By generating a distribution of parameters calculated from the selected simulations, it is assumed 

that each parameter value occurs in the distribution proportionally to the likelihood of it 

occurring in the natural population. Note that the likelihood is not actually computed, but instead 

approximated, lending to the name of this method: Approximate Bayesian Computation. The 

collection of all parameter values and their occurrence then represent an approximation of the 

posterior probability distribution for that parameter (Buzbas 2015). By this understanding, 

parameter values can be calculated from the distribution of simulated parameters itself, which 

can be reported as an interval estimator (95% credibility interval is the most common), or even 

as a point estimate by using a mean, median or more appropriately, a mode, given most 

distributions will be asymmetric. 

 

Power Analysis to Optimize ABC 
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Bayesian analyses often require extensive manipulation by the user, in the form of prior selection 

and experimental design. Similarly, the accuracy of ABC can be influenced by the choice of 

models studied, the number of simulations generated, the choice of summary statistics, and by 

the choice of epsilon. Because of the intricacies of experimental design, it is important to 

generate the means to maximize the success of an analysis. Here we recommend a simple 

method to use the simulations generated prior to model fitting as a form of statistical power 

analysis for evaluating posterior distributions. The advantage of testing for statistical power prior 

to running an analysis on empirical data lies in the ability to modify the experimental design, 

either by expanding the number of simulations or adjusting the summary statistics to maximize 

success.  

Recall that empirical data has two qualities of interest, parameters, which are unknown 

and to be estimated, and summary statistics, which are known. Simulated data, conversely, 

possesses both known parameters and known summary statistics. Therefore, it is possible to treat 

individually simulated data as test data, which can be run through the model fitting algorithm to 

produce an estimated parameter which can be scored against the known parameters of the test 

data, and thus ascertain the accuracy of the analysis (Fig. 3). In addition, because computational 

resources can be limiting, prior testing can determine if a sufficient number of simulations have 

been generated, but more importantly, if expending resources generating further simulations is 

likely to increase statistical power. 

Finally, it is important to observe the limits of ABC inference. In practical terms, genetic 

data may be of limited information, sampled from too few individuals, or exhibiting too few 

polymorphisms to converge on an acceptable answer. From a theoretical perspective, ABC will 

always provide a solution, and thus always provide a distribution of parameter values. However, 
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it is entirely possible that these parameter values do not reflect nature, simply because a more 

appropriate model was never considered. It is also possible for multiple demographic models to 

result in similar genealogies, providing no clear answers.  

 

Examples of Bayesian Skyline Plots and Approximate Bayesian Computation Applied to 

Anthropological Questions 

Bayesian coalescent methods are becoming a common approach in anthropological genetics 

because they can be intuitive to apply and computationally viable. Bayesian coalescent analyses 

can be used efficiently in exploratory studies when effective population size is treated as a free 

parameter, and can also relate changes in effective population size with chronological dates of 

archaeological or historical importance. The ability to date demographic processes in 

chronological time allows biological events to be placed firmly in contexts of ecological and 

geological relevance.  

Another advantage of the coalescent framework is the capacity to readily integrate data 

from individuals sampled from multiple points in time, including ancient DNA data. Bayesian 

coalescent analysis can readily formulate genealogies which include individuals sampled from 

multiple points in time. These “heterochronous” data sets are defined as genetic data from 

individuals belonging not just to the tips of a genealogy, but individuals who may be the direct 

ancestors for the tips of a genealogy (Anderson et al. 2005; Drummond and Rambaut 2007; 

Ramakrishnan and Hadly 2009). Heterochronous data sets include both sequences collected from 

various generations of the same population (e.g., in short generation species such as viruses), and 

sequences recovered from long-dead organisms, known as ancient DNA (aDNA). 

For example, Shapiro and colleagues (2004) used coalescent methods to estimate the 

timing of the decline of the now-extinct Beringian steppe bison (Bison priscus), using aDNA 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final version. 

mitochondrial sequence data. The previous leading hypothesis posited that human presence was 

directly responsible for the extinction of the Beringian steppe bison (The overkill hypothesis, see 

Grayson and Meltzer 2003). Shapiro and colleagues’ results date the beginning of the Beringian 

steppe bison population decline to 15,000 years earlier than the known presence of humans in 

Beringia, directly contradicting the expectation of the overkill hypothesis. 

A later update to the study of the decline of the steppe bison by Lorenzen and colleagues 

(2011) illustrated how responses to climate change and human resource-use during the last 

50,000 years were species-specific. Their study included mitochondrial aDNA from three other 

species of extinct megafauna; musk ox (Ovibos moschatus), woolly rhinoceros (Coelodonta 

antiquitatis), and wild horse (Equus ferus). This study integrated genetic, climatic, fossil and 

human prehistory data to generate correlations between the presence of megafauna and humans, 

and the shift in geographic ranges for both. To evaluate such long term ecological interactions, 

they used a combination of BSP analysis and ABC, as a method for discrimination between 

various complex demographic models. The most influential finding of this study was that the 

decline in genetic diversity of the musk ox and woolly rhinoceros predated human presence. 

Rather, climate change alone is a better explanation for their specific species declines. For the 

wild horse and steppe bison, a combination of climate change and human presence best explains 

their eventual extinction. The conclusions of Lorenzen and colleagues (2011) call for the 

consideration of species-specific responses to long-term climate change and anthropogenic 

stressors to infer causes of contemporary species declines.  

Bayesian coalescent inference has also been central to the study of human population 

origins, particularly when archaeological or paleontological evidence is scarce or inconclusive. 

There is considerable interest is using coalescent methods to date known population expansions, 
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including the expansions following the human migrations out of Africa. For example, BSPs 

made from 224 complete human mitochondrial DNA sequences indicate separate population 

expansions in South Asia 52,000 years ago, Northern and Central Asia at 49,000 years ago, 

Europe 42,000 years ago, and the Middle East and North Africa 40,000 years ago (Atkinson et 

al. 2008). Later, Atkinson and colleagues (2009) provide evidence for a population expansion 

within Africa ca. 61,000–86,000 years ago, right before the human expansion out of Africa.   

Similarly, Gignoux and colleagues (2011) used BSPs made from 425 mitochondrial coding 

region sequences to propose Holocene population expansions following the implementation of 

agriculture. In order to separate the signal of a population expansion from noise, they partitioned 

their mitochondrial sequences into lineages of hunter-gatherer or agricultural origin, and 

generated independent BSPs from both. The authors only find population expansions in the 

agricultural lineages, and date them to 7,700 years ago in Europe, 4,700 years ago in 

Southeastern Asia, and 4,600 years ago in sub-Saharan Africa.  

Another area of interest has been determining the demographic history of the founder 

population from which contemporary Native Americans descend. Such questions have been 

approached with a combination of Bayesian tools, including early work by Hey (2005) using the 

Bayesian allele assignment program IM to ascertain the effective population size of the 

American founding population (later formalized in Hey and Nielsen 2007), and various later 

estimations (Fagundes et al. 2008a; Fagundes et al. 2008b). Of notice, BSPs indicate the timing 

and trajectory of a large population expansion between 12,000–16,000 years ago, following 

human entry into the American continent (Kitchen et al. 2008; Mulligan et al. 2008).  

A recent area of interest in human genetics is using the pattern of Neanderthal ancestry 

found in the genomes of living people to ascertain information about the admixture process 
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between Neanderthals and anatomically modern humans. Originally, the breakdown of 

Neanderthal genome segments in modern human genomes indicated a time-frame for admixture 

of 50,000-60,000 years ago, which is consistent with a single admixture event, prior to the 

diversification of East Asian and European lineages. However, Vernot and colleagues (2015) 

used ABC on simulated neutral genome sequence data to reject a simple model of admixture. 

Instead, the authors advocate for admixture occurring multiple times; the first pulse of 

Neandertal gene flow into the population ancestral to East Asians and Europeans, and additional 

pulses after both populations had diverged. 

Bayesian methods can even be used to estimate when humans first began wearing 

clothing. Toups and colleagues (2011) approached questions on the origin of modern clothing by 

estimating the timing of the most recent common ancestor to the modern clothing lice species, 

which was estimated to at least 83,000 years and up to 170,000 years ago, implicating that 

clothing was developed by anatomically modern humans before the human species left Africa. 

Since clothes leave behind very little archaeological evidence, addressing this question had been 

difficult from the straight-forward means of looking for physical evidence. 

 

Concluding Remarks 

“Essentially, all models are wrong, but some are useful” George E. P. Box (1987) 

In the study of human demography, Bayesian coalescent methods offer a solution by placing part 

of that analytical burden on the user. BSP and ABC are powerful because they rely on 

preferential prior model selection, which can provide valuable insight by describing natural 

processes probabilistically. However, because Bayesian methods require intensive user input and 

because assigning priors can be arbitrary, constant trial and error is required. Equally dangerous 
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is the interpretation of information-poor datasets, which can still provide parameter estimates, 

albeit, bad ones. These limitations are far from damning Bayesian inference; but instead, 

highlight the importance of performing and interpreting these types of analyses from a place of 

understanding.  

As scientists, paying close attention to the repeatability of results, checking of the 

convergence of posterior distributions on similar values, observing tests of statistical power such 

as ESS for Bayesian tree sampling analysis, and conducting statistical power analyses for ABC 

are paramount in providing informative advances to the community. Likewise, as reviewers and 

readers, a working understanding of these methods is fundamental for the advancement of the 

discipline, both for peer review and for voicing criticism. 
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Table 1. Popular Software for Bayesian Analysis Applied to Population Demography 

Program Main function Citation Website 

ABC (for R) 

Generates simulated population 

sequence data and provides 

analysis for ABC 

Csilléry et al., 2012 https://cran.r-project.org/web/packages/abc/index.html 

BEAST  

Bayesian estimation of 

population parameters by tree 

sampling 

Drummond and Rambaut, 2007 http://beast.bio.ed.ac.uk/ 

BEAST 2 

Bayesian estimation of 

population parameters by tree 

sampling 

Bouckaert et al., 2019 https://www.beast2.org/ 

BESTT 

Bayesian estimation of 

population parameters by tree 

sampling 

Palacios et al., 2019 https://github.com/JuliaPalacios/phylodyn 

DIYABC 

Generates simulated population 

sequence data and provides 

analysis for ABC 

Cornuet et al., 2014 http://www1.montpellier.inra.fr/CBGP/diyabc/ 

IM, IMA, IMA2 
Migration between populations 

by Bayesian allele assignment 
Hey and Nielsen, 2007 https://bio.cst.temple.edu/~hey/software/software.htm 

LAMARC  
Bayesian estimation of 

population parameters 
Kuhner, 2006 http://evolution.genetics.washington.edu/lamarc/index.html 

MIGRATE, 

MIGRATE-N 

Migration between populations 

(Bayesian and ML-based) 
Beerli, 2006 http://popgen.sc.fsu.edu/Migrate/Download.html 

MrBayes 
Generates phylogenetic trees for 

multiple species 

Huelsenbeck and Ronquist, 

2001a; Ronquist and 

Huelsenbeck, 2003 

http://mrbayes.sourceforge.net/ 

MS, MSprime 
Generates simulated coalescent 

trees 
Kelleher et al., 2016 https://msprime.readthedocs.io/en/stable/# 

Serial SimCOAL  

Generates simulated 

heterochronous population 

sequence data for ABC 

Anderson et al., 2005 http://web.stanford.edu/group/hadlylab/ssc/index.html 

SimCOAL, 

FastSIMCOAL 

Generates simulated population 

sequence data for ABC 
Excoffier et al., 2000, 2013 

http://cmpg.unibe.ch/software/simcoal/, 

http://cmpg.unibe.ch/software/fastsimcoal2/ 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final version. 

SLiM 
Forward simulation of 

populations 
Heller et al., 2019 https://messerlab.org/slim/ 

STRUCTURE 
Population structuring by 

Bayesian allele assignment 

Pritchard et al., 2000; Falush et 

al., 2003; Falush et al., 2007; 

Hubisz et al., 2009 

http://pritchardlab.stanford.edu/structure.html 
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Box 1. Frequentist and Bayesian Statistics 

Both frequentist and Bayesian statistics share a large body of underlying theory, developed 

concurrently, to solve similar problems. Likewise, both schools of statistics have converged on 

similar terminology and compatible representations of results, as they easily supplement each 

other (Puga et al. 2015b). However, some underlying elements to both remain distinct and these 

features are particularly important to understand in order to apply both approaches effectively.  

To formalize the distinction mathematically, let there be a population of data N, from which we 

have the sample n, which is but a portion of the entire population. For any variable of interest in 

the data, the frequency histogram of all possible values is called the population distribution. The 

population N possesses immutable characteristics, or parameters, such as a mean μ (Krzywinski 

and Altman 2013b). If n=N, then the population mean μ is known, otherwise it must be described 

in terms of probability. This is where the differences in philosophy commence.  

Frequentist probability, also known as physical or objective probability, is associated 

with repeatable processes that occur at a given rate (i.e., occurring at some frequency during a 

long set of trials). The probability of an outcome is then estimated as a measure of the relative 

frequency of the occurrence of that outcome from a lengthy number of trials. For example, the 

probability of rolling a ’20’ on a 20-sided die [P(20)] is approximately given by the frequency of 

times a ‘20’ is rolled [n20] over the total number of trials [nt]. At this point, it should be noted 

that relative frequency is a poor approximation of the “true” frequency when the number of trials 

are low, but as the number of trials approaches infinity the relative frequency becomes exactly 

the true frequency (i.e., the law of large numbers). Similarly, when frequentist statistics are used 

to estimate an aspect of the total population of data N, for example the mean μ, using a sample n, 

the mean of the sample x̄ is a bad approximation for μ when the sample size is small, and 
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becomes better as the sample size increases. Finally, when n=N, then x̄=μ. That is, when all 

samples have been observed in the population, the mean is known. Interval estimation is 

commonly used to calculate unknown parameters of the population N, as an alternative to 

providing a single estimator value. A confidence interval (CI) is a range of values that should 

contain the true value of the parameter for a given relative frequency, or confidence level (this is 

different from a credibility interval, as explained below). For example, given a confidence level 

of 95%, we are 95% confident that the CI contains the true value of the parameter This means 

that if we were to repeat an experiment multiple times, and construct the corresponding CIs, we 

would expect that 95% of those CIs contain the true value of μ (Krzywinski and Altman 2013a). 

The central ideas of frequentist probability are commonly applied in hypothesis testing in 

the form of the familiar p-value. In order to connect the frequentist philosophy with hypothesis 

testing, it is important to formalize the null hypothesis in terms of a distribution of expected 

observations. In order to generate a null hypothesis or null distribution we need a control or 

reference, and one has to assume that all the random fluctuations inherent in measuring that 

control or reference can be characterized. If this is possible, one can construct the null 

distribution, which has a mean μ corresponding to the value of the reference, and variance 

determined by the inherent random fluctuations (Krzywinski and Altman 2013c). The purpose of 

a statistical test is to determine how a new observation compares to this distribution and, in 

particular, to determine how far-removed it is from the mean μ. The significance of the 

difference between the observation and μ is determined by first calculating the proportion of the 

null distribution that is equal to or more extreme than the observation (this is the p-value), and 

then comparing that to a proportion of most extreme values that are a priori defined as outliers 
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(this is the α value). The value of α is used to calculate maximum and minimum threshold values 

beyond which the observation is considered significantly different from μ. 

A p-value is the probability of observing a value equal to or more extreme than our cut-

off value α, assuming that the null hypothesis is true (Krzywinski and Altman 2013c). Thus, 

when a p-value is found to be less than a standard α of 0.05 (i.e., p < 0.05) it is an observation 

that falls in the most extreme 5% of all observations relative to the mean μ. Now we can connect 

the concepts of hypothesis testing and confidence intervals, as the confidence level is the 

complement to its significance level or α. For example, a 95% confidence interval represents all 

estimates of μ that would not be considered significant at the 0.05 level. 

Bayesian probability, on the other hand, is conditional probability. A conditional 

probability measures the chance of an outcome given another outcome as explained by Bayes’ 

theorem (Box 2). Back to the example of population N and its mean μ, under Bayesian theory 

both the sample n and its mean x̄ are treated more fluidly, and described probabilistically. A very 

important distinction is that the sample n is considered a realized sample and treated as the only 

source of data (D), while frequentist statistics are concerned with repeated sampling. Another 

key distinction is that frequentist statistics treat the true mean μ of population N as fixed but also 

unknown, being forced to approximate its value through the mean x̄ (except in the rare instances 

when n=N). In Bayesian statistics, it is possible to estimate the true mean μ by associating a 

conditional probability to it, that is μ given the data, or P(μǀD). This is referred to as the posterior 

probability of parameter μ given some known data D. The likelihood of a parameter is 

proportional to the probability density function, which can be used to determine the probability 

of μ having a value in any given interval, called a credibility interval. A credible interval is a 

highest posterior density region. The credibility interval represents a range of values that contain 
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the true parameter of the population for a given probability level. For example, a 95% highest 

posterior density region contains 95% of the area under the posterior density curve such that all 

included posterior densities are equal to or greater than a given value. As the posterior density 

has been "normalized" so that it integrates to 1.0, the are in the 95% highest posterior density is 

0.95. A 95% credibility interval thus consists of values which include the true value for μ with 

95% probability (Casella 2008). Because in Bayesian statistics μ can take a range of values each 

with an associated conditional probability, it is typical to represent this distribution with a 

summary statistic and credible intervals. The mean value of the probability distribution is 

typically reported for symmetrical probability distributions, whereas in cases with an asymmetric 

distribution the median or modal (i.e., highest probability) value are often more characteristic of 

the distribution and should be used. 
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Box 2. Bayesian Inference 

Bayesian inference is a statistical method based on Bayes’ theorem, in which the probability of a 

hypothesis is updated based on prior evidence and a model created to explain the data 

(Konigsberg and Frankenberg 2013). In Bayesian inference probability is treated as “conditional 

probability”, the probability of an outcome given another outcome (Casella 2008; Puga et al. 

2015b). At the core of Bayesian inference is Bayes’ theorem (Puga et al. 2015a), in which the 

probability of a model M given the data D is described by P(MǀD), and it is calculated as follows: 

𝑃(𝑀|𝐷) =  
𝑃(𝐷|𝑀)∗𝑃(𝑀)

𝑃(𝐷)
  (Equation 2.1) 

Here, P(DǀM) is referred to as the likelihood, and it describes the compatibility of the data, given 

a model (specifically, it is the probability of the model M producing the data D). The P(M) is the 

probability of the model M before the data D are observed, also known as the prior probability or 

simply a prior. A prior represents the degree of belief in the values that a parameter can take, and 

it modifies the likelihood to produce the probability of a model given the data P(MǀD). The 

P(MǀD) is referred to as the posterior probability. Finally, P(D) represents the probability of the 

data. For discrete cases, it is the sum of P(D|M)P(M) across the different models.  For 

continuous cases, it is the integral of the product across M. Critically, when posterior 

probabilities are calculated using the same data, P(D) takes the same value in all independent 

calculations (as the empirical data are the same for all), it is therefore a fixed scalar of P(MǀD) 

and is often ignored: 

𝑃(𝑀|𝐷) ∝  𝑃(𝐷|𝑀) ∗ 𝑃(𝑀)  (Equation 2.2) 

Model testing in Bayesian frameworks is relatively straightforward and is usually performed 

using Bayes factors. A Bayes factor is the ratio of the prior odds of two hypotheses (i.e., the odds 

of model M1 over model M2) to the posterior odds of the hypotheses (Kass and Raftery 1995). 
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The Bayes factor K is thus the ratio of the two marginal likelihoods of the models integrated 

across all model parameters: 

𝐾 =  
𝑃(𝐷|𝑀1)

𝑃(𝐷|𝑀2)
  (Equation 2.3) 

Conveniently, Kass and Raftery (1995) provide a scale to discriminate between models based on 

the value of the ratio K (borrowed from Jeffreys 1998).  Notably, though this scale has assumed 

some authority in the field of Bayesian inference, it is itself a suggestion when interpreting the 

importance of Bayes factor values (as are schemes regarding the significance of p-values). It is 

also important to remember when calculating Bayes factors that most coalescent or phylogenetic 

software packages report probabilities and likelihoods in loge units (this is done because 

likelihoods of phylogenies and genealogies can be exceedingly small). 
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Box 3. The n-coalescent 

In the coalescent, copies of genetic elements are traced back in time to form a genealogy of the 

elements that describes their ancestor and descendent relationships. In this genealogy, each time 

two elements have a common ancestor their lineages join to form one ancestral lineage. This 

event is called a coalescent event, in which two descendent lineages coalesce into one ancestral 

lineage in a process moving from the present into the past. The patterning of coalescent events in 

time provides information about the past dynamics of a population, such as fluctuations in 

population size or migration. 

Under the Kingman n-coalescent model (Kingman 1982a; 1982b), a sample of size n is 

taken from a population N and the genealogy of the n individuals is traced as they coalesce back 

in time, ultimately reaching their most recent common ancestor (MRCA, see Figure 3.1)  This 

process involves n-1 coalescent events (i.e., events connecting two descendent lineages) going 

backward in time. Any two lineages may coalesce, and they do so at a per generation rate, one 

inversely proportional to the size of the population, 1/2N for diploids (1/N for haploids), adjusted 

by the possible pairs of lineages [k (k - 1) / 2 for k lineages]. Intuitively, large populations 

contain many distantly related individuals and thus have low rates of coalescence, whilst small 

populations contain closely related individuals and thus have high rates of coalescence. 

The coalescent events define a branching tree of relationships between the n individuals 

called a genealogy or coalescent tree. Associated with the genealogy are n-1 time intervals Ti 

between coalescent events. These intervals represent the waiting time for subsequent coalescent 

events, and their duration varies inversely with the rate of coalescence (i.e., the higher the rate, 

the shorter the waiting time). Collectively, these intervals sum to the time of most recent 

common ancestry (TMRCA), which is how long in the past the MRCA of the sample existed. 
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Figure 3.1 shows a representative genealogy for a sample size of n=6 with waiting times 

indicated. 

Kingman (1982a; 1982b) demonstrated that as N tends to very large values, the 

coalescent intervals Ti are independent and exponentially distributed, and coalescence can be 

modeled as a Poisson process with rate k (k – 1) / 4N for diploid genes. This indicates that the 

first coalescent event before the present should occur relatively recently and that the last two 

lineages should take the longest time to coalesce. Because the Ti intervals are independent and 

exponentially distributed (though not identically distributed), calculating the time to the MRCA 

(TMRCA), one of the most interesting parameters of a population, is straightforward and relatively 

easy. A classic result of coalescent theory is that T2 (the interval directly prior to the MRCA 

during which there are only two lineages) is on average 2N generations for diploid populations 

(1N generations for haploids). The expected TMRCA for a large sample of diploids is 4N 

generations (2N for haploids). Notice that the time scale referred to above is in discrete 

generations (although coalescent time itself is continuous), and that time moves backward into 

the past. This is because the coalescent is a continuous approximation of a discrete descendent-

ancestor process that occurs by tracing ancestry from the individuals in the sample to the 

generation of their common ancestor. 

Another key feature of the coalescent is that every possible coalescent tree is equally 

probable, as any two individuals have an equal probability of coalescing at every event. That 

every tree is a possible genealogy poses a challenge for relatively large datasets. For example, 

there are more than 2 million possible unrooted trees given 10 individuals; this number rises to 

more than 2.5 billion when considering rooted trees with ordered coalescent events (i.e., 

coalescent trees) (Edwards 1970; Wakeley 2009). Therefore, the analysis of realistically sized 
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data sets requires a way to focus on the genealogies that have the highest likelihoods (i.e., 

contribute the most information about the demographic process). Genetic data may be used to 

identify these most probable genealogies. It is here that techniques borrowed from phylogenetic 

analysis can be employed to determine the set of genealogies most consistent with the data (and 

thus with the largest P(D|M), or likelihood). The genealogies with the greatest likelihood are 

those that contribute the most to inferences about the underlying demographic process, and thus 

focusing on these genealogies is one way to sort through the huge number of possible 

genealogies. 

There are several key assumptions that must be made when considering the coalescent, as 

they directly affect the shape of genealogies by distorting them from their expected distributions. 

This is critical, as the coalescent is powerful as a method for inferring aspects of a population 

from the shape of the genealogical process, so violations of these assumptions will bias 

inferences of the demographic history of a population. Some of these assumptions include the 

neutrality of genetic elements under study, lack of population subdivision, no migration, constant 

population size over time, and the absence of recombination within the genetic locus under study 

(Wakeley 2009). There are extensions of the basic coalescent that can include these features into 

the coalescent framework. The ability of the basic coalescent model to be extended to allow for a 

variety of demographic and evolutionary scenarios is a strength of coalescent theory. 
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Box 4. Markov-Chain Monte Carlo Sampling 

Markov-Chain Monte Carlo (MCMC) is a sampling algorithm which has enabled the use of 

modern Bayesian demographic methods by allowing for an approximation of the likelihood 

equations, which are more practical to estimate computationally. The typical MCMC algorithm 

commences by sampling a genealogy, testing its fit to the data, and then proposing a new 

genealogy by making a random, but small, change in the genealogical tree topology. The chain 

accepts this new genealogy given a probability calculated from the ratio of Bayesian posteriors 

between the new genealogy P(x’) and old genealogy P(x). If the ratio is higher (if P(x’)/ P(x) ≥ 

1), the “chain” adopts the new genealogy and abandons the previous one. Even if the new 

posterior probability is lower (if P(x’)/ P(x) ≤ 1), the chain may accept the new genealogy with 

probability proportional to the ratio (≤ 1). This is critical to ensure that the posterior distribution 

is composed of a mix of diverse genealogies, proportional to their likelihood, in true Bayesian 

form. If for example, only  P(x’)/ P(x) ≥ 1 steps are considered, such that only higher probability 

genealogies are collected (as an optimization algorithm might do), the posterior distribution will 

be incomplete, as it will not sample lower probability genealogies.  

MCMC samples step-by-step, starting at a random genealogy, and generally moving 

towards better fitting ones. This is far from a perfect process for two main reasons: First an 

individual chain may get “stuck” moving between closely related genealogies, each not 

considered truly independent for the purposes of parameter estimation. For this reason, MCMC 

analysis only records a fraction of the total visited trees, for example, only every 1000th tree may 

contribute to the posterior distribution, assuming that the interim will permit the chain to explore 

unrelated (but not truly independent) genealogies. Secondly, each chain starts from a random 

point, which may not be a very likely tree. For this reason, MCMC analysis often ignores the 
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first few thousand steps (called burn-in), only including later sampled genealogies as part of the 

distribution, assuming that the chain will move to a likelier group of trees after this interval. 

Finally, to alleviate these limitations, a typical analysis will run thousands of chains, each 

contributing to the sampling of genealogies. The final MCMC sampling is distributed closely to 

the true posterior distribution (one composed of all possible genealogies), allowing for the 

estimation of the posterior density or posterior probabilities of interest at a scale that is 

computationally practical. 
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Figure Captions 

Figure 1. a) Graphic representation of prior and posterior distributions for a Bayesian analysis. 

The posterior probability density function for the parameter θ is represented as the area under the 

blue bars, where the grey shaded area represents the prior probability density function of the 

parameter θ. The prior density in this case is flat or uniform (horizontal line) across the entire 

interval. Point estimators such as the mean (red line) or median (green line) are used to generate 

a posterior point value for θ. b) Graphic representation of a BSP. Similarly, the posterior density 

function for the value of a parameter, in this case, effective population size is represented over 

time. The shaded area represents the 95% credibility interval whilst the lines represent posterior 

point estimators such as the mean (red) or median (green).  

Figure 2. Basic steps of an approximate Bayesian computation analysis. 

Figure 3. Basic steps to complete a power analysis for approximate Bayesian computation as 

recommended in this study. 

Figure 3.1. Graphical representation of the coalescent process for n=6 individuals. Time is 

considered to move backwards as lineages coalesce, commencing at the present time (bottom). 

Each interval of Tn represents the time in generations between coalescent events, adding to 

TMRCA. 
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