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Preface

Inspired by earlier work exhibiting v1-periodicity in the topological cyclic ho-
mology of the integers [30], [31], [148], [149], and subsequent work exhibiting v2-
periodicity in the topological cyclic homology of the connective complex K-theory
ring spectrum and its Adams summand [19], [18], the authors started an investi-
gation into the topological Hochschild homology and topological cyclic homology
of the topological modular forms ring spectrum, aiming to study the v3-action on
F∗TC(tmf) for suitable finite type 3 spectra F . In particular, at the prime p = 2
we can take F to be the homotopy cofiber of a map v32

2 : Σ192M(1, 4) → M(1, 4) as
in [26], and then F ∧tmf - tmf/(2, B, M) for certain Bott and Mahowald elements
B ∈ π8(tmf) and M ∈ π192(tmf).

The Adams spectral sequence, in conjunction with the computer software pack-
age ext described in [41], provides a flexible and powerful tool for making calcula-
tions with tmf , THH(tmf) and approximations to TC(tmf). The additive struc-
ture of the Adams spectral sequence for tmf , and parts of its multiplicative struc-
ture, have been known to Mahowald and some other experts for many years [76],
[54, Ch. 13], but for our project we expect to need full information about the mul-
tiplicative structure. Since we believe that this detailed information will be of use
and interest also to other researchers in algebraic topology, we have composed the
following account of the Adams spectral sequence for tmf , and related spectra such
as tmf/(2, B, M), aiming to give complete information and proofs of results that
have otherwise mostly been available as folklore.

The first author would like to thank the Isaac Newton Institute for Mathemat-
ical Sciences for support and hospitality during the program Homotopy Harnessing
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gram was supported by EPSRC grant number EP/R014604/1. The first author also
received funding from the Simons Foundation, project number 245786, the Research
Council of Norway (RCN), project number 239015, and the Pure Mathematics in
Norway project of the Trond Mohn Foundation (TMF).
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Introduction

In this book we study the graded ring π∗(tmf) of homotopy groups of the
connective ring spectrum of topological modular forms, by means of the classical
Adams spectral sequence. We obtain precise information about the additive and
multiplicative structure of this graded ring, in all degrees. As an application we
calculate the full additive and multiplicative structure of π∗(S), the stable homotopy
groups of spheres, in degrees ∗ ≤ 44.

In this introduction, we first review the context of topological modular forms
and the Adams spectral sequence, and then turn to a discussion of the E2-term,
differential pattern and extension questions leading to π∗(tmf) as a graded ring.
Finally we outline our results about duality, the Adams spectral sequence for the
sphere spectrum, and the case of odd primes.

0.1. Topological modular forms

The ring spectrum tmf is a connective form of a periodic ring spectrum TMF ,
first constructed as an A∞ ring spectrum (= S-algebra) by Mike Hopkins and
Haynes Miller [74, §9], [77], [146], and then as an E∞ ring spectrum (= commu-
tative S-algebra) by Paul Goerss and Hopkins [65], [62], [54, Ch. 12]. A different,
but equivalent, construction was later developed by Jacob Lurie [96], [97], [98].
An elliptic cohomology theory is a Landweber exact cohomology theory associated
to the formal group of an elliptic curve, and TMF is in a sense the initial such
theory, being defined as the global sections (or homotopy limit) of a sheaf of E∞
ring spectra over the moduli stack Mell of elliptic curves. The sheaf extends over
the Deligne–Mumford compactification Mell of this stack, allowing generalized el-
liptic curves with nodal singularities, and the global sections of the extended sheaf
defines an intermediate E∞ ring spectrum Tmf , whose connective cover is tmf :

tmf = τ≥0Tmf −→ Tmf −→ TMF = tmf [1/∆] .

In particular, the topological modular forms spectrum tmf is itself an E∞ ring
spectrum.

The natural transformation from the homotopy groups of a homotopy limit to
the limit of the homotopy groups defines a ring homomorphism

e′ : π∗(TMF ) −→ MF∗/2 = Z[c4, c6,∆
±1]/(c3

4 − c2
6 = 1728∆)

from the homotopy groups of TMF to the graded ring of integral modular func-
tions. Here c4 and c6 are multiples of the classical Eisenstein series, and ∆ is the
discriminant. More precisely, e′ is the edge homomorphism in a descent spectral
sequence

Hs(Mell;ω
⊗k) =⇒ π2k−s(TMF ) ,

1
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called the elliptic spectral sequence. The E2-term, differential structure and ad-
ditive extensions in this spectral sequence were determined by Hopkins and Mark
Mahowald around 1994, see [74, §9], [103, §4] and [76]. It follows that both the
kernel and the cokernel of the edge homomorphism are torsion groups annihilated
by 24. In particular, e′ induces an isomorphism after inverting the primes 2 and 3.
Localized at p = 2 or p = 3, however, π∗(TMF ) contains a rich pattern of torsion
groups, which detects a large part of the known 2- and 3-power torsion in π∗(S).
Since ∆8 and ∆3 are infinite cycles in the 2- and 3-localized descent spectral se-
quences, respectively, there are invertible homotopy classes M ∈ π192(TMF )(2)
and H ∈ π72(TMF )(3) that are detected by these powers of ∆. Hence π∗(TMF )
repeats 192-periodically at p = 2 and 72-periodically at p = 3. Hopkins and Ma-
howald [76, §11] used this to exhibit many v2-periodic families of elements in π∗(S).

The sphere spectrum S is connective, so the unit map S → Tmf factors through
the connective cover tmf → Tmf , and the edge homomorphism e′ restricts to a
homomorphism

e : π∗(tmf) −→ mf∗/2 = Z[c4, c6,∆]/(c3
4 − c2

6 = 1728∆)

to the ring of integral modular forms, in which ∆ is not inverted. In this frame-
work, the calculation of a spectral sequence converging to π∗(tmf) was documented
by Tilman Bauer [23], including the identification of the E2-term as the cohomo-
logy of a Weierstrass curve Hopf algebroid (A,Γ), the differential pattern, and the
additive extensions. In particular, each homotopy group πn(tmf) is finitely gen-
erated, so tmf has finite type. Bauer also determined part of the multiplicative
structure of π∗(tmf), including the products with the Hopf invariant one classes
η ∈ π1(S) ∼= π1(tmf) and ν ∈ π3(S) ∼= π3(tmf). It turns out that π7(tmf) = 0, so
the Hopf invariant one class σ ∈ π7(S) acts trivially on π∗(tmf). Inverting a power
of ∆ one recovers the elliptic spectral sequence studied by Hopkins and Mahowald,
so Bauer’s paper also serves to document the (unpublished) details of their calcu-
lation. Thereafter, most of the remaining multiplicative structure of π∗(tmf) was
determined by Bauer and André Henriques, and concisely recorded by Henriques
in [54, Ch. 13].

There is also a descent spectral sequence

Hs(Mell;ω
⊗k) =⇒ π2k−s(Tmf)

associated to the extended sheaf of E∞ ring spectra over Mell, which is intermedi-
ate between Bauer’s spectral sequence and the Hopkins–Mahowald elliptic spectral
sequence. Its E2-term, differential structure, additive extensions and most of the
multiplicative structure were determined by Johan Konter [89], building on the
work of Bauer. In particular, the computations of Konter prove the “Gap Theo-
rem” that πn(Tmf) = 0 for −21 < n < 0.

A major goal of the present work is to determine, with full proofs, the pre-
cise graded ring structure of π∗(tmf), together with substantial information about
the ring homomorphisms ι : π∗(S) → π∗(tmf) and e : π∗(tmf) → mf∗/2. After
implicit completion at the prime 2, the additive structure of π∗(tmf) is given in
Theorem 9.27 and Table 9.4, while the product structure is summarized in Theo-
rem 9.54 and Tables 9.8 and 9.9. We pay particular attention to the coefficients
of products landing in groups of order greater than 2; see Proposition 9.35 and
Figure 9.5, which also specify the one bit of multiplicative information that we
have left unresolved, regarding the sign s ∈ {±1} of a product ν4 · ν6 in π246(tmf).
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In Corollary 9.55 we confirm and generalize an observation due to Mahowald, as-
serting that ε ∈ π8(S) → π8(tmf) and certain related classes εk ∈ π8+24k(tmf)
have the same action on the B-power torsion in π∗(tmf) as the Bott class B and
its relatives Bk, respectively. We determine the tmf -Hurewicz image of πn(S) in
πn(tmf) for n ≤ 101 in Proposition 11.83. The edge homomorphism to mf∗/2 is
described in Proposition 9.19. As a consequence of these precise calculations, we
show in Theorem 9.53 that, when viewed as a ring homomorphism to its image, the
2-completed edge homomorphism is split surjective in the sense that it admits a sec-
tion im(e) → π∗(tmf) that is also a ring homomorphism. Finally, in Remark 9.58
we give a detailed comparison of our results with those collected by Henriques,
pointing out a short list of discrepancies.

At the prime 3, the corresponding results are given in Figure 13.2, Theo-
rem 13.19, Table 13.2 and Proposition 13.29. There is one unresolved coefficient
t ∈ {0, 1, 2} in a product B2 · B2 in π112(tmf), which, if nonzero, obstructs the
existence of a ring homomorphism section to the 3-completed edge homomorphism
e : π∗(tmf) → im(e). At primes p ≥ 5 the edge homomorphism is an isomorphism,
so the coefficient t is the only obstruction to the existence of an integrally defined
section im(e) → π∗(tmf) that respects the ring structures.

0.2. (Co-)homology and complex bordism of tmf

Let n be a natural number. After inverting n, the moduli stack of elliptic curves
admits an étale cover M(n) → Mell classifying elliptic curves with level n structure,
and there is a corresponding étale extension TMF [1/n] → TMF (n) of E∞ ring
spectra. Mike Hill and Tyler Lawson [70] extended the Goerss–Hopkins–Miller
sheaf of E∞ ring spectra to a compactification M(n) of M(n), with a log-étale
map to Mell, thereby obtaining extensions Tmf [1/n] → Tmf(n) of E∞ ring spec-
tra. In particular, for n = 1 their construction provides one way of extending the
Goerss–Hopkins–Miller sheaf from Mell to Mell. There are also E∞ ring spectra
Tmf0(n) and Tmf1(n) corresponding to Γ0(n) and Γ1(n) level structures, respec-
tively. Connective covers of these variants have proved useful in determining the
mod p cohomology and homology of tmf , as well as its complex bordism.

First, let p = 2 and let A denote the mod 2 Steenrod algebra. It is generated
by the Steenrod squaring operations Sqi for i ≥ 1, subject to the Adem relations
[13] [160, §I.1]. It is a cocommutative Hopf algebra over F2, and the structure of
the dual Hopf algebra

A∗ = F2[ξi | i ≥ 1]

was determined by Milnor [127]. The coproduct is given by

ψ(ξk) =
∑

i+j=k

ξ2j

i ⊗ ξj

with ξ0 = 1. The mod 2 cohomology H∗(X) = H∗(X; F2) of any spectrum is
naturally an A-module, and the mod 2 homology H∗(X) = H∗(X; F2) is naturally
an A∗-comodule. Let

A(1) = 〈Sq1, Sq2〉
A(2) = 〈Sq1, Sq2, Sq4〉
E(2) = 〈Q0, Q1, Q2〉
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be the subalgebras of A generated by the listed elements, where Q0 = Sq1, Q1 =
[Sq2, Q0] and Q2 = [Sq4, Q1]. These are finite-dimensional of ranks 8, 64 and 8,
respectively, and E(2) is the exterior algebra on the three given generators. The
A(2)-module A(2)//E(2) = A(2)⊗E(2) F2 is a “double” of A(1), with Sq2i acting in
A(2)//E(2) as Sqi acts in A(1), and can be realized as the cohomology of a 2-local
8-cell 12-dimensional CW spectrum Φ = ΦA(1). (A more common notation for
the double of A(1) is DA(1), but we prefer to reserve DX to denote the Spanier–
Whitehead dual F (X, S) of a spectrum X.)

Akhil Mathew [114, Thm. 1.2] showed that Tmf ∧ Φ is 2-locally equivalent to
the spectrum Tmf1(3) of topological modular forms for elliptic curves with Γ1(3)
level structure, whose connective cover tmf1(3) is equivalent to a (generalized) trun-
cated Brown–Peterson spectrum BP 〈2〉 with cohomology H∗(BP 〈2〉) ∼= A//E(2) =
A ⊗E(2) F2. It follows from the Gap Theorem that

tmf ∧ Φ -(2) tmf1(3) ,

and this in turn implies [114, Thm. 1.1] that

H∗(tmf) ∼= A//A(2) = A ⊗A(2) F2 .

This will be a key input to our Adams spectral sequence computations. The sur-
jection A = H∗(H) → H∗(tmf) is induced by a unique E∞ ring spectrum map
tmf → H = HF2 to the mod 2 Eilenberg–Mac Lane spectrum, which also induces
an injective algebra homomorphism H∗(tmf) → H∗(H) = A∗, with image

H∗(tmf) ∼= F2[ξ
8
1 , ξ̄4

2 , ξ̄2
3 , ξ̄i | i ≥ 4] = A∗ !A(2)∗ F2 .

Here ξ̄i = χ(ξi) denotes the Hopf algebra conjugate of the Milnor generator ξi, and
! denotes the cotensor product.

Next, let p = 3 and let A denote the mod 3 Steenrod algebra. It is generated by
the Bockstein operation β and the Steenrod power operations P i for i ≥ 1, again
subject to Adem relations [160, §VI.1]. The dual Hopf algebra is

A∗ = F3[ξi | i ≥ 1] ⊗ E(τi | i ≥ 0)

with coproduct

ψ(ξk) =
∑

i+j=k

ξ3j

i ⊗ ξj

ψ(τk) = τk ⊗ 1 +
∑

i+j=k

ξ3j

i ⊗ τj ,

where ξ0 = 1. Let P (0) = 〈P 1〉 and A(1) = 〈β, P 1〉 be the subalgebras of A
generated by the listed elements. Here P (0) is realized as the mod 3 cohomology
of the 3-local 3-cell 8-dimensional CW spectrum Ψ = S ∪ν e4 ∪ν e8, and Mathew
[114, Thm. 4.15] showed that Tmf∧Ψ is 3-locally equivalent to Tmf0(2) = Tmf1(2),
whose connective cover tmf0(2) is equivalent to BP 〈2〉 ∨ Σ8BP 〈2〉. This leads to
a calculation of the A-module coalgebra H∗(tmf) and the A∗-comodule algebra
H∗(tmf). However, in this case it turns out to be more convenient to analyze
π∗(tmf) using a variant of the Adams spectral sequence due to Andy Baker and
Andrey Lazarev [20], namely one which is constructed entirely within the category
of tmf -modules. The E2-term of this tmf -module Adams spectral sequence is given
by Ext over the tmf -module Steenrod algebra Atmf = H∗

tmf (H) = π−∗Ftmf (H, H),
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where H = HF3, rather than over the ordinary Steenrod algebra. Using the equiv-
alence

tmf ∧Ψ -(3) tmf0(2) ,

Hill and Henriques [68] show that Atmf is a quadratic extension of A(1), dual to

Atmf
∗ = Htmf

∗ (H) = π∗(H ∧tmf H) ∼= F3[ξ1]/(ξ3
1) ⊗ E(τ0, τ1, θ2) ,

where |θ2| = 9. We review this calculation in Chapter 13, see Theorem 13.6, and
add the observation that this is a square–zero extension.

Mathew [114, §5] went on to determine the complex bordism MU∗(tmf) as an
MU∗(MU)-comodule, and to show that the E2-term

Exts,t
MU∗(MU)(MU∗, MU∗(tmf)) =⇒ πt−s(tmf)

of the Adams–Novikov spectral sequence for tmf is isomorphic to the cohomology of
the Weierstrass curve Hopf algebroid studied by Bauer. Hence the spectral sequence
of [23] is in hindsight identical to this Adams–Novikov spectral sequence.

0.3. The Adams E2-term for S

Let p be any prime, and let X/pn = X∧Cpn where Cpn = S∪pn e1. We say that
a spectrum X has finite type mod p if π∗(X/p) is finite in each degree. For bounded
below spectra X this is equivalent to asking that H∗(X) = H∗(X; Fp) is finite in
each degree, which in turn is equivalent to the condition that H∗(X) = H∗(X; Fp)
is finite in each degree. If X is bounded below and of finite type mod p, then the
mod p Adams spectral sequence for X has E2-term

Es,t
2 (X) = Exts,t

A (H∗(X), Fp)

and converges strongly to the homotopy groups

Es,t
2 (X) =⇒s πt−s(X

∧
p )

of the p-completion X∧
p = holimn X/pn of X, cf. [2, Thm. 2.1]. (This reference

assumes that X is of finite type, not just mod p, but one can prove the same
conclusion with the weaker hypotheses stated.) If π∗(X) is finitely generated in
each degree, then we say that X is of finite type, and there are isomorphisms

π∗(X) ⊗ Zp
∼= π∗(X)∧p ∼= π∗(X

∧
p ) .

The same conclusion holds if X is p-local and π∗(X) is finitely generated over Z(p)

in each degree. The Adams E2-term can also be expressed in terms of comodule
Ext as

Es,t
2 (X) = Exts,t

A∗
(Fp, H∗(X)) .

If X is a ring spectrum (up to homotopy), then H∗(X) is an A∗-comodule algebra,
E2(X) = ExtA∗(Fp, H∗(X)) is a bigraded Fp-algebra, π∗(X) is a graded ring, and
the Adams spectral sequence for X is an algebra spectral sequence. If X is homo-
topy commutative, then H∗(X), E2(X) and π∗(X) are graded commutative. If X
is an E∞ ring spectrum, or more generally an H∞ ring spectrum [45, §I.3], then
there are algebraic Steenrod operations acting on E2(X) and power operations act-
ing on π∗(X), and their compatibility forces certain relations to hold between the
differentials in the Adams spectral sequence and the algebraic Steenrod operations
[45, Ch. VI]. We shall make extensive use of these relations in this work, since they
suffice to determine many of the more subtle Adams differentials.
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The foremost example among the spectra relevant to stable homotopy theory
is the sphere spectrum S, with H∗(S) = Fp and Adams spectral sequence

Es,t
2 (S) = Exts,t

A (Fp, Fp) =⇒s πt−s(S)∧p .

The homotopy groups π∗(S) are known as the stable homotopy groups of spheres, or
as the “stable stems”. The sphere spectrum is the initial commutative S-algebra, or
E∞ ring spectrum, hence is also an H∞ ring spectrum. The bigraded cohomology
algebra E2(S) = ExtA(Fp, Fp) of A is only partially understood, and no viable
explicit statement about its full structure is known to the authors, conjectural or
not.

However, some features are understood. Let us concentrate on the case p = 2.
In the (t− s, s)-plane, the Adams E2-term has an h0-tower along the vertical axis,
and is otherwise concentrated within a triangular region with s ≥ 0 and t − s ≥
2s − 3. A bird’s-eye view for t − s ≤ 200 is given in Figure 0.5. A machine
computation for t ≤ 200 was made using the first author’s program package ext,
which is available online and described in [41]. In this range of degrees we can
also calculate the algebra structure on ExtA(F2, F2), with the product given by
Yoneda composition. The gray region with t ≥ 201 does not indicate trivial groups,
but rather the current limit of our detailed calculations. By Theorem 4.9, the
Adams periodicity operator π5 : Es,t

2 (S) → Es+32,t+96
2 (S) maps known calculations

isomorphically onto the lighter gray region, while (by our approach) further machine
computations would be needed to identify the groups in the darker gray region.
More legible charts are shown in Figures 1.1 to 1.8. The algebra generators in
topological degrees t − s ≤ 48 are listed in Table 1.1 and labeled in Figures 1.9
and 1.10. An even larger chart, showing the region t − s ≤ 210, can be found on
the web page of Christian Nassau [136].

0.4. The Adams differentials for S

Let us review some of the results on the differentials and extensions in the
mod 2 Adams spectral sequence for the sphere spectrum.

Starting from the horizontal (t− s)-axis and moving up, the first groups in the
E2-term are E0,∗

2 (S) = F2{1} and

E1,∗
2 (S) = F2{hi | i ≥ 0} ,

with hi in topological degree t−s = 2i−1 corresponding to the primitive element ξ2i

1

in A∗, dual to the indecomposable class Sq2i

in A. These are tied together by the
algebraic Steenrod operations: Sq0(hi) = hi+1 for each i ≥ 0. The classes h0, h1,
h2 and h3 survive to E∞(S) and detect the Hopf invariant one homotopy classes
2 ∈ π0(S), η ∈ π1(S), ν ∈ π3(S) and σ ∈ π7(S), respectively. Frank Adams [3]
proved that the remaining classes hi do not detect homotopy classes: there are
nonzero differentials d2(hi) = h0h2

i−1 for all i ≥ 4. As a consequence, the only
spheres that are H-spaces are the unit spheres S0, S1, S3 and S7 in the classical
real division algebras R, C, H and O.

The Adams 2-line

E2,∗
2 (S) = F2{hihj | i ≤ j 0= i + 1}

is multiplicatively generated by the hi, subject only to the relations hihi+1 =
0. Mahowald [101] showed that the classes h1hj survive to E∞(S) and detect
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0.4. THE ADAMS DIFFERENTIALS FOR S 7

homotopy classes denoted ηj ∈ π2j (S) (for j ≥ 3). Mahowald and Martin Tangora
[107, Thm. 8.1.1] proved that the classes h2

j for j ≤ 4 survive to E∞(S). The
corresponding result for j = 5 was obtained by Michael Barratt, John Jones and
Mahowald [21, Thm. 2.1]. It then follows from the work of William Browder
[35, Thm. 7.1] that these classes detect Kervaire invariant one homotopy classes
θj ∈ π2j+1−2(S). More recently, Hill, Hopkins and Douglas Ravenel [69, Thm. 1.1]
showed that none of the classes h2

j for j ≥ 7 survive to detect homotopy classes. As
a consequence, every closed framed n-manifold is framed cobordant to a homotopy
sphere, unless n = 2j+1 − 2 with j ≤ 6. The case j = 6 remains open: it is not
known whether there exists a class θ6 ∈ π126(S) detected by h2

6. The only other
products hihj that survive to E∞(S) are h0h2, h0h3 and h2h4 detecting 2ν, 2σ and
ν∗, respectively, cf. the references to [144, Thm. 3.4.3].

John Wang [176, Thm. 2.11] showed that the Adams 3-line is spanned by
classes ci in topological degree t− s = 2i · 11− 3 for i ≥ 0, together with the prod-
ucts hihjhk for i ≤ j ≤ k. The latter are subject only to the relations hihi+1 = 0,
hih2

i+2 = 0 and h2
i hi+2 = h3

i+1 found by Adams [3, Thm. 2.5.1]. The indecompos-
able classes ci are connected by algebraic Steenrod operations: Sq0(ci) = ci+1 for
each i ≥ 0. The classes c0 and c1 survive to E∞(S) and detect homotopy classes
denoted ε ∈ π8(S) and σ̄ ∈ π19(S), respectively, whereas the remaining classes ci

support differentials d2(ci) = h0fi−1 for i ≥ 2, see [45, Prop. VI.1.16(i)], and Wen-
Hsiung Lin [93, Thm. 1.4] proved that h0fi−1 0= 0. (These classes are unrelated to
the modular forms c4 and c6.)

The paper [93] also describes the Adams 4-line E4,∗
2 (S), and the decomposable

classes in E5,∗
2 (S). There are seven families of indecomposable classes on the 4-line,

obtained by applying Sq0 repeatedly to d0, e0, f0, g = g1, p, D3 and p′ in topological
degrees t − s = 14, 17, 18, 20, 33, 61 and 69, respectively. In particular, d0, g, p
and p′ detect classes κ ∈ π14(S), κ̄ ∈ π20(S), νθ4 ∈ π33(S) and σθ5 ∈ π69(S). The
latter two claims are due to Barratt, Mahowald and Tangora [22, Prop. 3.3.7] and
Daniel Isaksen, Guozhen Wang and Zhouli Xu [83, Table 21], respectively. On the
other hand, d2(e0) = h2

1d0 and d2(f0) = h2
0e0, and Wang and Xu [174] recently

showed that d3(D3) = B3 is nonzero.
Starting instead from the vertical s-axis and moving to the right, the differential

structure in the Adams spectral sequence was determined for t−s ≤ 28 by Richard
Maunder [116] and Peter May [117], building on earlier calculations of unstable
homotopy groups of spheres by Hirosi Toda [171] and Mamoru Mimura [130].
The stable calculations were extended to the range t − s ≤ 45 by Mahowald and
Tangora [107]. In particular they used Mimura’s result that εκ 0= 0 [129, Thm. B]
to correct a mistake in the group structure of π23(S) related to a cluster of hidden
2-, η- and ν-extensions landing in degrees 23, 22 and 23, respectively. Later papers
by Barratt, Mahowald and Tangora [22] and the first author [40] corrected two
other mistakes in the new range, finding nonzero differentials d3(h2h5) = h0p and
d3(e1) = h1t, respectively. Thereafter, Barratt, Jones and Mahowald [21] gave
complete information on the Adams spectral sequence differentials for t − s ≤ 48.
(However, the argument given for d6(B2) = 0 appears to depend in a circular
manner on a hidden η-extension in degree 47 found by Tangora [166, p. 582], as
the latter reference applies Michael Moss’ convergence theorem [132, Thm. 1.2] in
a case that presumes the vanishing of d6(B2). See Remark 11.60.)
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Turning to higher degrees, Stanley Kochman [87] made a computer-assisted
calculation of an Atiyah–Hirzebruch spectral sequence to calculate π∗(S) for ∗ ≤ 64.
These results were transcribed as differentials in the Adams spectral sequence by
Kochman and Mahowald [88], leading to several corrections in the range 54 ≤
∗ ≤ 64. More recently, Isaksen [82] used a comparison of the classical mod 2
Adams spectral sequence with its motivic analogue, formed in Voevodsky’s stable
homotopy category of motives over Spec(C), and discovered a missing differential
d3(Q2) = gt affecting π56(S) and π57(S). With the aid of the motivic Adams
spectral sequence, Isaksen obtained complete calculations in degrees ∗ ≤ 59, with
one differential (d2(D1) = h2

0h3g2) being obtained jointly with Xu [84], and one
additive extension being obtained by Wang and Xu [175]. Thereafter, Wang and
Xu [174] calculated π60(S) ∼= Z/4{κ̄3} and π61(S) = 0. As a consequence, the only
odd-dimensional spheres with a unique smooth structure are now known to be S1,
S3, S5 and S61.

In current work, Isaksen, Wang and Xu [83] combine comparisons of classical
Adams and Adams–Novikov spectral sequences with motivic Adams and Adams–
Novikov spectral sequences to obtain a nearly complete account of the first 90
stable stems. A key new input is the identification by Bogdan Gheorghe, Wang
and Xu [61, Thm. 1.14] of the motivic Adams spectral sequence for the motivic
spectrum Cτ with the machine computable algebraic Novikov spectral sequence for
the sphere spectrum.

To determine the full differential structure in the mod 2 Adams spectral se-
quence for tmf we shall use only a small part of the known information about the
spectral sequence for S, all within the Toda–Mimura range. More precisely, we
will use the fact that there is a hidden η-extension from h3

0h4 detecting ρ ∈ π15(S)
to Pc0 detecting ηρ, and that there is a hidden η-extension from h1g detecting
ηκ̄ ∈ π21(S) to Pd0 detecting η2κ̄. The first of these is an easy consequence of the
proven Adams conjecture, whereas the second is more subtle, and coincides with
the mistake that was corrected in [107, Thm. 2.1.1]. We provide stable, i.e., spec-
trum level, proofs of these results in Chapter 11, benefiting from our easy access
using ext to the action of ExtA(F2, F2) on ExtA(H∗(X), F2) for several small CW
spectra X, in a moderate range of degrees. We shall also use the fact that η2κ = 0
in π16(S). Once we have determined the differential structure on the spectral se-
quence for tmf , it becomes significantly easier to determine many of the remaining
differentials in the mod 2 Adams spectral sequence for S. We take the opportunity
to work some of this out in Chapter 11, obtaining the full differential structure of
the latter spectral sequence in degrees t − s ≤ 48, and the full additive and mul-
tiplicative structure of its abutment π∗(S) in degrees ∗ ≤ 44. See Figures 11.10
to 11.14 and Remark 0.1.

0.5. The Adams E2-term for tmf

The central object of study in this book is the classical mod 2 Adams spectral
sequence for the E∞ ring spectrum tmf of topological modular forms. In Part I
of our work, consisting of Chapters 1 to 4, we study the E2-term of this Adams
spectral sequence. We also determine the E2-terms of the Adams spectral sequences
for the tmf -modules tmf/2 = tmf ∧C2, tmf/η = tmf ∧Cη and tmf/ν = tmf ∧Cν.

Our starting point will be that tmf is a connective E∞ ring spectrum of finite
type with mod 2 cohomology H∗(tmf) = A//A(2). Its mod 2 Adams spectral
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sequence

Es,t
2 (tmf) = Exts,t

A (H∗(tmf), F2) =⇒ πt−s(tmf)∧2

is an algebra spectral sequence, converging strongly to the graded commutative ring
π∗(tmf)∧2 ∼= π∗(tmf) ⊗ Z2. Since A contains A(2) as a sub Hopf algebra, A is free
over A(2), so there is a change-of-algebra isomorphism

E2(tmf) = ExtA(A//A(2), F2) ∼= ExtA(2)(F2, F2)

taking the (graded) commutative algebra structure induced from the homotopy
commutative ring structure on tmf to the (graded) commutative algebra structure
on ExtA(2)(F2, F2) induced from the cocommutative coproduct on A(2), which in
turn agrees with the product defined by Yoneda composition [179, Prop. 5.8].

The cohomology algebra ExtA(2)(F2, F2) was obtained by May (unpublished),
and by Nobuo Shimada and Akira Iwai [155, §8] using an injective resolution
constructed as a twisted tensor product. They conclude, in the notation of [54,
Ch. 13], that ExtA(2)(F2, F2) is generated as an algebra by 13 indecomposable
classes

x h0 h1 h2 c0 w1 α d0 β e0 g γ δ w2

t − s 0 1 3 8 8 12 14 15 17 20 25 32 48

s 1 1 1 3 4 3 4 3 4 4 5 7 8

d2(x) 0 0 0 0 0 h2w1 0 h0d0 0 0 0 0 αβg

subject to 54 relations

h0h1 = 0 , h2
0h2 = h3

1 , h1h2 = 0 , h0h
2
2 = 0 , . . .

. . . , γ2 = h2
1w2 + β2g , δg = 0 , γδ = h1c0w2 , δ2 = 0

that induce all other relations in ExtA(2)(F2, F2). Furthermore, they note that this
algebra is free as a module over the subalgebra F2[w1, w2]. A large-scale image
of Es,t

2 (tmf) = Exts,t
A(2)(F2, F2) for t − s ≤ 200 is shown in Figure 0.6, repeated

at a smaller scale in Figures 1.11 to 1.18. The 13 algebra generators are labeled
in Figures 1.19 and 1.20. Note that the decomposable class αg lies in the same
bidegree as δ. On many occasions it will be convenient to work with the sum of
these two classes, which we denote

δ′ = δ + αg .

The charts were obtained using ext to construct a minimal free resolution of F2 as
an A(2)-module, in the finite range shown. See Table 3.3 for a dictionary relating
the notational schemes used by [155], [54] and ext to identify the 13 algebra
generators, and see Table 3.4 for the full list of 54 generating relations. It is
straightforward for ext to verify that these relations hold in ExtA(2)(F2, F2). The
list of 54 relations is a minimal generating set for the ideal I of relations satisfied
by the 13 algebra generators, but it may be difficult to use this list to identify when
two polynomial expressions are equal in ExtA(2)(F2, F2). We therefore order the
generators as follows

h0 > h1 > h2 > c0 > α > β > d0 > e0 > γ > δ > g > w1 > w2
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and give a reduced Gröbner basis

h0h1 , h3
1 + h2

0h2 , h3
0h2 , h1h2 , . . .

. . . , α3e0 + γgw1 , d0e0γ + α3g , γδ + h1c0w2 , δ2

for the ideal I in Table 3.5. Using this 77-term Gröbner basis there is a straightfor-
ward algorithm for bringing any polynomial in P = F2[h0, h1, h2, . . . , g, w1, w2] to
an irreducible normal form, so that two polynomials have the same image in P/I if
and only if they have the same normal form. In the proof of Theorem 5.15 we give
some worked examples of this reduction process.

Due to the scarcity of detail in the published references, we provide an inde-
pendent proof of the theorem of Shimada–Iwai that the homomorphism φ : P/I →
ExtA(2)(F2, F2), sending the 13 algebra generators to the given Ext-classes, is an
isomorphism. We do this by means of a spectral sequence due to Donald Davis
and Mahowald [52], which is designed to calculate ExtA(n)(M, F2) in terms of
ExtA(n−1)(Nσ ⊗ M, F2), where the Nσ for σ ≥ 0 are a specific sequence of A(n)-
modules. Davis and Mahowald applied this spectral sequence for n = 2 to additively
calculate ExtA(2)(M, F2) for a number of A(2)-modules M . In Chapter 2 we rework
their construction in comodule algebraic terms, so as to clarify the multiplicative
aspects of their spectral sequence. We then apply this in Chapter 3 to calculate the
Davis–Mahowald E∞-term, which is the associated graded of an exhaustive filtra-
tion of ExtA(2)(F2, F2). By comparing this with the normal form generators of P/I,
and a counting argument, we can conclude in Theorem 3.46 that φ is indeed an iso-
morphism. Along the way we verify, in Proposition 3.42, that the algebra given by
the Shimada–Iwai presentation is free as a module over F2[w1, w2]. More precisely,
we obtain a presentation for ExtA(2)(F2, F2) as a direct sum of cyclic R0-modules,
where we use the notation R0 = F2[g, w1, w2]. While R0 is not quite a system of
parameters for ExtA(2)(F2, F2), it serves a similar purpose, cf. Remark 3.44. The
subalgebras R1 and R2 defined in Section 0.6 are then similarly relevant to the later
stages of the Adams spectral sequence for tmf , as explained in that section.

Since A and A(2) are cocommutative Hopf algebras, there are compatible Steen-
rod operations

Sqi : Exts,t
A (F2, F2) −→ Exts+i,2t

A (F2, F2)

Sqi : Exts,t
A(2)(F2, F2) −→ Exts+i,2t

A(2) (F2, F2)

acting on their cohomology algebras. It is well known that Sq0(hi) = hi+1 and
Sq1(hi) = h2

i , for all i ≥ 0. We calculate all of these operations for A(2) in Theo-
rem 1.20, using explicit chain homotopies to handle the cases Sq1(c0) and Sq2(c0).
Many of the operations for A are calculated in [133], [122, §6] and [45, §VI.1], and
we review and extend these results in Section 11.2.

In Chapter 4 we also determine the Adams E2-terms for the tmf -module spectra
tmf/2, tmf/η and tmf/ν, as modules over E2(tmf). For i = 2j ∈ {1, 2, 4} we let
Mi = F2{1, Sqi} denote a minimal A(2)-module with nontrivial action by Sqi on
a class in degree 0. With this notation, the Adams spectral sequences for these
tmf -modules take the forms

Es,t
2 (tmf/2) = Exts,t

A(2)(M1, F2) =⇒ πt−s(tmf/2)

Es,t
2 (tmf/η) = Exts,t

A(2)(M2, F2) =⇒ πt−s(tmf/η)∧2

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



0.6. THE ADAMS DIFFERENTIALS FOR tmf 11

Es,t
2 (tmf/ν) = Exts,t

A(2)(M4, F2) =⇒ πt−s(tmf/ν)∧2 .

In each case the short exact sequence of A(2)-modules

0 → ΣiF2 −→ Mi −→ F2 → 0

induces a long exact sequence

. . .
hj−→ ExtA(2)(F2, F2) −→ ExtA(2)(Mi, F2) −→ ExtA(2)(Σ

iF2, F2)
hj−→ . . . ,

and we use our R0-module presentation of ExtA(2)(F2, F2) to obtain R0-module
presentations of ExtA(2)(Mi, F2) for i ∈ {1, 2, 4} in Propositions 4.2, 4.11 and 4.15.
In each case we calculate the kernel and cokernel of multiplication by hj , and
then identify the resulting extension of R0-modules. The latter is determined by
calculations in a finite range of degrees, which we perform using ext. For i = 2j ∈
{1, 2, 4} we write x̃, x̂ and x, respectively, for chosen lifts in ExtA(2)(Mi, F2) of
classes x ∈ ker(hj) ⊂ ExtA(2)(Σ

iF2, F2). When multiple choices are possible, we
specify our lifts in terms of the cocycles chosen by ext, as in Tables 4.2, 4.5 and 4.7.
In particular, we find explicit generators for E2(tmf/2), E2(tmf/η) and E2(tmf/ν)
as modules over E2(tmf) in Corollaries 4.3, 4.13 and 4.16. Large-scale charts of
these E2-terms are shown in Figures 0.11, 0.14 and 0.17.

As an application of our calculation of ExtA(2)(M1, F2), we give a proof in Sec-
tion 4.2 of May’s improved version of the Adams periodicity theorem from [7].
Adams’ original proof established periodicity above a line of slope 1/3 in the
(t − s, s)-plane, while May’s strengthened result gives periodicity above a line of
slope 1/5.

0.6. The Adams differentials for tmf

In Part II of this book, consisting of Chapters 5 to 8 and Appendices A to D, we
study the dr-differentials for r ≥ 2 in the mod 2 Adams spectral sequence for tmf ,
and for the closely related spectra tmf/2, tmf/η and tmf/ν.

The ring structure on tmf and its actions on tmf/2, tmf/η and tmf/ν induce
algebra and module structures in the respective Adams spectral sequences, leading
to the Leibniz rule

dr(xy) = dr(x)y + xdr(y)

in all cases. (There is no sign since we are working at p = 2.) Supplementing the
usual multiplicative structure, our principal tool is the formula

(0.1) d∗(Sqi(x)) = Sqi+r−1(dr(x)) "






0 if v > s − i + 1,

ā x dr(x) if v = s − i + 1,

ā Sqi+v(x) if v ≤ min{s − i, 10}

in the Adams spectral sequence for an H∞ ring spectrum Y , such as tmf or S.
This result is due to Jukka Mäkinen [109] in the case Y = S, and to the first au-
thor [45, Thm. VI.1.1 and VI.1.2] for general H∞ ring spectra. Here x ∈ Es,t

2 (Y ) =
Exts,t

A (H∗(Y ), F2) is an element that survives to the Er-term, for some r ≥ 2. Writ-
ing the 2-adic valuation of t − i + 1 as 4q + r, with 0 ≤ r ≤ 3, the “vector field
number” is v = 8q+2r. If v = 1 then ā = h0, while if v ≥ 2 then ā ∈ E∞(S) detects
a generator of the image of the J-homomorphism in πv−1(S). The two summands
in (0.1) are the leading contributions to an Adams differential on Sqi(x), and the
symbol " indicates that if the terms have different Adams filtration, then only
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the term in lower Adams filtration appears in the differential. See Section 5.2 and
Theorem 5.6 for further explanations in the context of tmf , and Section 11.1 and
Theorem 11.22 for a full discussion in the context of H∞ ring spectra.

To determine the Adams d2-differential and E3-term for tmf , it suffices to de-
termine d2(x) for each of the 13 algebra generators x = h0, h1, h2, . . . , g, w1, w2 of
E2(tmf). Due to the multiplicative structure, d2(x) = 0 except for x ∈ {α,β, w2}.
An application of equation (0.1) shows that d∗(Sq1(c0)) = h0Sq2(c0), which evalu-
ates to d2(h2β) = h2

0e0. This readily implies that d2(α) = h2w1 and d2(β) = h0d0.
It remains to determine d2(w2). For this we make use of naturality with respect

to the unit map ι : S → tmf , and a small piece of the known structure of π∗(S),
as discussed in Section 0.4. In Theorem 5.10 we use the hidden η-extension on
ρ ∈ π15(S) and the fact that η2κ = 0 to deduce that d3(e0) = c0w1. Furthermore,
in Theorem 5.12 we use the hidden η-extension on ηκ̄ ∈ π21(S) to deduce that
d4(e0g) = gw2

1. The multiplicative structure, including the relation γ2 = β2g +
h2

1w2, then implies that d4(h2
1w2) = α2e0w1 is nonzero, which in turn implies

that d3(h1w2) = g2w1 and d2(w2) = αβg are nonzero. See Proposition 5.14 and
Figures 1.19, 1.20 and 1.13.

We recall our presentation for E2(tmf) as a direct sum of cyclic R0-modules,
where R0 = F2[g, w1, w2], in Table 5.1. Since g, w1 and w2

2 are d2-cycles, the d2-
differential is R1-linear, where we let R1 = F2[g, w1, w2

2]. Using the Leibniz rule,
we can calculate d2 on each R1-module generator. It is then an algebraic exercise
to calculate E3(tmf) = H(E2(tmf), d2) as an R1-module, and we carry this out in
Appendix A.1. The result is presented as a direct sum of mostly cyclic R1-modules
in Table 5.2, with the non-cyclic summands being made explicit in Table 5.3.

Next, we show that E3(tmf) is generated as an algebra by the 24 classes below.

x h0 h1 h2 c0 w1 h3
0α d0 e0

t−s 0 1 3 8 8 12 14 17

s 1 1 1 3 4 6 4 4

d3(x) 0 0 0 0 0 0 0 c0w1

x g α2 γ αβ β2 δ αg h0α3

t−s 20 24 25 27 30 32 32 36

s 4 6 5 6 6 7 7 10

d3(x) 0 h1d0w1 0 0 h1gw1 0 0 0

x h0w2 h1w2 h2w2 c0w2 h3
0αw2 δw2 h0α3w2 w2

2

t−s 48 49 51 56 60 80 84 96

s 9 9 9 11 14 15 18 16

d3(x) 0 g2w1 0 0 0 0 0 βg4

Equation (0.1) shows that d3(α2) = h0αd2(α) = h1d0w1, d3(β2) = Sq4(d2(β)) =
h1gw1 and d3(w2

2) = Sq9(d2(w2)) + h0w2d2(w2) = βg4. When combined with our
earlier results and the multiplicative structure, this determines d3 on the remaining
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0.6. THE ADAMS DIFFERENTIALS FOR tmf 13

algebra generators, see Theorem 5.18. Since g, w1 and w4
2 are d3-cycles, the d3-

differential is R2-linear, where R2 = F2[g, w1, w4
2]. We calculate d3 on each R2-

module generator using the Leibniz rule, and calculate E4(tmf) = H(E3(tmf), d3)
in Appendix A.2. The resulting direct sum of mostly cyclic R2-modules is presented
in Tables 5.5 and 5.6.

Continuing, we check that E4(tmf) is generated as an algebra by the 52 classes
below.

x h0 h1 h2 c0 w1 h3
0α d0 g h0α2 γ αβ d0e0 δ αg

t−s 0 1 3 8 8 12 14 20 24 25 27 31 32 32

s 1 1 1 3 4 6 4 4 7 5 6 8 7 7

d4(x) 0 0 0 0 0 0 0 0 0 0 0 d0w2
1 0 0

x h0α3 e0g α2g h0w2 αe0g h2
1w2 h2w2 βg2 c0w2

t−s 36 37 44 48 49 50 51 55 56

s 10 8 10 9 11 10 9 11 11

d4(x) 0 gw2
1 αβw2

1 d0γw1 δ′w2
1 α2e0w1 0 αd0gw1 0

x h3
0αw2 h0α2w2 δw2 h0α3w2 h0w2

2 h1w2
2 h2w2

2 c0w2
2 w1w2

2

t−s 60 72 80 84 96 97 99 104 104

s 14 15 15 18 17 17 17 19 20

d4(x) 0 0 0 0 0 0 0 0 0

x h3
0αw2

2 d0w2
2 h0α2w2

2 αβw2
2 d0e0w2

2 δw2
2 αgw2

2 h0α3w2
2

t−s 108 110 120 123 127 128 128 132

s 22 20 23 22 24 23 23 26

d4(x) 0 0 0 0 d0w2
1w

2
2 0 0 0

x e0gw2
2 α2gw2

2 h0w3
2 αe0gw2

2 h2
1w

3
2 h2w3

2 c0w3
2

t−s 133 140 144 145 146 147 152

s 24 26 25 27 26 25 27

d4(x) gw2
1w

2
2 αβw2

1w
2
2 d0γw1w2

2 δ′w2
1w

2
2 α2e0w1w2

2 0 0

x h3
0αw3

2 h0α2w3
2 δw3

2 h0α3w3
2 w4

2

t−s 156 168 176 180 192

s 30 31 31 34 32

d4(x) 0 0 0 0 0

Our earlier results and the multiplicative structure determine d4 on all of these
algebra generators, see Theorem 5.23. Since g, w1 and w4

2 are d4-cycles, the d4-
differential is R2-linear. We calculate d4 on each R2-module generator using the
Leibniz rule, and then pass to homology to obtain E5(tmf) = H(E4(tmf), d4) in
Appendix A.3. The resulting direct sum of mostly cyclic R2-modules is presented
in Tables 5.8 and 5.9.
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Finally, we verify that E5(tmf) is generated as an algebra by the following 43
classes.

x h0 h1 h2 c0 w1 h3
0α d0 g h0α2 γ αβ δ δ′ h0α3

t−s 0 1 3 8 8 12 14 20 24 25 27 32 32 36

s 1 1 1 3 4 6 4 4 7 5 6 7 7 10

x h2
0w2 h2w2 c0w2 α3g + h0w1w2 h3

0αw2 h0α2w2 δw2 h0α3w2

t−s 48 51 56 56 60 72 80 84

s 10 9 11 13 14 15 15 18

x h0w2
2 h1w2

2 h2w2
2 c0w2

2 w1w2
2 h3

0αw2
2 d0w2

2 h0α2w2
2 αβw2

2

t−s 96 97 99 104 104 108 110 120 123

s 17 17 17 19 20 22 20 23 22

x δw2
2 δ′w2

2 h0α3w2
2 h2

0w
3
2 h2w3

2 c0w3
2 α3gw2

2 + h0w1w3
2 h3

0αw3
2

t−s 128 128 132 144 147 152 152 156

s 23 23 26 26 25 27 29 30

x h0α2w3
2 δw3

2 h0α3w3
2 w4

2

t−s 168 176 180 192

s 31 31 34 32

We show in Theorem 5.27 that there is no room for any further differentials, so
that E5(tmf) = E∞(tmf).

Tables 5.8 and 5.9 therefore also express E∞(tmf) as a direct sum of R2-
modules. In particular, E∞(tmf) is free as an F2[w4

2]-module, but it has both
w1-periodic elements and w1-power torsion elements. The latter are generated by
classes in degrees 3 ≤ t − s ≤ 164, repeating 192-periodically. The E∞-term is
shown for 0 ≤ t − s ≤ 200 in Figure 0.7, with the w1-power torsion classes marked
in red. The more interesting part is shown for 0 ≤ t− s ≤ 96 and 96 ≤ t− s ≤ 192
in Figure 0.8. More legible charts are provided in Figures 5.1 to 5.8.

Mahowald first calculated this Adams spectral sequence, as outlined in his
paper [76, §9] with Hopkins, before the spectrum tmf with cohomology A//A(2)
was known to exist. Already in the 1998 version of that preprint, the authors wrote
that this was a “calculation which has been known for about twenty years.” Our
computation confirms their outline, including the hidden 2- and η-extensions, except
that the third differential in their Proposition 9.10 should be d3(v1wg35,7) = v4

1g33,8,
and in the chart of their Theorem 9.11 the classes in degrees t − s = 70 and 90
should be in Adams filtrations 14 and 18, respectively.

In Chapter 6 and Appendix B we determine the d2-, d3- and d4-differentials
in the Adams spectral sequence for tmf/2, as a module spectral sequence over the
Adams spectral sequence for tmf , and calculate the resulting E3-, E4- and E5-
terms. All of these differentials follow algebraically from the known differentials
for tmf and the module structure. The spectral sequence for tmf/2 collapses at the
E5-term, as we show in Theorem 6.13. The resulting E∞-term is presented as an
R2-module in Tables 6.10 and 6.11. It is free as an F2[w4

2]-module, and is shown
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at large scale in Figures 0.12 and 0.13, and more legibly in Figures 6.1 to 6.8. See
also Remark 0.1.

In Chapter 7 and Appendix C we determine the d2- and d3-differentials in
the Adams spectral sequence for tmf/η, as a module spectral sequence over the
Adams spectral sequence for tmf , and calculate the resulting E3- and E4-terms.
The module structure determines almost all of the differentials, but for one excep-
tional differential (namely d3(h2

2β̂) = i(d0w1)) we rely on the hidden η-extension
from h1g to Pd0 in the Adams spectral sequence for S. Perhaps surprisingly, the
Adams spectral sequence for tmf/η collapses already at the E4-term, as we show in
Theorem 7.6. The resulting E∞-term is presented as an R2-module in Tables 7.5
and 7.6. It is free as an F2[w4

2]-module, and is shown at large scale in Figures 0.15
and 0.16, and more legibly in Figures 7.1 to 7.8.

In Chapter 8 and Appendix D we determine the d2-, d3- and d4-differentials
in the Adams spectral sequence for tmf/ν, as a module spectral sequence over
the Adams spectral sequence for tmf , and calculate the resulting E3-, E4- and
E5-terms. The module structure determines almost all of the differentials, except
that for one differential (namely d2(β2) = i(h1δ)) we rely on an ad hoc argument
using the external pairing tmf/ν ∧ tmf/ν → tmf ∧ Cν ∧ Cν. There are no further
differentials, as we show in Theorem 8.12. The resulting E∞-term is presented as
a direct sum of cyclic R2-modules in Table 8.9. It is free as an F2[w4

2]-module, and
is shown at large scale in Figures 0.18 and 0.19, and more legibly in Figures 8.1
to 8.8.

The results on E∞(tmf/2) and E∞(tmf/ν) give us a sufficiently good handle on
π∗(tmf/2) and π∗(tmf/ν) to determine the hidden 2- and ν-extensions in π∗(tmf).
It turns out that all hidden η-extensions follow from these, mainly due to the
relation η3 = 4ν, so the calculation of E∞(tmf/η) is not strictly needed for our
analysis of the ring structure on π∗(tmf). We do, however, include this case for
completeness, as a consistency check, and for future applications to other tmf -
module spectra.

0.7. The graded homotopy ring of tmf

Part III commences with Chapter 9, which is the core of this book. Its aim is
to calculate the graded homotopy ring π∗(tmf), implicitly completed at p = 2.

Using the long exact sequence

· · · −→ πn(tmf)
2−→ πn(tmf)

i−→ πn(tmf/2)
j−→ πn−1(tmf) −→ . . .

and our calculation of E∞(tmf/2) we determine the hidden 2-extensions in the
Adams spectral sequence for tmf in Theorem 9.8. This already determines the
group structure of πn(tmf) in each degree n. In particular, there are hidden 2-
extensions to α3g + h0w1w2 and to α3gw2

2 + h0w1w3
2. It follows that π∗(tmf) is

generated as a graded ring by 40 homotopy classes, which are detected by the 40
out of 43 algebra generators of E∞(tmf) that remain when h0 and the two classes
just mentioned are omitted.

For example, there are five classes η, ν, ε, κ and κ̄ in π∗(tmf) that are detected
by h1, h2, c0, d0 and g in E∞(tmf), respectively, and which are the images of the
classes in π∗(S) with the same names [171], [130]. (We note that this prescription
only determines κ̄ up to an odd multiple.) There are also two classes B and C in
π∗(tmf) that are detected by w1 and h3

0α in E∞(tmf), respectively. We show in
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Proposition 9.19 that they can be assumed to have images c4 and 2c6, respectively,
under the edge homomorphism e : π∗(tmf) → mf∗/2, and that these conditions
together uniquely determine these two classes. We refer to B ∈ π8(tmf) as the
“Bott element”, in part because B and C map to generators of π8(ko) and π12(ko)
under the E∞ ring map q0 : tmf → ko constructed by Lawson and Niko Naumann
[91, Thm. 1.2].

Together with the ring unit D = 1, these seven classes generate the remaining
ring generators for π∗(tmf) by “formal multiplication by powers of the discrimi-
nant ∆, up to scalar multiples.” This formal relationship can be expressed in terms
of Massey products in E2(tmf) = ExtA(2)(F2, F2), as we discuss in Subsection 9.1.1,
or in terms of modular form images. For x ∈ {η, ν, ε,κ, κ̄, B, C, D} and some or all
0 ≤ k ≤ 7 we write xk for the k-th member of the family of ring generators for
π∗(tmf) that are related to x = x0 through formal multiplication by powers of ∆,
up to scalars. More precisely, we have the following 40 ring generators.

xk η η1 η4

n 1 25 97

E∞(tmf) h1 γ h1w2
2

xk ν ν1 ν2 ν4 ν5 ν6

n 3 27 51 99 123 147

E∞(tmf) h2 αβ h2w2 h2w2
2 αβw2

2 h2w3
2

xk ε ε1 ε4 ε5

n 8 32 104 128

E∞(tmf) c0 δ′ c0w2
2 δ′w2

2

xk κ κ4

n 14 110

E∞(tmf) d0 d0w2
2

xk κ̄

n 20

E∞(tmf) g

xk B B1 B2 B3 B4 B5 B6 B7

n 8 32 56 80 104 128 152 176

E∞(tmf) w1 αg c0w2 δw2 w1w2
2 αgw2

2 c0w3
2 δw3

2

mf∗/2 c4 c4∆ c4∆2 c4∆3 c4∆4 c4∆5 c4∆6 c4∆7

xk C C1 C2 C3 C4 C5 C6 C7

n 12 36 60 84 108 132 156 180

E∞(tmf) h3
0α h0α3 h3

0αw2 h0α3w2 h3
0αw2

2 h0α3w2
2 h3

0αw3
2 h0α3w3

2

mf∗/2 2c6 2c6∆ 2c6∆2 2c6∆3 2c6∆4 2c6∆5 2c6∆6 2c6∆7
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xk D1 D2 D3 D4 D5 D6 D7 M

n 24 48 72 96 120 144 168 192

E∞(tmf) h0α2 h2
0w2 h0α2w2 h0w2

2 h0α2w2
2 h2

0w
3
2 h0α2w3

2 w4
2

mf∗/2 8∆ 4∆2 8∆3 2∆4 8∆5 4∆6 8∆7 ∆8

See also Figure 9.1. More concisely, the D-family is characterized by e(Dk) = dk∆k,
where the scalars dk are introduced in Definition 9.18. We call the final generator
M = D8 ∈ π192(tmf) the “Mahowald element”. We show in Proposition 9.19
that we can choose the ring generators Bk, Ck, Dk and M to have the modular
form images listed above, still subject to the constraint that they are detected
by the given classes in E∞(tmf). In the case of the C-family, our proof relies
on the fact that the image of the edge homomorphism e : πn(tmf) → mfn/2 is
divisible by 2 for n = 12 + 24k, cf. [75, Prop. 4.6] and [23, §8]. The specified
images in E∞(tmf) and mf∗/2 suffice to determine most of the ring generators, but
some ambiguity remains, especially in the ν-family, which we discuss and almost
completely eliminate in Definition 9.22. See Remark 9.24.

Multiplication by M induces multiplication by w4
2 in E∞(tmf), hence acts

freely on π∗(tmf). Letting N∗ ⊂ π∗(tmf) denote the Z[B]-submodule generated
by the classes in degrees 0 ≤ ∗ < 192, we obtain a Z[B, M ]-module isomorphism
N∗⊗Z[M ] ∼= π∗(tmf). We summarize the Z[B, M ]-module structure on π∗(tmf) in
Theorem 9.27, by way of the Z[B]-module structure on N∗. The B-power torsion
submodule ΓBN∗ is finite and concentrated in degrees 3 ≤ ∗ ≤ 164, see Table 9.4.
There is a split extension of Z[B]-modules

0 → ΓBN∗ −→ N∗ −→ N∗/ΓBN∗ → 0 .

The B-torsion free quotient N∗/ΓBN∗ is a direct sum of eight ko-covers ko[k], for
0 ≤ k ≤ 7. Here ko[k] is a Z[B]-submodule of π∗(ko) that starts in degree 24k and
contains all classes in degrees ∗ > 4 + 24k, see Theorem 9.26.

Turning to the multiplicative structure of π∗(tmf), we show in Proposition 9.10
that there are no hidden B- or M -multiplications in π∗(tmf), so that all of the w1-
power torsion in E∞(tmf) is realized as B-power torsion, of the same exponent, in
π∗(tmf). It follows that the 2- and B-power torsion ideals in π∗(tmf) are

Γ2π∗(tmf) = (ηk, νk, εk,κk, κ̄)

ΓBπ∗(tmf) = (νk, εk,κk, κ̄) ,

where in the latter case the ν-family must be interpreted to include an “honorary”
member ν3 = η3

1 .
We use the long exact sequence

· · · −→ πn−3(tmf)
ν−→ πn(tmf)

i−→ πn(tmf/ν)
j−→ πn−4(tmf) −→ . . .

and our calculation of E∞(tmf/ν) to determine the hidden ν-extensions in the
Adams spectral sequence for tmf in Theorem 9.14, and from this we deduce the
hidden η-extensions in Theorem 9.16. We then establish an interesting multiplica-
tive relation in π105(tmf), namely

ν2ν4 = ηε4 + η1κ̄
4.

This exhibits a hidden ν-extension from the E∞-class detecting νν4 to the E∞-class
detecting ηε4. However, this is not the whole relation in homotopy: there is also
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the higher filtration term η1κ̄4. A hidden extension is simply the lowest filtration
part of a nonzero product that is zero at E∞. Having determined the hidden 2-, η-
and ν-extensions, it is natural to consider π∗(tmf) as a T -module, where

T = Z[η, ν, B, M ]/(2η, η3 + 4ν, ην, 2ν2, νB, ν4)

is the (implicitly 2-completed) subring of π∗(tmf) generated by η, ν, B and M . We
produce a list of 58 T -module generators for π∗(tmf) in Table 9.5. The structure
of π∗(tmf) as a graded abelian group, with all 2-, η-, ν-, B- and M -multiplications,
is shown at various scales in Figures 0.9, 0.10 and 9.6 through 9.13.

In Section 9.5 we undertake to compute the remaining products in π∗(tmf).
It suffices to calculate all products xy, where x is one of 57 T -module genera-
tors of π∗(tmf) (other than x = 1) and y is one of 36 ring generators of π∗(tmf)
(other than y ∈ {η, ν, B, M}). We achieve this for the 2-power torsion generators y
in Theorem 9.47, up to some signs s and si for i ∈ {0, 2, 4, 6}. The method of
proof is principally to reason with the Adams filtration of π∗(tmf), combined with
previously established hidden extensions, and supplemented by the edge homomor-
phism e to modular forms. At p = 2 the Adams filtration gives quite different
information from that provided by the Adams–Novikov or descent filtration, and
this makes the calculation possible. For example, the 2-torsion free classes lie in
relatively high Adams filtration, but have Adams–Novikov filtration zero. We also
perform this calculation for the 2-torsion free generators y, in Theorem 9.48. Again,
the principal method is the use of the multiplicative Adams filtration, combined
with previously established hidden extensions.

Our choices of ring generators Bk for π∗(tmf) were partially dictated by the
need to reason, as outlined above, by means of the Adams filtration. For example,
this is why we chose B ∈ π8(tmf) to be the class detected by w1 in Adams filtra-
tion 4, rather than its sum B + ε in Adams filtration 3, even if both classes map
to the usual Bott element in π8(ko). However, this has the effect that some of the
multiplicative relations that hold in mf∗/2, such as c4∆2 ·c4∆3 = c4 ·c4∆5, will only
hold up to 2-torsion correction terms for our chosen lifts to π∗(tmf). For instance,
B2 · B3 = B · B5 + ηη1κ4 with ηη1κ4 in Adams filtration 27.

Somewhat miraculously, it is possible to modify our choices of ring generators
for π∗(tmf) to eliminate these correction terms. The change amounts to replacing
the B-family with a B̃-family, as specified in Definition 9.50. (This decoration is
unrelated to our notation x̃ for classes in E2(tmf/2).) The modular form images
do not change, but the detecting classes in E∞(tmf) are affected, so that B̃k has
Adams filtration 3 + 4k for all 0 ≤ k ≤ 7. In particular, B̃ = B + ε. A class is
B̃-power torsion if and only if it is B-power torsion.

xk B̃ B̃1 B̃2 B̃3 B̃4 B̃5 B̃6 B̃7

n 8 32 56 80 104 128 152 176

E∞(tmf) c0 δ c0w2 δw2 c0w2
2 δw2

2 c0w3
2 δw3

2

mf∗/2 c4 c4∆ c4∆2 c4∆3 c4∆4 c4∆5 c4∆6 c4∆7

By Theorem 9.53 the relations among the 2-torsion free generators B̃k, Ck and Dk in
π∗(tmf) are the same as among their images in im(e) ⊂ mf∗/2. Hence the surjective
ring homomorphism π∗(tmf) −→ im(e) mapping x to e(x) admits a multiplicative
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(and additive) section σ : im(e) → π∗(tmf), given by the following table.

x c4∆k 2c6∆k dk∆k ∆8

σ(x) B̃k Ck Dk M

It is not clear whether the existence of such a ring homomorphism σ is part of the
previous literature on the subject, in part due to the tendency to use ambiguous
integral modular form notation, such as c4, for topological modular forms, such as
B and B̃.

With these changes, and our final normalization of the classes νk, the products
with 2-power torsion elements in π∗(tmf) are somewhat more regular. Our conclu-
sion is given in Theorem 9.54 and Tables 9.8 and 9.9. These give the products xy for
x a T -module generator of π∗(tmf) other than x = 1, replacing each Bk with B̃k,
and y a 2-power torsion ring generator of π∗(tmf), other than y ∈ {η, ν, B, M}.
Furthermore, the rows for x ∈ {B̃k, Ck, D2j+1} are omitted, because all products
in these rows are zero, with the exception of

ηiB̃j = ηB̃i+j .

Here B̃k+8 is interpreted as B̃kM , for k ≥ 0. The remaining multiplication tables
then “only” have 38 rows and 14 columns.

One bit of ambiguity remains: Having chosen ν1, ν2 and ν4, with νD4 = 2ν4,
there are unique choices for ν5 and ν6 satisfying ν1ν5 = 2νν6 and ν2ν4 = 3νν6. We
then have ν4ν6 = sνν2M in π246(tmf) ∼= Z/4 for some sign s ∈ {±1}. We have
not determined this sign s, which is independent of the choice of ν1, ν2 and ν4. If
s = 1, then the relation νiνj = (i + 1)ννi+j holds for all i and j.

Mahowald noted (cf. [76, Prop. 8.7]) that multiplication by ε agrees with mul-
tiplication by B on the B-power torsion in π∗(tmf). This is equivalent to the
assertion that B̃ · y = 0 for all y ∈ ΓBπ∗(tmf) = (νk, εk,κk, κ̄). We prove in Corol-
lary 9.55 that B̃k · y = 0 for all 0 ≤ k ≤ 7 and y ∈ ΓBπ∗(tmf), thus generalizing
Mahowald’s assertion. (The honorary case B̃k · ν3 = 0 is not made explicit in our
tables, but η3

1B̃k = η3B̃k+3 = 4νB̃k+3 = 0.)

0.8. Duality

Working for a moment over Z[1/6], with 2 and 3 inverted, the compactified
moduli stack Mell is equivalent to the weighted projective stack associated to the
graded ring Z[1/6][c4, c6], cf. [62, §4.6]. Its cohomology satisfies Serre duality with
respect to the dualizing sheaf Ω ∼= ω⊗−10, corresponding to 1/c4c6, meaning that
there is a perfect pairing of finitely generated free Z[1/6]-modules

Hs(Mell;ω
⊗k) ⊗ H1−s(Mell; Hom(ω⊗k,Ω)) −→ H1(Mell;Ω) ∼= Z[1/6] .

Hence the descent spectral sequence has E2-term concentrated in the rows s = 0
and s = 1, with

E0,2k
2 = H0(Mell;ω

⊗k)

linearly dual to

E1,−20−2k
2 = H1(Mell; Hom(ω⊗k,Ω)) .

This implies that πn(Tmf)[1/6] is linearly dual to π−21−n(Tmf)[1/6], and can be
refined to the spectrum level statement that Tmf [1/6] is Anderson self-dual in the
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sense that
Σ21Tmf [1/6] - IZ(Tmf)[1/6] .

Here IZ(X) denotes the Anderson dual of X, see Section 10.4. Vesna Stojanoska
extended this result to the primes 3 and 2, by first establishing Anderson self-duality
for covers Tmf(2) of Tmf [1/2] and Tmf(3) of Tmf [1/3], and then applying descent
for the natural actions by the groups GL2(Z/2) and GL2(Z/3) of order 6 and 48,
respectively. The argument for p = 3 appeared in [161], while part of the argument
for p = 2 appeared in [162].

The computation of the sheaf cohomology of Mell can also be interpreted as
saying that there is a homotopy fiber sequence

tmf −→ Tmf −→ Σ−1tmf/(B∞, M∞) ,

where tmf/(B∞, M∞) is the iterated homotopy cofiber in the square

tmf !!

""

tmf [1/B]

""

tmf [1/M ] !! tmf [1/B, 1/M ] .

Formulated in terms of connective covers, Anderson duality implies an equivalence
of tmf -modules

Σ20tmf - IZ(tmf/(B∞, M∞)) .

In Chapter 10 we turn the argument around, and first establish the above equiv-
alence after completion at 2, and then use an argument of John Greenlees and
Stojanoska [67] to glue tmf and its Anderson dual together to obtain Anderson
self-duality for Tmf .

We obtain the equivalence above by descent along the map ι′ : tmf → tmf1(3) -
BP 〈2〉, corresponding to a separable (in the sense of [150, §9.1]) extension TMF →
TMF1(3) of degree 8 inside the GL2(Z/3)-Galois extension TMF → TMF (3). The
calculation of π∗(tmf) as a Z[B, M ]-module from Theorem 9.27 shows that there
is a top class C7/BM in π−20(tmf/(B∞, M∞)), corresponding to a bottom class
in π20 of the Anderson dual. We can represent the latter homotopy class by a
tmf -module map

a : Σ20tmf −→ IZ(tmf/(B∞, M∞)) .

We show in Theorem 10.6 that a is a 2-adic equivalence. For the proof we use the fi-
nite CW spectrum Φ = ΦA(1) from Lemma 1.42, which we may take to be Spanier–
Whitehead self-dual, with mod 2 cohomology realizing the double A(2)//E(2)
of A(1). For any such spectrum Φ there is an equivalence tmf ∧ Φ - BP 〈2〉.
Smashing a with the equivalence Σ−12Φ - DΦ = F (Φ, S) we obtain a map

Σ8BP 〈2〉 −→ IZ(BP 〈2〉/(v∞1 , v∞2 )) ,

which can be verified to be an equivalence by an inspection of homotopy groups.
This completes the proof of Anderson duality for Tmf at p = 2. To be precise, we
formulate our Theorem 10.6 in terms of the perhaps more familiar Brown–Comenetz
duality functor X 2→ I(X), saying that there is a 2-adic equivalence of tmf -modules

Σ20tmf - I(tmf/(2∞, B∞, M∞)) ,

where tmf/(2∞, B∞, M∞) is defined to be the iterated homotopy cofiber of a cu-
bical diagram, similar to the square in the definition of tmf/(B∞, M∞). However,
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I(X/2∞) - IZ(X) after 2-adic completion for any spectrum X, by Lemma 10.10,
so the two formulations are equivalent.

Recall that the B-power torsion in π∗(tmf) repeats M -periodically, and is gen-
erated by finitely many classes of finite additive order in the range 0 ≤ ∗ < 192.
The B-power torsion in πn(tmf) for 0 ≤ n < 192 usually contributes classes of finite
additive order in πn−191(tmf/(B∞, M∞)), and appears in Pontryagin dual form as
B-power torsion in π190−n(IZ(tmf/(B∞, M∞))) ∼= π170−n(tmf). Hence Anderson
self-duality for tmf is visible as a Pontryagin self-duality in most of the B-power
torsion ΓBN∗ ⊂ ΓBπ∗(tmf), with the finite group in degree n being Pontryagin
dual to the finite group in degree 170 − n.

However, there is one systematic family of exceptions. The B-power torsion
classes 〈νk〉 in degree n = 3 + 24k, for 0 ≤ k ≤ 6, occur in πn−191(tmf/(B∞, M∞))
as the quotients of torsion-free extensions by Z{Ck/BM}. Hence these classes
contribute under Anderson duality to the B-periodic, 2-torsion free part of

π191−n(IZ(tmf/(B∞, M∞))) ∼= π171−n(tmf),

and are not visible in π170−n(tmf).
Conversely, the B-torsion free part of N∗ is a direct sum of Z[B]-modules

ko[k], with bottom class Dk in degree n = 24k. For 1 ≤ k ≤ 7 the relation
B · Dk = dkBk in ko[k] implies that πn−192(tmf/(B∞, M∞)) contains a finite
group 〈Bk/BM〉 ∼= Z/dk. Its Pontryagin dual appears as B-power torsion in
π191−n(IZ(tmf/(B∞, M∞))) ∼= π171−n(tmf), namely as the summand 〈ν7−k〉.

Thus, the duality of tmf is most visibly reflected in the part Θπ∗(tmf) of
ΓBπ∗(tmf) consisting of the B-power torsion classes that are not in degrees ∗ ≡ 3
mod 24. Here Θπ∗(tmf) = ΘN∗ ⊗ Z[M ], with ΘN∗ concentrated in degrees ∗ 0≡ 3
mod 24, and there is a perfect pairing

(−,−) : ΘN170−n ⊗ΘNn −→ Q/Z
for all n. The remaining B-power torsion is not Pontryagin self-dual, but interacts
as explained above with the non-free part of the Z[B, M ]-torsion free quotient of
π∗(tmf). This is illustrated in Figures 10.1 and 10.2, where ΘnN∗ and Θ170−nN∗
are shown above and below the “fold line”, respectively. The exceptional classes νk

in degrees ∗ ≡ 3 mod 24 appear just outside of the mirror symmetric parts of these
pictures.

We introduce the notations M/x∞ and ΓxM in Section 10.2, and review
the Brown–Comenetz duality functor I and prove the 2-complete duality theorem
for tmf in Section 10.3. We review Anderson duality and convert our duality theo-
rem into a 2-complete self-duality theorem for Tmf in Section 10.4. In Section 10.5
we convert the spectrum level duality theorem for tmf into several algebraic duality
statements, summarized in Theorem 10.26. In particular, we verify the claims made
above about additive extensions in π∗(tmf/(B∞, M∞)), which lead to a less ad hoc
Definition 10.18 of the π∗(tmf)-module Θπ∗(tmf) ∼= ΘN∗ ⊗ Z[M ], where ΘN∗ is
Pontryagin self-dual. Finally that self-duality is spelled out in Theorem 10.29 and
Table 10.1. As a rule of thumb, cf. Remark 10.30, classes x and y of order 2 in ΘN∗
are dual when they formally multiply to (ηνεκ)6.

0.9. The sphere spectrum

In Chapter 11, we discuss the mod 2 Adams spectral sequence for the sphere
spectrum. Using the H∞ ring structure on S, and the proven Adams conjecture, we
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readily determine the full pattern of differentials originating in degrees t − s ≤ 29.
See Theorems 11.52, 11.54, 11.56 and 11.59. By means of a comparison of Adams
spectral sequences along the maps

S
i−→ Cη

1∧i−→ Cη ∧ Cν ,

we show in Theorem 11.71 that there is a hidden η-extension from h1g detecting ηκ̄
to Pd0 detecting η2κ̄. This is equivalent to Mimura’s result [129, Thm. B] that
εκ 0= 0 in π22(S), but our proof is entirely stable. These methods quickly give the
graded ring structure of π∗(S) for ∗ ≤ 28, see Theorem 11.61.

We need some of this information about π∗(S), in the smaller range ∗ ≤ 22,
when we determine the Adams differentials for tmf in Chapter 5. Furthermore,
once we have fully determined the differential structure for tmf , we can easily use
naturality along

ι : S −→ tmf

to determine the remaining Adams differentials for S originating in the larger range
t−s ≤ 48. In particular, this leads to simple proofs of the differentials d2(v) = h0z,
d3(r) = h1d2

0, d3(d0e0) = h5
0r, d3(z) = 0, d3(Ph5c0) = 0, d3(h5

0Q) = h0P 4d0,
d4(d0e0 + h7

0h5) = P 2d0, d4(Pd0e0) = P 3d0, d4(P 2d0e0) = P 4d0, d4(e0g) = d0Pd0,
d4(h0h2h5) = 0, d4(Ph2h5) = 0, d4(N) = 0 and d5(f1) = 0. We therefore also
document this extended calculation. This leads to a complete description of the
E∞-term for t − s ≤ 48, and of the graded ring π∗(S) for ∗ ≤ 44, in the theorems
referred to above. We choose to stop at this point because our methods do not
seem to simplify the determination of the group structure of π45(S), which is due
to Tangora [166, p. 583].

We also study the Adams spectral sequence for the homotopy cofiber tmf/S
of ι, using the long exact sequence of E2-terms

· · · −→ ExtA(F2, F2)
ι−→ ExtA(2)(F2, F2) −→ ExtA(H∗(tmf/S), F2) −→ . . .

to obtain information about the tmf -Hurewicz homomorphism ι : π∗(S) → π∗(tmf).
In particular, we show ι({q}) = ε1 in degree 32 and ι(η{u}) = Bε1 in degree 40,
both of which involve a shift in Adams filtration. Finally, we show in Theo-
rem 11.89 that for ∗ ≤ 101 (and for ∗ = 125) the tmf -Hurewicz image of π∗(S)
in π∗(tmf) equals the sum of the well-known ko-Hurewicz image in π∗(ko), the
group π3(S) ∼= π3(tmf), and the self-dual part Θπ∗(tmf) of the B-power torsion
in π∗(tmf). According to Mark Behrens, Mahowald and J.D. Quigley [27] this
remains true in all degrees.

0.10. Finite coefficients

Having determined the differential structure in the Adams spectral sequences
for tmf/2 = tmf ∧ C2, tmf/η = tmf ∧ Cη and tmf/ν = tmf ∧ Cν, it is relatively
easy to determine the graded abelian group structure of π∗(tmf/2), π∗(tmf/η)
and π∗(tmf/ν), together with the action of η, ν, B and M on these π∗(tmf)-
modules. With a few exceptions, we accomplish this in Chapter 12. At this
point it is also relatively easy to calculate π∗(tmf/B) and π∗(tmf/(B, M)), the
latter being Anderson self-dual, and π∗(tmf/(2, B)) and π∗(tmf/(2, B, M)), where
the latter is Brown–Comenetz self-dual. Here tmf/(2, B) - tmf ∧ M(1, 4) and
tmf/(2, B, M) - tmf ∧ M(1, 4, 32), where M(1, 4) and M(1, 4, 32) are generalized
Moore spectra of types 2 and 3, respectively. For these calculations it is convenient
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to use two modifications of the classical Adams spectral sequence, which we review
in Section 12.6. The first, which we call the delayed sequence, also plays a role in
the analysis in Chapter 11 of Steenrod operations in the Adams spectral sequence
for an H∞ ring spectrum. The second, which we call the hastened sequence, was
used by Behrens, Hill, Hopkins and Mahowald [26] in their construction of the
self-map v32

2 : Σ192M(1, 4) → M(1, 4) needed to construct M(1, 4, 32).

0.11. Odd primes

We conclude Part III of this book with Chapter 13 on the case of odd primes,
which essentially amounts to the case p = 3.

Following their construction of the Lubin–Tate spectrum En as an A∞ ring
spectrum, with an action by the extended Morava stabilizer group Gn, Hopkins
and Miller (ca. 1990) first calculated the homotopy fixed point spectral sequence
for EOp−1 = EhF

p−1, where F is a maximal finite subgroup of Gp−1. For p = 3
there is an equivalence EO2 - LK(2)TMF , so the Hopkins–Miller calculation also
amounts to the determination of the descent spectral sequence (and the Adams–
Novikov spectral sequence) for TMF at p = 3. These calculations were reviewed
by Goerss, Hans–Werner Henn, Mahowald and Charles Rezk in [64, §3], and by
Lee Nave in [137, §2.2].

We instead calculate the mod 3 Adams spectral sequence for tmf , formed in
the category of tmf -modules, following Baker–Lazarev [20] and Hill [68]. We use
the Davis–Mahowald spectral sequence from Chapter 2 to give a direct calculation
of the Adams E2-term, and use the H∞ ring structure to directly obtain the Adams
differentials. We use the equivalence tmf ∧ Ψ - tmf0(2) to determine the hidden
ν-extensions. Thereafter we determine the product structure on π∗(tmf), estab-
lish the Brown–Comenetz and Anderson duality theorems, and discuss the tmf -
Hurewicz image. The introduction to Chapter 13 gives a more detailed overview.

0.12. Adams charts

To round out this introduction we display the (E2, d2)-, (E3, d3)-, (E4, d4)- and
E∞-terms of the mod 2 Adams spectral sequence for tmf in the range t − s ≤ 48,
as well as some bird’s-eye view charts of the spectral sequences for tmf , tmf/2,
tmf/η and tmf/ν, giving E2- and E∞-terms for t − s ≤ 200, and E∞-terms for
0 ≤ t − s ≤ 96 and 96 ≤ t − s ≤ 192. We also show the E2-term for S in the range
t ≤ 200, as calculated by ext.

Remark 0.1. We follow the standard convention of drawing Adams charts
with the topological degree t − s as the horizontal coordinate and the filtration
degree s as the vertical coordinate. The dots give a vector space basis (usually
over F2) for the Er-term shown. Solid lines increasing (t − s, s)-bidegrees by (0, 1)
and (1, 1) indicate nonzero h0- and h1-multiplications, respectively, while dashed
lines increasing bidegrees by (3, 1) indicate nonzero h2-multiplications. Nonzero
dr-differentials are shown as arrows of bidegree (−1, r). We usually draw classes
that support or are hit by differentials as open (white) circles, while classes that
remain to the Er+1-term are shown as filled (black) circles.

At the E∞-term for tmf -modules we usually show the w1-power torsion classes
in red, while the w1-periodic classes are black. In general, we indicate hidden 2-
and η-extensions by red dashed lines increasing t− s by 0 and 1, respectively, while
hidden ν-extensions are shown by red dotted lines increasing t − s by 3.
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Figure 0.1. (E2(tmf), d2) for t − s ≤ 48
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Figure 0.2. (E3(tmf), d3) for t − s ≤ 48
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Figure 0.3. (E4(tmf), d4) for t − s ≤ 48
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Figure 0.4. E5(tmf) = E∞(tmf) for t − s ≤ 48
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CHAPTER 1

Minimal resolutions

The first author’s computer program ext can calculate minimal resolutions
and lift chain maps for finite modules, and for finitely presented modules, over the
mod 2 Steenrod algebra A and its subalgebra A(2), in finite ranges of degrees.

1.1. The Adams E2-term for S

The classical mod 2 Adams spectral sequence for the sphere spectrum S is a
strongly convergent algebra spectral sequence

Es,t
2 (S) = Exts,t

A (F2, F2) =⇒s πt−s(S)∧2 ,

with E2-term given by Ext over the Steenrod algebra A, and abutment the 2-
completed homotopy groups of spheres.

The A-module component of the program ext will calculate a minimal resolu-
tion

. . .
∂−→ C2

∂−→ C1
∂−→ C0

ε−→ F2 → 0

of F2 by free A-modules Cs, in a finite range of filtration degrees s ≥ 0 and internal
degrees t ≥ 0. As part of the calculation it will choose a basis {s∗g}g for each A-
module Cs, indexed by non-negative integers g ≥ 0, in a well-defined deterministic
order of non-decreasing internal degrees. By minimality the coboundaries in the
induced cocomplex

. . .
δ←− HomA(C2, F2)

δ←− HomA(C1, F2)
δ←− HomA(C0, F2) ← 0

are zero, so Exts
A(F2, F2) = HomA(Cs, F2).

Definition 1.1. For s, g ≥ 0, let sg ∈ Exts
A(F2, F2) = HomA(Cs, F2) be the

cocycle that is dual to the g’th generator s∗g of Cs, i.e., the homomorphism that
takes the value 1 on s∗g and maps the other basis elements to 0. The internal degree t
of sg is equal to the internal degree of the generator s∗g.

The result of such a calculation for s ≤ 100 and t ≤ 200 is shown in Figures 1.1
to 1.8. The charts use Adams indexing, with the topological degree t − s on the
horizontal axis and the filtration degree s on the vertical axis. The dot with label g
in bidegree (t−s, s) corresponds to the generator sg ∈ Exts,t

A (F2, F2), and these give
a basis for ExtA(F2, F2) as a bigraded F2-vector space, in this range of bidegrees.

A small part of the minimal resolution (C∗, ∂), with 0 ≤ s ≤ 6 and 0 ≤ t ≤ 22,
is shown in Table 1.2. Here we use the Milnor basis for A, with Sq(i1,...,ir) dual to
ξi1
1 · · · ξir

r in the monomial basis for the dual Steenrod algebra, cf. Section 3.1.

Example 1.2. The class 00 = 1 in Ext0,0
A (F2, F2) is the algebra unit. For each

i ≥ 0 the class 1i = hi in Ext1,2i

A (F2, F2) is dual to the algebra indecomposable Sq2i

in A. For each s ≥ 0 the class s0 = hs
0 in Exts,s

A (F2, F2) detects 2s ∈ π0(S)∧2 = Z2.

45
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Figure 1.1. Exts,t
A (F2, F2) for 0 ≤ t − s ≤ 24

The next algebra indecomposable in ExtA(F2, F2) is 33 = c0 ∈ Ext3,11
A (F2, F2), in

Adams bidegree (t − s, s) = (8, 3).

Remark 1.3. To make these calculations, install ext, go to the directory A, and
let S.def be a text file containing the numbers 1 0. This defines the A-module with
a single F2-generator in internal degree 0, necessarily with trivial action by each
Sqi for i ≥ 1. Use newmodule S S.def to create the module subdirectory S. Go to
this subdirectory, and run dims 0 75 & (taking a couple of minutes) to calculate
the minimal resolution for 0 ≤ s ≤ 40 and 0 ≤ t ≤ 75. The upper bound for s
is specified in the text file MAXFILT. A much higher upper bound for t will take
significantly longer to compute. When dims is finished, use report to extract the
files Shape, himults and lines from the calculation. Thereafter use

chart 0 16 0 24 Shape himults Ext-A-0-24.tex Ext-A-F2
pdflatex Ext-A-0-24.tex

to obtain an Adams chart such as the one in Figure 1.1. Similarly, use

chart 0 24 24 48 Shape himults Ext-A-24-48.tex Ext-A-F2
pdflatex Ext-A-24-48.tex

to obtain an Adams chart such as the one in Figure 1.2.
At this stage, each file Diff.s for 0 ≤ s ≤ 40 contains a description in internal

degrees 0 ≤ t ≤ 75 of the boundary homomorphism ∂ : Cs → Cs−1. More precisely,
it contains a list of the internal degrees of the free A-module generators s∗0, s

∗
1, . . .

of Cs, together with expressions for the boundaries ∂(s∗g) in Cs−1, as linear combi-
nations of the corresponding free A-module generators of Cs−1. The coefficients of
these linear combinations lie in A, and are encoded in an efficient machine readable
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Figure 1.2. Exts,t
A (F2, F2) for 24 ≤ t − s ≤ 48

format in the files Diff.s. They can, however, be converted to a humanly readable
format using commands of the following form.

convert Diff.s hDiff.s 2 1 1 i

In the resulting file hDiff.s the coefficients in A are expressed in terms of the
Milnor basis. This can be done for all filtration degrees at once by running seeres,
which creates the file resolution, giving humanly readable formulas for all of the
boundary operators ∂ : Cs → Cs−1. The information in Table 1.2 was calculated in
this way.

Yoneda composition of s′- and s′′-fold A-module extensions defines a pairing

Exts′,t′

A (F2, F2) ⊗ Exts′′,t′′

A (F2, F2) −→ Exts′+s′′,t′+t′′

A (F2, F2)

taking x⊗y to xy. For varying s′, s′′, t′ and t′′ these make ExtA(F2, F2) a bigraded
commutative algebra over F2. The Hopf algebra structure on A also leads to a
tensor product of A-modules and an induced pairing of Ext-groups, which we have
already noted coincides with the Yoneda pairing.
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Figure 1.3. Exts,t
A (F2, F2) for 48 ≤ t − s ≤ 72
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Figure 1.4. Exts,t
A (F2, F2) for 72 ≤ t − s ≤ 96
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Figure 1.5. Exts,t
A (F2, F2) for 96 ≤ t − s ≤ 120
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Figure 1.6. Exts,t
A (F2, F2) for 120 ≤ t − s ≤ 144
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Figure 1.7. Exts,t
A (F2, F2) for 144 ≤ t − s ≤ 168, t ≤ 200
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Figure 1.8. Exts,t
A (F2, F2) for 168 ≤ t − s ≤ 200, t ≤ 200
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The program ext can extract the Yoneda product hiy from the structure of the
minimal resolution, for each i ≥ 0 and for any cocycle y = sg. In Figures 1.1 to 1.8
the nonzero multiplications by h0 are shown as solid vertical lines from y to h0y,
the nonzero multiplications by h1 are shown as solid lines of slope 1 from y to h1y,
and the nonzero multiplications by h2 are shown as dashed lines of slope 1/3 from y
to h2y. We omit to show the hi-multiplications for i ≥ 3, as they would make the
charts too crowded to be legible.

More generally, ext can calculate the Yoneda product xy of two cocycles x =
s′g′ : Cs′ → F2 and y = s′′g′′ : Cs′′ → F2 by lifting y to a chain map ỹ : C∗+s′′ → C∗,
and then expressing the composite x ◦ ỹ : Cs′+s′′ → F2 as a linear combination of
cocycles sg, with s = s′+s′′. It is thereby possible to determine the indecomposable
quotient of ExtA(F2, F2), within the machine calculated range.

Proposition 1.4. In topological degrees t − s ≤ 48, a basis for the algebra
indecomposables in ExtA(F2, F2) is given by the classes listed in Table 1.1. The
same classes are labeled and emphasized in Figures 1.9 and 1.10.

Table 1.1: Algebra indecomposables in ExtA(F2, F2) for t− s ≤ 48

t − s s g x dec. ι(x) d2(x)

0 1 0 h0 h0 0

1 1 1 h1 h1 0

3 1 2 h2 h2 0

7 1 3 h3 0 0

8 3 3 c0 c0 0

9 5 1 Ph1 h1w1 0

11 5 2 Ph2 h2w1 0

14 4 3 d0 d0 0

15 1 4 h4 0 h0h2
3

16 7 3 Pc0 c0w1 0

17 4 5 e0 e0 h2
1d0

17 9 1 P 2h1 h1w2
1 0

18 4 6 f0 h3
1h4 h2β h2

0e0

19 3 9 c1 0 0

19 9 2 P 2h2 h2w2
1 0

20 4 8 g g 0

22 8 3 Pd0 d0w1 0

23 7 5 i βw1 h0Pd0

24 11 3 P 2c0 c0w2
1 0

25 8 5 Pe0 e0w1 h2
1Pd0
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Table 1.1: Algebra indecomposables in ExtA(F2, F2) (cont.)

t − s s g x dec. ι(x) d2(x)

25 13 1 P 3h1 h1w3
1 0

26 7 6 j αd0 h0Pe0

27 13 2 P 3h2 h2w3
1 0

29 7 7 k αe0 h0d2
0

30 6 10 r β2 0

30 12 3 P 2d0 d0w2
1 0

31 1 5 h5 0 h0h2
4

31 5 13 n h4
0h5 0 0

32 4 13 d1 0 0

32 6 12 q 0 0

32 7 10 5 αg h0d0e0

32 15 3 P 3c0 c0w3
1 0

33 4 14 p 0 0

33 12 5 P 2e0 e0w2
1 h2

1P
2d0

33 17 1 P 4h1 h1w4
1 0

34 11 7 Pj αd0w1 h0P 2e0

35 7 12 m βg h0d0g

35 17 2 P 4h2 h2w4
1 0

36 6 14 t 0 0

37 5 17 x 0 0

38 4 16 e1 h2
0h3h5 0 0

38 6 16 y h1x 0 h3
0x

38 16 3 P 3d0 d0w3
1 0

39 9 18 u d0γ 0

39 15 5 P 2i βw3
1 h0P 3d0

40 4 19 f1 h2
1h3h5 0 0

40 19 3 P 4c0 c0w4
1 0

41 3 19 c2 0 h0f1

41 10 14 z α2e0 0

41 16 5 P 3e0 e0w3
1 h2

1P
3d0

41 21 1 P 5h1 h1w5
1 0

42 9 19 v e0γ h0z
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Figure 1.9. Indecomposables in Exts,t
A (F2, F2) for 0 ≤ t − s ≤ 24

Table 1.1: Algebra indecomposables in ExtA(F2, F2) (cont.)

t − s s g x dec. ι(x) d2(x)

42 15 6 P 2j αd0w2
1 h0P 3e0

43 21 2 P 5h2 h2w5
1 0

44 4 22 g2 0 0

45 9 20 w γg 0

46 7 20 B1 0 0

46 8 20 N 0 0

46 20 3 P 4d0 d0w4
1 0

47 13 14 Q 0 h0i2

47 13 15 Pu d0γw1 0

48 7 22(?) B2 h2
0h5e0 0 0

48 23 3 P 5c0 c0w5
1 0

Remark 1.5. In Table 1.1, the (t− s)- and s-columns give the Adams bigrad-
ing (t − s, s) of the class x, while the s- and g-columns specify the cocycles sg

corresponding to x in the representation of ExtA(F2, F2) given by the minimal res-
olution chosen by ext. In later tables the class x will sometimes correspond to a
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Figure 1.10. Indecomposables in Exts,t
A (F2, F2) for 24 ≤ t − s ≤ 48

sum sg1 + sg2 of cocycles, in which case we will write “g1 + g2” in the g-column.
The dec.-column lists any decomposable class in the same bidegree. The rows are
lexicographically ordered by topological degree t − s, by filtration s, and by the
generator index g. The ι(x)-column gives the restriction to ExtA(2)(F2, F2) as will
be explained in Lemma 1.15. The d2(x)-column gives the Adams d2-differentials
on these algebra generators, which will be established in Theorem 11.52.

The names in the x-column are those inherited from the May spectral sequence
calculations of May and Tangora [165, App. 1]. In particular, the Adams periodicity
operator P is given by the Massey product Px ∈ 〈h3, h4

0, x〉 when h4
0x = 0, and P 2

is given by P 2x ∈ 〈h4, h8
0, x〉 when h8

0x = 0. The program ext can evaluate Massey
products of the form 〈hi, x, y〉, once the cocycle y has been lifted.
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58 1. MINIMAL RESOLUTIONS

We will adopt the indexing scheme from [165] and [45, Def. VI.1.8], where we
set a0 = a and ai+1 = Sq0(ai) for many classes a. Here Sq0 is a Steenrod opera-
tion acting on ExtA(F2, F2), which we discuss in Section 1.3 and Chapter 11. An
exception to this scheme occurs for a = g, in which case g0 refers to a May spectral
sequence class that supports a differential, so that the classes in ExtA(F2, F2) start
with g = g1.

Proof. We will make no formal use of this proposition, other than to introduce
notation, and will therefore allow ourselves to assert that the claim can be verified
by machine computation.

In more detail, the indecomposable quotient of ExtA(F2, F2) can be calculated
in a finite range as explained in Remarks 1.3 and 1.6. In most cases an inde-
composable is the only nonzero class in its bidegree, and this lets us recognize its
corresponding ext-cocycle directly from the minimal resolution. The remaining
eight cases for t−s ≤ 48 are f0, n, e1, y, f1, Q, Pu and B2. Six of these are defined
modulo a single decomposable class, as indicated by the dec.-column in Table 1.1,
while the remaining two indecomposable classes, Q and Pu, are both in the same
bidegree.

We specify n to be the nonzero class in its bidegree satisfying h0n = 0, i.e., the
class of the ext-cocycle 513. We specify Pu by the Massey product Pu = 〈h3, h4

0, u〉,
which is the class of the cocycle 1315, with zero indeterminacy. This class is then
also characterized by the conditions h0Pu = 0 and h1Pu 0= 0. In the same bidegree
we specify Q by the conditions h0Q 0= 0 and h1Q 0= 0, which means that Q is
the class of 1314. The third nonzero class in that bidegree is sometimes denoted
Q′ = Q + Pu. It is characterized by h0Q′ 0= 0 and h1Q′ = 0, and is the class of
1314 + 1315. These choices of classes n, Pu and Q are compatible with those made
in [165, App. 1].

The decomposable ambiguity in the remaining five generators has little effect on
our calculations, and could be left unspecified. However, for definiteness we choose
to use the results of [46] to pin down specific ext-representatives for all but one of
these indecomposables, using the Steenrod operations Sqi acting on ExtA(F2, F2).
Hence, we set

f0 = Sq1(c0) and y = Sq2(f0)

as in [45, §VI.1], together with e1 = Sq0(e0) and f1 = Sq0(f0). Using direct
cochain calculations, similar to the ones in the proof of Proposition 1.21, [46] show
that with these choices f0 is represented by the cocycle 46, e1 is represented by
the cocycle 416, y is represented by the cocycle 616, and f1 is represented by the
cocycle 419.

The final indecomposable in this range of degrees is B2 in bidegree (t− s, s) =
(48, 7). With our methods we can only specify it modulo the decomposable h2

0h5e0 =
723, i.e., as 722 or 722 + 723. This is equivalent to setting B2 = 〈h2, h3

0, g2〉, since
this Massey product contains 722 and has indeterminacy generated by 723. For
simplicity we will set B2 to be the class of 722, and indicate this uncertainty with a
question-mark in the chart for E2(S). Note, however, that the indeterminacy in B2

disappears at the E3-term, due to an Adams differential d2(h5f0) = h2
0h5e0, and

therefore has no visible consequence after this point. !

Remark 1.6. To make these calculations with ext, go to the directory A and
use cocycle S 1 0, cocycle S 1 1, . . . , cocycle S 1 6 in turn. These create
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cocycle subdirectories 1 0, 1 1, . . . , 1 6 in A/S and add their names to the list
in A/S/maps of cocycles y = s′′g′′ : Cs′′ → F2 that need to be lifted to chain maps
ỹ : C∗+s′′ → C∗. Change directory to A/S and run dolifts 0 40 maps to calculate
these lifts. Use collect maps all to extract the file all, which contains a row

s g (s’ g’ F2) s’’_g’’

for each summand sg in the product of s′g′ and s′′g′′ . For example, the lines

3 1 (2 0 F2) 1_2
3 1 (2 1 F2) 1_1
3 1 (2 2 F2) 1_0

exhibit 31 as 20 · 12 = h2
0 · h2, as 21 · 11 = h2

1 · h1, and as 22 · 10 = h0h2 · h0.
Each cocycle in filtration 2 is then seen to be decomposable, but in filtration 3
the cocycles 33, 39 and 319 are seen to be indecomposable. Return to A and use
cocycle S 3 3, cocycle S 3 9 and cocycle S 3 19 to create these cocycles, go
to A/S and run dolifts 0 40 maps to lift them, and repeat.

Remark 1.7. The classes hi and P ih1 are indecomposable for all i ≥ 0, so the
algebra ExtA(F2, F2) is not finitely generated. This is in contrast to ExtA(2)(F2, F2),
which is finitely generated as an algebra.
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1.2. The Adams E2-term for tmf

The topological modular forms spectrum tmf is an E∞ ring spectrum with
mod 2 cohomology H∗(tmf) = A//A(2) = A⊗A(2)F2, where A(2) = 〈Sq1, Sq2, Sq4〉
is the finite subalgebra of A generated by the Sq2i

for i ≤ 2. The classical mod 2
Adams spectral sequence for tmf is an algebra spectral sequence

Es,t
2 (tmf) = Exts,t

A (H∗(tmf), F2) =⇒s πt−s(tmf)∧2 .

It is strongly convergent to the graded homotopy ring π∗(tmf)∧2 ∼= π∗(tmf) ⊗ Z2,
because tmf is connective and of finite type. The E∞ ring structure on tmf makes
H∗(tmf) a cocommutative A-module coalgebra, which in turn induces the bigraded
commutative algebra structure on ExtA(H∗(tmf), F2). It is this algebra structure
on the E2-term that carries over to the subsequent Er-terms and makes Er(tmf)
an algebra spectral sequence.

The A-module coalgebra structure on H∗(tmf) = A ⊗A(2) F2 is induced from
the evident A(2)-module coalgebra structure on F2. The change-of-algebras iso-
morphism

E2(tmf) = ExtA(A ⊗A(2) F2, F2) ∼= ExtA(2)(F2, F2) ,

cf. Lemma 2.1, takes the algebra structure on the left hand side to the pairing on
the right hand side that is induced by the tensor product of A(2)-modules. This is,
in turn, equal to the Yoneda product in Ext over A(2).

The A(2)-module component of the program ext will calculate a minimal free
A(2)-module resolution

. . .
∂−→ C2

∂−→ C1
∂−→ C0

ε−→ F2 → 0

of F2, in a finite range of filtration degrees s ≥ 0 and internal degrees t ≥ 0. As
part of the calculation it will choose a basis {s∗g}g indexed by non-negative integers
g ≥ 0 for each A(2)-module Cs. By minimality, Exts

A(2)(F2, F2) = HomA(2)(Cs, F2).

Definition 1.8. For s, g ≥ 0 let sg ∈ Exts,t
A(2)(F2, F2) = Homt

A(2)(Cs, F2) be
the cocycle that is dual to the g’th generator s∗g of Cs. Here t is the internal degree
of that generator.

Adams-indexed charts of Exts,t
A(2)(F2, F2) for 0 ≤ t − s ≤ 192 are shown in

Figures 1.11 to 1.18. The dot with label g in bidegree (t − s, s) corresponds to the
cocycle sg ∈ Exts,t

A(2)(F2, F2). A small part of the minimal resolution (C∗, ∂), with
0 ≤ s ≤ 6 and 0 ≤ t ≤ 22, is shown in Table 1.4.

Remark 1.9. To make these calculations, go to the directory A2, and let
tmf.def be a text file containing the numbers 1 0. This defines the A(2)-module
with a single F2-generator in internal degree 0, necessarily with trivial action by
each Sqi. Use newmodule tmf tmf.def to create the module subdirectory tmf.
Go to this subdirectory, and run dims 0 240 & (taking a couple of minutes) to
calculate the minimal resolution for 0 ≤ s ≤ 40 and 0 ≤ t ≤ 240. When dims is
finished, use report to extract data from the calculation. Thereafter use

chart 0 16 0 24 Shape himults Ext-A2-0-24.tex Ext-A2-F2
pdflatex Ext-A2-0-24.tex

to obtain the Adams chart in Figure 1.11. Then use

chart 4 20 24 48 Shape himults Ext-A2-24-48.tex Ext-A2-F2
pdflatex Ext-A2-24-48.tex
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to obtain the Adams chart in Figure 1.12. Running the command seeres creates
the file resolution, giving humanly readable formulas for the boundary operators
∂ : Cs → Cs−1, as shown in Table 1.4.

Example 1.10. The class 00 = 1 in Ext0,0
A(2)(F2, F2) is the algebra unit. For

0 ≤ i ≤ 2 the class 1i = hi in Ext1,2i

A(2)(F2, F2) is dual to Sq2i
in A(2). For each

s ≥ 0 the class s0 = hs
0 in Exts,s

A(2)(F2, F2) detects 2s ∈ π0(tmf)∧2 = Z2. The next

algebra indecomposable in ExtA(2)(F2, F2) is 32 = c0 ∈ Ext3,11
A(2)(F2, F2), in Adams

bidegree (t − s, s) = (8, 3).

Remark 1.11. We use the same notation sg for ext-calculated cocycles in
Exts

A(F2, F2) and in Exts
A(2)(F2, F2), so it must be understood from the context

whether we are working over A or over A(2). The unit map ι : S → tmf induces a
morphism of Adams spectral sequences that is given at the E2-term by the restric-
tion homomorphism

ι : ExtA(F2, F2) −→ ExtA(A//A(2), F2) ∼= ExtA(2)(F2, F2)

associated to the inclusion A(2) ⊂ A. This homomorphism takes c0 = 33 in
Ext3,11

A (F2, F2) to c0 = 32 in Ext3,11
A(2)(F2, F2). The homomorphism ι preserves the

filtration degree s, but does typically not preserve the generator index g.

Proposition 1.12. In topological degrees t− s ≤ 200, the algebra indecompos-
ables in ExtA(2)(F2, F2) are the classes listed in Table 1.3. The same classes are
labeled and emphasized in Figures 1.19 and 1.20.

Table 1.3: Algebra indecomposables in ExtA(2)(F2, F2) (for t− s ≤
200)

t − s s g x dec. ι′(x)

0 1 0 h0 v0

1 1 1 h1 0

3 1 2 h2 0

8 3 2 c0 0

8 4 1 w1 v4
1

12 3 3 α v0v2
2

14 4 4 d0 0

15 3 4 β 0

17 4 6 e0 0

20 4 8 g 0

25 5 11 γ 0

32 7 11 δ αg 0

48 8 19 w2 v8
2
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Figure 1.11. Exts,t
A(2)(F2, F2) for 0 ≤ t − s ≤ 24
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Figure 1.12. Exts,t
A(2)(F2, F2) for 24 ≤ t − s ≤ 48
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Figure 1.13. Exts,t
A(2)(F2, F2) for 48 ≤ t − s ≤ 72
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Figure 1.14. Exts,t
A(2)(F2, F2) for 72 ≤ t − s ≤ 96
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Figure 1.16. Exts,t
A(2)(F2, F2) for 120 ≤ t − s ≤ 144
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Figure 1.17. Exts,t
A(2)(F2, F2) for 144 ≤ t − s ≤ 168
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Figure 1.18. Exts,t
A(2)(F2, F2) for 168 ≤ t − s ≤ 192
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Sketch proof. We will make no formal use of this proposition, other than to
introduce notation, and will therefore allow ourselves to assert that the claim can
be verified by machine computation. We will see later, in Theorem 3.46, that these
classes generate all of ExtA(2)(F2, F2) as an F2-algebra.

In more detail, the indecomposable quotient can be calculated in a finite range
as explained in Remarks 1.9 and 1.13. Our notation for the 13 algebra genera-
tors h0, h1, . . . , δ, w2 follows Henriques [54, Ch. 13]. Each but one of the inde-
composables is characterized by being the only nonzero class in its bidegree. The
exceptional case is δ in bidegree (t − s, s) = (32, 7), which also contains the de-
composable class αg. The third nonzero class in this bidegree, which we denote
by δ′ = δ + αg, is thus also indecomposable. The class δ is characterized by the
conditions h0δ 0= 0 and h1δ 0= 0, while αg satisfies h0αg = h0δ and h1αg = 0, and
δ′ satisfies h0δ′ = 0 and h1δ′ = h1δ. As can be seen from Figure 1.12, this means
that δ = 711, αg = 711 + 712 and δ′ = 712 in the basis chosen by ext. !

Remark 1.13. To make these calculations with ext, go to the directory A2
and use cocycle tmf 1 0, cocycle tmf 1 1 and cocycle tmf 1 2 to create co-
cycle subdirectories 1 0, 1 1 and 1 2 in A2/tmf and add their names to the list in
A2/tmf/maps of cocycles that need to be lifted to chain maps. Go to A2/tmf and
run dolifts 0 40 maps to calculate these lifts. Continue as in Remark 1.6, and
repeat.

Whenever it is defined, the Adams periodicity operator P in ExtA(F2, F2) cor-
responds under ι to multiplication by w1 in ExtA(2)(F2, F2).

Proposition 1.14 (Adams). For x ∈ ExtA(F2, F2) with h4
0x = 0,

ι(Px) = w1 · ι(x) .

More generally, for i ≥ 0 and h4·2i

0 x = 0,

ι(P 2i

x) = w2i

1 · ι(x) .

Proof. The first claim is a special case of [7, Lem. 4.5]. Using the descrip-
tion of ExtA(F2, F2) as the cohomology of the cobar complex (C∗

A∗
(F2, F2), δ), see

Section 2.3, the classes h3 and h4
0 are represented by the cocycles ξ = [ξ8

1 ] and
η = [ξ1|ξ1|ξ1|ξ1], respectively. Let ζ be a cobar cocycle representing x in bidegree
(t − s, s). Since h3h4

0 = 0 and h4
0x = 0 we can write ξη = δ(a) and ηζ = δ(b), for

cochains a and b in bidegrees (8, 4) and (t−s+1, s+3), respectively. By definition,
Px = 〈h3, h4

0, x〉 is the class of the cocycle aζ + ξb in bidegree (t− s+8, s+4), with
indeterminacy h3 Exts+3,t+4

A (F2, F2). (The group Ext4,12
A (F2, F2) is trivial.) The

restriction homomorphism ι is induced by the projection A∗ → A(2)∗, sending ξ8
1 ,

ξ and h3 to 0. Hence a is sent to a cocycle, and Adams [7, Lem. 4.3] checks that
this cocycle represents the nonzero class w1 ∈ Ext4,12

A(2)(F2, F2). Thus

ι(Px) = ι([aζ + ξb]) = ι([a])ι([ζ]) + 0 = w1ι(x) .

The cases i ≥ 1 are similar, using [7, Lem. 4.4]. !

Lemma 1.15. In topological degrees t− s ≤ 48 the values ι(x) of the restriction
homomorphism ι : ExtA(F2, F2) → ExtA(2)(F2, F2) on the algebra generators x are
as given in Table 1.1.
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Figure 1.19. Indecomposables in Exts,t
A(2)(F2, F2) for 0 ≤ t − s ≤ 24
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Figure 1.20. Indecomposables in Exts,t
A(2)(F2, F2) for 24 ≤ t − s ≤ 48
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Proof. The homomorphism ι corresponds under the change-of-algebra iso-
morphism

ExtA(A//A(2), F2) ∼= ExtA(2)(F2, F2)

to the homomorphism induced by ε : A//A(2) → F2. We use ext to calculate a
minimal resolution (D∗, ∂) of A//A(2) by free A-modules, either by inducing up a
minimal free A(2)-module resolution of F2, or by creating a module definition file for
A//A(2) and resolving this A-module. Next we use cocycle and dolifts to create
and lift the cocycle 00 : D0 → A//A(2) → F2 to a chain map D∗ → C∗ covering ε.
We use collect maps all to read off the values of the products ι(x) = x · 00 in
ExtA(A//A(2), F2) for x in ExtA(F2, F2). In most cases, ι(x) is either 0 or the
unique nonzero class in its bidegree. For t − s ≤ 48 the only exceptional case
is that of x = 5 in bidegree (t − s, s) = (32, 7), whose nonzero image satisfies
h1ι(5) = ι(h15) = 0, and this tells us that ι(5) = αg. !

Remark 1.16. Lawson and Naumann [90], [91] constructed a map ι′ : tmf →
tmf1(3) of E∞ ring spectra, where tmf1(3) is equivalent to a truncated Brown–
Peterson spectrum BP 〈2〉 with H∗(BP 〈2〉) = A//E(2) = A ⊗E(2) F2. Here

E(2) = E(Q0, Q1, Q2) ⊂ A(2)

is the exterior algebra generated by the Milnor (coalgebra) primitives

Q0 = Sq1

Q1 = [Sq2, Q0] = Sq3 + Sq2Sq1

Q2 = [Sq4, Q1] = Sq7 + Sq6Sq1 + Sq5Sq2 + Sq4Sq2Sq1 .

The induced morphism of Adams spectral sequences is given at the E2-term by the
restriction homomorphism

ι′ : ExtA(2)(F2, F2) −→ ExtE(2)(F2, F2) = F2[v0, v1, v2]

associated to the inclusion E(2) ⊂ A(2). Here vi ∈ Ext1,2i+1−1
E(2) (F2, F2) is dual to Qi

for 0 ≤ i ≤ 2. The Adams spectral sequence for BP 〈2〉 collapses at the E2-term,
and π∗(BP 〈2〉)∧2 ∼= Z2[v1, v2]. We shall show in Proposition 1.44 that tmf ∧ Φ -
BP 〈2〉, where Φ is any finite CW spectrum realizing A(2)//E(2) = A(2)⊗E(2) F2 in
cohomology, and this will play a role in our proof of Brown–Comenetz and Anderson
duality for tmf , see Theorem 10.6.

Lemma 1.17. The values ι′(x) of the restriction homomorphism ι′ on the alge-
bra generators x are as given in Table 1.3.

Proof. The homomorphism ι′ corresponds under the change-of-algebra iso-
morphism

ExtA(2)(A(2)//E(2), F2) ∼= ExtE(2)(F2, F2)

to the homomorphism induced by ε′ : A(2)//E(2) → F2. We can use ext to calculate
a minimal free A(2)-module resolution (D′

∗, ∂) of A(2)//E(2), with generators dual
to a basis for Exts,t

A(2)(A(2)//E(2), F2), for s ≤ 8 and t ≤ 56. Lifting the cocycle

00 : D′
0 → A(2)//E(2) → F2 gives a chain map D′

∗ → C∗ covering ε′, dual to the
restriction homomorphism ι′. From this we can read off that ι′(x) is nonzero for
x ∈ {h0, w1,α, w2} and zero for x ∈ {h1, h2, c0, d0,β, e0, g, γ, δ}. This determines
ι′(x) in all but one case, that of x = w1, for which ι′(w1) ∈ F2{v2

0v1v2, v4
1}.
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γ0,0,0 2−→ 0∗0

γ1,0,0 2−→ 1∗0

γ0,1,0 2−→ Sq2(1∗0) + Sq1(1∗1)

γ0,0,1 2−→ Sq4Sq2(1∗0) + Sq4Sq1(1∗1) + Sq(0,1)(1∗2)

γ2,0,0 2−→ 2∗0

γ1,1,0 2−→ Sq2(2∗0)

γ1,0,1 2−→ Sq(0,2)(2∗0) + Sq3(2∗2)

γ0,2,0 2−→ Sq2(2∗1)

γ0,1,1 2−→ (Sq6 + Sq(0,2))(2∗1)

γ2,1,0 2−→ Sq2(3∗0)

γ2,0,1 2−→ Sq(0,2)(3∗0)

γ1,1,1 2−→ Sq(2,2)(3∗0) + Sq5(3∗1)

γ0,3,0 2−→ Sq6(3∗0) + Sq2Sq1(3∗1)

γ2,1,1 2−→ Sq(2,2)4∗0
γ0,4,0 2−→ 4∗1

Figure 1.21. Part of a chain map E∗ → C∗, showing that
ι′(w1) = v4

1

To settle that one case, we use the minimal free E(2)-module resolution (E∗, ∂)
of F2, with Es = E(2){γi,j,k | i + j + k = s} and

∂(γi,j,k) = Q0γi−1,j,k + Q1γi,j−1,k + Q2γi,j,k−1 .

Here γi,j,k is dual to vi
0v

j
1v

k
2 , and is zero if i < 0, j < 0 or k < 0. Recall the minimal

A(2)-free resolution (C∗, ∂) of F2, given in Table 1.4 in the range 0 ≤ s ≤ 6
and 0 ≤ t ≤ 22. An E(2)-linear chain map E∗ → C∗ covering F2 is shown in
Figure 1.21, on the subcomplex generated by the γi,j,k with (i, j, k) ≤ (2, 1, 1) or
(i, j, k) ≤ (0, 4, 0). In particular, the cocycle w1 = 41 dual to 4∗1 restricts to the
dual of γ0,4,0, i.e., to v4

1 , with no contribution from v2
0v1v2. !

Remark 1.18. We shall see in Theorem 3.46 that there are no further algebra
indecomposables in ExtA(2)(F2, F2). The previous two lemmas show that the seven
indecomposables h0, h1, h2, c0, d0, e0 and g are the images of classes with the
same names in ExtA(F2, F2), and that the two indecomposables w1 and w2 map to
powers of the classes v1 and v2 in ExtE(2)(F2, F2). The Greek letters α, β, γ and δ
are then used to denote the four remaining algebra generators.
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1.3. Steenrod operations in E2(tmf)

There are Steenrod operations

Sqi : Exts,t
Γ (F2, F2) −→ Exts+i,2t

Γ (F2, F2)

acting on Ext over any cocommutative Hopf algebra Γ defined over F2 (and similarly
at odd primes), see [95, Ch. 2] and [118, §11]. Let W∗ be the standard free F2[Σ2]-
resolution of F2, with Wi generated by ei for each i ≥ 0, and let C∗ be a free
Γ-module resolution of F2. There is a unique homotopy class of Σ2-equivariant
maps of Γ-module complexes

∆ : W∗ ⊗ C∗ −→ C∗ ⊗ C∗

covering F2, where Σ2 acts freely on W∗ on the left hand side and by the symmetry
isomorphism on the right hand side, while Γ acts freely on C∗ on the left hand side
and by the diagonal action on the right hand side. For each cocycle x : Cs → ΣtF2

the formula
a 2−→ 〈x ⊗ x,∆(ei ⊗ a)〉 ,

where 〈−,−〉 denotes the (Kronecker) evaluation pairing, defines a cocycle C2s−i →
Σ2tF2. By construction, its cohomology class is Sqs−i(x) ∈ Ext2s−i,2t

Γ (F2, F2).
These operations satisfy Sqs(x) = x2, and Sqi(x) = 0 if i < 0 or i > s. Furthermore,
the Cartan formula

(1.1) Sqk(xy) =
∑

i+j=k

Sqi(x)Sqj(y)

and the Adem relations

(1.2) SqaSqb =
∑

i

(
b − i − 1

a − 2i

)
Sqa+b−iSqi

hold, where a < 2b. In particular, Sq0Sqi = SqiSq0 for each i ≥ 0.

Definition 1.19. For x ∈ Exts,t
Γ (F2, F2) we let

Sq∗(x) = (x2 = Sqs(x), Sqs−1(x), . . . , Sq1(x), Sq0(x))

be the total squaring operation on x.

When Γ = A(2) we can completely determine the Steenrod operations in Ext.
In contrast to the case Γ = A, there are only a few sequences (h0, h1, h2) and
(w1, g) of generators connected by the Sq0-operations, and w2 0= Sq0(w1) = g
deviates from the indexing scheme mentioned in Remark 1.5.

Theorem 1.20. The Steenrod operations in ExtA(2)(F2, F2) are given by

Sq∗(h0) = (h2
0, h1)

Sq∗(h1) = (h2
1, h2)

Sq∗(h2) = (h2
2, 0)

Sq∗(c0) = (0, h0e0, h2β, 0)

Sq∗(α) = (α2, γ, 0, 0)

Sq∗(β) = (β2, 0, 0, 0)

Sq∗(d0) = (gw1, 0,β2, 0, 0)

Sq∗(e0) = (d0g,βg, 0, 0, 0)
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Sq∗(γ) = (β2g + h2
1w2, h2w2, 0, 0, 0, 0)

Sq∗(δ) = (0, h0e0w2, h2βw2, 0, 0, 0, 0, 0)

Sq∗(g) = (g2, 0, 0, 0, 0)

Sq∗(w1) = (w2
1, 0, 0, 0, g)

Sq∗(w2) = (w2
2, 0, 0, 0, 0, 0, 0, 0, 0) .

Proof. The products Sqs(x) = x2 are calculated with ext, cf. Table 3.5.
The operations landing in trivial groups are obviously zero. It is well-known that
Sq0(hi) = hi+1 for each i ≥ 0, see e.g. [3, p. 36] or [118, Def. 11.9]. This can
also be verified directly for i ∈ {0, 1} by the method we use in Proposition 1.21 to
calculate Sq∗(c0). The remaining operations are

Sq2(α) ∈ F2{γ}
Sq2(d0) ∈ F2{β2}
Sq3(d0) ∈ F2{αe0}
Sq3(e0) ∈ F2{βg}
Sq4(γ) ∈ F2{h2w2}
Sq5(δ) ∈ F2{h2βw2}
Sq6(δ) ∈ F2{γg2, h0e0w2}

Sq0(w1) ∈ F2{g} .

As we now show, each of these can be determined by the Cartan formula and
multiplicative relations that hold in ExtA(2)(F2, F2), cf. Tables 3.4 and 3.5:

Applying Sq3 to h1α = 0 gives h2
1Sq2(α) = h2α2 = h2

1γ 0= 0, so Sq2(α) = γ.
Applying Sq3 to h1d0 = h0h2α gives h2

1Sq2(d0) = h2Sq3(d0). Here h2
1β

2 = 0
and h2αe0 = h0αg 0= 0, so Sq3(d0) = 0.

Applying Sq5 to h0γ = 0 gives h2
0Sq4(γ) = h1(β2g + h2

1w2) = h2
0h2w2 0= 0, so

Sq4(γ) = h2w2.
Applying Sq6 to the relation βd0 = αe0 gives α2Sq3(e0) = γ · d0g = d0γg 0= 0,

so Sq3(e0) = βg.
Applying Sq5 to the same relation gives β2Sq2(d0) = γ · βg = g3 0= 0, so

Sq2(d0) = β2.
Applying Sq4 to d2

0 = gw1 gives g2Sq0(w1) = β4 = g3 0= 0, so Sq0(w1) = g.
Applying Sq5 to the relation c0γ = h1δ gives h2Sq5(δ) = h2β ·h2w2 = h1gw2 0=

0, so Sq5(δ) = h2βw2.
Applying Sq6 to the same relation gives h2Sq6(δ) = h0e0 · h2w2 = h2

0gw2 0= 0,
using h2β · (β2g + h2

1w2) = 0 and h2
1 · h2βw2 = 0. Hence Sq6(δ) 0= 0.

Applying Sq8 to αδ = 0 gives γSq6(δ) = 0, using α2 · h2βw2 = 0. Here
γ · γg2 = β2g3 0= 0 and γ · h0e0w2 = 0, so Sq6(δ) = h0e0w2. !

To calculate Sqi(c0) we use a method suggested by Christian Nassau [135]. It
goes back to Steenrod’s second definition [159] of the squaring operations in terms
of ∪i-pairings giving chain homotopies between ∪i−1 and ∪i−1τ , where τ denotes
the symmetry isomorphism.

Consider a cocycle x : Cs → ΣtF2 that factors as x = yf , with K∗ → F2 a
quasi-isomorphism, f : C∗ → K∗ a chain map over F2 and y : Ks → ΣtF2 a cocycle.
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Here C∗ → F2 is the free resolution considered above, while K∗ will typically not
consist of free modules. To evaluate x⊗x on ∆(ei⊗a) for a ∈ C2s−i we can instead
evaluate y ⊗ y on (f ⊗ f)∆(ei ⊗ a):

W∗ ⊗ C∗
∆ !!

D
##!

!!
!!

!!
!!

! C∗ ⊗ C∗

f⊗f

""

x⊗x

$$"
""

""
""

""

K∗ ⊗ K∗ y⊗y
!! Σ2tF2 .

Any choice of Σ2-equivariant chain map D : W∗ ⊗ C∗ → K∗ ⊗ K∗ covering F2 will
make the left hand triangle commute up to chain homotopy, since Σ2 acts freely
on W∗ and K∗ ⊗ K∗ → F2 is a quasi-isomorphism.

Let Di : C∗−i → K∗ ⊗K∗ be given by Di(a) = D(ei ⊗ a), for each i ≥ 0. Then
D0 : C∗ → K∗⊗K∗ is a chain map over F2, and (y⊗y)D0 : C2s → Σ2tF2 represents
x2 = Sqs(x). Next, D1 : C∗−1 → K∗ ⊗K∗ is a chain homotopy from D0 to τD0, in
the sense that ∂D1 + D1∂ = D0 + τD0, and (y ⊗ y)D1 : C2s−1 → Σ2tF2 represents
∪1(x) = Sqs−1(x). Continuing, D2 : C∗−2 → K∗⊗K∗ is a chain homotopy from D1

to τD1, in the sense that ∂D2 + D2∂ = D1 + τD1, and (y ⊗ y)D2 : C2s−2 → Σ2tF2

represents ∪2(x) = Sqs−2(x). In general, (y ⊗ y)Di gives Sqs−i(x) for all i ≥ 0.
Conversely, a diagonal approximation D0 and a sequence of chain homotopies Di

from Di−1 to τDi−1, for each i ≥ 1, correspond precisely to a Σ2-equivariant chain
map D as above. This process gives all the squaring operations on any cocycle x for
which we can write down a corresponding s-fold extension K∗. The computational
efficacy of this process depends upon the size of the complex K∗ ⊗ K∗.

Proposition 1.21. Sq1(c0) = h2β and Sq2(c0) = h0e0 in ExtA(2)(F2, F2).

Proof. The class c0 ∈ Ext3,11
A(2)(F2, F2) is represented by the 3-fold exact com-

plex of A(2)-modules

(1.3) 0 → K3
∂−→ K2

∂−→ K1
∂−→ K0

ε−→ F2 → 0

given in Figure 1.22, where we identify K3 with Σ11F2 by a cocycle y : K3 → Σ11F2.
Each Kn is a cyclic A(2)-module generated by kn, and ε(k0) = 1, ∂(k1) = Sq1(k0),
∂(k2) = Sq4(k1), ∂(k3) = Sq6(k2) and y(k3) = 1.

Recall the minimal A(2)-free resolution (C∗, ∂) of F2, given in Table 1.4 in the
range 0 ≤ s ≤ 6 and 0 ≤ t ≤ 22. A chain map f : C∗ → K∗ covering F2 is given by

0∗0 2−→ k0

1∗0 2−→ k1

2∗2 2−→ k2

3∗2 2−→ k3 ,

sending the remaining generators s∗g to zero. The composite x = yf : C3 → Σ11F2

is then dual to 3∗2, which shows that (1.3) represents 32 = c0.
A chain map D0 : C∗ → K∗⊗K∗ covering F2 is given as in Figure 1.23, sending

the remaining s∗g to zero. In particular, (y ⊗ y)D0 : C6 → F2 is zero, confirming
that Sq3(c0) = c2

0 = 0.
A chain homotopy D1 : C∗−1 → K∗ ⊗ K∗ from D0 to τD0 is given by

1∗1 2−→ k1 ⊗ k1
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Figure 1.22. A 3-fold extension K∗ representing c0

2∗3 2−→ k2 ⊗ Sq2(k1) + Sq2(k1) ⊗ k2

3∗4 2−→ k3 ⊗ Sq4Sq2(k1) + Sq4(k2) ⊗ Sq4(k2) + Sq4Sq2(k1) ⊗ k3

4∗7 2−→ k3 ⊗ Sq6(k2)

5∗7 2−→ k3 ⊗ k3 ,

sending the remaining s∗g to zero. Hence (y⊗ y)D1 : C5 → F2 is dual to 5∗7, proving
that Sq2(c0) = 57 = h0e0.

A chain homotopy D2 : C∗−2 → K∗ ⊗ K∗ from D1 to τD1 is given by

4∗7 2−→ k3 ⊗ k3 ,

sending the remaining s∗g to zero. Hence (y⊗ y)D2 : C4 → F2 is dual to 4∗7, proving
that Sq1(c0) = 47 = h2β.

In this case, D2 = τD2, so we can take D3 = 0, confirming that Sq0(c0) = 0. !

A little more generally, there are Steenrod operations

Sqi : Exts,t
Γ (L, F2) −→ Exts+i,2t

Γ (L, F2)

for any cocommutative Γ-module coalgebra L. Let C∗ → L be a free Γ-module
resolution, and let ∆ : W∗ ⊗ C∗ → C∗ ⊗ C∗ be a Σ2-equivariant map of Γ-module
complexes covering the coproduct ψ : L → L ⊗ L. For each cocycle x : Cs → ΣtF2

the composite

C2s−i
∼= F2{ei} ⊗ C2s−i ⊂ Wi ⊗ C2s−i ⊂ (W∗ ⊗ C∗)2s

∆−→ (C∗ ⊗ C∗)2s
x⊗x−→ ΣtF2 ⊗ ΣtF2

∼= Σ2tF2
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0∗0 2−→ k0 ⊗ k0

1∗0 2−→ k1 ⊗ k0 + k0 ⊗ k1

1∗1 2−→ k1 ⊗ Sq1(k0)

2∗0 2−→ k1 ⊗ k1

2∗1 2−→ k1 ⊗ Sq2(k1)

2∗2 2−→ k2 ⊗ k0 + k0 ⊗ k2

2∗3 2−→ k2 ⊗ Sq2Sq1(k0)

3∗1 2−→ k2 ⊗ k1 + k1 ⊗ k2

3∗2 2−→ k3 ⊗ k0 + k0 ⊗ k3

3∗4 2−→ Sq4Sq2Sq1(k0) ⊗ k3

4∗4 2−→ k3 ⊗ Sq4Sq2(k1) + Sq4(k2) ⊗ Sq4(k2) + Sq4Sq2(k1) ⊗ k3

5∗6 2−→ k3 ⊗ Sq4(k2) + Sq4(k2) ⊗ k3

5∗7 2−→ k3 ⊗ Sq6(k2)

Figure 1.23. Chain map D0 : C∗ → K∗ ⊗ K∗ covering F2

defines a cocycle Sqs−i(x) : C2s−i → Σ2tF2. This construction induces the Steen-
rod operation upon passage to cohomology classes. For later reference we record
the following compatibility between the change-of-algebra isomorphism recalled in
Lemma 2.1 and these Steenrod operations.

Lemma 1.22. Let Λ ⊂ Γ be a pair of cocommutative Hopf algebras, and let L be
a cocommutative Λ-module coalgebra. Under the change-of-algebra isomorphisms

Exts,t
Γ (Γ⊗Λ L, F2) ∼= Exts,t

Λ (L, F2)

the Steenrod operation Sqi : Exts,t
Γ (Γ⊗ΛL, F2) → Exts+i,2t

Γ (Γ⊗ΛL, F2) corresponds

to the Steenrod operation Sqi : Exts,t
Λ (L, F2) → Exts+i,2t

Λ (L, F2).

Proof. Let C∗ → L be a free Λ-module resolution. Then F∗ = Γ ⊗Λ C∗ →
Γ ⊗Λ L is a free Γ-module resolution. Let ∆ : W∗ ⊗ C∗ → C∗ ⊗ C∗ be a Σ2-
equivariant map of Λ-module complexes that lifts the coproduct ψ : L → L ⊗ L.
Then the composite

W∗ ⊗ Γ⊗Λ C∗
1⊗∆−→ Γ⊗Λ (C∗ ⊗ C∗)

ψ⊗1−→ (Γ⊗Λ C∗) ⊗ (Γ⊗Λ C∗)

(with some twist isomorphisms suppressed) is a Σ2-equivariant map W∗ ⊗ F∗ →
F∗ ⊗ F∗ of Γ-module complexes that lifts the coproduct ψ : Γ ⊗Λ L → (Γ⊗Λ L) ⊗
(Γ ⊗Λ L). A chase of definitions then shows that Sqs−i applied to the Γ-module
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extension of any Λ-linear cocycle x : Cs → ΣtF2 equals the Γ-module extension of
Sqs−i(x) : C2s−i → Σ2tF2. !

1.4. The Adams E2-term for tmf/2, tmf/η and tmf/ν

Definition 1.23. Let

C2 = S/2 = S ∪2 e1

Cη = S/η = S ∪η e2

Cν = S/ν = S ∪ν e4

Cσ = S/σ = S ∪σ e8

be the homotopy cofibers of the real Hopf map (degree two map) 2: S → S, the
complex Hopf map η : S1 → S, the quaternionic Hopf map ν : S3 → S and the
octonionic Hopf map σ : S7 → S. Let

tmf/2 = tmf ∧ C2

tmf/η = tmf ∧ Cη

tmf/ν = tmf ∧ Cν .

We need not discuss the octonionic case, since σ acts trivially on tmf and tmf/σ =
tmf ∧ Cσ - tmf ∨ Σ8tmf . The defining homotopy cofiber sequences

S
2−→ S

i−→ C2
j−→ S1

S1 η−→ S
i−→ Cη

j−→ S2

S3 ν−→ S
i−→ Cν

j−→ S4

of spectra induce homotopy cofiber sequences

tmf
2−→ tmf

i−→ tmf/2
j−→ Σtmf

Σtmf
η−→ tmf

i−→ tmf/η
j−→ Σ2tmf

Σ3tmf
ν−→ tmf

i−→ tmf/ν
j−→ Σ4tmf

of tmf -modules. Let M1 = H∗(C2) = F2{1, Sq1}, M2 = H∗(Cη) = F2{1, Sq2} and
M4 = H∗(Cν) = F2{1, Sq4}.

Remark 1.24. We follow [52, Def. 2.5], writing Mi for a minimal A(2)-module
with nontrivial action by Sqi from degree 0 to degree i.

Lemma 1.25. There are A-module isomorphisms

H∗(tmf/2) ∼= A//A(2) ⊗ M1
∼= A ⊗A(2) M1

H∗(tmf/η) ∼= A//A(2) ⊗ M2
∼= A ⊗A(2) M2

H∗(tmf/ν) ∼= A//A(2) ⊗ M4
∼= A ⊗A(2) M4 .

Proof. These are Künneth and untwisting isomorphisms, cf. Lemma 2.2. !
The Adams spectral sequences

Es,t
2 (tmf/2) = Exts,t

A (H∗(tmf/2), F2) =⇒s πt−s(tmf/2)

Es,t
2 (tmf/η) = Exts,t

A (H∗(tmf/η), F2) =⇒s πt−s(tmf/η)∧2
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Es,t
2 (tmf/ν) = Exts,t

A (H∗(tmf/ν), F2) =⇒s πt−s(tmf/ν)∧2

for tmf/2, tmf/η and tmf/ν, respectively, are all strongly convergent module spec-
tral sequences over the Adams spectral sequence for tmf . By change-of-algebras,
the E2-terms can be rewritten as

E2(tmf/2) ∼= ExtA(2)(M1, F2)

E2(tmf/η) ∼= ExtA(2)(M2, F2)

E2(tmf/ν) ∼= ExtA(2)(M4, F2) .

In each case the action by E2(tmf) ∼= ExtA(2)(F2, F2) is induced by the tensor
product of A(2)-modules, and agrees with the Yoneda product.

Using ext we can calculate a minimal free A(2)-module resolution (D∗, ∂)
of M1, in a finite range.

. . .
∂−→ D2

∂−→ D1
∂−→ D0

ε−→ M1 → 0

The program will choose an A(2)-module basis {s∗g}g for each Ds, and we let sg ∈
HomA(2)(Ds, F2) be the dual cocycles, giving an F2-basis for Exts,∗

A(2)(M1, F2). The
resulting charts for 0 ≤ t − s ≤ 96 are shown in Figures 1.24 to 1.27. Similar
calculations of minimal A(2)-module resolutions of M2 and M4 give F2-bases for
Exts,t

A(2)(M2, F2) and Exts,t
A(2)(M4, F2), respectively, as shown for 0 ≤ t − s ≤ 96 in

Figures 1.28 to 1.31 and Figures 1.32 to 1.35.

Remark 1.26. To make these calculations with ext, go to the directory A2
and create a text file tmfC2.def with the following content.

2
0 1
0 1 1 1

This defines an A(2)-module with two generators, in degrees 0 and 1. There is a
nontrivial action on the zeroth generator by Sq1, with value a sum with one term,
namely the first generator. Use newmodule tmfC2 tmfC2.def to create tmfC2. In
this subdirectory run dims 0 240 to calculate the minimal resolution for 0 ≤ s ≤ 40
and 0 ≤ t ≤ 240. Thereafter call on report to extract the results, and use

chart 0 16 0 24 Shape himults Ext-A2-M1-0-24.tex Ext-A2-M1
pdflatex himults Ext-A2-M1-0-24.tex

to obtain the Adams chart in Figure 1.24. The module definition files tmfCeta.def
and tmfCnu.def for M2 and M4 should contain the lines

2
0 2
0 2 1 1

and

2
0 4
0 4 1 1

respectively.

Definition 1.27. The nonzero homomorphisms M1 → F2 and ΣF2 → M1

induce ExtA(2)(F2, F2)-module homomorphisms

i : ExtA(2)(F2, F2) −→ ExtA(2)(M1, F2)
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j : ExtA(2)(M1, F2) −→ ExtA(2)(ΣF2, F2) = Ext∗,∗−1
A(2) (F2, F2) .

Let
i(1), h̃1, h̃2

2, c̃0, h̃2
0e0, γ̃, β̃2, d̃0e0, δ̃′, β̃g, α̃2e0

in ExtA(2)(M1, F2) be the classes represented by the cocycles

00, 11, 23, 32, 63, 58, 610, 87, 710, 712, 1012 ,

respectively, as listed in Table 1.5 and illustrated in Figure 4.1. In each case the
class is the only nonzero class in its (t− s, s)-bidegree. Each class denoted x̃ maps
to x under j.

Proposition 1.28. In topological degrees t− s ≤ 200, ExtA(2)(M1, F2) is gen-
erated as an ExtA(2)(F2, F2)-module by the classes listed in Table 1.5.

Table 1.5: ExtA(2)(F2, F2)-module generators for ExtA(2)(M1, F2)
(for t − s ≤ 200)

t − s s g x

0 0 0 i(1)

2 1 1 h̃1

7 2 3 h̃2
2

9 3 2 c̃0

18 6 3 h̃2
0e0

26 5 8 γ̃

31 6 10 β̃2

32 8 7 d̃0e0

33 7 10 δ̃′

36 7 12 β̃g

42 10 12 α̃2e0

Sketch proof. We will make no formal use of this proposition, other than to
introduce notation, and will therefore allow ourselves to assert that the claim can
be verified by machine computation, as explained in Remarks 1.26 and 1.29. We
will see later, in Corollary 4.3, that these classes generate all of ExtA(2)(M1, F2) as
a module over ExtA(2)(F2, F2). !

Remark 1.29. To verify this calculation using ext, go to A2 and use cocycle
tmfC2 0 0, . . . , cocycle tmfC2 10 12 to create the cocycles 0 0, . . . , 10 12 in
A2/tmfC2. Go to A2/tmfC2 and run dolifts 0 40 maps to lift these cocycles to
chain maps. Use collect maps all to obtain the text file all, with one row

s g (s’ g’ F2) s’’_g’’

for each summand sg ∈ ExtA(2)(M1, F2) in the product of s′g′ ∈ ExtA(2)(F2, F2) and
s′′g′′ ∈ ExtA(2)(M1, F2).
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Definition 1.30. The nonzero homomorphisms M2 → F2 and Σ2F2 → M2

induce ExtA(2)(F2, F2)-module homomorphisms

i : ExtA(2)(F2, F2) −→ ExtA(2)(M2, F2)

j : ExtA(2)(M2, F2) −→ ExtA(2)(Σ
2F2, F2) = Ext∗,∗−2

A(2) (F2, F2) .

Let
i(1), ĥ0, ĥ2, ĥ1c0, α̂, β̂, d̂0g

in ExtA(2)(M2, F2) be the classes represented by the cocycles

00, 11, 13, 43, 35, 37, 825 ,

respectively, as listed in Table 1.6 and illustrated in Figure 4.2. In each case the
class is the only nonzero class in its (t− s, s)-bidegree. Each class denoted x̂ maps
to x under j.

Proposition 1.31. In topological degrees t− s ≤ 200, ExtA(2)(M2, F2) is gen-
erated as an ExtA(2)(F2, F2)-module by the classes listed in Table 1.6.

Table 1.6: ExtA(2)(F2, F2)-module generators for ExtA(2)(M2, F2)
(for t − s ≤ 200)

t − s s g x

0 0 0 i(1)

2 1 1 ĥ0

5 1 3 ĥ2

11 4 3 ĥ1c0

14 3 5 α̂

17 3 7 β̂

36 8 25 d̂0g

Remark 1.32. We will see later, in Corollary 4.13, that these classes generate
all of ExtA(2)(M2, F2) as a module over ExtA(2)(F2, F2).

Definition 1.33. The nonzero homomorphisms M4 → F2 and Σ4F2 → M4

induce ExtA(2)(F2, F2)-module homomorphisms

i : ExtA(2)(F2, F2) −→ ExtA(2)(M4, F2)

j : ExtA(2)(M4, F2) −→ ExtA(2)(Σ
4F2, F2) = Ext∗,∗−4

A(2) (F2, F2) .

Let

i(1), h3
0, h1, h0h2, h2

2, c0, h2
0α, g, h0α2, γ,αβ,β2, δ,α3

in ExtA(2)(M4, F2) be the classes represented by the cocycles

00, 31, 12, 23, 24, 34, 57, 49, 713, 513, 616, 617, 719, 924 ,

respectively, as listed in Table 1.7 and illustrated in Figure 4.3. In most cases the
class is the only nonzero class in its (t− s, s)-bidegree. The exceptions are 34 = c0,
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which we prefer over 35, and 719 = δ, which is the lift of 711 = δ. Each class
denoted x maps to x under j.

Proposition 1.34. In topological degrees t− s ≤ 200, ExtA(2)(M4, F2) is gen-
erated as an ExtA(2)(F2, F2)-module by the classes listed in Table 1.7.

Table 1.7: ExtA(2)(F2, F2)-module generators for ExtA(2)(M4, F2)
(for t − s ≤ 200)

t − s s g x

0 0 0 i(1)

4 3 1 h3
0

5 1 2 h1

7 2 3 h0h2

10 2 4 h2
2

12 3 4 c0

16 5 7 h2
0α

24 4 9 g

28 7 13 h0α2

29 5 13 γ

31 6 16 αβ

34 6 17 β2

36 7 19 δ

40 9 24 α3

Remark 1.35. We will see later, in Corollary 4.16, that these classes generate
all of ExtA(2)(M4, F2) as a module over ExtA(2)(F2, F2).

Lemma 1.36. The spectra tmf/2 and tmf/η are not ring spectra (in the stable
homotopy category).

Proof. If tmf/2 were a ring spectrum, then its Adams E2-term would be a
bigraded algebra over ExtA(F2, F2), with unit i(1). Since h0 · i(1) = 0, it would
follow that h0 · x = 0 for all x ∈ ExtA(2)(M1, F2). This is not the case, e.g. for

x = 11 = h̃1, as can be seen in Figure 1.24.
Likewise, if tmf/η were a ring spectrum, then its Adams E2-term would be

a bigraded algebra. Since h1 · i(1) = 0, it would follow that h1 · x = 0 for all

x ∈ ExtA(2)(M2, F2). This is not the case, e.g. for x = 11 = ĥ0, as can be seen in
Figure 1.28. !

To discuss tmf/ν, we let A∗ = F2[ξi | i ≥ 1] denote the dual Steenrod algebra,
reviewed in more detail in Section 3.1, and recall the following construction of sub
Hopf algebras of the Steenrod algebra.
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Proposition 1.37 (Adams–Margolis). For each profile function

h : {1, 2, 3, . . . } → {0, 1, 2, . . . ,∞}

let

B(h)∗ = A∗/(ξ2h(i)

i | i ≥ 1)

be a quotient algebra of A∗, and let B(h) ⊂ A be the dual coalgebra. Suppose that
h satisfies the condition

• h(i) ≤ j + h(i + j) or h(j) ≤ h(i + j), for all i, j ≥ 1.

Then B(h)∗ is a quotient Hopf algebra of A∗ and B(h) is a sub Hopf algebra of A.
Conversely, all quotient Hopf algebras of A∗ and sub Hopf algebras of A arise in
this manner.

Proof. See [12, Prop. 2.3, Thm. 2.4] or [112, Thm. 15.6]. !

Example 1.38. The Hopf algebra

A(n) = 〈Sq1, Sq2, . . . , Sq2n

〉

corresponds to the function given by h(i) = n+2− i for 1 ≤ i ≤ n+1 and h(i) = 0
for i ≥ n + 2. It is the minimal sub Hopf algebra of A that contains Sq2n

.
The sub Hopf algebra B(2, 2, 1) of A(2), corresponding to the function h(1) =

h(2) = 2, h(3) = 1 and h(i) = 0 for i ≥ 4, is generated by Sq1, Sq2 and Sq(0,2).

Lemma 1.39. There is an isomorphism A(2)//B(2, 2, 1) ∼= M4 of A(2)-module
coalgebras. Hence there is an isomorphism

ExtA(2)(M4, F2) ∼= ExtB(2,2,1)(F2, F2)

of bigraded algebras.

Proof. This follows by dualization from the A(2)∗-comodule algebra isomor-
phism

E(ξ4
1) ∼= A(2)∗ !B(2,2,1)∗ F2 ,

where ! denotes the cotensor product. See Section 2.2 for a more detailed review
of that construction. !

Lemma 1.40 (Oka). The spectrum tmf/ν is not a ring spectrum.

Proof. Shichirô Oka proved [139, Lem. 1.2] that the primary obstruction to
extending the module action tmf ∧ tmf/ν → tmf/ν over the unit map i∧ 1: tmf ∧
tmf/ν → tmf/ν ∧ tmf/ν is 2ν, which is nonzero in π3(tmf).

Alternatively, note that by the previous lemma the argument of Lemma 1.36
does not apply for tmf/ν, since the Adams E2-term for tmf/ν admits an algebra
structure (over ExtA(F2, F2) and over ExtA(2)(F2, F2)). However, we will see in
Section 8.2 that the Adams d2-differential does not satisfy the Leibniz rule. More
specifically,

d2(g · g) = d2(i(w2)) = i(αβg) = g2 · h0h2 0= 0

(where g · g = i(w2) can be verified using ext) while

d2(g) · g + g · d2(g) = 0 · g + g · 0 = 0 .

!
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In view of Lemmas 1.36 and 1.40 it may be surprising that the E∞ ring spec-
trum tmf1(3) - BP 〈2〉 can take the form tmf ∧ Φ for a finite cell spectrum Φ.
Here H∗(Φ) realizes A(2)//E(2), after restricting the natural A-action to A(2), so
that H∗(tmf ∧ Φ) = A//A(2) ⊗ A(2)//E(2) ∼= A ⊗A(2) A(2)//E(2) ∼= A//E(2) =
H∗(BP 〈2〉). The A(2)-module A(2)//E(2) is also known as “the double of A(1)”,
where A(1) = 〈Sq1, Sq2〉 ⊂ A is the subalgebra generated by Sq1 and Sq2. The
latter has rank 8 and is concentrated in degrees 0 ≤ ∗ ≤ 6. After doubling all de-
grees, the resulting cyclic A(2)-module is concentrated in even degrees 0 ≤ ∗ ≤ 12,
subject to the relations that the odd-degree generators Q0 = Sq1, Q1 = Sq(0,1) and
Q2 = Sq(0,0,1) act trivially. In other words, it is isomorphic to A(2)//E(2).

•

&&
• !!

))
•

!!

•

**$$$$$$$
!! • ++• !! •

•

**$$$$$$$

0 2 4 6 8 10 12

The figure above shows the generating actions by Sq2 and Sq4, and is identical
to the picture for the generating actions by Sq1 and Sq2 in A(1), except that the
degrees have been doubled.

Remark 1.41. It is elementary to check from the Adem relations that there
are precisely four A-module structures on A(2)//E(2) that extend the given A(2)-
module structure, corresponding to the four possible pairs of values of Sq8 acting
on the generators 1 and Sq4 in degrees 0 and 4, respectively. In each case, Sq8

acts nontrivially on the generator Sq2 in degree 2. Up to the evident degree shift,
the two A-module structures where exactly one of Sq8(1) and Sq8(Sq4) is nonzero
are both self-dual, whereas the remaining two A-module structures are mutually
dual. A direct cell-by-cell construction of 8-cell CW spectra realizing each of these
four A-modules is possible, using ext to analyze the available attaching maps, and
reveals that in each case some essential ambiguity remains in how the 10- and 12-
cells are attached. We instead give the following less computational proof, which
has the advantage of producing a self-dual model.

Lemma 1.42 ([76, Lem. 6.1], [114, Def. 4.2]). There exist finite CW spectra
Φ = ΦA(1) with cohomology H∗(Φ) ∼= A(2)//E(2) realizing the double of A(1). At
least one such spectrum is Spanier–Whitehead self-dual, in the sense that there is
a 2-adic equivalence Φ - F (Φ, S12), and of the form Cγ, meaning that there is a
homotopy cofiber sequence

Σ5Cη ∧ Cν
γ−→ Cη ∧ Cν

i−→ Φ
j−→ Σ6Cη ∧ Cν

(after implicit 2-completion) where γ has Adams filtration 1.

Proof. Let ν̃ : S5 → Cη be the unique lift (up to homotopy) over j : Cη → S2

of ν : S5 → S2. Its mapping cone ΦQ = Cη ∪ν̃ e6 is a finite CW spectrum, with
cohomology H∗(Cη ∪ν̃ e6) = F2{1, Sq2, Sq4Sq2} = M42, the minimal A(2)-module
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containing a generator in degree 0 with nontrivial action by Sq4Sq2. Its Spanier–
Whitehead 6-dual F (ΦQ, S6) = F (Cη ∪ν̃ e6, S6) - Cν ∪η̃ e6 is the mapping cone
of the unique lift η̃ : S5 → Cν over j : Cν → S4 of η : S5 → S4. Its cohomology
H∗(Cν ∪η̃ e6) = F2{1, Sq4, Sq2Sq4} = M24 is minimal with nontrivial action by
Sq2Sq4.

The evaluation map e : F (ΦQ, S6) ∧ ΦQ → S6 induces

e∗ : Σ6F2 −→ M24 ⊗ M42

in cohomology, sending the generator to Sq2Sq4 ⊗ 1 + Sq4 ⊗ Sq2 + 1 ⊗ Sq4Sq2.
Its Spanier–Whitehead 12-dual c = F (e, S12) is a coevaluation map c : S6 → ΦQ ∧
F (ΦQ, S6) inducing

c∗ : M42 ⊗ M24 −→ Σ6F2

in cohomology, sending Sq4Sq2⊗1, Sq2⊗Sq4 and 1⊗Sq2Sq4 to the generator. The
composite e ◦ τ ◦ c : S6 → S6, where τ is the twist equivalence, has degree 3, equal
to the Euler characteristic of ΦQ, hence is a 2-local equivalence. In particular, c
is 2-locally split injective. Direct calculation with the Cartan formula shows that
the direct summand ker(c∗) ⊂ M42 ⊗M24 is isomorphic to A(2)//E(2) as an A(2)-
module. Furthermore, Sq8 acts nontrivially on the generator 1 ⊗ 1 in degree 0,
but trivially on the generator 1 ⊗ Sq4 in degree 4. Hence we can let Φ be the
mapping cone of the coevaluation map c, and obtain a 2-locally split homotopy
cofiber sequence as in the upper row of the following diagram.

S6 c !! ΦQ ∧ F (ΦQ, S6)
d !!

,,

τ (
""

Φ

F (Φ, S12)
f

!! F (ΦQ, S6) ∧ ΦQ
e !! S6

Here the homotopy fiber map f = F (d, S12) of e is 12-dual to d, so the lower row is
also a 2-locally split homotopy (co-)fiber sequence. The composite d◦ τ ◦f exhibits
a 2-local equivalence F (Φ, S12) - Φ.

Let i be the composite map

Cη ∧ Cν −→ (Cη ∪ν̃ e6) ∧ (Cν ∪η̃ e6) - ΦQ ∧ F (ΦQ, S6)
d−→ Φ ,

where the first map is the smash product of the two evident inclusions. The induced
homomorphism

i∗ : A(2)//E(2) −→ M2 ⊗ M4

is surjective, with kernel isomorphic to Σ6M2 ⊗ M4 and generated by the commu-
tator [Sq4, Sq2] = Sq(0,2). Hence the mapping cone of i has mod 2 cohomology
isomorphic to that of Σ6Cη ∧ Cν, as a left A(2)-module. This characterizes this
spectrum up to 2-adic equivalence, and yields the stated homotopy cofiber sequence.
The connecting map γ must have Adams filtration exactly 1, since

0 → Σ6M2 ⊗ M4
j∗

−→ A(2)//E(2)
i∗−→ M2 ⊗ M4 → 0

is short exact, but not split as an extension of A(2)-modules. !

Remark 1.43. The finite CW spectra ΦQ and F (ΦQ, S6) are doubles of Q =
C2∪η̃ e3 and F (Q, S3) = Cη∪2̃e3, usually known as the question mark and inverted
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question mark complexes, respectively.

6 Sq4Sq2 Sq2Sq4 6

4 Sq4

,,

4

2 Sq2

--

2

0 1

,,

1

..

0

The proof of the lemma above is effectively a double of the construction given in
[73, Cor. 1.7.7] of a spectrum realizing A(1). A different proof can be given by
doubling the construction given on pages 619–620 of [51, Thm. 1.4(i)].

Proposition 1.44 ([76, Thm. 4.3]). Let Φ be any finite CW spectrum realizing
A(2)//E(2). There is a 2-adic equivalence of tmf -modules

tmf ∧ Φ - BP 〈2〉
extending the E∞ ring spectrum map ι′ : tmf → BP 〈2〉. Hence there is also a 2-adic
equivalence of tmf -modules

F (Φ, tmf) - Σ−12BP 〈2〉 .

Proof. Without loss of generality, we can build Φ from S by attaching even-
dimensional cells. Since π∗(BP 〈2〉) is trivial in odd degrees, there is no obstruction
to extending the unit map S → BP 〈2〉 over Φ. Any such extension Φ → BP 〈2〉
then induces a tmf -module map

tmf ∧ Φ −→ tmf ∧ BP 〈2〉 ·−→ BP 〈2〉
that extends ι′. The induced A-module homomorphism

A//E(2) −→ A//A(2) ⊗ A(2)//E(2) ∼= A//E(2)

is the identity in degree 0, hence is an isomorphism. Thus tmf ∧ Φ → BP 〈2〉 is a
2-adic equivalence.

For the dual statement, we use that the Spanier–Whitehead dual DΦ = F (Φ, S)
is equivalent to a finite CW spectrum, with

H∗(DΦ) ∼= Hom(H∗(Φ), F2) ∼= Σ−12A(2)//E(2)

as an A(2)-module, so that the previous argument applies to Σ12DΦ - F (Φ, S12).
!
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Figure 1.24. Exts,t
A(2)(M1, F2) for 0 ≤ t − s ≤ 24
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Figure 1.25. Exts,t
A(2)(M1, F2) for 24 ≤ t − s ≤ 48
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Figure 1.26. Exts,t
A(2)(M1, F2) for 48 ≤ t − s ≤ 72
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Figure 1.27. Exts,t
A(2)(M1, F2) for 72 ≤ t − s ≤ 96
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Figure 1.28. Exts,t
A(2)(M2, F2) for 0 ≤ t − s ≤ 24
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Figure 1.29. Exts,t
A(2)(M2, F2) for 24 ≤ t − s ≤ 48
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Figure 1.30. Exts,t
A(2)(M2, F2) for 48 ≤ t − s ≤ 72

72 76 80 84 88 92 96
12

16

20

24

28

67

6566 67 68 69 70 71

6364 65 666768 69 70 717273 74 7576 77 78 79

67 686970
717273

747576
7778

798081
8283

848586 87 88 89 90 91 92

686970
717273 74 7576

777879
8081 8283 8485 8687

888990 91 92 9394 95 96 97 98 99 100

676869 70 7172 7374 75 76 7778 7980 81 82 8384 8586 87 888990 91 92 9394 95 96 9798 99 100 101

6667 68 6970 7172 73 74 7576 7778 79 808182 83 8485
868788

8990 91 929394 95 96 9798 99 100 101102 103 104105

676869 70 71 7273 7475
767778

7980 81 828384
858687

88899091
9293 94 959697

9899
100101102 103 104 105106 107 108 109110111

686970
717273

7475 76 7778
798081

828384
858687 88 8990

91929394
959697

9899 100101 102103
104105106 107 108 109110 111112

6768 69 707172 73 7475 7677 7879 80 818283 84 8586 8788 8990 91 929394
9596 97 98 99100 101102 103 104105106 107 108109

676869 70 7172 73 7475 76 7778 79 8081 82 8384
858687 88 8990 9192 9394 95 969798 99 100101

102103104
105106 107

108109110111

707172
737475 76 77 78 7980

818283 84 85 8687
888990

91929394
9596 97 9899100

101102103
104105106107

108109 110 111112113
114115116

7172 73 747576
7778 79 80 81 828384

858687
8889 9091 9293

94959697
9899100

101102103 104 105106
107108109110

111112113
114115 116

697071 72 7374 75 7677 7879 80 8182 83 848586 87 888990
9192

939495 96 979899 100 101102 103104 105106 107 108109110
111112113

69707172
737475 76 77 78 7980

818283 84 8586 87 888990 91 929394 95 9697 98 99100
101102103 104 105106 107108

109110111

727374
75767778

7980 81 82 83 848586
878889 90 9192 93 949596

979899 100 101 102103
104105106

107108109110
111112 113114

Figure 1.31. Exts,t
A(2)(M2, F2) for 72 ≤ t − s ≤ 96
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Figure 1.32. Exts,t
A(2)(M4, F2) for 0 ≤ t − s ≤ 24
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Figure 1.33. Exts,t
A(2)(M4, F2) for 24 ≤ t − s ≤ 48

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



1.4. THE ADAMS E2-TERM FOR tmf/2, tmf/η AND tmf/ν 95

48 52 56 60 64 68 72
8

12

16

20

24

26

29 3031 32

3031 3233 34 3536 37 38

31 32 33 3435 36 3738 3940 41 4243 44

3132 33 34 3536 37 38 39 4041 42 4344 4546 47 48 49 50 51

3233 34 35 36 37 38 3940 4142 43 4445 46 4748 49 50 51 52 53 54 55 56

3233 34 35 3637 38 39 4041 4243 44 45 46 4748 49 5051 52 53 54 55 56 57 58 5960

31323334
35 363738 39 40 41 42 43 444546 47 4849

505152 53 54 5556 57 58 59 6061

313233 34 35 3637 3839 40 4142 43 44 454647 48 49 5051 5253 54 5556 5758 59 60 6162

313233
3435

363738 39 40 41 4243 44 45 4647 48 49 505152
5354 55 5657 58 5960 61 6263

31323334
35 36 3738 3940 41 4243 44 45 464748 49 50 515253

5455 56 57 58 5960 61 626364

323334 35 363738 39 40
41424344

45
46474849

50 51 5253 54 55 565758 59 6061
62636465

323334 35
36373839

40 414243 44 45 464748
4950 51 525354 55 56 575859 60 61 626364

32333435
36 373839 40 414243

4445
46474849

50 51 52 535455 56 57 5859 60 61
62636465

32333435
36 373839 40

41424344
45 46 474849

5051 52 535455 56 57 585960 61 62
63646566

3132333435

3637383940
41 424344 45

46474849
50 51

5253545556
57

58596061
62 63 646566

3031323334
35

36373839
40 41 424344 45

4647484950
51

52535455
56 57 585960

6162 63
64656667

Figure 1.34. Exts,t
A(2)(M4, F2) for 48 ≤ t − s ≤ 72
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Figure 1.35. Exts,t
A(2)(M4, F2) for 72 ≤ t − s ≤ 96
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CHAPTER 2

The Davis–Mahowald spectral sequence

Davis and Mahowald [52] introduced a spectral sequence to calculate Ext for
an A(n)-module M , in terms of Ext for a sequence of A(n − 1)-modules Nσ ⊗ M
indexed by weights σ ≥ 0. The same spectral sequence was studied by Mahowald
and Shick [106], who called it the Koszul spectral sequence. We generalize their
work to the case of a pair Λ ⊂ Γ of Hopf algebras, and clarify the origin of the
multiplicative structure in the spectral sequence in the cocommutative case. Propo-
sitions 2.3 and 2.10 give additive forms of the spectral sequences calculating Ext in
the categories of Γ-modules and Γ∗-comodules, respectively, while Theorems 2.25
and 2.24 give multiplicative forms of these spectral sequences.

2.1. Ext over a pair of Hopf algebras

Let k be a field, and write ⊗ and Hom for ⊗k and Homk, respectively. Let Γ be
a connected Hopf algebra over k, and let Λ be a sub Hopf algebra of Γ. We follow
the convention that a Hopf algebra comes equipped with a conjugation χ as part
of the structure. By Milnor–Moore [128, Thm. 4.4], Γ is free as a right Λ-module,
i.e., it is isomorphic to a direct sum of suspensions of copies of Λ. Let L be a left
Λ-module, and give Γ⊗Λ L the induced left Γ-module structure.

Lemma 2.1. There is a natural change-of-algebra isomorphism

ExtΓ(Γ⊗Λ L, k) ∼= ExtΛ(L, k) .

Proof. Let C∗ → L be a free Λ-module resolution of L. Then Γ ⊗Λ C∗ →
Γ ⊗Λ L is a free Γ-module resolution of Γ ⊗Λ L. Hence the natural isomor-
phism HomΓ(Γ⊗ΛC∗, k) ∼= HomΛ(C∗, k) of cochain complexes induces the asserted
change-of-algebra isomorphism upon passage to cohomology. !

Let Γ//Λ = Γ ⊗Λ k. Let M be a left Γ-module, give Γ//Λ ⊗ M the diagonal
Γ-module structure, and give Γ⊗Λ M the Γ-module structure induced up from the
restricted Λ-module structure on M .

Lemma 2.2 ([14, Cor. 3.5]). There is a natural untwisting isomorphism of Γ-
modules

ζ : Γ⊗Λ M
∼=−→ Γ//Λ⊗ M

induced by the composite

Γ⊗ M
ψ⊗1−→ Γ⊗ Γ⊗ M

π⊗λ−→ Γ//Λ⊗ M .

Here ψ : Γ → Γ ⊗ Γ denotes the coproduct, π : Γ → Γ//Λ denotes the projection,
and λ : Γ⊗ M → M denotes the left module action.

97
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98 2. THE DAVIS–MAHOWALD SPECTRAL SEQUENCE

Proof. The homomorphism ζ is well defined because Λ is a sub Hopf algebra
of Γ. An inverse is induced by the composite

Γ⊗ M
ψ⊗1−→ Γ⊗ Γ⊗ M

1⊗χ⊗1−→ Γ⊗ Γ⊗ M
1⊗λ−→ Γ⊗ M

π−→ Γ⊗Λ M ,

where χ : Γ → Γ is the conjugation. !
Proposition 2.3. Suppose that we have chosen a sequence of Γ-modules Nσ,

for σ ≥ 0, and an exact chain complex

. . .
∂3−→ Γ//Λ⊗ N2

∂2−→ Γ//Λ⊗ N1
∂1−→ Γ//Λ⊗ N0

ε−→ k → 0

of Γ-modules with diagonal Γ-action. Then there is a strongly convergent trigraded
spectral sequence

Eσ,s,t
1 = Exts−σ,t

Λ (Nσ ⊗ M, k) =⇒σ Exts,t
Γ (M, k) .

The dr-differentials have (σ, s, t)-tridegree (r, 1, 0) and there are isomorphisms

Eσ,s,t
∞

∼= F σ Exts,t(M)/F σ+1 Exts,t(M)

for all σ, s and t, where {F σ Exts,t(M)}σ is a finite and exhaustive filtration of
Exts,t(M) = Exts,t

Γ (M, k).

Proof. For each σ ≥ 0 we have a short exact sequence of Γ-modules

0 → im(∂σ+1) ⊗ M −→ Γ//Λ⊗ Nσ ⊗ M −→ im(∂σ) ⊗ M → 0 ,

where we interpret im(∂0) as im(ε) = k. These induce long exact sequences

. . .
δ−→ Exts,t

Γ (im(∂σ) ⊗ M, k) −→ Exts,t
Γ (Γ//Λ⊗ Nσ ⊗ M, k)

−→ Exts,t
Γ (im(∂σ+1) ⊗ M, k)

δ−→ Exts+1,t
Γ (im(∂σ) ⊗ M, k) −→ . . .

for each σ ≥ 0. Rewriting Exts,t
Γ (Γ//Λ⊗Nσ ⊗M, k) as Exts,t

Λ (Nσ⊗M, k) by means
of the isomorphisms of Lemmas 2.1 and 2.2, we can combine these into the following
unrolled exact couple:

(2.1) . . .
δ !! Exts−1,t

Γ (im(∂1) ⊗ M, k)
δ !!

""

Exts,t
Γ (M, k)

ε∗

""

Exts−1,t
Λ (N1 ⊗ M, k)

//% % % % % % %

Exts,t
Λ (N0 ⊗ M, k)

00& & & & & & & &

Here

Aσ,s,t = Exts−σ,t
Γ (im(∂σ) ⊗ M, k)

Eσ,s,t = Exts−σ,t
Λ (Nσ ⊗ M, k) .

The homomorphisms i = δ : Aσ+1,s,t → Aσ,s,t and j : Aσ,s,t → Eσ,s,t preserve
the (s, t)-bigrading, whereas k : Eσ,s,t → Aσ+1,s+1,t has (s, t)-bidegree (1, 0) and
(t − s, s)-bidegree (−1, 1). The resulting trigraded spectral sequence has E1-term

Eσ,s,t
1 = Exts−σ,t

Λ (Nσ ⊗ M, k)

and dr-differentials
dr : Eσ,s,t

r −→ Eσ+r,s+1,t
r

of (s, t)-bidegree (1, 0) and (t − s, s)-bidegree (−1, 1), for each r ≥ 1. Neglecting
the internal degree t, the spectral sequence can be considered as a first quadrant
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2.2. A DUAL FORMULATION 99

cohomological spectral sequence in the (σ, s − σ)-plane. In this grading the dr-
differential has the traditional bidegree (r, 1 − r).

It follows that the spectral sequence converges strongly to A0,s,t = Exts,t
Γ (M, k),

which is filtered by the images F σ Exts,t(M) = im(δσ) of the iterated coboundary
homomorphisms

δσ : Exts−σ,t
Γ (im(∂σ) ⊗ M, k) −→ Exts,t

Γ (M, k) .

This is a finite filtration in each (s, t)-bidegree, since Fσ Exts,t(M) = 0 for all
σ > s. !

2.2. A dual formulation

To make use of the multiplicative structure present in our main examples, it
will be convenient to pass from the categories of Γ- and Λ-modules to the dual
categories of Γ∗- and Λ∗-comodules, respectively.

Definition 2.4. Let Γ∗ be a connected coalgebra over k. Given a right Γ∗-
comodule M∗ and a left Γ∗-comodule N∗, the cotensor product M∗ !Γ∗ N∗ is the
graded k-vector space defined [128, Def. 2.2] as the equalizer of the two homomor-
phisms

M∗ ⊗ N∗
ν⊗1

!!

1⊗ν
!! M∗ ⊗ Γ∗ ⊗ N∗

induced by the right Γ∗-coaction ν : M∗ → M∗⊗Γ∗ and the left Γ∗-coaction ν : N∗ →
Γ∗ ⊗ N∗, respectively. Given a second left Γ∗-comodule L∗, the graded k-vector
space of Γ∗-comodule homomorphisms HomΓ∗(L∗, N∗) is the equalizer of the two
homomorphisms

Hom(L∗, N∗)
ν∗

!!

ν∗
!! Hom(L∗,Γ∗ ⊗ N∗)

induced by the left Γ∗-coactions ν : L∗ → Γ∗⊗L∗ and ν : N∗ → Γ∗⊗N∗, respectively.
When M∗ = k = L∗, the two diagrams above specialize to the diagram

N∗
η

!!

ν
!! Γ∗ ⊗ N∗

with equalizer the graded k-vector space of Γ∗-comodule primitives

PΓ∗(N∗) = {x ∈ N∗ | ν(x) = 1 ⊗ x}
in N∗. Hence there are identifications

k !Γ∗ N∗ ∼= PΓ∗(N∗) ∼= HomΓ∗(k, N∗) .

Definition 2.5. The forgetful functor from left Γ∗-comodules to graded k-
vector spaces has a right adjoint, mapping a vector space V to the extended co-
module Γ∗ ⊗ V , with coaction induced by the coproduct ψ : Γ∗ → Γ∗ ⊗ Γ∗. By
definition [57, §3], a Γ∗-comodule is said to be injective if it is a direct summand
of an extended Γ∗-comodule. Each left Γ∗-comodule N∗ admits an injective left
Γ∗-comodule resolution

0 → N∗ −→ X0
∗

δ−→ X1
∗

δ−→ . . . ,

i.e., an exact complex where each Xs
∗ is injective. By definition, Cotors

Γ∗(M∗, N∗)
is the cohomology of the induced complex

. . .
δ∗−→ M∗ !Γ∗ Xs−1

∗
δ∗−→ M∗ !Γ∗ Xs

∗
δ∗−→ M∗ !Γ∗ Xs+1

∗
δ∗−→ . . .
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100 2. THE DAVIS–MAHOWALD SPECTRAL SEQUENCE

and Exts
Γ∗(L∗, N∗) is the cohomology of the induced complex

. . .
δ∗−→ HomΓ∗(L∗, X

s−1
∗ )

δ∗−→ HomΓ∗(L∗, X
s
∗)

δ∗−→ HomΓ∗(L∗, X
s+1
∗ )

δ∗−→ . . . .

In particular, there are canonical isomorphisms Cotor0Γ∗(L∗, N∗) ∼= L∗ !Γ∗ N∗,

Ext0Γ∗(L∗, N∗) ∼= HomΓ∗(L∗, N∗), and

Cotors
Γ∗(k, N∗) ∼= Exts

Γ∗(k, N∗)

for each s ≥ 0.

The coalgebra Γ∗ gives rise to a dual algebra Γ = Hom(Γ∗, k), with multiplica-
tion φ given by the composite

Hom(Γ∗, k) ⊗ Hom(Γ∗, k)
⊗−→ Hom(Γ∗ ⊗ Γ∗, k)

ψ∗

−→ Hom(Γ∗, k) .

If Γ is bounded below (e.g., connected) and of finite type as a graded k-vector space,
we can recover Γ∗ as the dual Hom(Γ, k), with coproduct given by the composite

Hom(Γ, k)
φ∗

−→ Hom(Γ⊗ Γ, k)
∼=←− Hom(Γ, k) ⊗ Hom(Γ, k) .

Similarly, each left Γ∗-comodule N∗ gives rise to a left Γ-module N = Hom(N∗, k),
with action λ given by the composite

Hom(Γ∗, k) ⊗ Hom(N∗, k)
⊗−→ Hom(Γ∗ ⊗ N∗, k)

ν∗
−→ Hom(N∗, k) .

If Γ and N are bounded below and of finite type, we can recover N∗ as the dual
Hom(N, k), with coaction given by the composite

Hom(N, k)
λ∗
−→ Hom(Γ⊗ N, k)

∼=←− Hom(Γ, k) ⊗ Hom(N, k) .

(Alternatively, if Γ is finite, i.e., finite-dimensional as a k-vector space, it suffices
to assume that N is of finite type.)

Lemma 2.6. Let L∗ and N∗ be Γ∗-comodules, dual to Γ-modules L and N ,
where Γ, L and N are bounded below and of finite type. Then there is a natural
isomorphism

D : Exts
Γ∗(L∗, N∗) ∼= Exts

Γ(N, L)

for each s ≥ 0. (Alternatively, the same conclusion holds if Γ is finite and L and N
are of finite type.)

Proof. Each Γ∗-comodule homomorphism f∗ : L∗ → N∗ gives rise to a Γ-
module homomorphism f = Hom(f∗, k) : N → L, defining a duality homomorphism

D : HomΓ∗(L∗, N∗) −→ HomΓ(N, L) .

Conversely, if Γ, L and N are bounded below and of finite type (or if Γ is finite
and L and N are of finite type), then we can recover f∗ as Hom(f, k). Under these
hypotheses, D is an isomorphism.

If Γ and N are bounded below and of finite type, then there exists an injective
Γ∗-comodule resolution

0 → N∗ −→ X0
∗

δ−→ X1
∗

δ−→ . . .
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such that each Xs
∗ is an extended Γ∗-comodule that is bounded below and of finite

type, i.e., of the form Γ∗ ⊗ V with V bounded below and of finite type. (Alterna-
tively, if Γ is finite and N is of finite type, then there exists such a resolution with
each Xs

∗ extended and of finite type.) The isomorphism

Hom(Γ∗ ⊗ V, k)
∼=←− Hom(Γ∗, k) ⊗ Hom(V, k)

shows that the dual Xs = Hom(Xs
∗ , k) is an extended, hence free, Γ-module. The

duality isomorphisms

D : HomΓ∗(L∗, X
s
∗)

∼=−→ HomΓ(Xs, L)

show that the complexes with cohomology defining Exts
Γ∗(L∗, N∗) and Exts

Γ(N, L)
are isomorphic. !

Remark 2.7. This lemma shows that when considering Ext over one of the
finite subalgebras of the Steenrod algebra, with coefficients in modules of finite type,
we may pass freely between the module and comodule contexts. On the other hand,
when considering Ext over the full Steenrod algebra, the bounded-below condition
plays a significant role. There are interesting examples of A-modules of finite type
that are not the dual of any A∗-comodule, such as the localization

L = H∗(P∞
−∞; F2) = F2[x, x−1]

of H∗(P∞; F2) = F2[x], with the A-module action given by Sqi(xj) =
(j

i

)
xi+j .

Here Sqn(x−n) = 1 for infinitely many values of n, so the dual of λ : A ⊗ L → L
does not factor through A∗ ⊗ L∗ → Hom(A ⊗ L, F2). See [10, Part II] and [94].

We now specialize to the situation where Γ∗ is a connected Hopf algebra, and
let Λ∗ be a quotient Hopf algebra of Γ∗. By Milnor–Moore [128, Thm. 4.7], Γ∗
is isomorphic as a right Λ∗-comodule to an extended Λ∗-comodule (of the form
V ⊗ Λ∗). Let L∗ be a left Λ∗-comodule, and let Γ∗ !Λ∗ L∗ be the coinduced left
Γ∗-comodule. This is the equalizer of the two homomorphisms

Γ∗ ⊗ L∗
ν⊗1

!!

1⊗ν
!! Γ∗ ⊗ Λ∗ ⊗ L∗

given by the right Λ∗-coaction on Γ∗ and the left Λ∗-coaction on L∗, respectively.

Lemma 2.8. There is a natural change-of-coalgebra isomorphism

ExtΓ∗(k,Γ∗ !Λ∗ L∗) ∼= ExtΛ∗(k, L∗) .

Proof. Let
0 → L∗ −→ X0

∗ −→ X1
∗ −→ . . .

be an injective Λ∗-comodule resolution of L∗. Applying Γ∗!Λ∗ − gives an injective
Γ∗-comodule resolution

0 → Γ∗ !Λ∗ L∗ −→ Γ∗ !Λ∗ X0
∗ −→ Γ∗ !Λ∗ X1

∗ −→ . . . .

Hence the natural isomorphism HomΛ∗(k, Xs
∗) ∼= HomΓ∗(k,Γ∗!Λ∗ Xs

∗) induces the
asserted change-of-coalgebra isomorphism upon passage to cohomology. !

We will allow ourselves to write (Γ//Λ)∗ for Γ∗ !Λ∗ k. Let M∗ be a left
Γ∗-comodule, give (Γ//Λ)∗ ⊗ M∗ the diagonal Γ∗-comodule structure, and give
Γ∗!Λ∗ M∗ the Γ∗-comodule structure coinduced from the corestricted Λ∗-comodule
structure on M∗.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



102 2. THE DAVIS–MAHOWALD SPECTRAL SEQUENCE

Lemma 2.9. There is a natural twisting isomorphism of Γ∗-comodules

ζ∗ : (Γ//Λ)∗ ⊗ M∗
∼=−→ Γ∗ !Λ∗ M∗

lifting the composite

(Γ//Λ)∗ ⊗ M∗
ι⊗ν−→ Γ∗ ⊗ Γ∗ ⊗ M∗

φ⊗1−→ Γ∗ ⊗ M∗ .

Here ι : (Γ//Λ)∗ → Γ∗ denotes the inclusion, ν : M∗ → Γ∗⊗M∗ denotes the comod-
ule coaction, and φ : Γ∗ ⊗ Γ∗ → Γ∗ denotes the product pairing.

Proof. The lift exists because Λ∗ is a quotient Hopf algebra of Γ∗. An inverse
is obtained by factoring the composite

Γ∗ !Λ∗ M∗
ι−→ Γ∗ ⊗ M∗

1⊗ν−→ Γ∗ ⊗ Γ∗ ⊗ M∗
1⊗χ⊗1−→ Γ∗ ⊗ Γ∗ ⊗ M∗

φ⊗1−→ Γ∗ ⊗ M∗ .

!
Proposition 2.10. Suppose we have chosen a sequence of Γ∗-comodules Rσ,

for σ ≥ 0, and an exact cochain complex

0 → k
η−→ (Γ//Λ)∗ ⊗ R0 δ0

−→ (Γ//Λ)∗ ⊗ R1 δ1

−→ (Γ//Λ)∗ ⊗ R2 δ2

−→ . . .

of Γ∗-comodules with diagonal Γ∗-coaction. Then there is a strongly convergent
trigraded spectral sequence

Eσ,s,t
1 = Exts−σ,t

Λ∗
(k, Rσ ⊗ M∗) =⇒σ Exts,t

Γ∗
(k, M∗) .

The dr-differentials have (σ, s, t)-tridegree (r, 1, 0), and there are isomorphisms

Eσ,s,t
∞

∼= F σ Exts,t(M∗)/F σ+1 Exts,t(M∗)

for all σ, s and t, where {F σ Exts,t(M∗)}σ is a finite and exhaustive filtration of
Exts,t

Γ∗
(k, M∗).

Proof. For each σ ≥ 0 we have a short exact sequence of Γ∗-comodules

0 → ker(δσ) ⊗ M∗ −→ (Γ//Λ)∗ ⊗ Rσ ⊗ M∗ −→ ker(δσ+1) ⊗ M∗ → 0 .

Note that k = ker(δ0). These induce long exact sequences

. . .
δ−→ Exts,t

Γ∗
(k, ker(δσ) ⊗ M∗) −→ Exts,t

Γ∗
(k, (Γ//Λ)∗ ⊗ Rσ ⊗ M∗)

−→ Exts,t
Γ∗

(k, ker(δσ+1) ⊗ M∗)
δ−→ Exts+1,t

Γ∗
(k, ker(δσ) ⊗ M∗) −→ . . .

for each σ ≥ 0. Rewriting Exts,t
Γ∗

(k, (Γ//Λ)∗ ⊗ Rσ ⊗ M∗) as Exts,t
Λ∗

(k, Rσ ⊗ M∗),
using Lemmas 2.8 and 2.9, we obtain the following exact couple:

(2.2) . . .
δ !! Exts−1,t

Γ∗
(k, ker(δ1) ⊗ M∗)

δ !!

""

Exts,t
Γ∗

(k, M∗)

η∗

""

Exts−1,t
Λ∗

(k, R1 ⊗ M∗)

//% % % % % % %

Exts,t
Λ∗

(k, R0 ⊗ M∗)

11& & & & & & & &

Here

Aσ,s,t = Exts−σ,t
Γ∗

(k, ker(δσ) ⊗ M∗)

Eσ,s,t = Exts−σ,t
Λ∗

(k, Rσ ⊗ M∗) .

The remainder of the proof follows that of Proposition 2.3. !
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Remark 2.11. When Γ is of finite type over k, and M and each Nσ is of
finite type and bounded below, we can let Γ∗ = Hom(Γ, k), Λ∗ = Hom(Λ, k),
M∗ = Hom(M, k) and Rσ = Hom(Nσ, k). Then (Γ//Λ)∗ = Hom(Γ//Λ, k), and the
spectral sequences of Propositions 2.3 and 2.10 are canonically isomorphic. If Γ is
finite, i.e., finite-dimensional over k, then we can omit the hypothesis that M and
the Nσ are bounded below.

2.3. A filtered cobar complex

We now give an alternative construction of the Davis–Mahowald spectral se-
quence, starting from a filtered cochain complex. For this purpose we will use
the cobar construction [1, §2], [145, 1.6] to obtain functorial injective resolutions.
The following discussion is dual to that of the two-sided bar construction and the
associated bar complex [56, §2], [119, §9].

Definition 2.12. Let Γ∗ be a connected coalgebra over k, with coproduct
ψ : Γ∗ → Γ∗⊗Γ∗ and counit ε : Γ∗ → k, let M∗ be a right Γ∗-comodule with coaction
ν : M∗ → M∗⊗Γ∗, and let N∗ be a left Γ∗-comodule with coaction ν : N∗ → Γ∗⊗N∗.
The two-sided cobar construction C•(M∗,Γ∗, N∗) is the cosimplicial graded k-vector
space with

Cp(M∗,Γ∗, N∗) = M∗ ⊗ Γ⊗p
∗ ⊗ N∗

in cosimplicial degree p, coface operators di : Cp−1(M∗,Γ∗, N∗) → Cp(M∗,Γ∗, N∗)
given by

di =






ν ⊗ 1⊗p for i = 0

1⊗i ⊗ ψ ⊗ 1⊗p−i for 0 < i < p

1⊗p ⊗ ν for i = p ,

and codegeneracy operators sj : Cp+1(M∗,Γ∗, N∗) → Cp(M∗,Γ∗, N∗) given by

sj = 1⊗j+1 ⊗ ε⊗ 1⊗p−j+1

for 0 ≤ j ≤ p. In these formulas, each tensor power of 1 refers to the identity map
of a number of copies of M∗, Γ∗ or N∗. The cobar construction is coaugmented by
the canonical map η : M∗ !Γ∗ N∗ → M∗ ⊗ N∗ = C0(M∗,Γ∗, N∗) from the coten-
sor product. In the special case when M∗ = Γ∗, viewed as a Γ∗-Γ∗-bicomodule,
the cobar construction C•(Γ∗,Γ∗, N∗) is a cosimplicial left Γ∗-comodule. The un-
derlying cosimplicial graded k-vector space admits a cosimplicial contraction to
Γ∗ !Γ∗ N∗ ∼= N∗.

The cobar complex C∗
Γ∗

(M∗, N∗) is the associated normalized cochain complex
of graded k-vector spaces, given by

Cp
Γ∗

(M∗, N∗) = M∗ ⊗ Γ̄⊗p
∗ ⊗ N∗ =

p−1⋂

j=0

ker(sj)

in degree p ≥ 0, with coboundary

δ =
p+1∑

i=0

(−1)idi : Cp
Γ∗

(M∗, N∗) −→ Cp+1
Γ∗

(M∗, N∗) .

Here Γ̄∗ = ker(ε) is the augmentation ideal of Γ∗. The cobar complex is coaug-
mented by η : M∗!Γ∗ N∗ → M∗⊗N∗ = C0

Γ∗
(M∗, N∗). In the special case M∗ = Γ∗,
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the cobar complex C∗
Γ∗

(Γ∗, N∗) admits a cochain contraction to N∗, and in each
degree

Cp
Γ∗

(Γ∗, N∗) = Γ∗ ⊗ Γ̄⊗p
∗ ⊗ N∗

is an extended Γ∗-comodule. Hence

0 → N∗
η−→ C0

Γ∗(Γ∗, N∗)
δ−→ C1

Γ∗(Γ∗, N∗)
δ−→ . . .

is an injective resolution of the left Γ∗-comodule N∗.
The isomorphisms of cochain complexes

k !Γ∗ C∗
Γ∗(Γ∗, N∗) ∼= C∗

Γ∗(k, N∗) ∼= HomΓ∗(k, C∗
Γ∗(Γ∗, N∗))

induce isomorphisms of graded k-vector spaces

Cotorp
Γ∗

(k, N∗) ∼= Hp(C∗
Γ∗(k, N∗), δ) ∼= Extp

Γ∗
(k, N∗)

upon passage to cohomology, for each p ≥ 0. In other words, Ext∗Γ∗(k, N∗) can be
calculated as the cohomology of the cobar complex with

Cp
Γ∗

(k, N∗) = Γ̄⊗p ⊗ N∗

for p ≥ 0 and

δ([γ1| . . . |γp]n) = [1|γ1| . . . |γp]n

+
p∑

i=1

(−1)i[γ1| . . . |γ′
i|γ′′

i | . . . |γp]n + (−1)p+1[γ1| . . . |γp|γ′]n′′ .

Here ψ(γi) =
∑

γ′
i ⊗ γ′′

i and ν(n) =
∑

γ′ ⊗ n′′, and these summations are implicit
in the formula. More generally, for each right Γ∗-comodule M∗, the isomorphism
M∗ !Γ∗ C∗

Γ∗
(Γ∗, N∗) ∼= C∗

Γ∗
(M∗, N∗) induces an isomorphism Cotorp

Γ∗
(M∗, N∗) ∼=

Hp(C∗
Γ∗

(M∗, N∗), δ) for each p ≥ 0.

Remark 2.13. The cobar complex C∗
Γ∗

(k, N∗) would be denoted Ω(Γ∗, N∗)
in the notation of [123, p. 75], and written as Ω(Γ∗) ⊗τ N∗ in the notation of
[80, §II.3]. In the special case N∗ = k, it is the construction denoted F (Γ∗) by
Adams [1], up to signs. The cobar resolution C∗

Γ∗
(Γ∗, N∗) agrees with the cobar

resolution of [144, Def. A1.2.11]. For right Γ∗-comodules, the cobar resolution
C∗

Γ∗
(M∗,Γ∗) is isomorphic to, but not equal to, the canonical resolution C(Γ∗, M∗)

of [45, Def. IV.1.1], cf. [119, Prop. 10.3].

We again specialize to the situation where Γ∗ is a connected Hopf algebra and
Λ∗ is a quotient Hopf algebra of Γ∗. With notation as in Proposition 2.10, the
quasi-isomorphism

η : k
∼−→ (Γ//Λ)∗ ⊗ R∗

induces a quasi-isomorphism of cobar complexes

η : C∗
Γ∗(k, M∗)

∼−→ C∗
Γ∗(k, (Γ//Λ)∗ ⊗ R∗ ⊗ M∗)

The object on the right hand side is the bigraded total complex of a trigraded bicom-
plex, with Cp

Γ∗
(k, (Γ//Λ)∗⊗Rσ⊗M∗) contributing to cohomological degree s = p+σ.

Definition 2.14. For each σ ≥ 0 let (Γ//Λ)∗ ⊗ R∗≥σ be the subcomplex of
(Γ//Λ)∗ ⊗ R∗ consisting of the terms (Γ//Λ)∗ ⊗ Rτ with τ ≥ σ, and let

F σC∗(M∗) = C∗
Γ∗(k, (Γ//Λ)∗ ⊗ R∗≥σ ⊗ M∗) .
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We obtain a filtered cochain complex

· · · ⊂ F 2C∗(M∗) ⊂ F 1C∗(M∗) ⊂ F 0C∗(M∗) = C∗
Γ∗(k, (Γ//Λ)∗ ⊗ R∗ ⊗ M∗)

with filtration quotients

F σC∗(M∗)/F σ+1C∗(M∗) = C∗
Γ∗(k, (Γ//Λ)∗ ⊗ ΣσRσ ⊗ M∗) .

Here ΣσRσ refers to Rσ located in cohomological degree σ. The associated exact
couple

(2.3) . . .
i !! H∗(F 1C∗(M∗))

i !!

j

""

H∗(F 0C∗(M∗))

j

""

H∗(F 1C∗(M∗)/F 2C∗(M∗))

k

22' ' ' ' ' ' ' '

H∗(F 0C∗(M∗)/F 1C∗(M∗))

k

33( ( ( ( ( ( ( ( ( (

gives rise to a trigraded spectral sequence with

Eσ,s,t
1 = Hs,t(F σC∗(M∗)/F σ+1C∗(M∗)) = Hs,t(C∗

Γ∗(k, (Γ//Λ)∗ ⊗ ΣσRσ ⊗ M∗))

= Exts−σ,t
Γ∗

(k, (Γ//Λ)∗ ⊗ Rσ ⊗ M∗) ∼= Exts−σ,t
Γ∗

(k,Γ∗ !Λ∗ (Rσ ⊗ M∗))

∼= Exts−σ,t
Λ∗

(k, Rσ ⊗ M∗)

and differentials
dr : Eσ,s,t

r −→ Eσ+r,s+1,t
r

characterized by dr([x]) = [j(y)] where k(x) = ir−1(y). It converges strongly to

Hs,t(F 0C∗(M∗)) = Hs,t(C∗
Γ∗(k, (Γ//Λ)∗ ⊗ R∗ ⊗ M∗))

∼= Hs,t(C∗
Γ∗(k, M∗)) = Exts,t

Γ∗
(k, M∗) .

Here Exts,t
Γ∗

(k, M∗) is filtered by the images F σ Exts,t(M∗) = im(iσ) of the homo-
morphisms

iσ : Hs,t(F σC∗(M∗)) −→ Hs,t(F 0C∗(M∗)) ,

and there are isomorphisms

Eσ,s,t
∞

∼= F σ Exts,t(M∗)/F σ+1 Exts,t(M∗)

for all σ ≥ 0. This is a finite filtration, since F σ Exts,t(M∗) = 0 for σ > s.

Definition 2.15. We call

Eσ,s,t
1 = Eσ,s,t

1 (M∗) = Exts−σ,t
Λ∗

(k, Rσ ⊗ M∗) =⇒σ Exts,t
Γ∗

(k, M∗)

the Davis–Mahowald spectral sequence for Γ∗ → Λ∗ with coefficients in M∗. It is
strongly convergent, with dr-differentials of (σ, s, t)-tridegree (r, 1, 0).

We prove in Theorem 2.24 that this spectral sequence is monoidal, in the
sense that pairings of Γ∗-comodules lead to pairings of Davis–Mahowald spectral
sequences. The dual statement for pairings of Γ-modules appears in Theorem 2.25.

Lemma 2.16. For each σ ≥ 0 there is a quasi-isomorphism

fσ : Σσ ker(δσ)
∼−→ (Γ//Λ)∗ ⊗ R∗≥σ

of complexes of Γ∗-comodules. Here Σσ ker(δσ) denotes the complex with ker(δσ)
concentrated in degree σ. The induced morphism of cobar complexes

fσ : C∗
Γ∗(k,Σσ ker(δσ) ⊗ M∗)

∼−→ F σC∗(M∗)

is also a quasi-isomorphism.
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Proof. The cohomology of the truncated complex (Γ//Λ)∗ ⊗ R∗≥σ is ker(δσ)
concentrated in degree σ. !

Lemma 2.17. In the diagram

Exts−σ−1
Γ∗

(k, ker(δσ+1) ⊗ M∗)

δ

""

fσ+1

!! Hs(F σ+1C∗(M∗))

i

""

Exts−σ
Γ∗

(k, ker(δσ) ⊗ M∗)

""

fσ

!! Hs(F σC∗(M∗))

j

""

Exts−σ
Γ∗

(k, (Γ//Λ)∗ ⊗ Rσ ⊗ M∗)

""

Hs(F σC∗(M∗)/F σ+1C∗(M∗))

k

""

Exts−σ
Γ∗

(k, ker(δσ+1) ⊗ M∗)
fσ+1

!! Hs+1(F σ+1C∗(M∗)) ,

with exact columns, the upper square commutes up to sign and the middle and lower
squares commute strictly, for each σ ≥ 0.

Proof. For brevity, let Tσ = (Γ//Λ)∗ ⊗ ΣσRσ ⊗ M∗, Zσ = Σσ ker(δσ) ⊗ M∗,
CpN∗ = Cp

Γ∗
(k, N∗) and s = p + σ. The homomorphisms in the upper square are

derived from the following diagram.

Cp−1Zσ+1 fσ+1

!! (C∗T ∗≥σ+1)s

""

i

""

Cp−1Tσ

1⊗δ

,,,,

δ⊗1
!! CpTσ

CpZσ fσ

!!

,,

,,

(C∗T ∗≥σ)s

Start with a (p − 1)-cocycle x ∈ Cp−1Zσ+1, i.e., an element with (δ ⊗ 1)(x) = 0 in
CpZσ+1. By exactness of

0 → Zσ −→ Tσ δ−→ Zσ+1 → 0

we have x = (1 ⊗ δ)(y) for some y ∈ Cp−1Tσ, and (δ ⊗ 1)(y) = z for some
z ∈ CpZσ. The image fσδ([x]) is then the class of z viewed as an s-cocycle in
C∗T ∗≥σ. On the other hand, ifσ+1([x]) is the class of x viewed as an s-cocycle in
C∗T ∗≥σ. We can also view y as an (s−1)-cochain in C∗T ∗≥σ, with total coboundary
(δ ⊗ 1 + 1 ⊗ δ)(y) = z + x. Hence [x] = −[z] in cohomology, so ifσ+1 = −fσδ.

The middle square is derived from the following commutative square, hence
commutes strictly.

CpZσ fσ

!!

""

""

(C∗T ∗≥σ)s

j
""""

CpTσ = !! (C∗Tσ)s
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The lower square is derived from the following diagram.

CpTσ = !!

1⊗δ

""""

(C∗Tσ)s

(C∗T ∗≥σ)s

j

,,,,

δ⊗1+1⊗δ
!! (C∗T ∗≥σ)s+1

CpZσ+1 fσ+1

!! (C∗T ∗≥σ+1)s+1

,,
i

,,

Start with a p-cocycle x ∈ CpTσ, meaning that (δ ⊗ 1)(x) = 0 in Cp+1Tσ. Letting
y = x as an element in CpTσ ⊂ (C∗T ∗≥σ)s, we have j(y) = x and (δ⊗1+1⊗δ)(y) =
(1 ⊗ δ)(x) = z where z ∈ CpZσ+1 ⊂ (C∗T ∗≥σ+1)s+1. Hence both composites in
the lower square map [x] to [z]. !

Proposition 2.18. The Davis–Mahowald spectral sequence of Definition 2.15
agrees, up to signs in the differentials, with the spectral sequences in Propositions 2.3
and 2.10.

Proof. By Lemma 2.17, the exact couples (2.1) and (2.2) agree up to signs
with the exact couple (2.3). !

2.4. Multiplicative structure

In the setting they studied, Davis and Mahowald verified through case-by-case
calculation [52, pp. 322–325] that their spectral sequence is an algebra spectral
sequence. With our modified construction, this is an instance of the standard
algebra spectral sequence associated to a filtered differential graded (DG) algebra.

Definition 2.19. Let Γ∗ be a connected coalgebra over k, and let M∗ and N∗ be
right and left Γ∗-comodules, respectively. Likewise, let Γ′

∗ be a connected coalgebra
and let M ′

∗ and N ′
∗ be right and left Γ′

∗-comodules. There is an Alexander–Whitney
chain map

f : C∗
Γ∗(M∗, N∗) ⊗ C∗

Γ′
∗
(M ′

∗, N
′
∗) −→ C∗

Γ∗⊗Γ′
∗
(M∗ ⊗ M ′

∗, N∗ ⊗ N ′
∗)

given for p, q ≥ 0 by the composite

Cp(M∗,Γ∗, N∗) ⊗ Cq(M ′
∗,Γ

′
∗, N

′
∗)

λp⊗ρq−→ Cp+q(M∗,Γ∗, N∗) ⊗ Cp+q(M ′
∗,Γ

′
∗, N

′
∗)

τ∼= Cp+q(M∗ ⊗ M ′
∗,Γ∗ ⊗ Γ′

∗, N∗ ⊗ N ′
∗)

where λp = dp+q · · · dp+1 and ρq = d0 · · · d0 are the front p-coface and back q-coface
operators, respectively, and the right hand isomorphism τ is given by a shuffle
permutation. More explicitly,

m[γ1| . . . |γp]n ⊗ m′[γ′
1| . . . |γ′

q]n
′

in M∗ ⊗ Γ⊗p
∗ ⊗ N∗ ⊗ M ′

∗ ⊗ Γ′
∗
⊗q ⊗ N ′

∗ maps by f to

(2.4) ±m ⊗ m′
0[γ1 ⊗ m′

1| . . . |γp ⊗ m′
p|n1 ⊗ γ′

1| . . . |nq ⊗ γ′
q]nq+1 ⊗ n′

in M∗ ⊗ M ′
∗ ⊗ (Γ∗ ⊗ Γ′

∗)
⊗p+q ⊗ N∗ ⊗ N ′

∗. Here the sign is that induced by τ , the
iterated coactions νq : N∗ → Γ⊗q

∗ ⊗ N∗ and νp : M ′
∗ → M ′

∗ ⊗ Γ′
∗
⊗p are given on n
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and m′ by νq(n) =
∑

n1 ⊗ · · · ⊗ nq ⊗ nq+1 and νp(m′) =
∑

m′
0 ⊗ m′

1 ⊗ · · · ⊗ m′
p,

and the latter two summations are implicit in (2.4).
When M∗ = Γ∗ and M ′

∗ = Γ′
∗, the Alexander–Whitney map is a chain equiv-

alence between two injective Γ∗ ⊗ Γ′
∗-comodule resolutions of N∗ ⊗ N ′

∗. Hence the
Alexander–Whitney map

f : C∗
Γ∗(k, N∗) ⊗ C∗

Γ′
∗
(k, N ′

∗) −→ C∗
Γ∗⊗Γ′

∗
(k, N∗ ⊗ N ′

∗)

for M∗ = k and M ′
∗ = k induces the standard external pairing

Extp
Γ∗

(k, N∗) ⊗ Extq
Γ′
∗
(k, N ′

∗) −→ Extp+q
Γ∗⊗Γ′

∗
(k, N∗ ⊗ N ′

∗)

by passage to cohomology.
When Γ∗ = Γ′

∗ is a Hopf algebra, we can internalize the pairing above by
composing f with the chain map C∗

Γ∗⊗Γ∗
(k, N∗ ⊗ N ′

∗) → C∗
Γ∗

(k, N∗ ⊗ N ′
∗) induced

by the algebra multiplication φ : Γ∗ ⊗ Γ∗ → Γ∗. The composite chain map

φf : C∗
Γ∗(k, N∗) ⊗ C∗

Γ∗(k, N ′
∗) −→ C∗

Γ∗(k, N∗ ⊗ N ′
∗)

takes

[γ1| . . . |γp]n ⊗ [γ′
1| . . . |γ′

q]n
′

in Γ⊗p
∗ ⊗ N∗ ⊗ Γ⊗q

∗ ⊗ N ′
∗ to

(2.5) ±[γ1| . . . |γp|n1γ
′
1| . . . |nqγ

′
q]nq+1 ⊗ n′

in Γ⊗p+q
∗ ⊗N∗⊗N ′

∗. As before the sign is that induced by τ , and the q-fold iterated
coaction νq : N∗ → Γ⊗q

∗ ⊗ N∗ is given by νq(n) =
∑

n1 ⊗ · · · ⊗ nq ⊗ nq+1, with
n1, . . . , nq ∈ Γ∗ and nq+1 ∈ N∗. This defines the internal pairing

Extp
Γ∗

(k, N∗) ⊗ Extq
Γ∗

(k, N ′
∗) −→ Extp+q

Γ∗
(k, N∗ ⊗ N ′

∗) .

Finally, if N∗ = N ′
∗ is a Γ∗-comodule algebra, composition with the chain map

µ : C∗
Γ∗

(k, N∗ ⊗ N∗) −→ C∗
Γ∗

(k, N∗) ,

induced by the multiplication µ : N∗ ⊗ N∗ → N∗, defines a product that makes
Ext∗Γ∗(k, N∗) a bigraded algebra.

Remark 2.20. Formula (2.4) is given in [144, A1.2.15], and the special case
with M∗ = k = M ′

∗ is given in [123, (1.3)]. If N∗ = k, the product (2.5) simplifies
to

[γ1| . . . |γp] ⊗ [γ′
1| . . . |γ′

q]n
′ 2−→ [γ1| . . . |γp|γ′

1| . . . |γ′
q]n

′

so that the algebra structure in Ext∗Γ∗(k, k) and the left module pairing

Ext∗Γ∗(k, k) ⊗ Ext∗Γ∗(k, N ′
∗) −→ Ext∗Γ∗(k, N ′

∗)

are induced by juxtaposition, as in [3, p. 33] and [126, §3].

We return to the situation where Γ∗ is a connected Hopf algebra, and Λ∗ is
a quotient Hopf algebra of Γ∗. The right coaction ν : Γ∗ → Γ∗ ⊗ Λ∗ and the left
coaction ν : k → Λ∗⊗k are both algebra homomorphisms, so the equalizer diagram

Γ∗ ⊗ k
ν⊗1

!!

1⊗ν
!! Γ∗ ⊗ Λ∗ ⊗ k

defining (Γ//Λ)∗ = Γ∗ !Λ∗ k exhibits (Γ//Λ)∗ as a sub Γ∗-comodule algebra of Γ∗.
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Proposition 2.21. Suppose that R∗ is a graded Γ∗-comodule algebra, and that
there are differentials δσ : (Γ//Λ)∗ ⊗ Rσ → (Γ//Λ)∗ ⊗ Rσ+1 making (Γ//Λ)∗ ⊗ R∗,
with the diagonal Γ∗-coaction, a differential graded Γ∗-comodule algebra. Suppose
also that the unit map

η : k
∼−→ (Γ//Λ)∗ ⊗ R∗

is a quasi-isomorphism. Then there is a pairing of spectral sequences

Eσ,s,t
r (M∗) ⊗ Eσ′,s′,t′

r (M ′
∗) −→ Eσ+σ′,s+s′,t+t′

r (M∗ ⊗ M ′
∗) ,

converging to

Exts,t
Γ∗

(k, M∗) ⊗ Exts′,t′

Γ∗
(k, M ′

∗) −→ Exts+s′,t+t′

Γ∗
(k, M∗ ⊗ M ′

∗) .

The pairing of E1-terms

Exts−σ,t
Γ∗

(k, (Γ//Λ)∗ ⊗ Rσ ⊗ M∗) ⊗ Exts′−σ′,t′

Γ∗
(k, (Γ//Λ)∗ ⊗ Rσ′

⊗ M ′
∗)

−→ Exts−σ+s′−σ′,t+t′

Γ∗
(k, (Γ//Λ)∗ ⊗ Rσ+σ′

⊗ M∗ ⊗ M ′
∗)

is induced by the pairing

(2.6) (Γ//Λ)∗ ⊗ Rσ ⊗ (Γ//Λ)∗ ⊗ Rσ′
−→ (Γ//Λ)∗ ⊗ Rσ+σ′

obtained from the product on (Γ//Λ)∗ and the multiplication Rσ ⊗ Rσ′ → Rσ+σ′
.

In particular, if M∗ is a Γ∗-comodule algebra then

Eσ,s,t
1 (M∗) = Exts−σ,t

Γ∗
(k, (Γ//Λ)∗ ⊗ Rσ ⊗ M∗) =⇒σ Exts,t

Γ∗
(k, M∗)

is an algebra spectral sequence.

Proof. By assumption, the unit map k → R0, the multiplications Rσ⊗Rσ′ →
Rσ+σ′

and the differential δσ : (Γ//Λ)∗ ⊗ Rσ → (Γ//Λ)∗ ⊗ Rσ+1 are Γ∗-comodule
homomorphisms, the differential satisfies δδ = 0 and δ(x · y) = δx · y + (−1)|x|x · δy
for x in degree |x| = t − σ, and the cochain complex

0 → k
η−→ (Γ//Λ)∗ ⊗ R0 δ0

−→ (Γ//Λ)∗ ⊗ R1 δ1

−→ (Γ//Λ)∗ ⊗ R2 δ2

−→ . . .

is exact. Hence
C∗

Γ∗(k, (Γ//Λ)∗ ⊗ R∗)

is a differential graded algebra, and the unit map

η : C∗
Γ∗(k, k) −→ C∗

Γ∗(k, (Γ//Λ)∗ ⊗ R∗)

is a quasi-isomorphism. The Γ∗-comodule pairing

R∗≥σ ⊗ R∗≥σ′
−→ R∗≥σ+σ′

induces a pairing of cochain complexes

F σC∗(M∗) ⊗ F σ′
C∗(M ′

∗) −→ F σ+σ′
C∗(M∗ ⊗ M ′

∗) .

For varying σ and σ′, these combine to a pairing of filtered cochain complexes.
It follows, as in [113, §7, §8], that there is an induced pairing of the associated
spectral sequences. !

Lemma 2.22. If Γ∗ is commutative, then the pairing (2.6) corresponds under
the twisting isomorphisms ζ∗ for Rσ, Rσ′

and Rσ+σ′
to the Γ∗-comodule pairing

(2.7) (Γ∗ !Λ∗ Rσ) ⊗ (Γ∗ !Λ∗ Rσ′
) −→ Γ∗ !Λ∗ Rσ+σ′

induced by the product φ on Γ∗ and the pairing φ : Rσ ⊗ Rσ′ → Rσ+σ′
.
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Proof. When Γ∗ is commutative, the diagram

Γ∗ ⊗ Rσ ⊗ Γ∗ ⊗ Rσ′ 1⊗τ⊗1
!!

1⊗ν⊗1⊗ν

""

Γ∗ ⊗ Γ∗ ⊗ Rσ ⊗ Rσ′ φ⊗φ
!! Γ∗ ⊗ Rσ+σ′

1⊗ν

""

Γ∗ ⊗ Γ∗ ⊗ Rσ ⊗ Γ∗ ⊗ Γ∗ ⊗ Rσ′

φ⊗1⊗φ⊗1

""

Γ∗ ⊗ Γ∗ ⊗ Rσ+σ′

φ⊗1

""

Γ∗ ⊗ Rσ ⊗ Γ∗ ⊗ Rσ′ 1⊗τ⊗1
!! Γ∗ ⊗ Γ∗ ⊗ Rσ ⊗ Rσ′ φ⊗φ

!! Γ∗ ⊗ Rσ+σ′

commutes. Here τ denotes the symmetry isomorphism. Hence the induced square

(Γ//Λ)∗ ⊗ Rσ ⊗ (Γ//Λ)∗ ⊗ Rσ′ (2.6)
!!

ζ∗⊗ζ∗ ∼=
""

(Γ//Λ)∗ ⊗ Rσ+σ′

ζ∗∼=
""

Γ∗ !Λ∗ Rσ ⊗ Γ∗ !Λ∗ Rσ′ (2.7)
!! Γ∗ !Λ∗ Rσ+σ′

and its generalization

(Γ//Λ)∗ ⊗ Rσ ⊗ M∗ ⊗ (Γ//Λ)∗ ⊗ Rσ′ ⊗ M ′
∗

!!

ζ∗⊗ζ∗ ∼=
""

(Γ//Λ)∗ ⊗ Rσ+σ′ ⊗ M∗ ⊗ M ′
∗

ζ∗∼=
""

Γ∗ !Λ∗ (Rσ ⊗ M∗) ⊗ Γ∗ !Λ∗ (Rσ′ ⊗ M ′
∗) !! Γ∗ !Λ∗ (Rσ+σ′ ⊗ M∗ ⊗ M ′

∗)

commute. !
Lemma 2.23. Under the change-of-coalgebra isomorphisms, the pairing

ExtΛ∗(k, Rσ ⊗ M∗) ⊗ ExtΛ∗(k, Rσ′
⊗ M ′

∗) −→ ExtΛ∗(k, Rσ+σ′
⊗ M∗ ⊗ M ′

∗)

induced by Rσ ⊗ Rσ′ → Rσ+σ′
corresponds to the pairing

ExtΓ∗(k,Γ∗ !Λ∗ (Rσ ⊗ M∗)) ⊗ ExtΓ∗(k,Γ∗ !Λ∗ (Rσ′
⊗ M ′

∗))

−→ ExtΓ∗(k,Γ∗ !Λ∗ (Rσ+σ′
⊗ M∗ ⊗ M ′

∗))

that is induced by (2.7) and its generalization.

Proof. This follows from the adjunctions underlying the change-of-coalgebra
isomorphisms. !

Theorem 2.24. Let Γ∗ be a connected, commutative Hopf algebra over a field k,
and let Λ∗ be a quotient Hopf algebra of Γ∗. Suppose that R∗ is a graded Γ∗-
comodule algebra, and that

η : k
∼−→ ((Γ//Λ)∗ ⊗ R∗, δ)

is a differential (cohomologically) graded Γ∗-comodule algebra resolution of k, where
each term (Γ//Λ)∗ ⊗ Rσ has the diagonal Γ∗-comodule structure. Let M∗ and M ′

∗
be Γ∗-comodules. Then there is a pairing of trigraded spectral sequences

Eσ,s,t
r (M∗) ⊗ Eσ′,s′,t′

r (M ′
∗) −→ Eσ+σ′,s+s′,t+t′

r (M∗ ⊗ M ′
∗)

converging to

Exts,t
Γ∗

(k, M∗) ⊗ Exts′,t′

Γ∗
(k, M ′

∗) −→ Exts+s′,t+t′

Γ∗
(k, M∗ ⊗ M ′

∗) .
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The pairing of E1-terms

Exts−σ,t
Λ∗

(k, Rσ ⊗ M∗) ⊗ Exts′−σ′,t′

Λ∗
(k, Rσ′

⊗ M ′
∗)

−→ Exts−σ+s′−σ′,t+t′

Λ∗
(k, Rσ+σ′

⊗ M∗ ⊗ M ′
∗)

is induced by the component Rσ ⊗ Rσ′ −→ Rσ+σ′
of the graded algebra structure

on R∗. In particular, if M∗ is a Γ∗-comodule algebra then

Eσ,s,t
1 (M∗) = Exts−σ,t

Λ∗
(k, Rσ ⊗ M∗) =⇒σ Exts,t

Γ∗
(k, M∗)

is an algebra spectral sequence.

Proof. Combine Proposition 2.21 with Lemmas 2.22 and 2.23. !

Before we give the dual statement, note that the arrows in the coequalizer
diagram defining Γ//Λ = Γ ⊗Λ k are coalgebra homomorphisms, so that Γ//Λ is a
quotient Γ-module coalgebra of Γ.

Theorem 2.25. Let Γ be a connected, cocommutative Hopf algebra over a
field k, and let Λ be a sub Hopf algebra of Γ. Suppose that N∗ is a graded Γ-module
coalgebra, and that

ε : (Γ//Λ⊗ N∗, ∂)
∼−→ k

is a differential (homologically) graded Γ-module coalgebra resolution of k, where
each term Γ//Λ ⊗ Nσ has the diagonal Γ-module structure. Let M and M ′ be
Γ-modules. Then there is a pairing of trigraded spectral sequences

Eσ,s,t
r (M) ⊗ Eσ′,s′,t′

r (M ′) −→ Eσ+σ′,s+s′,t+t′

r (M ⊗ M ′)

converging to

Exts,t
Γ (M, k) ⊗ Exts′,t′

Γ (M ′, k) −→ Exts+s′,t+t′

Γ (M ⊗ M ′, k) .

The pairing of E1-terms

Exts−σ,t
Λ (Nσ ⊗ M, k) ⊗ Exts′−σ′,t′

Λ (Nσ′ ⊗ M ′, k)

−→ Exts−σ+s′−σ′,t+t′

Λ (Nσ+σ′ ⊗ M ⊗ M ′, k)

is induced by the component Nσ+σ′ → Nσ ⊗ Nσ′ of the graded coalgebra structure
on N∗. In particular, if M is a Γ-module coalgebra then

Eσ,s,t
1 (M) = Exts−σ,t

Λ (Nσ ⊗ M, k) =⇒σ Exts,t
Γ (M, k)

is an algebra spectral sequence.

We omit the proof, which is similar to that in the Γ∗-comodule case, using the
bar construction in place of the cobar construction. When Γ is finite-dimensional
over k, and each of Nσ, M and M ′ is of finite type, then Lemma 2.6 shows that the
two statements are equivalent. If Γ is just of finite type, then we must also assume
that Nσ, M and M ′ are bounded below.

Remark 2.26. When (Γ//Λ)∗ = E∗ = E(e1, . . . , en) is an exterior algebra on
n generators we can let R∗ = k[x1, . . . , xn] be a polynomial algebra on the same
number of generators and equip

E∗ ⊗ R∗ = E(e1, . . . , en) ⊗ k[x1, . . . , xn]
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with the differential d given by d(ei) = xi for 1 ≤ i ≤ n. From d2 = 0 it follows
that d(xi) = 0. If we give E∗ ⊗ R∗ a homological grading, with each ei in degree 1
and each xi in degree 0, then the underlying exact chain complex

0 → En ⊗ R∗ d−→ En−1 ⊗ R∗ d−→ . . .
d−→ E1 ⊗ R∗ d−→ E0 ⊗ R∗ ε−→ k → 0

is the Koszul resolution associated to the regular sequence (x1, . . . , xn). If we
instead give E∗⊗R∗ a cohomological grading, with each ei in degree 0 and each xi

in degree 1, then the underlying exact cochain complex

0 → k
η−→ E∗ ⊗ R0 d−→ E∗ ⊗ R1 d−→ E∗ ⊗ R2 d−→ . . .

is a resolution of the sort considered by Davis–Mahowald. In this sense a Davis–
Mahowald resolution can arise as a modified Koszul resolution, and justifies the
name “Koszul spectral sequence” used in [106]. We use the name “Davis–Mahowald
spectral sequence” to acknowledge the origin of its construction, and to allow for the
more general case where η : k → (Γ//Λ)∗⊗R∗ is not necessarily a Koszul resolution.

2.5. The spectral sequence for A(1)

As a warm-up to the calculation in Chapter 3, we first consider a simpler case.
Let k = F2, and consider the subalgebras A(1) = 〈Sq1, Sq2〉 and A(0) = E(Sq1) of
the mod 2 Steenrod algebra A, which are generated by Sq1 and Sq2, and by Sq1,
respectively. These are connected, cocommutative sub Hopf algebras of A, with
dual Hopf algebras

A(1)∗ = F2[ξ1, ξ̄2]/(ξ4
1 , ξ̄2

2)

and
A(0)∗ = F2[ξ1]/(ξ2

1) = E(ξ1) .

The coproduct in A(1)∗ is given by

ψ(ξ1) = 1 ⊗ ξ1 + ξ1 ⊗ 1

ψ(ξ̄2) = 1 ⊗ ξ̄2 + ξ1 ⊗ ξ2
1 + ξ̄2 ⊗ 1

so that (A(1)//A(0))∗ = E(ξ2
1 , ξ̄2) as a sub A(1)∗-comodule algebra of A(1)∗. In

this section, let R∗ = F2[x2, x3] be the graded A(1)∗-comodule algebra with xi in
internal degree i and cohomological degree 1, having coaction given by

ν(x2) = 1 ⊗ x2

ν(x3) = 1 ⊗ x3 + ξ1 ⊗ x2 .

We equip
(A(1)//A(0))∗ ⊗ R∗ = E(ξ2

1 , ξ̄2) ⊗ F2[x2, x3]

with the diagonal A(1)∗-comodule algebra structure. It becomes a differential
graded A(1)∗-comodule algebra with the differential δ given by

δ(ξ2
1) = x2

δ(ξ̄2) = x3 ,

and the resulting cochain complex

0 → F2
η−→ E(ξ2

1 , ξ̄2) ⊗ R0 δ0

−→ E(ξ2
1 , ξ̄2) ⊗ R1 δ1

−→ E(ξ2
1 , ξ̄2) ⊗ R2 δ2

−→ . . .

is exact. Here
Rσ = F2{xi

2x
j
3 | i + j = σ}
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is the A(1)∗-comodule of homogeneous polynomials in F2[x2, x3] of degree σ.
The Davis–Mahowald spectral sequence for A(1)∗ → A(0)∗ with coefficients

in F2 is thus the algebra spectral sequence

Eσ,s,t
1 = Exts−σ,t

A(0)∗
(F2, R

σ) =⇒σ Exts,t
A(1)∗

(F2, F2) .

Recall that for a Γ∗-comodule M∗ the group Ext0,∗
Γ∗

(k, M∗) consists of the Γ∗-
comodule primitives in M∗, i.e., the elements x ∈ M∗ with ν(x) = 1 ⊗ x. We note
that x2 and x2

3 are A(0)∗-comodule primitives, and that R∗ is free as a module over
F2[x2

3]. We obtain an extension of graded A(0)∗-comodule algebras

F2[x
2
3] −→ R∗ −→ R̄∗

where, by definition,

R̄∗ = R∗ ⊗F2[x2
3]

F2 = R∗/(x2
3) = F2[x2, x3]/(x2

3) .

Here R̄0 = F2{1} ∼= F2, and

R̄σ = F2{xσ
2 , xσ−1

2 x3} ∼= Σ2σA(0)∗

for σ ≥ 1. Hence we obtain an extension of trigraded algebras

F2[x
2
3] −→ E∗,∗,∗

1 −→ Ē∗,∗,∗
1

where E∗,∗,∗
1 is free as a module over F2[x2

3]. By abuse of notation,

Ēσ,s,t
1 = Exts−σ,t

A(0)∗
(F2, R̄

σ)

is given by
Ē0,∗,∗

1
∼= Ext∗,∗

A(0)∗
(F2, F2) = F2[h0]

and
Ēσ,∗,∗

1
∼= Ext∗−σ,∗

A(0)∗
(F2,Σ

2σA(0)∗) ∼= F2{xσ
2}

for σ ≥ 1. Here h0 ∈ Ē0,1,1
1 = Ext1,1

A(0)∗
(F2, F2) corresponds to the coalgebra

primitive ξ1 dual to Sq1. We write xσ
2 for the class in Ēσ,σ,2σ

1 that corresponds to
xσ

2 ∈ Ext0,2σ
A(0)∗

(F2, R̄σ). Thus,

E∗,∗,∗
1 = F2[h0, x2, x

2
3]/(h0x2)

with generators in (σ, s, t)-degrees |h0| = (0, 1, 1), |x2| = (1, 1, 2) and |x2
3| = (2, 2, 6).

The algebra extension E1 → Ē1 splits, because h0x2 lies in weight σ = 1, where
(x2

3) is trivial.

Lemma 2.27. d1(h0) = 0, d1(x2) = 0 and d1(x2
3) = x3

2.

Proof. The target groups of the first two differentials, E1,2,1
1 and E2,2,2

1 , are
both zero. The differential d1 : E2,2,6

1 → E3,3,6
1 is the homomorphism

δ2
∗ : Ext0,6

A(1)∗
(F2, (A(1)//A(0))∗ ⊗ R2) −→ Ext0,6

A(1)∗
(F2, (A(1)//A(0))∗ ⊗ R3)

induced by δ2. In internal degree 6 the only nonzero A(1)∗-comodule primitive
in (A(1)//A(0))∗ ⊗ R2 is ξ2

1x2
2 + x2

3, which is mapped by δ2 to the nonzero A(1)∗-
comodule primitive δ(ξ2

1)x2
2+0 = x3

2 in (A(1)//A(0))∗⊗R3. Hence d1(x2
3) = x3

2. !
Lemma 2.28.

E∗,∗,∗
2 = F2[h0, x2, h0x

2
3, x

4
3]/(h0x2, x

3
2, x2(h0x

2
3), (h0x

2
3)

2 − h2
0(x

4
3))

is equal to E∗,∗,∗
∞ .
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Proof. See Figures 2.1 and 2.2. The differentials dr(x2) lie in the groups
E1+r,2,2

r , which are trivial. !

Proposition 2.29.

ExtA(1)(F2, F2) ∼= ExtA(1)∗(F2, F2) ∼= F2[h0, h1, v, w1]/(h0h1, h
3
1, h1v, v2 − h2

0w1)

with (t − s, s)-bigradings |h0| = (0, 1), |h1| = (1, 1), |v| = (4, 3) and |w1| = (8, 4).

Proof. There are unique classes h0, h1, v and w1 in ExtA(1)∗(F2, F2) that are
detected by h0, x2, h0x2

3 and x4
3 in E∗,∗,∗

∞ , respectively. Each multiplicative relation
in Eσ,s,t

∞ lifts unchanged to Exts,t
A(1)∗

(F2, F2), since in each case there are no classes

in E∗,s,t
∞ of higher weight than σ. See Figure 2.3. !

2.6. Real, quaternionic and complex K-theory spectra

Having calculated ExtA(1)(F2, F2), we round off this chapter with some exam-
ples of spectra with mod 2 cohomology induced up from various A(1)-modules,
namely the connective topological K-theory spectra. To each permutative (or sym-
metric monoidal) topological category (C,⊕) one can associate a K-theory spec-
trum K(C) [151], [120], [59, Thm. 1.1]. When (C,⊕,⊗) is bipermutative (or sym-
metric bimonoidal), the K-theory spectrum becomes an E∞ ring spectrum [121],
[59, Thm. 1.2]. Furthermore, if D is a suitably defined module category over C,
then K(D) is a module spectrum over K(C), see [59, §9].

Example 2.30. The connective real K-theory spectrum ko is the K-theory
spectrum of a bipermutative topological category GL(R) [121, Ex. VI.5.4] equiv-
alent to the symmetric bimonoidal topological category of finite dimensional real
vector spaces, with respect to the usual direct sum and tensor product. It is an
E∞ ring spectrum with mod 2 cohomology

H∗(ko) = A/A(Sq1, Sq2) = A ⊗A(1) F2 = A//A(1)

and mod 2 homology

H∗(ko) = A∗ !A(1)∗ F2 = F2[ξ
4
1 , ξ̄2

2 , ξ̄i | i ≥ 3] ,

see [163, Thm. A] or Proposition 16.6 of [9, Part III]. The Adams spectral sequence

Es,t
2 (ko) = Exts,t

A∗
(F2, H∗(ko)) =⇒s πt−s(ko)∧2

is an algebra spectral sequence with E2-term

ko∗,∗ = Ext∗,∗
A∗

(F2, A∗ !A(1)∗ F2) ∼= Ext∗,∗
A(1)∗

(F2, F2)

= F2[h0, h1, v, w1]/(h0h1, h
3
1, h1v, v2 − h2

0w1) .

See Figure 2.3. The classes h0 and h1 in (t − s, s)-bidegrees (0, 1) and (1, 1) are
dual to Sq1 and Sq2, respectively. The Adams spectral sequence collapses at the
E2-term, and converges to

π∗(ko)∧2 = Z2[η, A, B]/(2η, η3, ηA, A2 − 4B) ,

where η, A and B, in topological degrees 1, 4 and 8, are detected by h1, v and w1,
respectively. By real Bott periodicity, Σ8ko is equivalent to the 7-connected cover
bstring of real K-theory, and π∗(ko) = Z[η, A, B]/(2η, η3, ηA, A2 − 4B), before
2-adic completion.
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Figure 2.1. (E1, d1)-term of Davis–Mahowald spectral sequence
for A(1)
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Figure 2.2. E2 = E∞-term of Davis–Mahowald spectral sequence
for A(1)
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0 4 8 12
0

4

8

t − s

s

h0
h1

v

w1

v2 = h2
0w1

vw1

Figure 2.3. E2-term ko∗,∗ = Ext∗,∗
A(1)(F2, F2) of Adams spectral

sequence for ko

Example 2.31. There is a tower of ko-modules

Σ8ko
i !! bspin

i !!

j

""

bso
i !!

j

""

bo
i !!

j

""

ko

j

""

Σ4HZ
k

44)
)
)
)
)

Σ2H

k

55)
)
)
)

ΣH

k

66*
*
*
*
*

HZ
k

77+
+
+
+
+

relating the 0-, 1- and 3-connected covers bo, bso and bspin of real K-theory. The
dashed arrows represent maps of degree −1. The induced long exact sequences in
cohomology break up into short exact sequences of A-modules

0 → ΣH∗(bo)
k∗
−→ H∗(HZ)

j∗

−→ H∗(ko) → 0

0 → ΣH∗(bso)
k∗
−→ ΣH∗(H)

j∗

−→ H∗(bo) → 0

0 → ΣH∗(bspin)
k∗
−→ Σ2H∗(H)

j∗

−→ H∗(bso) → 0

0 → ΣH∗(Σ8ko)
k∗
−→ Σ4H∗(HZ)

j∗

−→ H∗(bspin) → 0 ,

with H∗(H) = A and H∗(HZ) = A/A(Sq1) = A//A(0). These are induced up
along A(1) ⊂ A from the following short exact sequences of A(1)-modules

0 → Σ2A(1)/A(1)(Sq2)
Sq2

−→ A(1)//A(0) −→ F2 → 0

0 → Σ3A(1)/A(1)(Sq3)
Sq2

−→ ΣA(1) −→ ΣA(1)/A(1)(Sq2) → 0

0 → Σ5A(1)/A(1)(Sq1, Sq2Sq3)
Sq3

−→ Σ2A(1) −→ Σ2A(1)/A(1)(Sq3) → 0
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0 → Σ9F2
Sq2Sq3

−→ Σ4A(1)//A(0) −→ Σ4A(1)/A(1)(Sq1, Sq2Sq3) → 0 ,

which can be spliced together as in the following diagram.

0

88,,
,,
,,
,

Σ12F2

88,,
,,
,

0

99-
--

--
-- Σ7A(1)//A(0)

88,,
,,
,

Σ7A(1)/A(1)(Sq1, Sq2Sq3)

88,,
,,
,,
,

99-
--

--

0 Σ4A(1)

99-
--

--
0

88,,
,,
,,
,

Σ4A(1)/A(1)(Sq3)

99-
--

--
--

88,,
,,
,

0

99-
--

--
-- Σ2A(1)

88,,
,,
,

0

Σ2A(1)/A(1)(Sq2)

88,,
,,
,,
,

99-
--

--

0 A(1)//A(0)

99-
--

--
-

F2

99-
--

--
--

-

0

Hence

H∗(bo) = ΣA/A(Sq2)

H∗(bso) = Σ2A/A(Sq3)

H∗(bspin) = Σ4A/A(Sq1, Sq2Sq3) ,

as was proved by Stong [163, Thm. A]. The exactness of the underlying algebraic
sequences of A-modules was established earlier by Toda in [170, Thm. I]. See also
Figure 2.4, where the short and long solid arrows show the nonzero multiplications
by Sq1 and Sq2, respectively, and the dotted arrows show the nonzero homomor-
phisms in the diagram above.

Example 2.32. The connective quaternionic K-theory spectrum ksp is the
K-theory spectrum of a permutative topological category GL(H) [121, Ex. VI.5.4]
equivalent to the symmetric monoidal topological category of finite-dimensional
(right) quaternionic vector spaces, with respect to their usual direct sum. The ten-
sor product of real and quaternionic vector spaces makes ksp a ko-module spectrum.
By real Bott periodicity, ksp satisfies Σ4ksp - bspin. Hence

H∗(ksp) = A/A(Sq1, Sq2Sq3)
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Figure 2.4. Spliced A(1)-extensions
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Figure 2.5. E2-term ksp∗,∗ = Ext∗,∗
A(1)(F2{1, Sq2, Sq3}, F2) of

Adams spectral sequence for ksp

is induced up along A(1) ⊂ A from

A(1)/A(1)(Sq1, Sq2Sq3) = F2{1, Sq2, Sq3} .

Dually,
H∗(ksp) = A∗ !A(1)∗ F2{1, ξ2

1 , ξ̄2} .

The Adams spectral sequence

Es,t
2 (ksp) = Exts,t

A∗
(F2, H∗(ksp)) =⇒s πt−s(ksp)∧2

is a module spectral sequence over the Adams spectral sequence for ko, with E2-
term

ksp∗,∗ = Ext∗,∗
A∗

(F2, A∗ !A(1)∗ F2{1, ξ2
1 , ξ̄2})

∼= Ext∗,∗
A(1)∗

(F2, F2{1, ξ2
1 , ξ̄2})

= F2[w1]{hi
0, h

i
0v

′, h1v
′, h2

1v
′ | i ≥ 0}

= ko∗,∗{1, v′}/(h1 · 1, v · 1 − h2
0 · v′, v · v′ − w1 · 1) .

Here v′ has (t − s, s)-bidegree |v′| = (4, 1), see Figure 2.5. (This can be verified
using the Davis–Mahowald spectral sequence for A(1)∗ → A(0)∗ with coefficients in
F2{1, ξ2

1 , ξ̄2}, which we leave as an exercise for the interested reader.) The Adams
spectral sequence collapses at the E2-term, and converges to

π∗(ksp)∧2 = π∗(ko)∧2 {1, A′}/(η · 1, A · 1 − 4 · A′, A · A′ − B · 1) ,

where 1 and A′ are detected by 1 and v′, respectively.
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Figure 2.6. E2-term ku∗,∗ = Ext∗,∗
E(1)(F2, F2) of Adams spectral

sequence for ku

Example 2.33. The connective complex K-theory spectrum ku is the K-theory
spectrum of a bipermutative topological category GL(C) [121, Ex. VI.5.4] equiva-
lent to the symmetric bimonoidal topological category of finite dimensional complex
vector spaces, with respect to their usual direct sum and tensor product. It is an
E∞ ring spectrum with mod 2 cohomology

H∗(ku) = A/A(Q0, Q1) = A ⊗E(1) F2 = A//E(1)

and mod 2 homology

H∗(ku) = A∗ !E(1)∗ F2 = F2[ξ
2
1 , ξ̄2

2 , ξ̄i | i ≥ 3] ,

see [4, Lem. 4], [163, Thm. B] or Proposition 16.6 of [9, Part III]. Here E(1) =
E(Q0, Q1) denotes the sub Hopf algebra of A(1) ⊂ A generated by the Milnor
primitives Q0 = Sq1 and Q1 = [Sq2, Sq1]. The dual Hopf algebra is E(1)∗ =
E(ξ1, ξ̄2), where ξ̄2 = ξ2 + ξ3

1 ≡ ξ2. The Adams spectral sequence

Es,t
2 (ku) = Exts,t

A∗
(F2, H∗(ku)) =⇒s πt−s(ku)∧2

is an algebra spectral sequence with E2-term

ku∗,∗ = Ext∗,∗
A∗

(F2, A∗ !E(1)∗ F2)

∼= Ext∗,∗
E(1)∗

(F2, F2) = F2[v0, v1] .

See Figure 2.6. The classes v0 and v1 in (t−s, s)-bidegrees (0, 1) and (2, 1) are dual
to Q0 and Q1, respectively. The spectral sequence collapses at the E2-term, and
converges to

π∗(ku)∧2 = Z2[v1] .
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By complex Bott periodicity, Σ2ku - bu is equivalent to the 1-connected cover of
complex K-theory. Hence π∗(ku) = Z[u] integrally, with u in degree 2 mapping
to v1 under 2-completion. The homotopy cofiber sequence

bu
i−→ ku

j−→ HZ k−→ Σbu

induces a long exact sequence in cohomology, which breaks up into a short exact
sequence of A-modules

0 → ΣH∗(bu)
k∗
−→ H∗(HZ)

j∗

−→ H∗(ku) → 0 ,

induced up along E(1) ⊂ A from the short exact sequence

0 → Σ3F2 −→ E(1)//A(0) −→ F2 → 0

of E(1)-modules.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



CHAPTER 3

Ext over A(2)

We use the Davis–Mahowald spectral sequence from Chapter 2 to calculate
ExtA(2)(F2, F2) as a free module over F2[w1, w2], and then combine this result with
the ext-calculations of Chapter 1 to verify the presentation given by Shimada–Iwai
[155] of ExtA(2)(F2, F2) as a bigraded commutative algebra with 13 generators
and 54 relations. We also obtain a Gröbner basis for the ideal of relations, which
allows for algorithmic computations in this algebra. Finally, we give an additive
decomposition of ExtA(2)(F2, F2) as a direct sum of cyclic F2[g, w1, w2]-modules.

3.1. The Davis–Mahowald E1-term for A(2)

The mod 2 Steenrod algebra A is the connected F2-algebra generated by the
Steenrod squaring operations Sqi for i ≥ 1, subject to the Adem relations, and
graded by |Sqi| = i. It becomes a cocommutative Hopf algebra when equipped
with the coproduct ψ(Sqk) =

∑
i+j=k Sqi ⊗ Sqj , where Sq0 is interpreted as 1.

The dual Steenrod algebra A∗ = Hom(A, F2) is the connected commutative
Hopf algebra A∗ = F2[ξi | i ≥ 1] with |ξi| = 2i − 1 and coproduct ψ(ξk) =∑

i+j=k ξ
2j

i ⊗ ξj , where ξ0 is interpreted as 1. The canonical conjugation χ : A∗ →
A∗ satisfies

∑
i+j=k ξ

2j

i χ(ξj) = 0 for each k ≥ 1. We let ξ̄i = χ(ξi) denote the
conjugate generators of A∗. This leads to the alternative presentation

A∗ = F2[ξ̄i | i ≥ 1]

of the dual Steenrod algebra, with |ξ̄i| = 2i − 1 and

ψ(ξ̄k) =
∑

i+j=k

ξ̄i ⊗ ξ̄2i

j .

Again ξ̄0 is interpreted as 1. We will write ξ1 in place of ξ̄1 = −ξ1, since we are
working over F2.

Consider the subalgebras A(2) = 〈Sq1, Sq2, Sq4〉 and A(1) = 〈Sq1, Sq2〉 of the
Steenrod algebra, generated by Sq1, Sq2 and Sq4, and by Sq1 and Sq2, respec-
tively. These are connected, cocommutative sub Hopf algebras of A, with dual
Hopf algebras

A(2)∗ = F2[ξ1, ξ̄2, ξ̄3]/(ξ8
1 , ξ̄4

2 , ξ̄2
3)

and
A(1)∗ = F2[ξ1, ξ̄2]/(ξ4

1 , ξ̄2
2) .

The coproduct in A(2)∗ is given by

ψ(ξ1) = 1 ⊗ ξ1 + ξ1 ⊗ 1

ψ(ξ̄2) = 1 ⊗ ξ̄2 + ξ1 ⊗ ξ2
1 + ξ̄2 ⊗ 1

ψ(ξ̄3) = 1 ⊗ ξ̄3 + ξ1 ⊗ ξ2
2 + ξ̄2 ⊗ ξ4

1 + ξ̄3 ⊗ 1 ,

123

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.
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so that
(A(2)//A(1))∗ = A(2)∗ !A(1)∗ F2 = E(ξ4

1 , ξ̄
2
2 , ξ̄3)

as a sub A(2)∗-comodule algebra of A(2)∗.

Definition 3.1. In this chapter, let R∗ = F2[x4, x6, x7] be the graded A(2)∗-
comodule algebra with coaction given by

ν(x4) = 1 ⊗ x4

ν(x6) = 1 ⊗ x6 + ξ2
1 ⊗ x4

ν(x7) = 1 ⊗ x7 + ξ1 ⊗ x6 + ξ̄2 ⊗ x4 .

We assign internal degree i and cohomological degree 1 to xi, for i = 4, 6 and 7,
and give

(A(2)//A(1))∗ ⊗ R∗ = E(ξ4
1 , ξ̄2

2 , ξ̄3) ⊗ F2[x4, x6, x7]

the diagonal A(2)∗-comodule structure. It becomes a differential graded A(2)∗-
comodule algebra with the differential δ given by

δ(ξ4
1) = x4

δ(ξ̄2
2) = x6

δ(ξ̄3) = x7 .

It follows that δ(x4) = 0, δ(x6) = 0 and δ(x7) = 0. The underlying cochain complex

0 → F2
η−→ E(ξ4

1 , ξ̄
2
2 , ξ̄3) ⊗ R0 δ0

−→ E(ξ4
1 , ξ̄

2
2 , ξ̄3) ⊗ R1 δ1

−→ E(ξ4
1 , ξ̄2

2 , ξ̄3) ⊗ R2 −→ . . .

is exact. Here
Rσ = F2{xi

4x
j
6x

k
7 | i + j + k = σ}

is the A(2)∗-comodule of homogeneous polynomials in F2[x4, x6, x7] of (cohomolog-
ical) degree σ.

The Davis–Mahowald spectral sequence for π : A(2)∗ → A(1)∗ with coefficients
in F2 is an algebra spectral sequence

(3.1) Eσ,s,t
1 = Exts−σ,t

A(1)∗
(F2, R

σ) =⇒σ Exts,t
A(2)∗

(F2, F2)

converging strongly to the E2-term Exts,t
A(2)∗

(F2, F2) = Exts,t
A(2)(F2, F2) of the mod 2

Adams spectral sequence for tmf . The A(1)∗-coaction on R∗ is given by the com-
posite

R∗ ν−→ A(2)∗ ⊗ R∗ π⊗1−→ A(1)∗ ⊗ R∗ .

Note that x4, x2
6, x3

6 + x4x2
7 and x4

7 are A(1)∗-comodule primitive, and that R∗ is
free as a module over F2[x4

7]. We obtain an extension of graded A(1)∗-comodule
algebras

F2[x
4
7] −→ R∗ −→ R̄∗

where, by definition,

R̄∗ = R∗ ⊗F2[x4
7]

F2 = R∗/(x4
7) = F2[x4, x6, x7]/(x4

7) .

Thus
R̄σ = F2{xi

4x
j
6x

k
7 | i + j + k = σ, 0 ≤ k ≤ 3} .

Applying ExtA(1)∗(F2,−) yields an extension of trigraded algebras

F2[x
4
7] −→ E∗,∗,∗

1 −→ Ē∗,∗,∗
1 .
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Here E∗,∗,∗
1 is free as a module over F2[x4

7], and

Ēσ,s,t
1 = Exts−σ,t

A(1)∗
(F2, R̄

σ) .

In the following sections we shall express ExtA(1)∗(F2, R̄σ) by means of the Adams
E2-terms for spectra ko, ksp and ku〈σ〉, cf. Proposition 3.26. Thereafter we shall
use these expressions to calculate the Davis–Mahowald d1-differentials, leading to
the description of the E2-term given in Proposition 3.33. This turns out to also be
the E∞-term of this Davis–Mahowald spectral sequence.

Definition 3.2. Let S : R̄∗ → R∗ be the section to R∗ → R̄∗ given by

S(xi
4x

j
6x

k
7) = xi

4x
j
6x

k
7

for 0 ≤ k ≤ 3. It is an F2[x4, x2
6]-linear A(1)∗-comodule homomorphism.

Using S and multiplication by powers of x4
7 we obtain finite F2[x4, x2

6]-linear
sum decompositions

Rσ ∼= R̄σ ⊕ R̄σ−4{x4
7} ⊕ R̄σ−8{x8

7} ⊕ . . .

of A(1)∗-comodules. Applying ExtA(1)∗(F2,−) we obtain finite F2[x4, x2
6]-linear

sum decompositions

Eσ,∗,∗
1

∼= Ēσ,∗,∗
1 ⊕ Ēσ−4,∗,∗

1 {x4
7} ⊕ Ēσ−8,∗,∗

1 {x8
7} ⊕ . . .

of ko∗,∗-modules.

Example 3.3. For 0 ≤ σ ≤ 3 the A(1)∗-modules Rσ = R̄σ can be depicted
as follows, with a short line connecting x and y when ν(x) contains ξ1 ⊗ y, and a
longer curve connecting x and z when ν(x) contains ξ2

1 ⊗ z. These correspond to
nontrivial operations Sq1 and Sq2, respectively, in the dual A(1)-modules Nσ.

R0 : 1

R1 : x4 x6 x7

R2 : x2
4 x4x6 x4x7 x2

6 x6x7 x2
7

R3 :

x3
4 x2

4x6 x2
4x7 x4x2

6 x4x6x7 x4x2
7

x3
6 x2

6x7 x6x2
7 x3

7

Lemma 3.4. R0 = F2 is dual to N0 = F2, and R1 = F2{x4, x6, x7} is dual to
N1

∼= Σ4A(1)/A(1)(Sq1, Sq2Sq3).
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Proof. The A(1)∗-comodule

1 ξ2
1 ξ̄2

is dual to A(1)/A(1)(Sq1, Sq2Sq3). !
Lemma 3.5. For each σ ≥ 3 there is a short exact sequence of A(1)∗-comodules

0 → Σ4R̄σ−1 x4−→ R̄σ −→ cok(x4) → 0 ,

where cok(x4) = F2{xσ
6 , xσ−1

6 x7, x
σ−2
6 x2

7, x
σ−3
6 x3

7} is dual to Σ6σA(1)//E(Q1).

Proof. The A(1)∗-comodule

x3
6 x2

6x7 x6x2
7 x3

7

is dual to Σ18A(1)//E(Q1), where Q1 = [Sq2, Sq1] is the Milnor primitive. !
Lemma 3.6. For each σ ≥ 4 there is a short exact sequence of A(1)∗-comodules

0 → Σ12R̄σ−2 x2
6−→ R̄σ −→ cok(x2

6) → 0 ,

where cok(x2
6) = F2{xi

4x
j
6x

k
7 | i + j + k = σ, 0 ≤ j ≤ 1, 0 ≤ k ≤ 3} is dual to the

direct sum Σ4σA(1)//A(0) ⊕ Σ4σ+6A(1)//A(0).

Proof. The A(1)∗-comodule

x4
4 x3

4x6 x3
4x7 x2

4x6x7 x2
4x

2
7 x4x6x2

7 x4x3
7 x6x3

7

is dual to Σ16A(1)//A(0) ⊕ Σ22A(1)//A(0). !

3.2. Syzygies and Adams covers

We continue to write E(1) = E(Q0, Q1) for the sub Hopf algebra of A(1) ⊂ A
generated by Q0 = Sq1 and Q1 = [Sq2, Sq1]. The dual Hopf algebra is

E(1)∗ = E(ξ1, ξ̄2) ,

where ξ̄2 = ξ2 + ξ3
1 ≡ ξ2. There is a minimal resolution

η : F2
∼−→ E(1)∗ ⊗ F2[v0, v1]

of F2 by a differential graded E(1)∗-comodule algebra, where δ(ξ1) = v0 and δ(ξ̄2) =
v1, so that δ(v0) = 0 and δ(v1) = 0. The underlying cochain complex of E(1)∗-
comodules

(3.2) 0 → F2
η−→ E(1)∗{1} δ0

−→ E(1)∗{v0, v1}
δ1

−→ E(1)∗{v2
0 , v0v1, v

2
1} δ2

−→ . . .

is exact.
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vσ0

ξ̄2vσ0 + ξ1v
σ−1
0 v1

vσ−1
0 v1

v0v
σ−1
1

ξ̄2v0v
σ−1
1 + ξ1vσ1

vσ1

Figure 3.1. The syzygy Ωσ
E(1)∗

(F2) for σ = 3

Definition 3.7. We write

Ωσ
E(1)∗

(F2) = ker(δσ)

= F2{vσ0 , ξ̄2v
σ
0 + ξ1v

σ−1
0 v1 , vσ−1

0 v1 , . . . , v0v
σ−1
1 , ξ̄2v0v

σ−1
1 + ξ1v

σ
1 , vσ1 } ,

to denote the σ-th E(1)∗-comodule syzygy of F2.

Example 3.8. The syzygy Ω3
E(1)∗

(F2) is illustrated in Figure 3.1. A short line

connects x and y when ν(x) contains ξ1 ⊗ y, and a long line connects x and z
when ν(x) contains ξ̄2 ⊗ z. These correspond to nontrivial operations Q0 and Q1,
respectively, in the dual E(1)-module Ω3

E(1)(F2).

Applying A(1)∗ !E(1)∗ (−) to (3.2) we obtain an exact cochain complex of
A(1)∗-comodules

0 → E(ξ2
1)

1⊗η−→ A(1)∗{1} 1⊗δ0

−→ A(1)∗{v0, v1}
1⊗δ1

−→ A(1)∗{v2
0 , v0v1, v

2
1} 1⊗δ2

−→ . . . .

Here

A(1)∗ !E(1)∗ F2 = (A(1)//E(1))∗ = E(ξ2
1)

and

Ωσ
A(1)∗

(E(ξ2
1)) = ker(1 ⊗ δσ) = A(1)∗ !E(1)∗ Ωσ

E(1)∗
(F2)

= F2{vσ0 , ξ2
1vσ0 , ξ̄2v

σ
0 + ξ1v

σ−1
0 v1 , ξ2

1(ξ̄2v
σ
0 + ξ1v

σ−1
0 v1) , vσ−1

0 v1 , ξ2
1vσ−1

0 v1 ,

. . . , v0v
σ−1
1 , ξ2

1v0v
σ−1
1 , ξ̄2v0v

σ−1
1 + ξ1v

σ
1 , ξ2

1(ξ̄2v0v
σ−1
1 + ξ1v

σ
1 ) , vσ1 , ξ2

1vσ1 }

is the σ-th A(1)∗-comodule syzygy of E(ξ2
1).

Example 3.9. The syzygy Ω3
A(1)∗

(E(ξ2
1)) is illustrated in Figure 3.2. A short

line connects x and y when ν(x) contains ξ1 ⊗ y, and a vertical line connects x
and z when ν(x) contains ξ2

1 ⊗ z. These correspond to nontrivial operations Sq1

and Sq2, respectively, in the dual A(1)-module Ω3
A(1)(F2{1, Sq2}).
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vσ0

ξ2
1vσ0

ξ̄2vσ0 + ξ1v
σ−1
0 v1

ξ2
1(ξ̄2vσ0 + ξ1v

σ−1
0 v1)

vσ−1
0 v1

v0v
σ−1
1

ξ2
1(ξ̄2v0v

σ−1
1 + ξ1vσ1 )

vσ1

ξ2
1vσ1

Figure 3.2. The syzygy Ωσ
A(1)∗

(E(ξ2
1)) for σ = 3

Lemma 3.10. For each σ ≥ 1 there is a short exact sequence of A(1)∗-comodules

0 → ΣΩσ−1
A(1)∗

(E(ξ2
1))

v0−→ Ωσ
A(1)∗

(E(ξ2
1)) −→ cok(v0) → 0 ,

where cok(v0) = F2{vσ1 , ξ̄2v0v
σ−1
1 + ξ1vσ1 , ξ2

1vσ1 , ξ2
1(ξ̄2v0v

σ−1
1 + ξ1vσ1 )} is dual to

Σ3σA(1)//E(Q1).

Proof. The A(1)∗-comodule

ξ̄2v0 + ξ1v1 ξ2
1(ξ̄2v0 + ξ1v1)

v1

................
ξ2
1v1

...............

is dual to Σ3A(1)//E(Q1). !

Remark 3.11. In the next section we shall see that Ωσ
A(1)∗

(E(ξ2
1)) is closely

related to the A(1)∗-comodule R̄σ from the previous section.

Recall the connective complex K-theory spectrum ku from Section 2.6. There
is a minimal Adams resolution (= Adams tower)

. . .
i !! ku〈2〉 i !!

j

""

ku〈1〉 i !!

j

""

ku〈0〉

j

""

H ∨ Σ2H ∨ Σ4H

k

;;/
/
/
/
/
/

H ∨ Σ2H

k

22' ' ' ' ' '

H
k

<<0
0
0
0
0

with ku〈0〉 = ku, and there are short exact sequences

0 → π∗ku〈σ + 1〉 i−→ π∗ku〈σ〉 j−→ Z/2{vσ0 , vσ−1
0 v1, . . . , v0v

σ−1
1 , vσ1 } → 0

for each σ ≥ 0.
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Figure 3.3. E2-term ku〈σ〉∗,∗ of Adams spectral sequence for
ku〈σ〉 for σ = 3

Definition 3.12. We call ku〈σ〉 the σ-th Adams cover of ku.

In homology, the associated exact complex of A∗-comodules

0 → H∗(ku)
j∗−→ A∗{1} (jk)∗−→ A∗{v0, v1}

(jk)∗−→ A∗{v2
0 , v0v1, v

2
1} (jk)∗−→ . . .

equals that obtained by applying A∗ !E(1)∗ (−) to (3.2). Hence

ΣσH∗(ku〈σ〉) = A∗ !E(1)∗ Ωσ
E(1)∗

(F2)

is the σ-th A∗-comodule syzygy of H∗(ku). The Adams spectral sequence

Es,t
2 (ku〈σ〉) = Exts,t

A∗
(F2, H∗(ku〈σ〉)) =⇒s πt−s(ku〈σ〉)∧2

has E2-term

ku〈σ〉s,t = Exts,t+σ
A∗

(F2, A∗ !E(1)∗ Ωσ
E(1)∗

(F2))

∼= Exts,t+σ
E(1)∗

(F2,Ω
σ
E(1)∗

(F2))

∼= Exts+σ,t+σ
E(1)∗

(F2, F2) = Es+σ,t+σ
2 (ku)

for s ≥ 0, hence appears as illustrated in Figure 3.3.

Definition 3.13. For s ≥ 0 and 0 ≤ k ≤ s + σ let

ak,s ∈ Es,s+2k
2 (ku〈σ〉)

be the generator in (t − s, s)-bidegree (2k, s), corresponding to

vs+σ−k
0 vk

1 ∈ Es+σ,s+2k+σ
2 (ku) .
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With this notation,

ku〈σ〉∗,∗ = F2{ak,s | 0 ≤ k ≤ s + σ, s ≥ 0} .

The ring spectrum pairing ku ∧ ku → ku lifts to a pairing

ku〈σ〉 ∧ ku〈σ′〉 −→ ku〈σ + σ′〉
for each σ,σ′ ≥ 0, and the induced pairing in homology equals (up to some suspen-
sions) the A∗-comodule pairing

A∗ !E(1)∗ Ωσ
E(1)∗

(F2) ⊗ A∗ !E(1)∗ Ωσ′

E(1)∗
(F2) −→ A∗ !E(1)∗ Ωσ+σ′

E(1)∗
(F2)

derived from the E(1)∗-comodule pairing

Ωσ
E(1)∗

(F2) ⊗ Ωσ′

E(1)∗
(F2) −→ Ωσ+σ′

E(1)∗
(F2)

obtained by restricting the multiplication on E(1)∗ ⊗ F2[v0, v1] to ker(δσ) and
ker(δσ

′
). Equivalently, it is derived from the A(1)∗-comodule pairing

(3.3) Ωσ
A(1)∗

(E(ξ2
1)) ⊗ Ωσ′

A(1)∗
(E(ξ2

1)) −→ Ωσ+σ′

A(1)∗
(E(ξ2

1))

obtained by restricting the multiplication on A(1)∗ ⊗ F2[v0, v1] to ker(1 ⊗ δσ) and
ker(1 ⊗ δσ

′
).

The induced pairing of Adams spectral sequences

Er(ku〈σ〉) ⊗ Er(ku〈σ′〉) −→ Er(ku〈σ + σ′〉)
converges to the pairing

π∗(ku〈σ〉)∧2 ⊗ π∗(ku〈σ′〉)∧2 −→ π∗(ku〈σ + σ′〉)∧2
given by restriction of the product in π∗(ku)∧2 = Z2[v1]. At the level of E2-terms,

ku〈σ〉∗,∗ ⊗ ku〈σ′〉∗,∗ −→ ku〈σ + σ′〉∗,∗

is given by the pairing

Ext∗,∗+σ
E(1)∗

(F2,Ω
σ
E(1)∗

(F2)) ⊗ Ext∗,∗+σ′

E(1)∗
(F2,Ω

σ′

E(1)∗
(F2))

−→ Ext∗,∗+σ+σ′

E(1)∗
(F2,Ω

σ+σ′

E(1)∗
(F2)) .

Equivalently, it is given by the pairing

(3.4) Ext∗,∗+σ
A(1)∗

(F2,Ω
σ
A(1)∗

(E(ξ2
1))) ⊗ Ext∗,∗+σ′

A(1)∗
(F2,Ω

σ′

A(1)∗
(E(ξ2

1)))

−→ Ext∗,∗+σ+σ′

A(1)∗
(F2,Ω

σ+σ′

A(1)∗
(E(ξ2

1))) .

Lemma 3.14. The pairing (3.4) is given by

ak,s ⊗ ak′,s′ 2−→ ak+k′,s+s′

whenever these classes are defined, i.e., for 0 ≤ k ≤ s + σ, s ≥ 0, 0 ≤ k′ ≤ s′ + σ′

and s′ ≥ 0. In particular, the ko∗,∗-module structure on ku〈σ〉∗,∗ is given by

h0 · ak,s = ak,s+1

h1 · ak,s = 0

v · ak,s = ak+2,s+3

w1 · ak,s = ak+4,s+4 .

Proof. vs+σ−k
0 vk

1 · vs′+σ′−k′

0 vk′

1 = vs+s′−σ−σ′+k+k′

0 vk+k′

1 . !
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Recall the discussion of topological K-theory spectra from Section 2.6.

Example 3.15. The induction functor GL(R) → GL(C) from real to complex
vector spaces respects the direct sum and tensor product pairings. Hence it induces
a complexification map c : ko → ku of E∞ ring spectra. By real Bott periodicity it
appears in a homotopy cofiber sequence

Σko
η−→ ko

c−→ ku −→ Σ2ko

of ko-modules. It induces the surjection c∗ : A//E(1) → A//A(1) in cohomology,
and the injection

c∗ : F2[ξ
4
1 , ξ̄2

2 , ξ̄i | i ≥ 3] −→ F2[ξ
2
1 , ξ̄2

2 , ξ̄i | i ≥ 3]

in homology. The induced algebra homomorphism of Adams E2-terms c : ko∗,∗ →
ku∗,∗ is given by

h0 2−→ v0

h1 2−→ 0

v 2−→ v0v
2
1

w1 2−→ v4
1 ,

as can be deduced from the associated morphism

ExtA(0)∗(F2, F2[x2, x3]) −→ ExtA(0)∗(F2, F2[v1])

of Davis–Mahowald spectral sequences, mapping x2 2→ 0 and x3 2→ v1. The induced
ring homomorphism π∗(c) : π∗(ko) → π∗(ku) is given by η 2→ 0, A 2→ 2v2

1 and
B 2→ v4

1 .

Example 3.16. The restriction functor GL(H) → GL(C) from quaternionic to
complex vector spaces respects the direct sum pairings, as well as the tensor product
with real vector spaces. Hence it induces a ko-module map ksp → ku. It admits a
unique lift c′ : ksp → ku〈1〉, reflecting the fact that quaternionic vector spaces have
even-dimensional underlying complex vector spaces. By real Bott periodicity it is
part of a homotopy cofiber sequence

Σksp
η−→ ksp

c′−→ ku〈1〉 −→ Σ2ksp

of ko-modules. It induces a surjection c′∗ in cohomology, and an injection

c′∗ : A∗ !A(1)∗ F2{1, ξ2
1 , ξ̄2} −→ A∗ !A(1)∗ Σ

−1Ω1
A(1)∗

(E(ξ2
1))

in homology. The induced ko∗,∗-module homomorphism c′ : ksp∗,∗ → ku〈1〉∗,∗ is
given by

1 2−→ a0,0

v′ 2−→ a2,1 ,

since h2
0 · v′ = v · 1 maps to a2,3 and h2

0x = a2,3 only for x = a2,1.
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3.3. A comparison of A(1)∗-comodule algebras

Definition 3.17. Consider
⊕

σ≥0

Σ3σΩσ
A(1)∗

(E(ξ2
1))

as a graded A(1)∗-comodule algebra, with the multiplication given by the pair-
ings (3.3) for σ,σ′ ≥ 0. Let

φ : R̄∗ −→
⊕

σ≥0

Σ3σΩσ
A(1)∗

(E(ξ2
1))

be the algebra homomorphism determined by

φ(x4) = Σ3v0

φ(x6) = Σ3(ξ2
1v0 + v1)

φ(x7) = Σ3(ξ̄2v0 + ξ1v1) .

Let
φσ : R̄σ −→ Σ3σΩσ

A(1)∗
(E(ξ2

1))

be the restriction of φ to degree σ, and let

ψσ : Σ3σΩσ
A(1)∗

(E(ξ2
1)) −→ cok(φσ)

be the projection onto its cokernel.

Lemma 3.18. φ is a well-defined A(1)∗-comodule algebra homomorphism.

Proof. φ is well defined, because

φ(x4
7) = Σ12(ξ̄2v0 + ξ1v1)

4 = 0

in Σ12Ω4
A(1)∗

(E(ξ2
1)) ⊂ Σ12A(1)∗{v4

0 , . . . , v4
1}. To check that φ respects the A(1)∗-

coactions, recall Definition 3.1 and note that

ν(v0) = 1 ⊗ v0

ν(ξ2
1v0 + v1) = 1 ⊗ (ξ2

1v0 + v1) + ξ2
1 ⊗ v0

ν(ξ̄2v0 + ξ1v1) = 1 ⊗ (ξ̄2v0 + ξ1v1) + ξ1 ⊗ (ξ2
1v0 + v1) + ξ̄2 ⊗ v0 .

!
Lemma 3.19. φ0 : R̄0 → E(ξ2

1) is the inclusion F2{1} → F2{1, ξ2
1}. The induced

map
φ0
∗ : ExtA(1)∗(F2, F2) −→ ExtA(1)∗(F2, E(ξ2

1)) ∼= ExtE(1)∗(F2, F2)

is the algebra homomorphism

c : ko∗,∗ −→ ku∗,∗ = F2{ak,s | 0 ≤ k ≤ s} = F2[v0, v1]

given by

h0 2−→ a0,1 = v0

h1 2−→ 0

v 2−→ a2,3 = v0v
2
1

w1 2−→ a4,4 = v4
1

Proof. See Example 3.15. !
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x4#

φ1

""

x6#

""

)

==

x7#

""

Σ3v0 Σ3ξ2
1v0

"""
"""

"1

>>

• •#

""

Σ3v1

2222222

#

ψ1

""

Σ3ξ2
1v1

222222

#

""
• • •

Figure 3.4. φ1 : R̄1 → Σ3Ω1
A(1)∗

(E(ξ2
1)) and its cokernel ψ1

Lemma 3.20. φ1 : R̄1 → Σ3Ω1
A(1)∗

(E(ξ2
1)) is the monomorphism

x4 2−→ Σ3v0

x6 2−→ Σ3(ξ2
1v0 + v1)

x7 2−→ Σ3(ξ̄2v0 + ξ1v1) .

The induced map

φ1
∗ : ExtA(1)∗(F2, R̄

1) −→ ExtA(1)∗(F2,Σ
3Ω1

A(1)∗
(E(ξ2

1)))

is the ko∗,∗-module homomorphism

Σ4c′ : Σ4ksp∗,∗ −→ Σ4ku〈1〉∗,∗ = Σ4F2{ak,s | 0 ≤ k ≤ s + 1, s ≥ 0}
given by

Σ41 2−→ Σ4a0,0

Σ4v′ 2−→ Σ4a2,1

Proof. See Example 3.16 and Figure 3.4. !

Proposition 3.21. For each σ ≥ 2 there is a short exact sequence of A(1)∗-
comodules

0 → R̄σ φσ

−→ Σ3σΩσ
A(1)∗

(E(ξ2
1))

ψσ

−→ Σ4σ+2(A(1)//A(0))∗ → 0 ,

with ψσ(Σ3σvσ−1
0 v1) 0= 0.

Proof. φ2 : R̄2 → Σ6Ω2
A(1)∗

(E(ξ2
1)) is the monomorphism

x2
4 2−→ Σ6v2

0

x4x6 2−→ Σ6(ξ2
1v2

0 + v0v1)

x4x7 2−→ Σ6(ξ̄2v
2
0 + ξ1v0v1)
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x2
6 2−→ Σ6v2

1

x6x7 2−→ Σ6(ξ2
1(ξ̄2v

2
0 + ξ1v0v1) + (ξ̄2v0v1 + ξ1v

2
1))

x2
7 2−→ Σ6ξ2

1v2
1

with cokernel

Σ6F2{ξ2
1v2

0 ≡ v0v1 , ξ2
1v0v1 , ξ2

1(ξ̄2v
2
0+ξ1v0v1) ≡ (ξ̄2v0v1+ξ1v

2
1) , ξ2

1(ξ̄2v0v1+ξ1v
2
1)}

∼= Σ10(A(1)//A(0))∗ .

See Figure 3.5, where the internal suspensions Σ6 have been omitted from the
notation. In particular, Σ6v0v1 maps nontrivially to the cokernel of φ2.

For each σ ≥ 3 we have a map of short exact sequences

0 !! Σ4R̄σ−1 x4 !!

Σ4φσ−1

""

R̄σ !!

φσ

""

cok(x4) !!

∼=
""

0

0 !! Σ3σ+1Ωσ−1
A(1)∗

(E(ξ2
1))

v0 !! Σ3σΩσ
A(1)∗

(E(ξ2
1)) !! cok(v0) !! 0

of A(1)∗-comodules, where

cok(x4) = F2{xσ
6 , xσ−1

6 x7 , xσ−2
6 x2

7 , xσ−3
6 x3

7}

maps isomorphically to

cok(v0) = Σ3σF2{vσ1 , ξ̄2v0v
σ−1
1 + ξ1v

σ
1 , ξ2

1vσ1 , ξ2
1(ξ̄2v0v

σ−1
1 + ξ1v

σ
1 )} .

This follows from

φσ(xσ
6 ) = Σ3σ(ξ2

1v0 + v1)
σ ≡ Σ3σvσ1 mod im(v0)

and Lemmas 3.5 and 3.10. The claims of the proposition now follow for all σ ≥ 2,
by induction on σ and the snake lemma. !

Lemma 3.22. For each σ ≥ 2 the induced map

ψσ
∗ : ExtA(1)∗(F2,Σ

3σΩσ
A(1)∗

(E(ξ2
1))) −→ ExtA(1)∗(F2,Σ

4σ+2(A(1)//A(0))∗)

is the ko∗,∗-module epimorphism

Σ4σku〈σ〉∗,∗ = Σ4σF2{ak,s | 0 ≤ k ≤ s + σ, s ≥ 0} −→ Σ4σ+2F2[h0]

given by

Σ4σa1,s 2−→ Σ4σ+2hs
0

and Σ4σak,s 2→ 0 for k 0= 1.

Proof. The class Σ4σa1,0 is represented by the A(1)∗-comodule primitive
Σ3σvσ−1

0 v1, which maps nontrivially under ψσ. Hence ψσ
∗ maps Σ4σa1,0 to Σ4σ+21.

By ko∗,∗-linearity it follows that ψσ
∗ maps Σ4σa1,s to Σ4σ+2hs

0 for each s ≥ 0. !

Definition 3.23. For each σ ≥ 2, let

G〈σ〉∗,∗ = F2{ak,s | 0 ≤ k ≤ s + σ, k 0= 1, s ≥ 0}

be the ko∗,∗-submodule Σ−4σ ker(ψσ
∗ ) of ku〈σ〉∗,∗. See Figure 3.6.
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Figure 3.5. φ2 : R̄2 → Σ6Ω2
A(1)∗

(E(ξ2
1)) and its cokernel ψ2
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Figure 3.6. The Adams chart G〈σ〉∗,∗ for σ = 3
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Lemma 3.24. For each σ ≥ 2 there is an isomorphism

ExtA(1)∗(F2, R̄
σ) ∼= Σ4σG〈σ〉∗,∗

of ko∗,∗-modules, which identifies φσ
∗ with the inclusion Σ4σG〈σ〉∗,∗ ⊂ Σ4σku〈σ〉∗,∗.

Proof. Clear. !
Remark 3.25. For each σ ≥ 1 there is a ko-module map ψσ : ku〈σ〉 → Σ2HZ

such that π2(ψσ) is an isomorphism. This follows by a comparison of Postnikov
sections, since the ko-module k-invariant k3 ∈ H3

ko(HZ; Z) ∼= Z/2 of ku has order 2.
For σ ≥ 2 we can define G〈σ〉 to be the homotopy fiber of ψσ, so that

G〈σ〉∗,∗ = E2(G〈σ〉)
is the E2-term of the Adams spectral sequence for this spectrum. We set G〈0〉 = ko
and G〈1〉 = ksp, so that G〈0〉∗,∗ = ko∗,∗ and G〈1〉∗,∗ = ksp∗,∗.

Proposition 3.26.

ExtA(1)∗(F2, R̄
σ) ∼=






ko∗,∗ for σ = 0,

Σ4ksp∗,∗ for σ = 1,

Σ4σG〈σ〉∗,∗ for σ ≥ 2.

The pairing

ExtA(1)∗(F2, R̄
σ) ⊗ ExtA(1)∗(F2, R̄

σ′
) −→ ExtA(1)∗(F2, R̄

σ+σ′
)

is given by the ko∗,∗-module structure if σ = 0 or σ′ = 0. Otherwise σ + σ′ ≥ 2,
and the pairing is given by the formula

ak,s · ak′,s′ = ak+k′,s+s′

for ak,s ∈ G〈σ〉∗,∗ and ak′,s′ ∈ G〈σ′〉∗,∗. Here, if σ = 1 or σ′ = 1, classes in ksp∗,∗

are implicitly replaced by their images under c′ in ku〈1〉∗,∗.

Proof. The additive claim summarizes Lemmas 3.19, 3.20 and 3.24. The
ko∗,∗-module claim for σ = 0 or σ′ = 0 is also clear. It remains to consider the case
σ,σ′ ≥ 1.

Applying ExtA(1)∗(F2,−) to the commutative square

R̄σ ⊗ R̄σ′
!!

φσ⊗φσ′

""

R̄σ+σ′

φσ+σ′

""

Σ3σΩσ
A(1)∗

(E(ξ2
1)) ⊗ Σ3σ′

Ωσ′

A(1)∗
(E(ξ2

1))
(3.3)

!! Σ3(σ+σ′)Ωσ+σ′

A(1)∗
(E(ξ2

1))

of A(1)∗-comodules yields a commutative diagram

ExtA(1)∗(F2, R̄σ) ⊗ ExtA(1)∗(F2, R̄σ′
) !!

φσ
∗⊗φσ′

∗
""

ExtA(1)∗(F2, R̄σ+σ′
)

φσ+σ′
∗

""

Σ4σku〈σ〉∗,∗ ⊗ Σ4σ′
ku〈σ′〉∗,∗ !! Σ4(σ+σ′)ku〈σ + σ′〉∗,∗ .

For σ + σ′ ≥ 2 the right hand vertical map is injective, so to verify the asserted
product formula in ExtA(1)∗(F2, R̄σ+σ′

) it suffices to verify it in the lower right hand
corner. Here the formula follows from Lemma 3.14, under the assumption that

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



3.4. THE d1-DIFFERENTIAL FOR A(2) 137

classes in ExtA(1)∗(F2, R̄1) = Σ4ksp∗,∗ are replaced by their images in Σ4ku〈1〉∗,∗,
i.e., that 1 is read as a0,0 and v′ is read as a2,1. !

Remark 3.27. Note that each G〈σ〉∗,∗ is free as an F2[w1]-module, and that
G〈σ〉∗,∗ for σ ≥ 2 is torsion-free as an F2[h0, w1]-module.

3.4. The d1-differential for A(2)

In the extension F2[x4
7] −→ E∗,∗,∗

1 −→ Ē∗,∗,∗
1 we have Ēσ,∗,∗

1 = Ext∗−σ,∗
A(1)∗

(F2, R̄σ)

and ExtA(1)∗(F2, R̄σ) ∼= Σ4σG〈σ〉∗,∗. For a ∈ G〈σ〉s,t we write

axσ
4 ∈ Ēσ,s+σ,t+4σ

1

for the class that corresponds to Σ4σa ∈ Σ4σG〈σ〉∗,∗. In other words, we identify

Ēσ,∗,∗
1

∼= G〈σ〉∗,∗{xσ
4} ,

where xσ
4 ∈ Ēσ,σ,4σ

1 has (t − s, s)-bidegree (3σ,σ). Using the splitting induced by
S : R̄∗ → R∗ from Definition 3.2, we can write

(3.5)
Eσ,∗,∗

1
∼= Ēσ,∗,∗

1 ⊕ Ēσ−4,∗,∗
1 {x4

7} ⊕ Ēσ−8,∗,∗
1 {x8

7} ⊕ . . .

∼= G〈σ〉{xσ
4} ⊕ G〈σ−4〉{xσ−4

4 x4
7} ⊕ G〈σ−8〉{xσ−8

4 x8
7} ⊕ . . . .

Lemma 3.28. (0) d0
1 : E0,∗,∗

1 → E1,∗+1,∗
1 is the derivation

d0
1 : G〈0〉∗,∗ = ko∗,∗ −→ G〈1〉∗,∗{x4} = ksp∗,∗{x4}

given by

h0 2−→ 0

h1 2−→ 0

v 2−→ h3
0x4

w1 2−→ 0 .

Hence each dσ1 is F2[h0, h1, w1]/(h0h1, h3
1)-linear.

(1) d1
1 : E1,∗,∗

1 → E2,∗+1,∗
1 is the homomorphism

d1
1 : G〈1〉∗,∗ = ksp∗,∗{x4} −→ G〈2〉∗,∗{x2

4}
given by

x4 2−→ 0

v′x4 2−→ h0x
2
4 .

(2) d2
1 : E2,∗,∗

1 → E3,∗+1,∗
1 is the homomorphism

d2
1 : G〈2〉∗,∗{x2

4} −→ G〈3〉∗,∗{x3
4}

given by

x2
4 2−→ 0

a2,0x
2
4 2−→ x3

4

a3,1x
2
4 2−→ 0

a4,2x
2
4 2−→ 0

a5,3x
2
4 2−→ a3,3x

3
4 .
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(3) d3
1 : E3,∗,∗

1 → E4,∗+1,∗
1 is the homomorphism

d3
1 : G〈3〉∗,∗{x3

4} −→ G〈4〉∗,∗{x4
4} ⊕ G〈0〉∗,∗{x4

7}

given by

x3
4 2−→ (0, 0)

a2,0x
3
4 2−→ (x4

4, 0)

a3,0x
3
4 2−→ (0, 0)

a4,1x
3
4 2−→ (0, 0)

a5,2x
3
4 2−→ (a3,2x

4
4, 0)

a6,3x
3
4 2−→ (a4,3x

4
4, 0) .

(4) d4
1 : E4,∗,∗

1 → E5,∗+1,∗
1 is a homomorphism

d4
1 : G〈4〉∗,∗{x4

4} ⊕ G〈0〉∗,∗{x4
7} −→ G〈5〉∗,∗{x5

4} ⊕ G〈1〉∗,∗{x4x
4
7}

satisfying

(0, x4
7) 2−→ (a4,0x

5
4, 0) .

Proof. The classes h0 ∈ E0,1,1
1 and h1 ∈ E0,1,2

1 are infinite cycles, meaning
that d0

r(h0) = 0 and d0
r(h1) = 0 for all r ≥ 1, because the target groups Eσ,2,1

1 and
Eσ,2,2

1 are trivial for all σ ≥ 1. Similarly, the class x4 ∈ E1,1,4
1 is an infinite cycle

because Eσ,2,4
1 = 0 for all σ ≥ 2.

Under the twisting isomorphism

Eσ,σ,12
1 = Ext0,12

A(2)∗
(F2, (A(2)//A(1))∗ ⊗ Rσ) ∼= Ext0,12

A(1)∗
(F2, R

σ) ,

the A(1)∗-comodule primitive x2
6 ∈ R2 corresponds to the A(2)∗-comodule primitive

x2
6 + ξ4

1x2
4 ∈ (A(2)//A(1))∗ ⊗ R2, and the A(2)∗-comodule primitive

δ(x2
6 + ξ4

1x2
4) = x3

4

in (A(2)//A(1))∗⊗R3 corresponds to the A(1)∗-comodule primitive x3
4 in R3. Under

the isomorphism E2,∗,∗
1

∼= G〈2〉∗,∗{x2
4}, the class x2

6 corresponds to a2,0x2
4. Hence

d2
1(a2,0x2

4) = x3
4.

It follows by x4- and h0-linearity that d0
1(v) = h3

0x4, since

d0
1(v) · x2

4 = d2
1(v · x2

4) = d2
1(h

3
0 · a2,0x

2
4) = h3

0 · d2
1(a2,0x

2
4) = h3

0 · x3
4 .

Likewise, d1
1(v

′x4) = h0x2
4, and dσ1 (a2,0xσ

4 ) = xσ+1
4 for all σ ≥ 2. This completes

the proof of (1).
The class w1 ∈ E0,4,12

1 is an infinite cycle. First, d0
1(w1) lies in E1,5,12

1 =
ksp4,4{x4} = F2{h3

0v
′x4} and d1

1(h
3
0v

′x4) = h4
0x

2
4 0= 0, so we cannot have d0

1(w1) 0= 0
because d1

1◦d0
1 = 0. Next, Eσ,5,12

1 = 0 for all σ ≥ 2, so d0
r(w1) = 0 for all r ≥ 2. This

completes the proof of (0). It follows by w1- and h0-linearity that d2
1(a4,2x2

4) = 0,
d3
1(a4,1x3

4) = 0 and d3
1(a6,3x3

4) = a4,3x4
4.

The class a3,1x2
4 ∈ E2,3,15

1 is an infinite cycle, because Eσ,4,15
1 = 0 for all σ ≥ 3.

It follows by x4- and h0-linearity that d3
1(a3,0x3

4) = 0. Multiplying by v ∈ ko∗,∗,
the Leibniz rule gives

d2
1(a5,4x

2
4) = d2

1(v · a3,1x
2
4) = h3

0x4 · a3,1x
2
4 + v · 0 = a3,4x

3
4 .
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By h0- and x4-linearity it follows that d2
1(a5,3x2

4) = a3,3x3
4 and d3

1(a5,2x3
4) = a3,2x4

4.
This completes the proof of (2) and (3).

In

Eσ,σ,28
1 = Ext0,28

A(2)∗
(F2, (A(2)//A(1))∗ ⊗ Rσ) ∼= Ext0,28

A(1)∗
(F2, R

σ) ,

for σ ∈ {4, 5}, the A(1)∗-comodule primitive x4
7 ∈ R4 corresponds to the A(2)∗-

comodule primitive x4
7 +ξ4

1x4
6 ∈ (A(2)//A(1))∗⊗R4, and the A(2)∗-comodule prim-

itive
δ(x4

7 + ξ4
1x4

6) = x4x
4
6

in (A(2)//A(1))∗⊗R5 corresponds to the A(1)∗-comodule primitive x4x4
6 in R5. Un-

der E5,∗,∗
1

∼= G〈5〉∗,∗{x5
4}⊕G〈1〉∗,∗{x4x4

7} the class x4x4
6 corresponds to (a4,0x5

4, 0).
This completes the proof of (4). !

Lemma 3.29. In terms of the splitting (3.5), the differential dσ1 : Eσ,∗,∗
1 →

Eσ+1,∗,∗
1 maps Ēσ,∗,∗

1 into Ēσ+1,∗,∗
1 , and it maps Ēσ−4,∗,∗

1 {x4
7} into Ēσ+1,∗,∗

1 ⊕
Ēσ−3,∗,∗

1 {x4
7}.

Proof. By Lemma 3.5, multiplication by x4 induces a short exact sequence

0 → G〈σ − 1〉∗,∗ −→ G〈σ〉∗,∗ −→ Σ2σF2[v1] → 0

for each σ ≥ 3. By Lemma 3.6, multiplication by x2
6 induces a short exact sequence

0 → Σ4G〈σ − 2〉∗,∗ −→ G〈σ〉∗,∗ −→ F2[h0]{a0,0, a3,0} → 0

for each σ ≥ 4. Hence, for σ ≥ 4 the images of x4 : Ēσ−1,∗,∗
1 → Ēσ,∗,∗

1 and
x2

6 : Ēσ−2,∗,∗
1 → Ēσ,∗,∗

1 span Ēσ,∗,∗
1 . By Lemma 3.28(1,2) and the Leibniz rule,

dσ1 (ax4) = dσ−1
1 (a)x4 and dσ1 (bx2

6) = dσ−2
1 (b)x2

6 + bx3
4 in E∗,∗,∗

1 . Thus, if d1(a) and
d1(b) lie in the image of S : Ē∗,∗,∗

1 → E∗,∗,∗
1 then so do d1(ax4) and d1(bx2

6). The
first claim of the lemma therefore follows by induction on σ.

By Lemma 3.28(4), d4
1(x

4
7) = a4,0x5

4 is contained in the summand Ē5,∗,∗
1 of

E5,∗,∗
1 . Hence dσ1 (cx4

7) = dσ−4
1 (c)x4

7 + ca4,0x5
4 in E∗,∗,∗

1 . Thus, if c lies in the
summand Ē∗,∗,∗

1 then dσ1 (cx4
7) lies in the direct sum Ē∗,∗,∗

1 ⊕Ē∗,∗,∗
1 {x4

7}, as asserted.
!

Schematically, the Davis–Mahowald (E1, d1)-term appears as in Figure 3.9,
repeating x8

7-periodically. The colors red, green, mustard and blue show classes
of weight σ ≡ 0, 1, 2, 3 mod 4, respectively. By the Leibniz rule, x8

7 = (x4
7)

2 is a
d1-cycle, so there is an extension of differential trigraded algebras

F2[x
8
7] −→ (E∗,∗,∗

1 , d1) −→ ( ¯̄E∗,∗,∗
1 , d1) ,

with E∗,∗,∗
1 free as a module over F2[x8

7], and with

¯̄E∗,∗,∗
1 = E∗,∗,∗

1 ⊗F2[x8
7]

F2 = E∗,∗,∗
1 /(x8

7)

sitting in a short exact sequence of cochain complexes

0 → (Ē∗,∗,∗
1 , d1)

S−→ ( ¯̄E∗,∗,∗
1 , d1) −→ (Ē∗−4,∗,∗

1 {x4
7}, d1) → 0 .

It follows that there is an extension of trigraded algebras

F2[x
8
7] −→ E∗,∗,∗

2 −→ ¯̄E∗,∗,∗
2 ,

with E∗,∗,∗
2 free as a module over F2[x8

7], and a long exact sequence

(3.6) . . .
δ−→ Ēσ,∗,∗

2
S−→ ¯̄Eσ,∗,∗

2 −→ Ēσ−4,∗,∗
2 {x4

7}
δ−→ Ēσ+1,∗,∗

2
S−→ . . . .
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t − s

s
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4
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4
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4

a5,3x2
4
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4
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4
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s
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8

h0 h1
x4

x2
4

h1v′x4 a3,1x2
4

a4,2x2
4

a3,0x3
4

a4,1x3
4

Figure 3.7. (Ēσ,∗,∗
1 , dσ1 ) and Ēσ,∗,∗

2 for 0 ≤ σ ≤ 3

Here Ē∗,∗,∗
2 is equal to the cohomology of (Ē∗,∗,∗

1 , d1), and ¯̄E∗,∗,∗
2 is equal to the

cohomology of ( ¯̄E∗,∗,∗
1 , d1).

Lemma 3.30. For each σ ≥ 2, dσ1 : Ēσ,∗,∗
1 → Ēσ+1,∗,∗

1 is the homomorphism

dσ1 : G〈σ〉∗,∗{xσ
4} −→ G〈σ + 1〉∗,∗{xσ+1

4 }

given by

ak,sx
σ
4 2−→

{
ak−2,sx

σ+1
4 for k ≡ 2, 5 mod 4,

0 otherwise.

Here 0 ≤ k ≤ s + σ, k 0= 1 and s ≥ 0, so that ak,s is defined.

Proof. We verified this in Lemma 3.28(2) for σ = 2 and (k, s) = (0, 0), (2, 0),
(3, 1), (4, 2) and (5, 3). By h0- and w1-linearity the formula for d2

1 holds for all
ak,s ∈ G〈2〉∗,∗.

By x4-linearity, the formula for dσ1 holds for the ak,s ∈ G〈σ〉 with 0 ≤ k ≤ s+2,
k 0= 1 and s ≥ 0. By h0-linearity, the formula also holds for the remaining ak,s,
with s + 2 < k ≤ s + σ, since G〈σ + 1〉 is h0-torsion free. !

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



3.4. THE d1-DIFFERENTIAL FOR A(2) 141

t − s

s
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0

4
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s
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0
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4 a4,0x4
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a4,0x5
4

a4,0x6
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a7,2x5
4 a7,1x6

4 a7,0x7
4

a8,1x7
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Figure 3.8. (Ēσ,∗,∗
1 , dσ1 ) and Ēσ,∗,∗

2 for 4 ≤ σ ≤ 7

The complex

0 → Ē0,∗,∗
1

d0
1−→ Ē1,∗,∗

1

d1
1−→ Ē2,∗,∗

1

d2
1−→ Ē3,∗,∗

1

d3
1−→ . . .

is illustrated in the upper part of Figure 3.7. Each term is free as a module over
F2[w1], and only a basis for this module structure is shown. Dashed vertical arrows
indicate h0-multiplications taking w1-divisible values. Its cohomology, Ēσ,∗,∗

2 , is
shown in the lower part of Figure 3.7. Again, each term is free over F2[w1], with
a basis given by the filled circles. The open circle shows a w1-multiple, and the
dashed vertical line from h0a4,2x2

4 exhibits the relation h2
0 · a4,2x2

4 = w1 · x2
4.

The complex

. . .
d3
1−→ Ē4,∗,∗

1

d4
1−→ Ē5,∗,∗

1

d5
1−→ Ē6,∗,∗

1

d6
1−→ Ē7,∗,∗

1

d7
1−→ . . .

and its cohomology, Ēσ,∗,∗
2 for 4 ≤ σ ≤ 7, are shown in Figure 3.8. For larger σ,

this pattern continues (x2
6)

2 = x4
6-periodically.

Lemma 3.31. Suppose σ ≥ 3. Then Ēσ,∗,∗
2 is a free F2[w1]-module with basis

the six classes ak,sxσ
4 with s + σ − 2 ≤ k ≤ s + σ, 0 ≤ s ≤ 3 and k ≡ 0, 3 mod 4.

Furthermore, multiplication by x4
6 = a4,0x4

4 induces an isomorphism

x4
6 : Ēσ,∗,∗

2

∼=−→ Ēσ+4,∗,∗
2

of (t − s, s)-bidegree (20, 4).
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Proof. The ak,sxσ
4 with k ≤ s + σ, s ≥ 0 and k ≡ 0, 3 mod 4 are dσ1 -cycles.

Among these, those with k ≤ s + σ − 3 are also dσ−1
1 -boundaries. Multiplication

by x4
6 = a4,0x4

4 takes ak,sxσ
4 to ak+4,sx

σ+4
4 . !

Lemma 3.32. The connecting homomorphism

δ : Ēσ−4,∗,∗
2 {x4

7} −→ Ēσ+1,∗,∗
2

in (3.6) takes c · x4
7 to c · a4,0x5

4. Its values for c ranging through an F2[w1]-basis
for Ē∗,∗,∗

2 are listed in Table 3.1 and illustrated in Figure 3.10.

Proof. This follows from the Leibniz rule

d1(c · x4
7) = d1(c) · x4

7 + c · d1(x
4
7)

when d1(c) = 0, since d1(x4
7) = a4,0x5

4 by Lemma 3.28(4). The multiplications are
calculated using Proposition 3.26. !

Proposition 3.33. The Davis–Mahowald E2-term E∗,∗,∗
2 is a free F2[w1, x8

7]-
module, with basis as listed in Table 3.2 and illustrated in Figure 3.11.

Proof. By (3.6) we have a short exact sequence

0 → cok(δ)
S−→ ¯̄E∗,∗,∗

2 −→ ker(δ) → 0

of F2[w1]-modules. No w1-multiples occur among the values δ(cx4
7) in Table 3.1,

so both cok(δ) and ker(δ) are free F2[w1]-modules. Each basis element b for cok(δ)
appears as one entry in Table 3.2. To lift each basis element cx4

7 for ker(δ), note
that if d1(cx4

7) = d1(a) with a ∈ Ē∗,∗,∗
1 , then the class of −a + cx4

7 in ¯̄E∗,∗,∗
2 is

such a lift. This produces the remaining entries in Table 3.2, giving ¯̄E∗,∗,∗
2 as a

free F2[w1]-module. It follows that E∗,∗,∗
2 is a free F2[w1, x8

7] on the same list of
generators. !

Remark 3.34. The projection E∗,∗,∗
1 → Ē∗,∗,∗

1 does not commute with d1, and
the section S : Ē∗,∗,∗

1 → E∗,∗,∗
1 is not multiplicative. Hence the algebra structures

in E∗,∗,∗
2 and Ē∗,∗,∗

2 are not fully compatible. For example, in E∗,∗,∗
2 the square of

a3,0x3
4 = x3

6 + x4x2
7 is (x3

6 + x4x2
7)

2 = x6
6 + x2

4x
4
7 = a6,0x6

4 + x2
4x

4
7, while in Ē∗,∗,∗

2 the
square is a6,0x6

4.

Proposition 3.35. The Davis–Mahowald spectral sequence (3.1) collapses at
the E2-term, so E∗,∗,∗

2 = E∗,∗,∗
∞ is the associated graded of a multiplicative filtra-

tion of ExtA(2)∗(F2, F2) ∼= ExtA(2)(F2, F2). In particular, ExtA(2)(F2, F2) is a free
F2[w1, w2]-module, generated by classes that are detected by the generators listed in
Table 3.2, where w2 is a class that is detected by x8

7.

Proof. The class x8
7 ∈ E8,8,56

2 is an infinite cycle, because Eσ,9,56
2 = 0 for all

σ ≥ 10. For each F2[w1, x8
7]-module generator c ∈ Eσ,s,t

2 in Table 3.2, and each
r ≥ 2, the target group Eσ+r,s+1,t

2 is zero. Hence dr = 0 for each r ≥ 2. !
Remark 3.36. Our conclusions agree with those of Davis and Mahowald [52,

p. 325], except for one tiny typographical error: their class h5
2α8,4 should have been

h5
2α8,3, and is the class we denote by a8,3x5

4.
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Table 3.1. F2[w1]-basis for Ē∗,∗,∗
2 (x4

6-periodic for σ ≥ 3)

σ t − s s c δ(cx4
7)

0 0 i hi
0 i ∈ {0, 1} a4,ix5

4

0 0 i hi
0 i ≥ 2 0

0 1 1 h1 0

0 2 2 h2
1 0

1 3 1 x4 a4,0x6
4

1 3 1 + i hi
0x4 i ∈ {1, 2} 0

1 8 3 h1v′x4 0

1 9 4 h2
1v

′x4 0

2 6 2 x2
4 0

2 12 3 + i a3,1+ix2
4 i ∈ {0, 1} a7,1+ix7

4

2 12 3 + i a3,1+ix2
4 i ≥ 2 0

2 14 4 + i a4,2+ix2
4 i ∈ {0, 1} a8,2+ix7

4

3 15 3 + i a3,ix3
4 i ∈ {0, 1} a7,ix8

4

3 15 5 a3,2x3
4 0

3 17 4 + i a4,1+ix3
4 i ∈ {0, 1} a8,1+ix8

4

3 17 6 a4,3x3
4 0

4 18 4 a3,0x4
4 a7,0x9

4

4 18 5 a3,1x4
4 0

4 20 4 + i a4,ix4
4 i ∈ {0, 1} a8,ix9

4

4 20 6 a4,2x4
4 0

4 26 7 a7,3x4
4 a11,3x9

4

5 21 5 a3,0x5
4 0

5 23 5 a4,0x5
4 a8,0x10

4

5 23 6 a4,1x5
4 0

5 29 7 + i a7,2+ix5
4 i ∈ {0, 1} a11,2+ix10

4

5 31 8 a8,3x5
4 a12,3x10

4

6 26 6 a4,0x6
4 0

6 32 7 + i a7,1+ix6
4 i ∈ {0, 1} a11,1+ix11

4

6 32 9 a7,3x6
4 0

6 34 8 + i a8,2+ix6
4 i ∈ {0, 1} a12,2+ix11

4
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Table 3.2: F2[w1, x8
7]-basis for E∗,∗,∗

2 (x4
6-periodic for σ ≥ 7)

σ t − s s generator Ext

0 0 i hi
0 i ≥ 0 hi

0

0 1 1 h1 h1

0 2 2 h2
1 h2

1

1 3 1 + i hi
0x4 i ∈ {0, 1, 2} hi

0h2

1 8 3 h1v′x4 c0

1 9 4 h2
1v

′x4 h1c0

2 6 2 x2
4 h2

2

2 12 3 + i a3,1+ix2
4 i ≥ 0 hi

0α

2 14 4 + i a4,2+ix2
4 i ∈ {0, 1} hi

0d0

3 15 3 + i a3,ix3
4 i ∈ {0, 1, 2} hi

0β

3 17 4 + i a4,1+ix3
4 i ∈ {0, 1, 2} hi

0e0

4 18 4 + i a3,ix4
4 i ∈ {0, 1} hi

0h2β

4 20 4 + i a4,ix4
4 i ∈ {0, 1, 2} hi

0g

4 24 6 + i hi
0(a6,2x4

4 + h2
0x

4
7) i ≥ 0 hi

0α
2

4 25 5 h1x4
7 γ

4 26 6 h2
1x

4
7 h1γ

4 26 7 a7,3x4
4 αd0

5 21 5 a3,0x5
4 h1g

5 27 6 + i hi
0(a6,1x5

4 + h0x4x4
7) i ∈ {0, 1} hi

0αβ

5 29 7 a7,2+ix5
4 i ∈ {0, 1} hi

0αe0

5 31 8 a8,3x5
4 d0e0

5 32 7 h1v′x4x4
7 δ

5 33 8 h2
1v

′x4x4
7 h1δ

6 30 6 a6,0x6
4 + x2

4x
4
7 β2

6 32 7 + i a7,1+ix6
4 i ∈ {0, 1, 2} hi

0αg

6 34 8 + i a8,2+ix6
4 i ∈ {0, 1} hi

0d0g

6 36 9 + i hi
0(a9,3x6

4 + a3,3x2
4x

4
7) i ≥ 0 hi

0α
3

7 35 7 a7,0x7
4 βg

7 37 8 a8,1x7
4 e0g

7 39 9 a9,2x7
4 + a3,2x3

4x
4
7 d0γ

7 41 10 a10,3x7
4 + a4,3x3

4x
4
7 α2e0
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Table 3.2: F2[w1, x8
7]-basis for E∗,∗,∗

2 (x4
6-periodic for σ ≥ 7) (cont.)

σ t − s s generator Ext

8 40 8 a8,0x8
4 g2

8 42 9 a9,1x8
4 + a3,1x4

4x
4
7 e0γ

8 44 10 a10,2x8
4 + a4,2x4

4x
4
7 α2g

8 46 11 a11,3x8
4 αd0g

9 45 9 a9,0x9
4 + a3,0x5

4x
4
7 γg

9 47 10 a10,1x9
4 + a4,1x5

4x
4
7 αβg

9 49 11 a11,2x9
4 αe0g

9 51 12 a12,3x9
4 d0e0g

10 50 10 a10,0x10
4 + a4,0x6

4x
4
7 β2g

10 52 11 a11,1x10
4 αg2

10 54 12 a12,2x10
4 d0g2

10 56 13 a13,3x10
4 + a7,3x6

4x
4
7 α3g
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3.5. The Shimada–Iwai presentation

Shimada and Iwai [155, §8] gave a presentation of ExtA(2)(F2, F2) as a bigraded
F2-algebra with 13 generators and 54 relations, which we will denote by SI. To con-
firm their result, we construct an algebra homomorphism φ : SI → ExtA(2)(F2, F2)
by specifying the images of the generators and then using ext to verify the rela-
tions. Thereafter we use Gröbner basis methods to find a basis for SI as a free
F2[w1, w2]-module. A comparison with the Davis–Mahowald E∞-term calculated
in the previous section then proves that φ is an isomorphism of F2[w1, w2]-modules,
hence also of algebras. In place of the notation used by Shimada and Iwai we will
use the notation of Henriques [54, Ch. 13], as reviewed in Table 1.3.

Definition 3.37 (Shimada–Iwai). Let

SI = F2[h0, h1, h2, c0,α,β, d0, e0, γ, δ, g, w1, w2]/(∼)

be the bigraded commutative F2-algebra generated by 13 classes in the bidegrees
listed in Table 3.3, and subject to the 54 relations listed in Table 3.4. In other
words, SI = P/I where P is the polynomial algebra F2[h0, h1, h2, . . . , g, w1, w2]
and I is the ideal (h0h1, h2

0h2 + h3
1, h1h2, . . . , δg, γδ + h1c0w2, δ2) ⊂ P .

Table 3.3: Generators of SI ∼= ExtA(2)(F2, F2)

t − s s [54] [155] ext E∞

0 1 h0 h0 10 h0

1 1 h1 h1 11 h1

3 1 h2 h2 12 x4

8 3 c0 α1 32 h1v′x4

12 3 α α2 33 a3,1x2
4

15 3 β α3 34 a3,0x3
4 = x3

6 + x4x2
7

14 4 d0 α4 44 a4,2x2
4

17 4 e0 α5 46 a4,1x3
4

25 5 γ α6 511 h1x4
7

32 7 δ α7 711 h1v′x4x4
7

20 4 g ω1 48 a4,0x4
4 = x4

6

8 4 w1 ω0 41 w1

48 8 w2 α0 819 x8
7

Definition 3.38. Let

φ : SI −→ ExtA(2)(F2, F2)

be the bigraded F2-algebra homomorphism given by sending each algebra generator
x = h0, . . . , w2 in SI to the class φ(x) in ExtA(2)(F2, F2) represented by the ext-
cocycle sg = 10, . . . , 819, as given in Table 3.3. We usually omit φ from the notation,
writing h0 in place of φ(h0), etc.
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Table 3.4. Relations in SI ∼= ExtA(2)(F2, F2)

t − s s relation

1 2 h0h1 = 0 z

3 3 h2
0h2 = h3

1 hi

4 2 h1h2 = 0 z

6 3 h0h2
2 = 0 z

8 4 h0c0 = 0 hi

9 3 h3
2 = 0 z

10 5 h2
1c0 = 0 z

11 4 h2c0 = 0 z

13 4 h1α = 0 z

14 6 h2
0d0 = h2

2w1 hi

15 4 h0β = h2α hi

15 5 h1d0 = h0h2α hi

16 4 h1β = 0 z

16 6 c2
0 = 0 z

17 5 h0e0 = h2d0 hi

18 5 h1e0 = h2
2α hi

20 5 h2e0 = h0g hi

20 6 c0α = h2
0g

21 5 h2
2β = h1g hi

22 7 c0d0 = 0 z

23 5 h2g = 0 z

23 6 c0β = 0 z

25 6 h0γ = 0 z

25 7 c0e0 = 0 z

26 8 h0αd0 = h2βw1

27 7 h2α2 = h2
1γ

28 6 h2γ = 0 z

t − s s relation

28 7 c0g = 0 z

28 8 d2
0 = gw1

29 7 βd0 = αe0

30 7 h2αβ = 0 z

32 7 βe0 = αg

32 8 h0δ = h0αg

33 7 h2β2 = 0 z

33 8 c0γ = h1δ

34 8 e2
0 = d0g

34 9 h2
1δ = h0d0g

35 8 h2δ = 0 z

37 8 αγ = e0g

38 10 α2d0 = β2w1

39 9 α2β = d0γ

40 8 βγ = g2

40 10 c0δ = 0 z

42 9 αβ2 = e0γ

44 10 αδ = 0

45 9 β3 = γg

46 11 d0δ = 0

47 10 βδ = 0

48 12 α4 = h4
0w2 + g2w1

49 11 e0δ = 0

50 10 γ2 = h2
1w2 + β2g

52 11 δg = 0

57 12 γδ = h1c0w2

64 14 δ2 = 0

In particular, δ in (t − s, s)-bidegree (32, 7) is sent to the class δ of 711, with
h0δ = 814 0= 0 and h1δ = 815 0= 0. In the remaining cases the cocycle sg is the only
nonzero class in its bidegree.
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Lemma 3.39. φ is well-defined.

Proof. The relations labeled “z” in Table 3.4 take place in bidegrees where
ExtA(2)(F2, F2) is zero. The relations labeled “hi” are evident from the h0-, h1- and
h2-multiplications shown in Figures 1.19 and 1.20. To verify the remaining relations
we use ext to calculate products in ExtA(2)(F2, F2), as explained in Remarks 1.6
and 1.13. For instance, this gives γ2 = 1020 + 1021, β2g = 1020 and h2

1w2 = 1021,
confirming the relation γ2 = β2g + h2

1w2 in (t − s, s)-bidegree (50, 10). !

Remark 3.40. We use the method of Gröbner bases to make I ⊂ P and SI
computationally accessible. We order the 13 algebra generators as in Table 3.3

(3.7) h0 > h1 > h2 > c0 > α > β > d0 > e0 > γ > δ > g > w1 > w2 ,

and write monomials in these generators in the format

m = hn1
0 hn2

1 hn3
2 · · · gn11wn12

1 wn13
2

with n1, n2, n3, . . . , n11, n12, n13 ≥ 0. Since we are working over F2, where 1 is the
only nonzero coefficient, there is no need to distinguish between monomials and
terms.

Polynomials, which are sums of monomials, are written in reverse lexicographic
order. This means that the terms with n13 = 0 (not containing w2) are followed by
the terms with n13 = 1 (containing a single copy of w2), etc. Ties are broken by
considering n12 (the number of copies of w1), and so on. For instance, the sum of
h2

0h2 and h3
1 is written as h3

1 + h2
0h2, with h3

1 preceding h2
0h2, because neither term

contains c0, . . . , w2, and h3
1 contains fewer copies of h2 (n3 = 0) than h2

0h2 does
(n3 = 1). The first monomial in a nonempty sum of terms is called the leading
term.

Computer algebra systems like MAGMA and sage can effectively calculate a re-
duced Gröbner basis for a given ideal in a finitely generated polynomial ring, such
as I in P . The Gröbner basis is a generating set B for the ideal I. Each element
b ∈ B is a sum of terms 5 + r, with 5 the leading term and r the (possibly empty)
sum of the remaining terms. Then 5 ≡ −r mod I, and more generally m5 ≡ −mr
mod I for any monomial m. A monomial in P that is divisible by the leading term 5
of an element b ∈ B, i.e., that is a product m5, is thus equivalent modulo I to the
product −mr. A monomial is irreducible if it is not divisible by the leading term
of any element b ∈ B.

For a Gröbner basis B, the set of irreducible monomials {m1, m2, . . . } in P
projects to give a vector space basis {m1+I, m2+I, . . . } for P/I. Each polynomial p
in P is equivalent modulo I to a unique sum of irreducible monomials, which can be
found by repeatedly replacing each reducible monomial m5 in p with the sum −mr,
which consists of monomials later than m5 in the reverse lexicographic term order.
Eventually this process stops, and the resulting sum of irreducible monomials is
called the normal form of p.

Proposition 3.41. The reduced Gröbner basis for the ideal I ⊂ P generated
by the Shimada–Iwai relations in Table 3.4, with respect to the ordering (3.7) of
the algebra generators and the graded reverse lexicographic ordering of monomials,
is given by the list of 77 polynomials in Table 3.5.

Proof. This is best verified by a computer algebra system. !
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Table 3.5. Gröbner basis for the Shimada–Iwai relations

t − s s basis element

1 2 h0h1

3 3 h3
1 + h2

0h2

3 4 h3
0h2

4 2 h1h2

6 3 h0h2
2

8 4 h0c0

9 3 h3
2

10 5 h2
1c0

11 4 h2c0

13 4 h1α

14 6 h2
0d0 + h2

2w1

15 4 h2α + h0β

15 5 h2
0β + h1d0

16 4 h1β

16 6 c2
0

16 6 h2
1d0

17 5 h2d0 + h0e0

17 7 h3
0e0

18 5 h0h2β + h1e0

19 6 h2
1e0

20 5 h2e0 + h0g

20 6 c0α + h2
0g

20 7 h3
0g

21 5 h2
2β + h1g

22 6 h2
1g

22 7 c0d0

23 5 h2g

23 6 c0β

25 6 h0γ

25 7 c0e0

26 8 h0αd0 + h2βw1

27 7 h0αβ + h2
1γ

28 6 h2γ

28 7 c0g

28 8 d2
0 + gw1

29 7 βd0 + αe0

29 9 h2
0αe0 + h1gw1

30 7 h0β2

31 9 h0d0e0

t − s s basis element

32 7 βe0 + αg

32 8 h0δ + h0αg

32 9 h1d0e0 + h2
0αg

33 7 h2β2

33 8 c0γ + h1δ

34 8 e2
0 + d0g

34 9 h2
1δ + h0d0g

35 8 h0βg

35 8 h2δ

35 9 h1d0g

37 8 αγ + e0g

37 9 h0e0g

38 9 h1e0g

38 10 α2d0 + β2w1

39 9 α2β + d0γ

40 8 βγ + g2

40 9 h0g2

40 10 c0δ

40 10 h1d0γ

41 9 h1g2

41 11 h0α2e0

42 9 αβ2 + e0γ

43 10 h1e0γ

43 11 αd0e0 + βgw1

44 10 αδ

44 11 h0α2g

45 9 β3 + γg

46 10 h1γg

46 11 d0δ

47 10 βδ

48 12 α4 + g2w1 + h4
0w2

49 11 e0δ

50 10 γ2 + β2g + h2
1w2

52 11 δg

53 13 α3e0 + γgw1

56 13 d0e0γ + α3g

57 12 γδ + h1c0w2

64 14 δ2
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Proposition 3.42 (Shimada–Iwai). SI is free as a module over F2[w1, w2].

Proof. The ordering (3.7) is chosen so that the normal form of polynomials
will emphasize terms containing w1 or w2. More precisely, no leading term 5 in
Table 3.5 contains w1 or w2. Hence a monomial of the form mwn12

1 wn13
2 is irreducible

if and only if m is irreducible. As m ∈ P ranges over the irreducible monomials
that do not contain w1 or w2, the products mwn12

1 wn13
2 with n12, n13 ≥ 0 range

over all the irreducible monomials, so the cosets mwn12
1 wn13

2 + I give an F2-basis
for P/I. It follows that the cosets m+ I give an F2[w1, w2]-basis for P/I = SI. !

Definition 3.43. Let R0 = F2[g, w1, w2].

Remark 3.44. The algebra presentation of SI ∼= ExtA(2)(F2, F2) given in Ta-
bles 3.3, 3.4 and 3.5 is precise, but complex. In view of the previous proposition,
the module structure over F2[w1, w2] ⊂ SI is far simpler. However, SI is infinitely
generated over F2[w1, w2], due to infinite h0- and g-towers. For the purposes of
the Adams spectral sequence calculations that follow, it will be convenient to view
SI as a module over the intermediate algebra R0, as just defined. The R0-module
structure of SI is still quite simple, as shown in the following proposition. It is not
finitely generated, but this is only due to the presence of h0-towers, which will turn
out to remain manageable in our calculations.

Proposition 3.45. SI is a direct sum of cyclic modules over R0 = F2[g, w1, w2],
as listed in Table 3.6. Here Ann(x) denotes the annihilator ideal of x, so that

SI ∼=
⊕

x

〈x〉 ∼=
⊕

x

F2[g, w1, w2]

Ann(x)
{x} .

Proof. Each irreducible monomial in P can be written in the form

q = mgn11wn12
1 wn13

2 ,

where m is an irreducible monomial that does not contain g, w1 or w2. However,
not all of these products q are irreducible. The elements in Table 3.5 with leading
term containing g are

h3
0g, h2

1g, h2g, c0g, h0βg, h1d0g, h0e0g, h1e0g, h0α
2g, h1γg, δg, h0g

2, h1g
2 .

Hence a product q is reducible precisely if n11 ≥ 1 and m is divisible by one of the
coefficients h3

0, h
2
1, . . . , h1γ or δ, or if n11 ≥ 2 and m is divisible by h0 or h1. In

these cases the monomial q represents 0 in P/I.
Thus, as m ∈ P ranges over the irreducible monomials that do not contain

g, w1 or w2, the images x = m + I generate P/I = SI as a direct sum of cyclic
R0 = F2[g, w1, w2]-modules. If m is divisible by h3

0, h
2
1, . . . , h1γ or δ, then the

annihilator ideal of x is Ann(x) = (g). Otherwise, if m is divisible by h0 or h1,
then Ann(x) = (g2). In the remaining cases, Ann(x) = (0), so x generates a free
summand.

The generators x of the cyclic summands in SI project to an F2-basis for
SI/(g, w1, w2). We filter this algebra by the powers of its maximal ideal

m = (h0, h1, h2, c0,α, d0,β, e0, γ, δ) ,

which are

m2 = (h2
0, h

2
1, h0h2, h

2
2, h1c0, h0α, h0d0, h0β, h1d0, h0e0, h2β, h1e0,

α2, h1γ,αd0,αβ,αe0,β
2, d0e0, h1δ, d0γ, e0γ) ,
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m3 = (h3
0, h

2
0h2, h

2
0α, h1d0, h

2
0e0, h1e0, h0α

2, h2
1γ, h0αe0,α

3, d0γ,α2e0, e0γ)

and
mi = (hi

0, h
i−1
0 α, hi−2

0 α2, hi−3
0 α3)

for each i ≥ 4. Here the generators of m2 are the nonzero normal forms of the
products of pairs of generators of m, etc. Furthermore,

m/m2 = F2{h0, h1, h2, c0,α, d0,β, e0, γ, δ} ,

m2/m3 = F2{h2
0, h

2
1, h0h2, h

2
2, h1c0, h0α, h0d0, h0β, h0e0, h2β,

α2, h1γ,αd0,αβ,αe0,β
2, d0e0, h1δ} ,

m3/m4 = F2{h3
0, h

2
0h2, h

2
0α, h1d0, h

2
0e0, h1e0, h0α

2, h2
1γ, h0αe0,

α3, d0γ,α2e0, e0γ}
and

mi/mi+1 = F2{hi
0, h

i−1
0 α, hi−2

0 α2, hi−3
0 α3}

for each i ≥ 4. Letting m range over these F2-bases for mi/mi+1 for i ≥ 0, the
corresponding classes x = m + I give the module generators of SI over R0 =
F2[g, w1, w2], as listed in Table 3.6 and illustrated in Figures 3.12 and 3.13. !

Table 3.6: R0 = F2[g, w1, w2]-module generators of SI ∼=
ExtA(2)(F2, F2), with i ≥ 0 in each h0-tower

t − s s g x Ann(x)

0 0 0 1 (0)

0 1 0 h0 (g2)

0 2 0 h2
0 (g2)

0 3 0 h3
0 (g)

0 4 + i 0 h4+i
0 (g)

1 1 1 h1 (g2)

2 2 1 h2
1 (g)

3 1 2 h2 (g)

3 2 2 h0h2 (g)

3 3 1 h2
0h2 (g)

6 2 3 h2
2 (g)

8 3 2 c0 (g)

9 4 2 h1c0 (g)

12 3 3 α (0)

12 4 3 h0α (g2)

12 5 4 h2
0α (g2)

12 6 + i 4 h3+i
0 α (g)
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Table 3.6: R0 = F2[g, w1, w2]-module generators of SI ∼=
ExtA(2)(F2, F2), with i ≥ 0 in each h0-tower (cont.)

t − s s g x Ann(x)

14 4 4 d0 (0)

14 5 5 h0d0 (g2)

15 3 4 β (0)

15 4 5 h0β (g)

15 5 6 h1d0 (g)

17 4 6 e0 (0)

17 5 7 h0e0 (g)

17 6 6 h2
0e0 (g)

18 4 7 h2β (g)

18 5 8 h1e0 (g)

24 6 8 α2 (0)

24 7 7 h0α2 (g)

24 8 + i 8 h2+i
0 α2 (g)

25 5 11 γ (0)

26 6 9 h1γ (g)

26 7 8 αd0 (0)

27 6 10 αβ (0)

27 7 9 h2
1γ (g)

29 7 10 αe0 (0)

29 8 12 h0αe0 (g)

30 6 11 β2 (0)

31 8 13 d0e0 (0)

32 7 11 δ (g)

33 8 15 h1δ (g)

36 9 17 α3 (0)

36 10 + i 14 h1+i
0 α3 (g)

39 9 18 d0γ (0)

41 10 16 α2e0 (0)

42 9 19 e0γ (0)
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Figure 3.12. R0 = F2[g, w1, w2]-module generators, indicated
by •, of ExtA(2)(F2, F2) for 0 ≤ t − s ≤ 24
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Figure 3.13. R0 = F2[g, w1, w2]-module generators, indicated
by •, of ExtA(2)(F2, F2) for 24 ≤ t − s ≤ 48
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Theorem 3.46 (Shimada–Iwai). φ : SI → ExtA(2)(F2, F2) is an isomorphism.

Proof. The decomposition in Proposition 3.45 of SI as a direct sum of cyclic
R0 = F2[g, w1, w2]-modules splits further as a sum of free F2[w1, w2]-modules, with
generators {x}, {x, xg} or {x, xg, xg2, . . . } in the cases where Ann(x) = (g), (g2)
or (0), respectively.

When x is one of the algebra generators h0, h1, . . . , w1, w2 of SI, its image φ(x)
in the abutment ExtA(2)(F2, F2) of the Davis–Mahowald spectral sequence for A(2)
is detected by a nonzero class in the E2 = E∞-term listed in Table 3.2. For x 0= δ
there is only one such class in the given bidegree, as listed in the “E∞”-column of
Table 3.3.

In bidegree (t − s, s) = (32, 7) the abutment is generated by δ and αg, while
the E∞-term is generated by h1v′x4x4

7 and a7,1x6
4, in filtrations σ = 5 and σ = 6,

respectively. Since α and g are detected in filtrations σ = 2 and σ = 4, the product
αg must be detected in filtration σ ≥ 6. Alternatively, h1δ 0= 0 must be detected
by h2

1v
′x4x4

7 in filtration σ = 5, so δ must be detected in filtration σ ≤ 5. By either
argument, αg is detected by a7,1x6

4, and δ and δ′ = δ + αg are both detected by
h1v′x4x4

7.
For each F2[w1, w2]-module generator x in SI we can now use the multiplicative

structure to determine the detecting class in the Davis–Mahowald E∞-term of the
image φ(x) in ExtA(2)(F2, F2). The results are listed in the “Ext”- and “generator”-
columns of Table 3.2, and show that φ induces a bijection between the F2[w1, w2]-
module generators of SI and the F2[w1, x8

7]-module generators of E∗,∗,∗
∞ . A few cases

require special attention: Each product h1g, α2, γg, αβ, β2, α3, d0γ, α2e0 and e0γ is
the unique nonzero class in its bidegree, as calculated by ext, and this determines its
detecting class in the Davis–Mahowald E∞-term. The products h1d0, h1e0 and h2

1γ
appear in the non-normal forms h2

0β, h0h2β and h0αβ, respectively. It follows that
φ is an isomorphism of F2[w1, w2]-modules, hence also of F2-algebras. !

Remark 3.47. For later reference, we have included the generator number g of
the ext-cocycle sg corresponding to each module generator x in Table 3.6. For the
infinite h0-towers, parameterized by i ≥ 0, only the generator number corresponding
to i = 0 is given. In all but one case the module generator is the unique nonzero
class in its bidegree, so the generator number can be read off from Figures 1.11
and 1.12. The exceptional case is that of δ, which we have already chosen to
correspond to the cocycle 711.

Remark 3.48. The direct sum of the 16 free R0 = F2[g, w1, w2]-module sum-
mands listed in Table 3.6 contains a Mahowald–Tangora wedge [108] of the form

F2[v1, w]{βg} ,

starting in bidegree (t − s, s) = (35, 7), together with its w2-power multiples. Here
v1 and w are formal symbols of bidegree (t − s, s) = (2, 1) and (5, 1), respectively,
with v4

1 = w1 and w4 = g. Less formally, the (first) Mahowald–Tangora wedge is
the free F2[g, w1]-module generated by the 16 classes

βg, e0g, d0γ,α2e0,

g2, e0γ,α2g,αd0g,

γg,αβg,αe0g, d0e0g,

β2g,αg2, d0g
2,α3g .
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See Figure 3.14.

Our discussion of the Adams spectral sequence for tmf continues in Chap-
ter 5, where we determine the differential pattern that leads from E2(tmf) =
ExtA(2)(F2, F2) to E∞(tmf).
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CHAPTER 4

Ext with coefficients

We use long exact sequences of Ext-groups to determine ExtA(2)(M, F2) as
an R0 = F2[g, w1, w2]-module, for M equal to M1, M2 and M4. In each case
we also determine a minimal generating set for ExtA(2)(M, F2) as a module over
ExtA(2)(F2, F2).

4.1. Coefficients in M1

Recall our notations from Section 1.4. The short exact sequence of A(2)-
modules

0 → ΣF2 −→ M1 −→ F2 → 0

represents h0 in Ext1,1
A(2)(F2, F2). In the induced long exact sequence

. . .
δ−→ Ext∗,∗

A(2)(F2, F2)
i−→ Ext∗,∗

A(2)(M1, F2)

j−→ Ext∗,∗
A(2)(ΣF2, F2)

δ−→ Ext∗+1,∗
A(2) (F2, F2) −→ . . .

the connecting homomorphism δ is therefore given by multiplication by h0. Hence
the long exact sequence breaks up into short exact sequences

0 → cok(h0)
s,t i−→ Exts,t

A(2)(M1, F2)
j−→ ker(h0)

s,t−1 → 0 ,

where Exts,t
A(2)(F2, F2)/ im(h0) = cok(h0)s,t and ker(h0)s,t ⊂ Exts,t

A(2)(F2, F2).

Lemma 4.1. The kernel and cokernel of h0 are both direct sums of cyclic R0-
modules, with generators and annihilator ideals as listed in Table 4.1.

Proof. For each class x listed in Table 3.6, spanning a cyclic R0-module sum-
mand 〈x〉 of SI ∼= ExtA(2)(F2, F2), we express h0x as an element in a summand 〈y〉
and record the kernel and cokernel of the R0-module homomorphism h0 : 〈x〉 → 〈y〉.
In most cases h0x = 0 or y = h0x. The less obvious cases are

h0 · h0d0 = w1 · h2
2

h0 · h0β = h1d0

h0 · h2β = h1e0

h0 · αd0 = w1 · h2β

h0 · αβ = h2
1γ

h0 · h0αe0 = gw1 · h1

h0 · δ = g · h0α ,

which are clear from Table 3.5 and visible in Figures 3.12 and 3.13. Only in the
last case is there some interaction between several cyclic summands, with h0 : R0 ⊕
R0/(g) ∼= 〈α〉 ⊕ 〈δ〉 −→ 〈h0α〉 ∼= R0/(g2). Its kernel is 〈δ + αg〉 = 〈δ′〉 ∼= R0, while

159
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160 4. Ext WITH COEFFICIENTS

the cokernel is zero. In Table 4.1 the ker(h0)-entries for x = α and x = δ have
therefore been combined, and appear together with the latter generator. !

Table 4.1: Direct sum decompositions of the kernel and cokernel of
multiplication by h0, with i ≥ 0 in each h0-tower

t − s s g ker(h0) x h0x cok(h0)

0 0 0 〈g2〉 = R0 1 h0 〈1〉 = R0

0 1 0 0 h0 h2
0 0

0 2 0 〈h2
0g〉 = R0/(g) h2

0 h3
0 0

0 3 + i 0 0 h3+i
0 h4+i

0 0

1 1 1 〈h1〉 = R0/(g2) h1 0 〈h1〉 = R0/(g2, gw1)

2 2 1 〈h2
1〉 = R0/(g) h2

1 0 〈h2
1〉 = R0/(g)

3 1 2 0 h2 h0h2 〈h2〉 = R0/(g)

3 2 2 0 h0h2 h2
0h2 0

3 3 1 〈h2
0h2〉 = R0/(g) h2

0h2 0 0

6 2 3 〈h2
2〉 = R0/(g) h2

2 0 〈h2
2〉 = R0/(g, w1)

8 3 2 〈c0〉 = R0/(g) c0 0 〈c0〉 = R0/(g)

9 4 2 〈h1c0〉 = R0/(g) h1c0 0 〈h1c0〉 = R0/(g)

12 3 3 − (cf. x = δ) α h0α 〈α〉 = R0

12 4 3 0 h0α h2
0α 0

12 5 4 〈h2
0αg〉 = R0/(g) h2

0α h3
0α 0

12 6 + i 4 0 h3+i
0 α h4+i

0 α 0

14 4 4 〈d0g2〉 = R0 d0 h0d0 〈d0〉 = R0

14 5 5 〈h0d0g〉 = R0/(g) h0d0 w1 · h2
2 0

15 3 4 〈βg〉 = R0 β h0β 〈β〉 = R0

15 4 5 0 h0β h1d0 0

15 5 6 〈h1d0〉 = R0/(g) h1d0 0 0

17 4 6 〈e0g〉 = R0 e0 h0e0 〈e0〉 = R0

17 5 7 0 h0e0 h2
0e0 0

17 6 6 〈h2
0e0〉 = R0/(g) h2

0e0 0 0

18 4 7 0 h2β h1e0 〈h2β〉 = R0/(g, w1)

18 5 8 〈h1e0〉 = R0/(g) h1e0 0 0

24 6 8 〈α2g〉 = R0 α2 h0α2 〈α2〉 = R0

24 7 + i 7 0 h1+i
0 α2 h2+i

0 α2 0

25 5 11 〈γ〉 = R0 γ 0 〈γ〉 = R0
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Table 4.1: Direct sum decompositions of the kernel and cokernel of
multiplication by h0, with i ≥ 0 in each h0-tower (cont.)

t − s s g ker(h0) x h0x cok(h0)

26 6 9 〈h1γ〉 = R0/(g) h1γ 0 〈h1γ〉 = R0/(g)

26 7 8 〈αd0g〉 = R0 αd0 w1 · h2β 〈αd0〉 = R0

27 6 10 〈αβg〉 = R0 αβ h2
1γ 〈αβ〉 = R0

27 7 9 〈h2
1γ〉 = R0/(g) h2

1γ 0 0

29 7 10 〈αe0g〉 = R0 αe0 h0αe0 〈αe0〉 = R0

29 8 12 0 h0αe0 gw1 · h1 0

30 6 11 〈β2〉 = R0 β2 0 〈β2〉 = R0

31 8 13 〈d0e0〉 = R0 d0e0 0 〈d0e0〉 = R0

32 7 11 〈δ′〉 = R0 δ g · h0α 〈δ〉 = R0/(g)

33 8 15 〈h1δ〉 = R0/(g) h1δ 0 〈h1δ〉 = R0/(g)

36 9 17 〈α3g〉 = R0 α3 h0α3 〈α3〉 = R0

36 10 + i 14 0 h1+i
0 α3 h2+i

0 α3 0

39 9 18 〈d0γ〉 = R0 d0γ 0 〈d0γ〉 = R0

41 10 16 〈α2e0〉 = R0 α2e0 0 〈α2e0〉 = R0

42 9 19 〈e0γ〉 = R0 e0γ 0 〈e0γ〉 = R0

Proposition 4.2. ExtA(2)(M1, F2) is a direct sum of cyclic R0-modules, to-
gether with one non-cyclic R0-module, with generators and annihilator ideals as
listed in Table 4.2.

Proof. We use ext as discussed in Remark 1.29 to determine the R0-module
extensions of summands in ker(h0) by summands in cok(h0). Each summand in
ker(h0) has a generator of the form y = xgn, and we choose a lift ỹ in ExtA(2)(M1, F2)
with j(ỹ) = y. In most cases the lift is unique, but for xgn = h1γ we prefer

68 = h1γ̃ over 67, for xgn = h2
0αg we prefer 97 = h1d̃0e0 over 96, for xgn = h1δ

we prefer 810 = h1δ̃′ over 89 + 810, and for xgn = α3g we prefer 1318 = d0e0γ̃ over
1318 + 1319. The first three choices, each with g · ỹ = 0, are forced by our aim to
split ExtA(2)(M1, F2) into indecomposable R0-modules. The fourth choice will turn
out to be more convenient when we get to E4(tmf/2).

We then use ext to write ỹ as the product of a class in ExtA(2)(F2, F2) and one of
the module generators from Table 1.5. When given a choice, we prefer factorizations
that (in hindsight will turn out to) last as long as possible in the Adams spectral
sequence for tmf/2, and we emphasize hi-multiplications and other products with
coefficients in low topological degree. In most cases the given presentation of ỹ is

evidently a lift of y. The less obvious cases are j(h2
1h̃1) = h2

0h2, j(d0h̃2
2) = h2

0g,

j(h1d̃0e0) = h2
0αg, j(h2

1δ̃
′) = h0d0g, j(αγ̃) = e0g, j(βγ̃) = g2, j(d0β̃2) = α2g,

j(d0δ̃′) = αd0g, j(e0β̃2) = αβg, j(d0β̃g) = αe0g, j(α2β̃2) = d0g2 and j(d0e0γ̃) =
α3g, all of which follow from the relations in Table 3.5.
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162 4. Ext WITH COEFFICIENTS

If 〈y〉 = R0 then 〈ỹ〉 = R0. Otherwise, if 〈y〉 = R0/(gm) we use ext to calculate
gm · ỹ. If the answer is 0, then 〈ỹ〉 = R0/(gm), but if gm · ỹ = i(z) 0= 0 then 〈ỹ〉 is an
extension of R0/(gm) by the summand containing z. This happens in the following
seven cases.

g · d0h̃2
2 = i(α2e0)

g2 · h̃1 = i(e0γ)

g · h̃2
2 = i(αβ)

g · c̃0 = i(αe0)

g · d0h̃1 = i(α3)

g · h̃2
0e0 = w1 · i(β2)

g · e0h̃1 = i(d0γ)

In most instances z generates that summand, and 〈ỹ〉 is cyclic, but in the case of

xgn = h2
0e0 with ỹ = h̃2

0e0 we have g · ỹ = i(z) = w1 · i(β2), resulting in a non-

cyclic R0-module summand in ExtA(2)(M1, F2) generated by h̃2
0e0 and i(β2). See

Table 4.3.
This accounts for the summands in ker(h0) and the seven summands in cok(h0)

that appear in the R0-module extensions listed above. Each of the remaining
summands 〈z〉 in cok(h0) contributes a new summand 〈i(z)〉 in ExtA(2)(M1, F2).
Gathering these together, and renaming ỹ or i(z) as x, leads to Table 4.2. !

Table 4.2: R0-module generators of ExtA(2)(M1, F2)

t − s s g x Ann(x) j(x)

0 0 0 i(1) (0) 0

1 1 0 i(h1) (g2, gw1) 0

2 1 1 h̃1 (0) h1

2 2 0 i(h2
1) (g) 0

3 1 2 i(h2) (g) 0

3 2 1 h1h̃1 (g) h2
1

4 3 0 h2
1h̃1 (g) h2

0h2

6 2 2 i(h2
2) (g, w1) 0

7 2 3 h̃2
2 (0) h2

2

8 3 1 i(c0) (g) 0

9 3 2 c̃0 (0) c0

9 4 1 i(h1c0) (g) 0

10 4 2 h1c̃0 (g) h1c0

12 3 3 i(α) (0) 0
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Table 4.2: R0-module generators of ExtA(2)(M1, F2) (cont.)

t − s s g x Ann(x) j(x)

14 4 3 i(d0) (0) 0

15 3 4 i(β) (0) 0

16 5 3 d0h̃1 (0) h1d0

17 4 4 i(e0) (0) 0

18 4 5 i(h2β) (g, w1) 0

18 6 3 h̃2
0e0 − h2

0e0

19 5 4 e0h̃1 (0) h1e0

21 6 4 d0h̃2
2 (0) h2

0g

24 6 5 i(α2) (0) 0

25 5 7 i(γ) (0) 0

26 5 8 γ̃ (0) γ

26 6 6 i(h1γ) (g) 0

26 7 5 i(αd0) (0) 0

27 6 8 h1γ̃ (g) h1γ

28 7 6 h2
1γ̃ (g) h2

1γ

30 6 9 i(β2) − 0

31 6 10 β̃2 (0) β2

31 8 6 i(d0e0) (0) 0

32 7 9 i(δ) (g) 0

32 8 7 d̃0e0 (0) d0e0

33 7 10 δ̃′ (0) δ′

33 8 8 i(h1δ) (g) 0

33 9 7 h1d̃0e0 (g) h2
0αg

34 8 10 h1δ̃′ (g) h1δ

35 9 9 h2
1δ̃

′ (g) h0d0g

36 7 12 β̃g (0) βg

38 8 12 αγ̃ (0) e0g

40 9 12 d0γ̃ (0) d0γ

41 8 14 βγ̃ (0) g2

42 10 12 α̃2e0 (0) α2e0

43 9 14 e0γ̃ (0) e0γ

45 10 14 d0β̃2 (0) α2g
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Table 4.2: R0-module generators of ExtA(2)(M1, F2) (cont.)

t − s s g x Ann(x) j(x)

47 11 14 d0δ̃′ (0) αd0g

48 10 16 e0β̃2 (0) αβg

50 11 16 d0β̃g (0) αe0g

55 12 18 α2β̃2 (0) d0g2

57 13 18 d0e0γ̃ (0) α3g

Table 4.3: The non-cyclic R0-module summand in ExtA(2)(M1, F2)

〈h̃2
0e0, i(β2)〉 ∼=

Σ6,24R0 ⊕ Σ6,36R0

〈(g, w1)〉

Corollary 4.3. ExtA(2)(M1, F2) is generated as an ExtA(2)(F2, F2)-module
by the classes

i(1), h̃1, h̃2
2, c̃0, h̃2

0e0, γ̃, β̃2, d̃0e0, δ̃′, β̃g, α̃2e0

listed in Table 1.5 and shown in Figure 4.1.

Proof. Each R0-module generator x in Table 4.2 is an ExtA(2)(F2, F2)-multiple
of one of these eleven classes. !

4.2. Adams periodicity

As an application of our calculation in Section 4.1, we establish an improved
form of the Adams periodicity theorem from [7], originally due to Peter May
(ca. 1968, unpublished). Our statement of Theorem 4.9 implies the formulation
quoted in [144, Thm. 3.4.6(a)].

Define functions F (s) and G(s) as follows.

s ≤ −5 −4 −3 −2 −1 0 1 2 3 4 5 ≥ 6

F (s) +∞ −8 −7 −6 −4 1 8 6 18 18 21 5s + 3

G(s) +∞ −8 −7 −6 −4 1 8 10 18 23 25 5s + 3

Proposition 4.4. Let M1 = H∗(S/2). Then

w1 : Exts,t
A(2)(M1, F2) −→ Exts+4,t+12

A(2) (M1, F2)

is an isomorphism for t − s < F (s), and is surjective for t − s < G(s).

Proof. This follows by inspection from the w1-action on ExtA(2)(M1, F2)

given in Table 4.2. The classes d0h̃1, d0h̃2
2, i(αd0), i(d0e0) and their g-power mul-

tiplies are not w1-multiples, and lead to the bound t − s < 5s + 3 for s ≥ 6. !
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Figure 4.1. R0-module generators of ExtA(2)(M1, F2). Note that
d0e0γ̃ = 1318.

Define functions H(s) and I(s) as follows.

s ≤ −4 −3 −2 −1 0 1 2 3 4 5 6 ≥ 7

H(s) −s − 12 −8 −7 −6 −4 1 6 10 18 21 25 5s − 2

I(s) −s − 12 −7 −6 −4 1 7 10 18 22 25 33 5s + 3
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Proposition 4.5. Let L be an A(2)-module that is A(0)-free and connective.
Then

w1 : Exts,t
A(2)(L, F2) −→ Exts+4,t+12

A(2) (L, F2)

is an isomorphism for t − s < H(s), and is surjective for t − s < I(s).

Proof. The case where L is a direct sum of copies of M1 follows from the
previous proposition, since H(s) ≤ F (s) and I(s) ≤ G(s). As in the proof of
Lemma 2.3 in [7], we can suppose that L′ → L → L′′ is an extension of A(0)-free
A(2)-modules, where the result holds by induction for L′′, and L′ is a direct sum
of copies of ΣνM1 for some ν ≥ 1. By the Five Lemma applied to

Exts−1,t
A(2) (L′, F2)

w1 !!

δ

""

Exts+3,t+12
A(2) (L′, F2)

δ

""

Exts,t
A(2)(L

′′, F2)
w1 !!

""

Exts+4,t+12
A(2) (L′′, F2)

""

Exts,t
A(2)(L, F2)

w1 !!

""

Exts+4,t+12
A(2) (L, F2)

""

Exts,t
A(2)(L

′, F2)
w1 !!

δ

""

Exts+4,t+12
A(2) (L′, F2)

δ

""

Exts+1,t
A(2) (L′′, F2)

w1 !! Exts+5,t+12
A(2) (L′′, F2)

we deduce that w1 of the proposition is an isomorphism if t−(s−1) < G(s−1)+ν,
t−s < H(s), t−s < F (s)+ν and t−(s+1) < H(s+1). This holds for t−s < H(s)
because

H(s) ≤ min{F (s), G(s− 1), H(s + 1) + 1} .

Furthermore, we deduce that w1 of the proposition is surjective if t − s < I(s),
t − s < G(s) + ν and t − (s + 1) < H(s + 1). This holds for t − s < I(s) because

I(s) ≤ min{G(s), H(s + 1) + 1} .

!

Define functions J(s) and K(s) as follows, where i < 0.

s 4i 4i + 1 4i + 2 4i + 3 0 1 2 3 4 5 6 ≥ 7

J(s) 8i − 4 8i 8i + 1 8i + 2 −4 1 6 10 18 21 25 5s − 2

K(s) 8i 8i + 1 8i + 2 8i + 4 1 7 10 18 22 25 33 5s + 3

Corollary 4.6. Let m ≥ 1. Then

wm
1 : Exts,t

A(2)(L, F2) −→ Exts+4m,t+12m
A(2) (L, F2)

is an isomorphism for t − s < J(s), and is surjective for t − s < K(s).
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Proof. If t − s < J(s) then (t + 12k) − (s + 4k) < H(s + 4k) for all k ≥ 0,
so wm

1 is the composite of m isomorphisms, by the previous proposition. Likewise,
if t − s < K(s) then (t + 12k) − (s + 4k) < I(s + 4k) for all k ≥ 0, so wm

1 is the
composite of m surjections. !

For n ≥ 2 let 8n ∈ Ext2
n,3·2n

A(n) (F2, F2) be the Adams periodicity element from

[7, §4], which restricts to w2n−2

1 in Ext2
n,3·2n

A(2) (F2, F2). Define functions L(s), M(s)

and N(s) as follows.

s 4i 4i+1 4i+2 4i+3 0 1 2 3 4 5 6 7 ≥ 8

L(s) 8i−5 8i−1 8i 8i+1 −5 0 6 9 16 21 24 31 5s−3

M(s) 8i−5 8i−1 8i 8i+1 0 3 6 9 16 21 24 31 5s−3

N(s) 8i 8i+1 8i+2 8i+4 1 7 10 17 22 25 32 38 5s+3

Proposition 4.7. Let n ≥ 2, and let L be an A(n)-module that is A(0)-free
and connective. Then

8n : Exts,t
A(n)(L, F2) −→ Exts+2n,t+3·2n

A(n) (L, F2)

is an isomorphism for t − s < M(s), and is surjective for t − s < N(s).

Proof. We first prove the claim with L(s) in place of M(s). Consider the
extension Σ8K → A(n) ⊗A(2) L → L of A(n)-modules. Here K is A(0)-free and
connective. By induction on t we may assume that the proposition applies to K.
By the Five Lemma applied to

Exts−1,t
A(2) (L, F2)

w2n−2

1 !!

""

Exts+2n−1,t+3·2n

A(2) (L, F2)

""

Exts−1,t
A(n) (Σ8K, F2)

3n !!

δ

""

Exts+2n−1,t+3·2n

A(n) (Σ8K, F2)

δ

""

Exts,t
A(n)(L, F2)

3n !!

""

Exts+2n,t+3·2n

A(n) (L, F2)

""

Exts,t
A(2)(L, F2)

w2n−2

1 !!

""

Exts+2n,t+3·2n

A(2) (L, F2)

""

Exts,t
A(n)(Σ

8K, F2)
3n !! Exts+2n,t+3·2n

A(n) (Σ8K, F2)

we deduce that 8n of the proposition is an isomorphism if t − (s − 1) < K(s − 1),
t − (s − 1) < L(s − 1) + 8, t − s < J(s) and t − s < L(s) + 8. This holds for
t − s < L(s) because

L(s) ≤ min{J(s), K(s − 1) − 1, L(s − 1) + 7} .

Furthermore, we deduce that 8n of the proposition is surjective if t − (s − 1) <
N(s−1)+8, t−s < K(s) and t−s < L(s)+8. This holds for t−s < N(s) because

N(s) ≤ min{K(s), L(s) + 8, N(s − 1) + 7} .
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To finish the proof, we appeal to [7, Thm. 5.3], showing that 8n is an isomor-
phism for s ≥ 0 and t − s < 3s. This lets us improve L(s) to M(s), as shown, for
s = 0 and s = 1. !

Let L be an A-module that is A(0)-free and connective. Adapting [7, §2], we
let

P (4k) = 8k, P (4k + 1) = 8k + 1, P (4k + 2) = 8k + 2, P (4k + 3) = 8k + 4

for all integers k. By the Adams vanishing theorem [7, Thm. 2.1], Exts,t
A (L, F2) = 0

for t − s < P (s). For n ≥ 2 the Massey product πn(x) = 〈hn+1, h2n

0 , x〉 defines a
homomorphism

πn : ker(h2n

0 ) −→ Exts+2n,t+3·2n

A (L, F2)

hn+1 Exts+2n−1,t+2n

A (L, F2)

from ker(h2n

0 ) ⊂ Exts,t
A (L, F2). By the Adams approximation theorem [7, Thm. 3.1]

the restriction homomorphism

Exts,t
A (L, F2) −→ Exts,t

A(n)(L, F2)

is an isomorphism for (s, t) such that

t − s < 2n+1 − 1 + P (s − 1) .

For x ∈ Exts,t
A (L, F2) the product h2n

0 x lies in bidegree (s + 2n, t + 2n), and the
inequality above implies that

t − s < 2n+1 − 1 + P (s − 1) = P (s + 2n − 1) − 1 ≤ P (s + 2n) .

Hence h2n

0 x = 0 by the vanishing theorem, so that ker(h2n

0 ) = Exts,t
A (L, F2). By

the same theorem, Exts+2n−1,t+2n

A (L, F2) = 0. We therefore have a commutative
square

Exts,t
A (L, F2)

πn !!

∼=
""

Exts+2n,t+3·2n

A (L, F2)

∼=
""

Exts,t
A(n)(L, F2)

3n !! Exts+2n,t+3·2n

A(n) (L, F2)

with vertical isomorphisms, for these (s, t). This proves the following theorem.

Theorem 4.8 (Adams [7, Thm. 5.4], May). Let L be an A-module that is
A(0)-free and connective. Let n ≥ 2, and assume that t− s < 2n+1 − 1 + P (s− 1).
Then

πn : Exts,t
A (L, F2) −→ Exts+2n,t+3·2n

A (L, F2)

is an isomorphism for t − s < M(s), and is surjective for t − s < N(s). !

Define functions Q(s) = M(s − 1) + 1 and R(s) = N(s − 1) + 1, as in the
following table.

s 1 2 3 4 5 6 7 8 ≥ 9

Q(s) 1 4 7 10 17 22 25 32 5s − 7

R(s) 2 8 11 18 23 26 33 39 5s − 1
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Theorem 4.9 (Adams [7, Cor. 5.5], May). Let n ≥ 2, and consider (s, t)
satisfying 0 < t − s < 2n+1 + P (s − 2). The operator

πn : Exts,t
A (F2, F2) −→ Exts+2n,t+3·2n

A (F2, F2)

is an isomorphism for t − s < Q(s), and is surjective for t − s < R(s).

Proof. The homotopy cofiber sequence S → HZ → HZ/S induces an exten-
sion Σ2L → A//A(0) → F2 in cohomology, with L an A-module that is A(0)-free
and connective. The connecting homomorphisms δ in the commutative diagram

Exts−1,t
A (Σ2L, F2)

πn !!

δ

""

Exts+2n−1,t+3·2n

A (Σ2L, F2)

δ

""

Exts,t
A (F2, F2)

πn !! Exts+2n,t+3·2n

A (F2, F2)

are isomorphisms for t − s > 0. !

4.3. Coefficients in M2

The short exact sequence of A(2)-modules

0 → Σ2F2 −→ M2 −→ F2 → 0

represents h1 in Ext1,2
A(2)(F2, F2). It follows that in the induced long exact sequence

. . .
δ−→ Ext∗,∗

A(2)(F2, F2)
i−→ Ext∗,∗

A(2)(M2, F2)

j−→ Ext∗,∗
A(2)(Σ

2F2, F2)
δ−→ Ext∗+1,∗

A(2) (F2, F2) −→ . . .

the connecting homomorphism δ is given by multiplication by h1. The long exact
sequence therefore breaks up into short exact sequences

0 → cok(h1)
s,t i−→ Exts,t

A(2)(M2, F2)
j−→ ker(h1)

s,t−2 → 0 ,

where Exts,t
A(2)(F2, F2)/ im(h1) = cok(h1)s,t and ker(h1)s,t ⊂ Exts,t

A(2)(F2, F2).

Lemma 4.10. The kernel and cokernel of h1 are both direct sums of cyclic
R0-modules, with generators and annihilator ideals as listed in Table 4.4.

Proof. For each class x listed in Table 3.6, spanning a cyclic R0-module sum-
mand 〈x〉 of SI ∼= ExtA(2)(F2, F2), we are able to express h1x as an element in a
summand 〈y〉. We record the kernel and cokernel of the R0-module homomorphism
h1 : 〈x〉 → 〈y〉 in Table 4.4. These h1-multiplications are visible in Figures 3.12
and 3.13. In most cases h1x = 0 or y = h1x. The less obvious cases are

h1 · d0e0 = g · h2
0α

h1 · h1δ = g · h0d0 ,

which are clear from Table 3.5. !
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Table 4.4: Direct sum decompositions of the kernel and cokernel of
multiplication by h1, with i ≥ 0 in each h0-tower

t − s s g ker(h1) x h1x cok(h1)

0 0 0 〈g2〉 = R0 1 h1 〈1〉 = R0

0 1 0 〈h0〉 = R0/(g2) h0 0 〈h0〉 = R0/(g2)

0 2 0 〈h2
0〉 = R0/(g2) h2

0 0 〈h2
0〉 = R0/(g2)

0 3 + i 0 〈h3+i
0 〉 = R0/(g) h3+i

0 0 〈h3+i
0 〉 = R0/(g)

1 1 1 〈h1g〉 = R0/(g) h1 h2
1 0

2 2 1 0 h2
1 h2

0h2 0

3 1 2 〈h2〉 = R0/(g) h2 0 〈h2〉 = R0/(g)

3 2 2 〈h0h2〉 = R0/(g) h0h2 0 〈h0h2〉 = R0/(g)

3 3 1 〈h2
0h2〉 = R0/(g) h2

0h2 0 0

6 2 3 〈h2
2〉 = R0/(g) h2

2 0 〈h2
2〉 = R0/(g)

8 3 2 0 c0 h1c0 〈c0〉 = R0/(g)

9 4 2 〈h1c0〉 = R0/(g) h1c0 0 0

12 3 3 〈α〉 = R0 α 0 〈α〉 = R0

12 4 3 〈h0α〉 = R0/(g2) h0α 0 〈h0α〉 = R0/(g2)

12 5 4 〈h2
0α〉 = R0/(g2) h2

0α 0 〈h2
0α〉 = R0/(g)

12 6 + i 4 〈h3+i
0 α〉 = R0/(g) h3+i

0 α 0 〈h3+i
0 α〉 = R0/(g)

14 4 4 〈d0g〉 = R0 d0 h1d0 〈d0〉 = R0

14 5 5 〈h0d0〉 = R0/(g2) h0d0 0 〈h0d0〉 = R0/(g)

15 3 4 〈β〉 = R0 β 0 〈β〉 = R0

15 4 5 〈h0β〉 = R0/(g) h0β 0 〈h0β〉 = R0/(g)

15 5 6 〈h1d0〉 = R0/(g) h1d0 0 0

17 4 6 〈e0g〉 = R0 e0 h1e0 〈e0〉 = R0

17 5 7 〈h0e0〉 = R0/(g) h0e0 0 〈h0e0〉 = R0/(g)

17 6 6 〈h2
0e0〉 = R0/(g) h2

0e0 0 〈h2
0e0〉 = R0/(g)

18 4 7 〈h2β〉 = R0/(g) h2β 0 〈h2β〉 = R0/(g)

18 5 8 〈h1e0〉 = R0/(g) h1e0 0 0

24 6 8 〈α2〉 = R0 α2 0 〈α2〉 = R0

24 7 + i 7 〈h1+i
0 α2〉 = R0/(g) h1+i

0 α2 0 〈h1+i
0 α2〉 = R0/(g)

25 5 11 〈γg〉 = R0 γ h1γ 〈γ〉 = R0

26 6 9 0 h1γ h2
1γ 0

26 7 8 〈αd0〉 = R0 αd0 0 〈αd0〉 = R0
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Table 4.4: Direct sum decompositions of the kernel and cokernel of
multiplication by h1, with i ≥ 0 in each h0-tower (cont.)

t − s s g ker(h1) x h1x cok(h1)

27 6 10 〈αβ〉 = R0 αβ 0 〈αβ〉 = R0

27 7 9 〈h2
1γ〉 = R0/(g) h2

1γ 0 0

29 7 10 〈αe0〉 = R0 αe0 0 〈αe0〉 = R0

29 8 12 〈h0αe0〉 = R0/(g) h0αe0 0 〈h0αe0〉 = R0/(g)

30 6 11 〈β2〉 = R0 β2 0 〈β2〉 = R0

31 8 13 〈d0e0g〉 = R0 d0e0 h2
0αg 〈d0e0〉 = R0

32 7 11 0 δ h1δ 〈δ〉 = R0/(g)

33 8 15 0 h1δ h0d0g 0

36 9 17 〈α3〉 = R0 α3 0 〈α3〉 = R0

36 10 + i 14 〈h1+i
0 α3〉 = R0/(g) h1+i

0 α3 0 〈h1+i
0 α3〉 = R0/(g)

39 9 18 〈d0γ〉 = R0 d0γ 0 〈d0γ〉 = R0

41 10 16 〈α2e0〉 = R0 α2e0 0 〈α2e0〉 = R0

42 9 19 〈e0γ〉 = R0 e0γ 0 〈e0γ〉 = R0

Proposition 4.11. ExtA(2)(M2, F2) is a direct sum of cyclic R0-modules, with
generators and annihilator ideals as listed in Table 4.5.

Proof. We use ext to determine the R0-module extensions of summands in
ker(h1) by summands in cok(h1). Each summand in ker(h1) has a generator of the
form y = xgn, and we choose a lift ŷ in ExtA(2)(M2, F2) with j(ŷ) = y. In most
cases the lift is unique, but when given a choice we prefer classes that emphasize
the hi-multiplications.

We then use ext to write ŷ as the product of a class in ExtA(2)(F2, F2) and
one of the module generators from Table 1.6. When given a choice, we prefer
factorizations that last as long as possible in the Adams spectral sequence for
tmf/η, and we emphasize hi-multiplications and other products with coefficients in
low topological degree. In most cases the given presentation of ŷ is evidently a lift
of y. The less obvious cases are j(h2

0β̂) = h1d0, j(d0ĥ2) = h0e0, j(h0d0ĥ2) = h2
0e0,

j(h0h2β̂) = h1e0, j(h2
2β̂) = h1g, j(h0αβ̂) = h2

1γ, j(d0β̂) = αe0, j(h0d0β̂) = h0αe0,

j(γα̂) = e0g, j(α2β̂) = d0γ, j(γβ̂) = g2, j(αd0β̂) = α2e0, j(αββ̂) = e0γ, j(β2β̂) =
γg and j(d0γα̂) = d0e0g, all of which follow from the relations in Table 3.5.

If 〈y〉 = R0 then 〈ŷ〉 = R0. Otherwise, if 〈y〉 = R0/(gm) we use ext to calculate
gm · ŷ. If the answer is 0, then 〈ŷ〉 = R0/(gm), but if gm · ŷ = i(z) 0= 0 then 〈ŷ〉 is an
extension of R0/(gm) by the summand containing z. This happens in the following
five cases.

g · ĥ2 = 517 = i(γ)

g · ĥ1c0 = 820 = i(d0e0)

g · d0ĥ2 = 928 = i(d0γ)

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



172 4. Ext WITH COEFFICIENTS

g2 · ĥ0 = 930 = i(e0γ)

g2 · d0ĥ0 = 1344 = g · i(α3)

In the first four cases z generates a direct summand, and 〈ŷ〉 is cyclic. In the final

case, corresponding to ŷ = d0ĥ0, we make a change of basis, replacing the generator
i(α3) with

h0d̂0g = 926 = i(α3) + g · d0ĥ0 .

This yields the splitting

〈d0ĥ0, i(α
3)〉 = 〈d0ĥ0〉 ⊕ 〈h0d̂0g〉 ∼= R0 ⊕ R0/(g) .

It then makes sense to rewrite the h0-tower i(h1+i
0 α3) in the form h2+i

0 d̂0g. Each
of the remaining summands 〈z〉 in cok(h1) contributes a new summand 〈i(z)〉 in
ExtA(2)(M2, F2). Gathering these together, and writing x in place of ŷ or i(z), leads
to Table 4.5. !

Remark 4.12. In our tables, we use i to denote the running index in h0-towers,
as well as the inclusion of a bottom cell. This leads to notation such as i(h3+i

0 ),
where i has both meanings. Given this warning, we hope the reader will not be
confused. The s-, g- and j(x)-entries for h0-towers refer to the i = 0 case. The
notation “g1 + g2” in the g-column means that x is represented by the cocycle
sg1 + sg2 .

Table 4.5: R0-module generators of ExtA(2)(M2, F2), with i ≥ 0 in
each h0-tower

t − s s g x Ann(x) j(x)

0 0 0 i(1) (0) 0

0 1 0 i(h0) (g2) 0

0 2 0 i(h2
0) (g2) 0

0 3 + i 0 i(h3+i
0 ) (g) 0

2 1 1 ĥ0 (0) h0

2 2 1 h0ĥ0 (g2) h2
0

2 3 + i 1 h2+i
0 ĥ0 (g) h3+i

0

3 1 2 i(h2) (g) 0

3 2 2 i(h0h2) (g) 0

5 1 3 ĥ2 (0) h2

5 2 3 h0ĥ2 (g) h0h2

5 3 2 h2
0ĥ2 (g) h2

0h2

6 2 4 i(h2
2) (g) 0

8 2 5 h2ĥ2 (g) h2
2

8 3 3 i(c0) (g) 0

11 4 3 ĥ1c0 (0) h1c0
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Table 4.5: R0-module generators of ExtA(2)(M2, F2), with i ≥ 0 in
each h0-tower (cont.)

t − s s g x Ann(x) j(x)

12 3 4 i(α) (0) 0

12 4 4 i(h0α) (g2) 0

12 5 + i 5 i(h2+i
0 α) (g) 0

14 3 5 α̂ (0) α

14 4 5 i(d0) (0) 0

14 4 6 h0α̂ (g2) h0α

14 5 7 i(h0d0) (g) 0

14 5 8 h2
0α̂ (g2) h2

0α

14 6 + i 8 h3+i
0 α̂ (g) h3+i

0 α

15 3 6 i(β) (0) 0

15 4 7 i(h0β) (g) 0

16 5 9 d0ĥ0 (0) h0d0

17 3 7 β̂ (0) β

17 4 8 + 9 i(e0) (0) 0

17 4 9 h0β̂ (g) h0β

17 5 10 + 11 i(h0e0) (g) 0

17 5 11 h2
0β̂ (g) h1d0

17 6 10 i(h2
0e0) (g) 0

18 4 10 i(h2β) (g) 0

19 5 12 d0ĥ2 (0) h0e0

19 6 11 h0d0ĥ2 (g) h2
0e0

20 4 12 h2β̂ (g) h2β

20 5 14 h0h2β̂ (g) h1e0

23 5 16 h2
2β̂ (g) h1g

24 6 14 i(α2) (0) 0

24 7 + i 11 i(h1+i
0 α2) (g) 0

26 6 15 αα̂ (0) α2

26 7 13 + 14 i(αd0) (0) 0

26 7 + i 14 h1+i
0 αα̂ (g) h1+i

0 α2

27 6 16 i(αβ) (0) 0

28 7 15 d0α̂ (0) αd0
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Table 4.5: R0-module generators of ExtA(2)(M2, F2), with i ≥ 0 in
each h0-tower (cont.)

t − s s g x Ann(x) j(x)

29 6 17 αβ̂ (0) αβ

29 7 16 + 17 i(αe0) (0) 0

29 7 17 h0αβ̂ (g) h2
1γ

29 8 19 i(h0αe0) (g) 0

30 6 18 i(β2) (0) 0

31 7 18 d0β̂ (0) αe0

31 8 21 h0d0β̂ (g) h0αe0

32 6 19 ββ̂ (0) β2

32 7 20 i(δ) (g) 0

36 8 25 d̂0g (0) d0g

36 9 26 h0d̂0g (g) h0d0g

36 10 + i 23 h2+i
0 d̂0g (g) 0

38 9 27 α2α̂ (0) α3

38 10 + i 26 h1+i
0 α2α̂ (g) h1+i

0 α3

39 8 27 γα̂ (0) e0g

41 9 29 α2β̂ (0) d0γ

41 10 28 i(α2e0) (0) 0

42 8 29 γβ̂ (0) g2

43 10 29 αd0β̂ (0) α2e0

44 9 31 αββ̂ (0) e0γ

47 9 33 β2β̂ (0) γg

53 12 41 d0γα̂ (0) d0e0g

Corollary 4.13. ExtA(2)(M2, F2) is generated as an ExtA(2)(F2, F2)-module
by the classes

i(1), ĥ0, ĥ2, ĥ1c0, α̂, β̂, d̂0g

listed in Table 1.6 and shown in Figure 4.2.

Proof. Each R0-module generator x in Table 4.5 is an ExtA(2)(F2, F2)-multiple
of one of these seven classes. !

4.4. Coefficients in M4

The short exact sequence of A(2)-modules

0 → Σ4F2 −→ M4 −→ F2 → 0
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0 4 8 12 16 20 24
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i(1)
ĥ0 ĥ2

i(α) α̂ i(β) β̂

ĥ1c0
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i(e0)
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d0ĥ0 d0ĥ2

i(α2)
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i(α2) αα̂ i(αβ) αβ̂ i(β2) ββ̂
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i(αe0)
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d0β̂

d̂0g γα̂ γβ̂

α2α̂ α2β̂ αββ̂ β2β̂

i(α2e0) αd0β̂
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8

12

16

t − s
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d0γα̂

Figure 4.2. R0-module generators of ExtA(2)(M2, F2). Note that
i(d0) = 45, i(e0) = 48 + 49, i(αd0) = 713 + 714 and i(αe0) =
716 + 717.

represents h2 in Ext1,4
A(2)(F2, F2). Hence, in the induced long exact sequence

. . .
δ−→ Ext∗,∗

A(2)(F2, F2)
i−→ Ext∗,∗

A(2)(M4, F2)

j−→ Ext∗,∗
A(2)(Σ

4F2, F2)
δ−→ Ext∗+1,∗

A(2) (F2, F2) −→ . . .
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the connecting homomorphism δ is given by multiplication by h2. The long exact
sequence therefore leads to a short exact sequence of ExtA(2)(F2, F2)-modules, given
in bidegree (s, t) by

0 → cok(h2)
s,t i−→ Exts,t

A(2)(M4, F2)
j−→ ker(h2)

s,t−4 → 0 ,

where Exts,t
A(2)(F2, F2)/ im(h2) = cok(h2)s,t and ker(h2)s,t ⊂ Exts,t

A(2)(F2, F2).

Lemma 4.14. The kernel and cokernel of h2 are both direct sums of cyclic
R0-modules, with generators and annihilator ideals as listed in Table 4.6.

Proof. For each class x listed in Table 3.6, spanning a cyclic R0-module sum-
mand 〈x〉 of SI ∼= ExtA(2)(F2, F2), we can present h2x as an element in a sum-
mand 〈y〉. We record the kernel and cokernel of the R0-module homomorphism
h2 : 〈x〉 → 〈y〉 in Table 4.6. These h2-multiplications are visible in Figures 3.12
and 3.13. In most cases h2x = 0 or y = h2x. The less obvious cases are

h2 · α = h0β

h2 · h0α = h1d0

h2 · d0 = h0e0

h2 · h0d0 = h2
0e0

h2 · h0β = h1e0

h2 · e0 = g · h0

h2 · h0e0 = g · h2
0

h2 · h2β = g · h1

h2 · α2 = h2
1γ

h2 · αd0 = h0αe0

h2 · αe0 = g · h0α

h2 · h0αe0 = g · h2
0α

h2 · d0e0 = g · h0d0 ,

which are clear from Table 3.5. !

Table 4.6: Direct sum decompositions of the kernel and cokernel of
multiplication by h2, with i ≥ 0 in each h0-tower

t − s s g ker(h2) x h2x cok(h2)

0 0 0 〈g〉 = R0 1 h2 〈1〉 = R0

0 1 0 〈h0g〉 = R0/(g) h0 h0h2 〈h0〉 = R0/(g)

0 2 0 〈h2
0g〉 = R0/(g) h2

0 h2
0h2 〈h2

0〉 = R0/(g)

0 3 + i 0 〈h3+i
0 〉 = R0/(g) h3+i

0 0 〈h3+i
0 〉 = R0/(g)

1 1 1 〈h1〉 = R0/(g2) h1 0 〈h1〉 = R0/(g)

2 2 1 〈h2
1〉 = R0/(g) h2

1 0 〈h2
1〉 = R0/(g)

3 1 2 0 h2 h2
2 0
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Table 4.6: Direct sum decompositions of the kernel and cokernel of
multiplication by h2, with i ≥ 0 in each h0-tower (cont.)

t − s s g ker(h2) x h2x cok(h2)

3 2 2 〈h0h2〉 = R0/(g) h0h2 0 0

3 3 1 〈h2
0h2〉 = R0/(g) h2

0h2 0 0

6 2 3 〈h2
2〉 = R0/(g) h2

2 0 0

8 3 2 〈c0〉 = R0/(g) c0 0 〈c0〉 = R0/(g)

9 4 2 〈h1c0〉 = R0/(g) h1c0 0 〈h1c0〉 = R0/(g)

12 3 3 〈αg〉 = R0 α h0β 〈α〉 = R0

12 4 3 〈h0αg〉 = R0/(g) h0α h1d0 〈h0α〉 = R0/(g)

12 5 4 〈h2
0α〉 = R0/(g2) h2

0α 0 〈h2
0α〉 = R0/(g)

12 6 + i 4 〈h3+i
0 α〉 = R0/(g) h3+i

0 α 0 〈h3+i
0 α〉 = R0/(g)

14 4 4 〈d0g〉 = R0 d0 h0e0 〈d0〉 = R0

14 5 5 〈h0d0g〉 = R0/(g) h0d0 h2
0e0 〈h0d0〉 = R0/(g)

15 3 4 〈βg〉 = R0 β h2β 〈β〉 = R0

15 4 5 0 h0β h1e0 0

15 5 6 〈h1d0〉 = R0/(g) h1d0 0 0

17 4 6 〈e0g〉 = R0 e0 g · h0 〈e0〉 = R0

17 5 7 0 h0e0 g · h2
0 0

17 6 6 〈h2
0e0〉 = R0/(g) h2

0e0 0 0

18 4 7 0 h2β g · h1 0

18 5 8 〈h1e0〉 = R0/(g) h1e0 0 0

24 6 8 〈α2g〉 = R0 α2 h2
1γ 〈α2〉 = R0

24 7 + i 7 〈h1+i
0 α2〉 = R0/(g) h1+i

0 α2 0 〈h1+i
0 α2〉 = R0/(g)

25 5 11 〈γ〉 = R0 γ 0 〈γ〉 = R0

26 6 9 〈h1γ〉 = R0/(g) h1γ 0 〈h1γ〉 = R0/(g)

26 7 8 〈αd0g〉 = R0 αd0 h0αe0 〈αd0〉 = R0

27 6 10 〈αβ〉 = R0 αβ 0 〈αβ〉 = R0

27 7 9 〈h2
1γ〉 = R0/(g) h2

1γ 0 0

29 7 10 〈αe0g〉 = R0 αe0 g · h0α 〈αe0〉 = R0

29 8 12 0 h0αe0 g · h2
0α 0

30 6 11 〈β2〉 = R0 β2 0 〈β2〉 = R0

31 8 13 〈d0e0g〉 = R0 d0e0 g · h0d0 〈d0e0〉 = R0

32 7 11 〈δ〉 = R0/(g) δ 0 〈δ〉 = R0/(g)

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



178 4. Ext WITH COEFFICIENTS

Table 4.6: Direct sum decompositions of the kernel and cokernel of
multiplication by h2, with i ≥ 0 in each h0-tower (cont.)

t − s s g ker(h2) x h2x cok(h2)

33 8 15 〈h1δ〉 = R0/(g) h1δ 0 〈h1δ〉 = R0/(g)

36 9 17 〈α3〉 = R0 α3 0 〈α3〉 = R0

36 10 + i 14 〈h1+i
0 α3〉 = R0/(g) h1+i

0 α3 0 〈h1+i
0 α3〉 = R0/(g)

39 9 18 〈d0γ〉 = R0 d0γ 0 〈d0γ〉 = R0

41 10 16 〈α2e0〉 = R0 α2e0 0 〈α2e0〉 = R0

42 9 19 〈e0γ〉 = R0 e0γ 0 〈e0γ〉 = R0

Proposition 4.15. ExtA(2)(M4, F2) is a direct sum of cyclic R0-modules, with
generators and annihilator ideals as listed in Table 4.7.

Proof. We use ext to determine the R0-module extensions of summands in
ker(h2) by summands in cok(h2). Each summand in ker(h2) has a generator of the
form y = xgn, and we choose a lift y in ExtA(2)(M4, F2) with j(y) = y. In most
cases the lift is unique, but for xgn = c0 we have already chosen 34 = c0 as the
lift of c0, for xgn = h2

0g we prefer 611 = h2
0g over 612, for xgn = h1γ we prefer

615 = h1γ over 614 + 615, for xgn = h1δ we prefer 821 = h1δ over 820 + 821, and for
xgn = α2g we prefer 1030 + 1031 = α2g over 1030.

We then use ext to write y as the product of a class in ExtA(2)(F2, F2) and
one of the module generators from Table 1.7. When given a choice, we prefer
factorizations that last as long as possible in the Adams spectral sequence for
tmf/ν, and we emphasize hi-multiplications and other products with coefficients in
low topological degree. In most cases the given presentation of y is evidently a lift
of y. The less obvious cases are j(d0h0h2) = h2

0e0, j(h0αβ) = h2
1γ, j(h0δ) = h0αg,

j(d0αβ) = α2e0 and j(α2γ) = αe0g, all of which follow from the relations in
Table 3.5.

If 〈y〉 = R0 then 〈y〉 = R0. Otherwise, if 〈y〉 = R0/(gm) we use ext to calculate
gm ·y. If the answer is 0, then 〈y〉 = R0/(gm), but if gm ·y = i(z) 0= 0 then 〈y〉 is an
extension of R0/(gm) by the summand containing z. This happens in the following
seven cases.

g2 · h1 = g · i(γ)

g · h0h2 = i(αβ)

g · h2
2 = i(β2)

g2 · h2
0α = g · i(α3)

g · d0h1 = i(d0γ)

g · d0h0h2 = i(α2e0)

g · e0h1 = i(e0γ)

In most instances z generates that summand, and 〈y〉 is cyclic. In two exceptional

cases, corresponding to y = h1 and y = h2
0α, we make a change of basis, replacing
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the generators i(γ) and i(α3) with

h1g = i(γ) + g · h1

and
h2

0δ = i(α3) + g · h2
0α ,

respectively. This yields the splittings

〈h1, i(γ)〉 = 〈h1〉 ⊕ 〈h1g〉 ∼= R0 ⊕ R0/(g)

and
〈h2

0α, i(α3)〉 = 〈h2
0α〉 ⊕ 〈h2

0δ〉 ∼= R0 ⊕ R0/(g) .

Each of the remaining summands 〈z〉 in cok(h2) contributes a new summand 〈i(z)〉
in ExtA(2)(M4, F2). Gathering these together, and writing x in place of y or i(z),
leads to Table 4.7. !

Table 4.7: R0-module generators of ExtA(2)(M4, F2), with i ≥ 0 in
each h0-tower

t − s s g x Ann(x) j(x)

0 0 0 i(1) (0) 0

0 1 + i 0 i(h1+i
0 ) (g) 0

1 1 1 i(h1) (g) 0

2 2 1 i(h2
1) (g) 0

4 3 + i 1 hi
0h

3
0 (g) h3+i

0

5 1 2 h1 (0) h1

6 2 2 h1h1 (g) h2
1

7 2 3 h0h2 (0) h0h2

7 3 2 h0h0h2 (g) h2
0h2

8 3 3 i(c0) (g) 0

9 4 3 i(h1c0) (g) 0

10 2 4 h2
2 (0) h2

2

12 3 4 c0 (g) c0

12 3 4 + 5 i(α) (0) 0

12 4 + i 4 i(h1+i
0 α) (g) 0

13 4 5 h1c0 (g) h1c0

14 4 6 i(d0) (0) 0

14 5 6 i(h0d0) (g) 0

15 3 6 i(β) (0) 0

16 5 7 h2
0α (0) h2

0α

16 6 + i 7 h1+i
0 h2

0α (g) h3+i
0 α
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Table 4.7: R0-module generators of ExtA(2)(M4, F2), with i ≥ 0 in
each h0-tower (cont.)

t − s s g x Ann(x) j(x)

17 4 7 i(e0) (0) 0

19 5 8 d0h1 (0) h1d0

21 6 9 d0h0h2 (0) h2
0e0

22 5 9 e0h1 (0) h1e0

24 4 9 g (0) g

24 5 10 h0g (g) h0g

24 6 10 + 11 i(α2) (0) 0

24 6 11 h2
0g (g) h2

0g

24 7 + i 11 i(h1+i
0 α2) (g) 0

25 5 12 h1g (g) 0

26 6 12 i(h1γ) (g) 0

26 7 12 i(αd0) (0) 0

28 7 + i 13 hi
0h0α2 (g) h1+i

0 α2

29 5 13 γ (0) γ

29 7 14 i(αe0) (0) 0

30 6 15 h1γ (g) h1γ

31 6 16 αβ (0) αβ

31 7 15 h0αβ (g) h2
1γ

31 8 15 i(d0e0) (0) 0

32 7 17 i(δ) (g) 0

33 8 17 i(h1δ) (g) 0

34 6 17 β2 (0) β2

36 7 19 δ (g) δ

36 7 19 + 20 αg (0) αg

36 8 19 h0δ (g) h0αg

36 9 20 h2
0δ (g) 0

36 10 + i 20 i(h1+i
0 α3) (g) 0

37 8 21 h1δ (g) h1δ

38 8 22 d0g (0) d0g

38 9 22 h0d0g (g) h0d0g

39 7 21 βg (0) βg
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Table 4.7: R0-module generators of ExtA(2)(M4, F2), with i ≥ 0 in
each h0-tower (cont.)

t − s s g x Ann(x) j(x)

40 9 24 α3 (0) α3

40 10 + i 24 h1+i
0 α3 (g) h1+i

0 α3

41 8 24 e0g (0) e0g

43 9 26 d0γ (0) d0γ

45 10 28 d0αβ (0) α2e0

46 9 28 e0γ (0) e0γ

48 10 30 + 31 α2g (0) α2g

50 11 33 αd0g (0) αd0g

53 11 36 α2γ (0) αe0g

55 12 38 d0e0g (0) d0e0g

Corollary 4.16. ExtA(2)(M4, F2) ∼= ExtB(2,2,1)(F2, F2) is generated as an
ExtA(2)(F2, F2)-module by the classes

i(1), h3
0, h1, h0h2, h2

2, c0, h2
0α, g, h0α2, γ,αβ,β2, δ,α3

listed in Table 1.7 and shown in Figure 4.3.

Proof. Each R0-module generator x in Table 4.7 is an ExtA(2)(F2, F2)-multiple
of one of these 14 classes. !
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Figure 4.3. R0-module generators of ExtA(2)(M4, F2). Note that

c0 = 34, i(α) = 34 + 35, i(α2) = 610 + 611 i(δ) = 717, δ = 719,
αg = 719 + 720 and α2g = 1030 + 1031.
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CHAPTER 5

The Adams spectral sequence for tmf

We calculate the dr-differentials in the Adams spectral sequence for the topo-
logical modular forms spectrum. These are nontrivial for r ∈ {2, 3, 4}, and zero
for r ≥ 5, so the spectral sequence collapses at the E5-term. The E∞ (or H∞)
ring structure on tmf suffices to determine most of these differentials, due to their
interaction with the Steenrod operations in ExtA(2)(F2, F2). Two further differen-
tials are determined by naturality with respect to the unit map ι : S → tmf . The
resulting E∞-term is the associated graded of a complete Hausdorff filtration of
π∗(tmf)∧2 .

5.1. The E2-term for tmf

The initial term
E2 = E2(tmf) ∼= ExtA(2)(F2, F2)

of the mod 2 Adams spectral sequence for the topological modular forms spectrum
tmf was calculated in Part I. The groups Es,t

2 for 0 ≤ t − s ≤ 192 are displayed in
Figures 1.11 to 1.18. As a bigraded commutative algebra, the E2-term is generated
by the 13 classes

h0, h1, h2, c0,α,β, d0, e0, γ, δ, g, w1, w2

listed in Tables 1.3 and 3.3. These are subject to the ideal of relations generated
by the 54 relations listed in Table 3.4. A Gröbner basis for this ideal is given by
the 77 relations listed in Table 3.5.

The E2-term is free as a module over F2[w1, w2], and is finitely generated as a
module over F2[h0, g, w1, w2], but we choose to primarily keep track of its module
structure over the intermediate algebra R0 = F2[g, w1, w2]. The classes g, w1

and w4
2 will be seen to be infinite cycles in the Adams spectral sequence for tmf ,

meaning that they are dr-cycles for all r ≥ 2, but there are nonzero differentials
d2(w2) = αβg and d3(w2

2) = βg4. We will therefore consider the E3-term as a
module over R1 = F2[g, w1, w2

2], and regard the Er-terms for r ≥ 4 as modules over
R2 = F2[g, w1, w4

2].

Definition 5.1. For i ∈ {0, 1, 2} let Ri = F2[g, w1, w2i

2 ]. Then R0
∼= R1{1, w2}

and R1
∼= R2{1, w2

2} as R1- and R2-modules, respectively.

A presentation of the E2-term as a direct sum of cyclic R0-modules is given
in Table 5.1, most of which is obtained from Table 3.6 by combining a few of the
rows. By Proposition 3.45 we have an isomorphism

E2 = E2(tmf) ∼=
⊕

x

R0

Ann(x)
{x}

of R0-modules, where x ranges over the generators listed in Table 5.1 and Ann(x) ⊂
R0 denotes the annihilator ideal of x. The R0-module generators are indicated

185
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by large dots (•) in Figures 3.12 and 3.13. The four h0-towers, in topological
degrees t−s ∈ {0, 12, 24, 36}, continue indefinitely. When enumerating the infinitely
repeating parts of such h0-towers we will always use an index i that runs over the
non-negative integers. In other words, we systematically let i ≥ 0 in these tables.
The columns t − s and s give the topological degree and Adams filtration of the
generator x, respectively. The column g gives the generator number in the minimal
A(2)-module resolution calculated by ext, see Definition 1.8, so that x corresponds
to the cocycle denoted sg. In the case of an h0-tower of the form {hi

0x} with i ≥ 0,
the generator number g is given for the element corresponding to i = 0.

Table 5.1: R0-module generators of E2(tmf), with i ≥ 0 in each
h0-tower

t − s s g x Ann(x) d2(x) d2(xw2)

0 0 0 1 (0) 0 αβg

0 1 0 h0 (g2) 0 0

0 2 0 h2
0 (g2) 0 0

0 3 + i 0 h3+i
0 (g) 0 0

1 1 1 h1 (g2) 0 0

2 2 1 h2
1 (g) 0 0

3 1 2 h2 (g) 0 0

3 2 2 h0h2 (g) 0 0

3 3 1 h2
0h2 (g) 0 0

6 2 3 h2
2 (g) 0 0

8 3 2 c0 (g) 0 0

9 4 2 h1c0 (g) 0 0

12 3 3 α (0) h2w1 d0γg + h2w1w2

12 4 3 h0α (g2) h0h2w1 h0h2w1w2

12 5 4 h2
0α (g2) h2

0h2w1 h2
0h2w1w2

12 6 + i 4 h3+i
0 α (g) 0 0

14 4 4 d0 (0) 0 α2e0g

14 5 5 h0d0 (g2) 0 0

15 3 4 β (0) h0d0 e0γg + h0d0w2

15 4 5 h0β (g) h2
2w1 h2

2w1w2

15 5 6 h1d0 (g) 0 0

17 4 6 e0 (0) 0 α2g2

17 5 7 h0e0 (g) 0 0

17 6 6 h2
0e0 (g) 0 0
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Table 5.1: R0-module generators of E2(tmf), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d2(x) d2(xw2)

18 4 7 h2β (g) h2
0e0 h2

0e0w2

18 5 8 h1e0 (g) 0 0

24 6 8 α2 (0) 0 d0e0g2

24 7 + i 7 h1+i
0 α2 (g) 0 0

25 5 11 γ (0) 0 αg3

26 6 9 h1γ (g) 0 0

26 7 8 αd0 (0) h0e0w1 γg2w1 + h0e0w1w2

27 6 10 αβ (0) 0 d0g3

27 7 9 h2
1γ (g) 0 0

29 7 10 αe0 (0) h0gw1 α3g2 + h0gw1w2

29 8 12 h0αe0 (g) h2
0gw1 h2

0gw1w2

30 6 11 β2 (0) 0 e0g3

31 8 13 d0e0 (0) 0 β2g2w1

32 7 11 δ (g) 0 0

33 8 15 h1δ (g) 0 0

36 9 17 α3 (0) h2
1γw1 βg3w1 + h2

1γw1w2

36 10 + i 14 h1+i
0 α3 (g) 0 0

39 9 18 d0γ (0) 0 αd0g3

41 10 16 α2e0 (0) 0 g4w1

42 9 19 e0γ (0) 0 αe0g3

5.2. The d2-differentials for tmf

The main purpose of this section is to determine the d2-differentials in the
Adams spectral sequence for tmf . We will see that g, w1 and w2

2 are d2-cycles,
so that the d2-differential is R1-linear. Hence it suffices to determine d2(x) and
d2(xw2) as x ranges through a set of R0-module generators for the E2-term, since
the classes x and xw2 will then range through a set of R1-module generators for
the same E2-term. We first determine d2 on the 13 algebra generators of E2. The
values of d2 on the remaining R1-module generators will then follow by the Leibniz
rule

dr(xy) = dr(x)y + xdr(y)

(for r = 2), which holds because the Adams spectral sequence for tmf is an algebra
spectral sequence.

Inspection of the E2-term quickly shows that ten of the algebra generators are
d2-cycles. The three remaining generators are α, β and w2. The d2-differentials
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on α and β follow from the known interaction between differentials and Steenrod
operations in the E2-term. To determine d2(w2) we will rely on some external input,
given by a comparison of the Adams spectral sequences for S and tmf . The first
two hidden η-multiplications in the Adams spectral sequence for S (showing that
ηρ is detected by Pc0 and η2κ̄ is detected by Pd0) lead to two key differentials in
the Adams spectral sequence for tmf (namely, d3(e0) = c0w1 and d4(e0g) = gw2

1),
and the value of d2(w2) follows from this.

First we have some easy vanishing results.

Lemma 5.2.

(1) h0, h1, h2, c0, w1 and d0 are infinite cycles.
(2) α, β and w2 may support nonzero d2-differentials.
(3) e0 survives to E3.
(4) g survives (at least) to E5.
(5) γ survives (at least) to E6.
(6) δ survives (at least) to E4.

Proof. This follows by inspection of Figures 3.12 and 3.13. There are no
nonzero targets for dr-differentials for r ≥ 2 on h0, h2, c0, w1 and d0. By h0-
linearity and induction dr(h1) = 0 for each r ≥ 2, since h0h1 = 0 and hr+2

0 0= 0
at the Er-term. The target groups for d2(e0), dr(g) for r ∈ {2, 3, 4}, and dr(δ)
for r ∈ {2, 3}, are all trivial. Finally, multiplication by h0 acts injectively on the
target groups of dr(γ) for r ∈ {2, 3, 4, 5}, and h0γ = 0, so dr(γ) = 0 for these values
of r. !

Next, we use the Steenrod operations in

E2(tmf) = ExtA(H∗(tmf), F2) ∼= ExtA(2)(F2, F2) .

By Lemma 1.22 applied to A(2) ⊂ A, these are unambiguously defined. The oper-
ations

(5.1) Sqi : Exts,t
A(2)(F2, F2) −→ Exts+i,2t

A(2) (F2, F2)

were calculated on the algebra generators of the E2-term in Theorem 1.20, and can
be evaluated on the remaining classes by means of the Cartan formula

Sqk(xy) =
∑

i+j=k

Sqi(x)Sqj(y) .

By its construction as the connective cover of the global sections of a sheaf of E∞
ring spectra, see Section 0.1, the topological modular forms spectrum is an E∞ ring
spectrum. Hence it is also an H∞ ring spectrum in the sense of [45, §I.3]. This
implies a number of relations between the differentials dr in its Adams spectral
sequence and the Steenrod operations Sqi in its E2-term. These results are due, in
increasing generality, to Daniel Kahn [85], James Milgram [122], Jukka Mäkinen
[109] and the first author [37]. We now recall the first author’s theorems from [45,
§VI.1], translated to the cohomological indexing of the Steenrod squaring operations
used in Section 1.3 and equation (5.1). (In [45] a different indexing convention
was used, under which Sqj denotes the operation that increases the topological
degree t− s by j.) The theory will be more fully reviewed in Chapter 11, where we
study the Adams spectral sequence for S.
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Definition 5.3 ([45, Def. V.2.15]). For n ≥ 0, let v = v(n) denote the “vector
field number”, i.e., the maximal number v such that the attaching map of the n-cell
in the real projective n-space Pn factors up to homotopy as

Sn−1 α−→ Pn−v ⊂ Pn−1 .

Let a = a(n) ∈ πv−1(S) denote the top component

Sn−1 α−→ Pn−v −→ Sn−v

of a maximal compression. Let ā ∈ Ef,f+v−1
∞ (S) be the infinite cycle that detects a

in the mod 2 Adams spectral sequence for S. Here f is the Adams filtration of a.

Adams’ solution of the vector-field problem for spheres [5] leads to the following
formulas.

Proposition 5.4 ([45, Prop. V.2.16 and V.2.17]). Let the 2-adic valuation of
n + 1 be 4q + r, with 0 ≤ r ≤ 3. Then v = v(n) = 8q + 2r.

If n is even, then v = 1, a = 2 and ā = h0. If n is odd, then v ≥ 2 and a
generates the image of the J-homomorphism in πv−1(S)∧2 . In particular, if n ≡ 1
mod 4 then v = 2, a = η and ā = h1. If n ≡ 3 mod 8 then v = 4, a ≡ ν mod 2ν
and ā = h2.

Definition 5.5. Let A ∈ Es,t
2 , B1 ∈ Es+r1,t+r1−1

2 and B2 ∈ Es+r2,t+r2−1
2

be classes in a spectral sequence with differentials dr : Es,t
r → Es+r,t+r−1

r . The
notation

d∗(A) = B1 " B2

means that dr(A) = 0 for 2 ≤ r < min{r1, r2}, while





dr1(A) = B1 if r1 < r2,

dr(A) = B1 + B2 if r1 = r = r2,

dr2(A) = B2 if r1 > r2.

Theorem 5.6 ([45, Thm. VI.1.1 and VI.1.2]). Let Er(Y ) be the mod 2 Adams
spectral sequence for an H∞ ring spectrum Y , and let x ∈ Es,t

2 (Y ) be an element
that survives to the Er-term, where r ≥ 2. Let 0 ≤ i ≤ s, and let v = v(t − i),
a = a(t − i) and ā be as just defined. Then

d∗(Sqi(x)) = Sqi+r−1(dr(x)) "






0 if v > s − i + 1,

ā x dr(x) if v = s − i + 1,

ā Sqi+v(x) if v ≤ min{s − i, 10}.

Remark 5.7. If r1 < r2 and B1 = 0, then B1 "B2 denotes the zero element in
filtration s+r1. In this case the theorem does not give information about dr(Sqi(x))
for r > r1. Similar remarks apply if r1 > r2 and B2 = 0. However, in the (first)
case v > s − i + 1 of the theorem the summand B2 = 0 should be interpreted as
lying in arbitrarily high Adams filtration s + r2, so that

d2r−1(Sqi(x)) = Sqi+r−1(dr(x)) .

Proposition 5.8.

(1) d2(α) = h2w1 and d2(β) = h0d0.
(2) d3(α2) = h1d0w1.
(3) d3(β2) = h1gw1.
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(4) d3(w2
2) = Sq9(d2(w2)).

Proof. We apply Theorem 5.6 for classes x ∈ Es,t
2 = Es,t

2 (tmf) with r = 2.
(1) For x = c0 ∈ E3,11

2 and i = 1 we get v = 1, s − i + 1 = 3 and

d∗(Sq1(c0)) = Sq2(d2(c0)) " h0Sq2(c0) = h0Sq2(c0) ,

so that d2(h2β) = h2
0e0 by Proposition 1.21. Here d2(h2β) = h2 · d2(β), h2

0e0 =
h2 ·h0d0 and h2-multiplication acts injectively on the group E5,19

2 containing d2(β),
so d2(β) = h0d0. By h0- and h2-linearity h2 ·d2(α) = h0 ·d2(β) = h2

0d0 = h2 ·h2w1.
Multiplication by h2 acts injectively on the group E5,16

2 containing d2(α), so d2(α) =
h2w1.

(2) For x = α ∈ E3,15
2 and i = 3 we get v = 1, s − i + 1 = 1 and

d∗(Sq3(α)) = Sq4(d2(α)) " h0αd2(α) = Sq4(d2(α)) + h0αd2(α) .

Hence d3(α2) = Sq4(h2w1) + h0αh2w1 = 0 + h0h2αw1 = h1d0w1, by Theorem 1.20
and case (1).

(3) For x = β ∈ E3,18
2 and i = 3 we get v = 9, s − i + 1 = 1 and

d∗(Sq3(β)) = Sq4(d2(β)) " 0 = Sq4(d2(β)) .

Hence d3(β2) = Sq4(h0d0) = h1gw1, by Theorem 1.20 and case (1).
(4) For x = w2 ∈ E8,56

2 and i = 8 we get v = 1, s − i + 1 = 1 and

d∗(Sq8(w2)) = Sq9(d2(w2)) " h0w2d2(w2) = Sq9(d2(w2)) + h0w2d2(w2) .

Hence d3(w2
2) = Sq9(d2(w2)) + h0w2d2(w2). Here d2(w2) ∈ E10,57

2 = F2{αβg}, and
h0 · αβg = 0, so d3(w2

2) = Sq9(d2(w2)). !
Remark 5.9. Once we show that d2(w2) = αβg, we can deduce that d3(w2

2) =
Sq9(αβg) = γβ2g2 = βg4, using Theorem 1.20 and Table 3.5. In order to show
that d2(w2) is nonzero, we first use naturality with respect to ι : S → tmf to
determine the differentials d3(e0) and d4(e0g), and then make use of the relation
γ2 = β2g + h2

1w2 in ExtA(2)(F2, F2).

Theorem 5.10. d3(e0) = c0w1.

Proof. This is a consequence of the first hidden η-multiplication in the Adams
spectral sequence for S, from h3

0h4 detecting ρ ∈ π15(S) to Pc0 detecting ηρ ∈
π16(S). See Figure 1.9 and case (16) of Theorem 11.61.

Let κ ∈ π14(S) be detected by d0, so that ηκ is detected by h1d0. The
differentials d2(β) = h0d0 and d2(h0β) = h2

0d0 = h2
2w1 in E2(tmf) show that

π15(tmf) = Z/2{ι(ηκ)}. See Figure 1.19. Hence ι(ρ) is 0 or ι(ηκ). In either case
ι(ηρ) is 0, since η2κ = 0 in π16(S). Again, see case (16) of Theorem 11.61.

By Proposition 1.14, ι(Pc0) = c0w1. It follows that c0w1 is an infinite cycle that
detects zero in π16(tmf), i.e., it is a dr-boundary for some r ≥ 2. Here d2(h0e0) =
h0d2(e0) = 0 in E2(tmf), so the only remaining possibility is d3(e0) = c0w1. !

Corollary 5.11. αβ survives (at least) to E8.

Proof. See Figure 3.13. By the Leibniz rule, d2(αβ) = h2w1 ·β+α ·h0d0 = 0.
To see that d3(αβ) = 0, note that in its bidegree the E2-term is F2{h1e0w1}. By the
theorem above, d3(h1e0w1) = h1c0w2

1 0= 0, since h1c0w2
1 cannot be a d2-boundary.

Hence d3 ◦ d3 = 0 implies d3(αβ) 0= h1e0w1. The differentials dr(αβ) for 4 ≤ r ≤ 7
land in trivial groups, hence are zero. !
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Theorem 5.12. d4(e0g) = gw2
1.

Proof. This is a consequence of the second hidden η-multiplication in the
Adams spectral sequence for S, from h1g detecting ηκ̄ to Pd0 detecting η2κ̄. See
Figure 1.9 and case (22) of Theorem 11.61.

Let κ̄ ∈ π20(S) be detected by g. Then κ · η2κ̄ ∈ π36(S) is detected by d0 ·
Pd0 in E2(S), which must be a boundary because η2κ = 0. Likewise, the image
ι(d0 · Pd0) = d0 · d0w1 = gw2

1 in E2(tmf) must be a boundary, and in this spectral
sequence the only possible source of such a differential is e0g, with d4(e0g) = gw2

1.
See Figure 3.14. !

Corollary 5.13. d4(d0e0) = d0w2
1 and d4(β2g) = α2e0w1 are nonzero.

Proof. See Figures 3.13 and 3.14. We deduce d4(d0e0) = d0w2
1 by w1- and

d0-linearity from d4(e0g) = gw2
1 and the relation d2

0 = gw1. First, d4(e0gw1) =
gw3

1 remains nonzero at E4 because it cannot be a d2- or d3-boundary. Hence
d0 · d4(d0e0) = d4(e0gw1) is nonzero, which implies that d4(d0e0) is nonzero. The
only possible nonzero value is d0w2

1.
Similarly, d4(β2g) = α2e0w1 follows from d4(d0e0) = d0w2

1 by w1- and αβ-
linearity at E4 and the relations βd0 = αe0 and αd0e0 = βgw1. Here d4(αβ ·
d0e0) = αβ · d0w2

1 = α2e0w2
1 in bidegree (t − s, s) = (57, 18) remains nonzero at

E4 because there is no source for a d2- or d3-differential that could hit it. Hence
d4(β2g) · w1 = d4(αβ · d0e0) is nonzero, which implies that d4(β2g) is nonzero. The
only possible value is α2e0w1. !

Proposition 5.14. d2(w2) = αβg, d3(h1w2) = g2w1 and d4(h2
1w2) = α2e0w1

are nonzero.

Proof. We use the relation γ2 = β2g + h2
1w2 in bidegree (t − s, s) = (50, 10),

see Figure 3.14. From Lemma 5.2 and Corollary 5.13 we deduce that d4(γ2) is zero
and d4(h2

1w2) = α2e0w1 is nonzero.
If d2(w2) were zero, then d3(w2) = 0 and d4(w2) = 0 because these lie in trivial

groups, so d4(h2
1w2) = h2

1 · d4(w2) would be zero. This contradiction show that
d2(w2) is nonzero, and αβg is the only possible value.

It follows that d2(h1w2) = h1 · αβg = 0. If d3(h1w2) were zero, then d4(h1w2)
is defined and lies in bidegree (t − s, s) = (48, 13). Multiplication by h1 acts
trivially on this bidegree, already at E2, so d4(h2

1w2) = h1 · d4(h1w2) = 0. This is
again a contradiction, so d3(h1w2) is nonzero. Since h0 · h1w2 = 0 we must have
h0 · d3(h1w2) = 0 at E3, and g2w1 is therefore the only possible value. Alternatives
involving h4

0w2 are excluded because d2(αe0g) must be h0-torsion, hence is zero, so
that h5

0w2 remains nonzero at E3. !
Theorem 5.15. The d2-differential in E2(tmf) is R1-linear. Table 5.1 gives

its values on a list of R1-module generators.

Proof. Lemma 5.2, Proposition 5.8 and Proposition 5.14 give the values of
d2 on the algebra generators of E2(tmf). In particular, g, w1 and w2

2 are d2-
cycles, which gives R1-linearity. The d2-differentials on the R0-module generators x
of E2(tmf) can then be calculated with the Leibniz rule, using the relations in
Table 3.5 to express them in normal form:

• d2(h0β) = h0 · h0d0 = h2
2w1

• d2(h2β) = h2 · h0d0 = h2
0e0
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• d2(αd0) = h2w1 · d0 = h0e0w1

• d2(αβ) = h2w1 · β + α · h0d0 = 0
• d2(αe0) = h2w1 · e0 = h0gw1

• d2(α3) = h2w1 · α2 = h0αβw1 = h2
1γw1.

The other cases are easier. The d2-differentials on the remaining R1-module gen-
erators xw2 are also calculated with the Leibniz rule, in the form

d2(xw2) = d2(x)w2 + xd2(w) = w2 · d2(x) + αβg · x .

The first summand, w2 ·d2(x), can be written down directly. The second summand,
αβg ·x, vanishes when g ∈ Ann(x) ⊂ R0. In the other cases, we calculate as follows:

• αβg · 1 = αβg
• αβg · α = d0γg
• αβg · d0 = α2e0g
• αβg · β = e0γg
• αβg · e0 = α2g2

• αβg · α2 = αd0γg = d0e0g2

• αβg · γ = αg3

• αβg · αd0 = d2
0γg = γg2w1

• αβg · αβ = βd0γg = d0g3

• αβg · αe0 = α3g2

• αβg · β2 = e0βγg = e0g3

• αβg · d0e0 = β2g2w1

• αβg · α3 = α2d0γg = β2γgw1 = βg3w1

• αβg · d0γ = α2e0γg = αe2
0g

2 = αd0g3

• αβg · α2e0 = α3βe0g = βγg2w1 = g4w1

• αβg · e0γ = αe0g3. !
Remark 5.16. To use ext to assist in the calculation of the products αβg · x,

use cocycle tmf 10 18 and dolifts to lift the cocycle 1018 corresponding to
d2(w2) = αβg. The nonzero products αβg · x can then be read off from the output
of collect.

5.3. The d3-differentials for tmf

Given Theorem 5.15, it is elementary to calculate E3(tmf) as an R1-module.
The details are given in Appendix A.1, and the results are recorded in Table 5.2.
The (t − s, s)-bidegree of each generator x is shown as before. Some generators
correspond to a sum sg + sg′ of two ext-cocycles, which is indicated by a formal
sum g+g′ in the g-column. For example, αg = 711+712. In most cases, x generates
a cyclic summand

〈x〉 ∼= Σs,tR1/ Ann(x)

of E3(tmf), where Ann(x) ⊂ R1 is the annihilator ideal of x. The remaining cases
are indicated by a dash (−) in the Ann(x)-column, and the non-cyclic summand
that contains x is displayed in Table 5.3.
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Table 5.2: R1-module generators of E3(tmf), with i ≥ 0 in each
h0-tower

t − s s g x Ann(x) d3(x) d3(xw2
2)

0 0 0 1 (g4w1) 0 g2 · βg2

0 1 0 h0 (g2, gw1) 0 0

0 2 0 h2
0 (g2, gw1) 0 0

0 3 + i 0 h3+i
0 (g) 0 0

1 1 1 h1 (g2) 0 0

2 2 1 h2
1 (g) 0 0

3 1 2 h2 (g, w1) 0 0

3 2 2 h0h2 (g, w1) 0 0

3 3 1 h2
0h2 (g, w1) 0 0

6 2 3 h2
2 (g, w1) 0 0

8 3 2 c0 (g) 0 0

9 4 2 h1c0 (g) 0 0

12 6 + i 4 h3+i
0 α (g) 0 0

14 4 4 d0 (g3) 0 0

15 5 6 h1d0 (g) 0 0

17 4 6 e0 (g3) w1 · c0 w1 · c0w2
2

17 5 7 h0e0 (g, w1) 0 0

18 5 8 h1e0 (g) w1 · h1c0 w1 · h1c0w2
2

24 6 8 α2 (g2) w1 · h1d0 w1 · h1d0w2
2

24 7 + i 7 h1+i
0 α2 (g) 0 0

25 5 11 γ − 0 g6 · 1

26 6 9 h1γ (g) 0 0

27 6 10 αβ (g) 0 0

27 7 9 h2
1γ (g, w1) 0 0

30 6 11 β2 (g2w1) gw1 · h1 g5 · γ
+ gw1 · h1w2

2

31 8 13 d0e0 (g2) 0 0

32 7 11 δ (g) 0 0

32 7 11 + 12 αg (g2) 0 0

32 8 14 h0αg (g) 0 0

32 9 14 h2
0αg (g) 0 0
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Table 5.2: R1-module generators of E3(tmf), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d3(x) d3(xw2
2)

33 8 15 h1δ (g) 0 0

36 10 + i 14 h1+i
0 α3 (g) 0 0

39 9 18 d0γ − 0 0

41 10 16 α2e0 (g) 0 0

42 9 19 e0γ (g3) w1 · h1δ w1 · h1δw2
2

46 11 18 αd0g (g2) 0 0

48 9 21 h0w2 (g2) 0 0

48 10 19 h2
0w2 (g2, gw1) 0 0

48 11 + i 19 h3+i
0 w2 (g) 0 0

49 9 22 h1w2 (g2) g2w1 · 1 g2w1 · w2
2

49 11 20 αe0g (g2) 0 0

50 10 21 h2
1w2 (g) 0 0

51 9 23 h2w2 − 0 0

51 10 22 h0h2w2 (g, w1) 0 0

51 11 21 h2
0h2w2 (g, w1) 0 0

54 10 23 h2
2w2 (g, w1) 0 0

55 11 23 βg2 − 0 g6 · β2

56 11 24 c0w2 (g) 0 0

56 13 26 + 27 α3g (g) 0 0

+ h0w1w2

57 12 28 h1c0w2 (g) 0 0

60 14 + i 28 h3+i
0 αw2 (g) 0 0

63 13 34 h1d0w2 (g) g2w1 · d0 g2w1 · d0w2
2

65 13 36 h0e0w2 − 0 0

66 13 37 h1e0w2 (g) g2w1 · e0 g2w1 · e0w2
2

+ w1 · h1c0w2 + w1 · h1c0w3
2

72 15 + i 36 h1+i
0 α2w2 (g) 0 0

74 14 37 h1γw2 (g) g2w1 · γ g2w1 · γw2
2

75 15 39 h2
1γw2 − 0 0

80 15 41 δw2 (g) 0 0

80 16 49 h0αgw2 (g) 0 0
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Table 5.2: R1-module generators of E3(tmf), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d3(x) d3(xw2
2)

80 17 49 h2
0αgw2 (g) 0 0

81 16 50 h1δw2 (g) 0 0

84 18 + i 48 h1+i
0 α3w2 (g) 0 0

Table 5.3: The non-cyclic R1-module summands in E3(tmf)

〈x1, x2〉

〈γ, h0e0w2〉 ∼=
Σ5,30R1 ⊕ Σ13,78R1

〈(g2w1, w1), (0, g)〉

〈d0γ, h2w2〉 ∼=
Σ9,48R1 ⊕ Σ9,60R1

〈(g, w1), (0, g)〉

〈βg2, h2
1γw2〉 ∼=

Σ11,66R1 ⊕ Σ15,90R1

〈(gw1, w1), (0, g)〉

In this section we determine the d3-differentials in E3(tmf). Since g, w1 and w4
2

are d3-cycles, we know that this differential is R2-linear. When x ranges through
a set of R1-module generators for the E3-term, the classes x and xw2

2 will range
through a set of R2-module generators for the same E3-term, so it will suffice to
determine d3(x) and d3(xw2

2) for the generators x in Table 5.2. To do this, we first
determine d3 on a set of algebra generators for E3(tmf), and then use the Leibniz
rule.

Proposition 5.17. A set of 24 algebra generators for E3(tmf) is listed in
Table 5.4.

Proof. The remaining R1-module generators in Table 5.2 can be expressed as
polynomials in these elements. This is evident from their (Gröbner) normal forms
at the E2-term in almost all cases, and follows from the factorizations

βg2 = β2 · γ
α3g + h0w1w2 = α2 · αg + w1 · h0w2

in the two remaining cases. !
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Table 5.4: Algebra generators of E3(tmf)

t − s s g x d3(x)

0 1 0 h0 0

1 1 1 h1 0

3 1 2 h2 0

8 3 2 c0 0

8 4 1 w1 0

12 6 4 h3
0α 0

14 4 4 d0 0

17 4 6 e0 c0w1

20 4 8 g 0

24 6 8 α2 h1d0w1

25 5 11 γ 0

27 6 10 αβ 0

30 6 11 β2 h1gw1

32 7 11 δ 0

32 7 11 + 12 αg 0

36 10 14 h0α3 0

48 9 21 h0w2 0

49 9 22 h1w2 g2w1

51 9 23 h2w2 0

56 11 24 c0w2 0

60 14 28 h3
0αw2 0

80 15 41 δw2 0

84 18 48 h0α3w2 0

96 16 54 w2
2 βg4

Theorem 5.18. The d3-differential in E3(tmf) is R2-linear. Its values on a set
of algebra generators are as listed in Table 5.4, and its values on a set of R2-module
generators are as listed in Table 5.2.

Proof. Lemma 5.2 (on h0, h1, h2, c0, w1, d0, g, γ and δ), Proposition 5.8 (on
α2 and β2), Remark 5.9 (on w2

2), Theorem 5.10 (on e0), Corollary 5.11 (on αβ) and
Proposition 5.14 (on h1w2) have already given us the values of d3 on many of the
algebra generators of E3(tmf).

The d3-differentials on h3
0α, αg, h0α3, h0w2, h2w2, h3

0αw2, δw2 and h0α3w2

all vanish because the target groups are trivial, already at E2, as can be seen from
Figures 1.11 to 1.14.
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Only c0w2 remains. In the bidegree (t−s, s) = (55, 14) of d3(c0w2) the E2-term
is F2{αβgw1}, but d2(w1w2) = αβgw1, so the E3-term is trivial in this bidegree.
Hence d3(c0w2) = 0.

This verifies the formulas for d3(x) with x one of the algebra generators in
Table 5.4. We use the Leibniz rule to evaluate d3(x) for the decomposable R1-
module generators x in Table 5.2:

• d3(d0 · e0) = d0 · c0w1 = 0
• d3(d0 · γ) = 0
• d3(α2 · e0) = h1d0w1 · e0 + α2 · c0w1 = h2

0αgw1 + h2
0αgw1 = 0

• d3(e0 · γ) = c0w1 · γ = h1δw1

• d3(d0 · αg) = 0
• d3(e0 · αg) = c0w1 · αg = 0
• d3(βg2) = d3(β2 · γ) = h1gw1 · γ = 0
• d3(α2 · αg + w1 · h0w2) = h1d0w1 · αg + 0 = 0
• d3(d0 · h1w2) = d0 · g2w1

• d3(e0 · h0w2) = c0w1 · h0w2 = 0
• d3(e0 · h1w2) = c0w1 · h1w2 + e0 · g2w1 = h1c0w1w2 + e0g2w1

• d3(α2 · h0w2) = h1d0w1 · h0w2 = 0
• d3(γ · h1w2) = γ · g2w1.

The remaining cases follow by h0-, h1- and h2-linearity, keeping in mind that h0δ =
h0αg. For the R2-module generators of the form xw2

2, we use the Leibniz rule in
the form

d3(xw2
2) = d3(x)w2

2 + xd3(w
2
2) = w2

2 · d3(x) + βg4 · x .

The first summand is easy to write down in terms of our R2-module generators.
The second summand vanishes whenever g4 ∈ Ann(x) ⊂ R1. In the four other
cases we can calculate βg4 ·x using the known relations in E2(tmf) from Table 3.5,
as follows:

• βg4 · 1 = g2 · βg2

• βg4 · γ = g6 · 1
• βg4 · β2 = g5 · γ
• βg4 · βg2 = g6 · β2. !

Remark 5.19. We can use ext to aid in the calculation of the products βg4·x by
using cocycle tmf 19 56 and dolifts to calculate all products with the cocycle
1956 (which corresponds to d3(w2

2) = βg4). The nonzero products βg4 · x can then
be read off from the output of collect.

5.4. The d4-differentials for tmf

Given Theorem 5.18, it is elementary to calculate E4(tmf) as an R2-module.
The details are given in Appendix A.2, and the results are recorded in Table 5.5.
The Adams bidegree (t − s, s) and ext-index g of each R2-module generator x is
shown as before. In most cases, x generates a cyclic summand

〈x〉 ∼= Σs,tR2/ Ann(x)

of E4(tmf), where now Ann(x) ⊂ R2. The remaining cases are indicated by a
dash (−) in the Ann(x)-column, and the non-cyclic summand that contains x is
displayed in Table 5.6.
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Table 5.5: R2-module generators of E4(tmf), with i ≥ 0 in each
h0-tower

t − s s g x Ann(x) d4(x)

0 0 0 1 (g6, g2w1) 0

0 1 0 h0 (g2, gw1) 0

0 2 0 h2
0 (g2, gw1) 0

0 3 + i 0 h3+i
0 (g) 0

1 1 1 h1 (g2, gw1) 0

2 2 1 h2
1 (g) 0

3 1 2 h2 (g, w1) 0

3 2 2 h0h2 (g, w1) 0

3 3 1 h2
0h2 (g, w1) 0

6 2 3 h2
2 (g, w1) 0

8 3 2 c0 (g, w1) 0

9 4 2 h1c0 (g, w1) 0

12 6 + i 4 h3+i
0 α (g) 0

14 4 4 d0 (g3, g2w1) 0

15 5 6 h1d0 (g, w1) 0

17 5 7 h0e0 (g, w1) 0

24 7 + i 7 h1+i
0 α2 (g) 0

25 5 11 γ − 0

26 6 9 h1γ (g) 0

27 6 10 αβ (g) 0

27 7 9 h2
1γ (g, w1) 0

31 8 13 d0e0 (g2) w2
1 · d0

32 7 11 δ (g) 0

32 7 11 + 12 αg (g2) 0

32 8 14 h0αg (g) 0

32 9 14 h2
0αg (g) 0

33 8 15 h1δ (g, w1) 0

36 10 + i 14 h1+i
0 α3 (g) 0

37 8 17 e0g (g2) gw2
1 · 1

39 9 18 d0γ − 0

41 10 16 α2e0 (g) 0
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Table 5.5: R2-module generators of E4(tmf), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d4(x)

44 10 17 α2g (g) w2
1 · αβ

46 11 18 αd0g (g2) 0

48 9 21 h0w2 (g2) w1 · d0γ

48 10 19 h2
0w2 (g2, gw1) 0

48 11 + i 19 h3+i
0 w2 (g) 0

49 11 20 αe0g (g2) w2
1 · δ′

50 10 20 β2g (g5, gw1) w1 · α2e0

50 10 21 h2
1w2 (g) w1 · α2e0

51 9 23 h2w2 − 0

51 10 22 h0h2w2 (g, w1) 0

51 11 21 h2
0h2w2 (g, w1) 0

54 10 23 h2
2w2 (g, w1) 0

55 11 23 βg2 (g2) w1 · αd0g

56 11 24 c0w2 (g) 0

56 13 26 + 27 α3g + h0w1w2 (g) 0

57 12 27 + 28 γδ′ (g, w1) 0

60 14 + i 28 h3+i
0 αw2 (g) 0

62 13 32 e0γg (g2) gw2
1 · γ

65 13 36 h0e0w2 (g, w1) 0

72 15 + i 36 h1+i
0 α2w2 (g) 0

75 15 38 + 39 γ3 (g, w1) 0

80 15 41 δw2 (g) 0

80 16 49 h0αgw2 (g) 0

80 17 49 h2
0αgw2 (g) 0

81 16 50 h1δw2 (g) 0

84 18 + i 48 h1+i
0 α3w2 (g) 0

96 17 58 h0w2
2 (g2, gw1) 0

96 18 55 h2
0w

2
2 (g2, gw1) 0

96 19 + i 57 h3+i
0 w2

2 (g) 0

97 17 59 h1w2
2 − 0

98 18 57 h2
1w

2
2 (g) 0
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Table 5.5: R2-module generators of E4(tmf), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d4(x)

99 17 60 h2w2
2 (g, w1) 0

99 18 58 h0h2w2
2 (g, w1) 0

99 19 59 h2
0h2w2

2 (g, w1) 0

102 18 59 h2
2w

2
2 (g, w1) 0

104 19 62 c0w2
2 (g, w1) 0

104 20 69 w1w2
2 (g2) 0

105 20 71 h1c0w2
2 (g, w1) 0

108 22 + i 71 h3+i
0 αw2

2 (g) 0

110 20 74 d0w2
2 (g3, g2w1) 0

111 21 79 h1d0w2
2 (g, w1) 0

113 21 81 h0e0w2
2 (g, w1) 0

120 23 + i 82 h1+i
0 α2w2

2 (g) 0

122 22 81 h1γw2
2 (g) 0

123 22 82 αβw2
2 (g) 0

123 23 85 h2
1γw2

2 (g, w1) 0

127 24 98 d0e0w2
2 (g2) w2

1 · d0w2
2

128 23 87 δw2
2 (g) 0

128 23 87 + 88 αgw2
2 (g2) 0

128 24 100 h0αgw2
2 (g) 0

128 25 102 h2
0αgw2

2 (g) 0

129 24 101 h1δw2
2 (g, w1) 0

129 25 103 γw1w2
2 (g2) 0

132 26 + i 100 h1+i
0 α3w2

2 (g) 0

133 24 103 e0gw2
2 (g2) gw1 · w1w2

2

135 25 108 d0γw2
2 − 0

137 26 103 α2e0w2
2 (g) 0

140 26 105 α2gw2
2 (g) w2

1 · αβw2
2

142 27 109 αd0gw2
2 (g2) 0

144 25 111 h0w3
2 (g2) w1 · d0γw2

2

144 26 107 h2
0w

3
2 (g2, gw1) 0

144 27 + i 111 h3+i
0 w3

2 (g) 0
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Table 5.5: R2-module generators of E4(tmf), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d4(x)

145 27 112 αe0gw2
2 (g2) w2

1 · δ′w2
2

146 26 109 h2
1w

3
2 (g) w1 · α2e0w2

2

147 25 113 h2w3
2 − 0

147 26 110 h0h2w3
2 (g, w1) 0

147 27 113 h2
0h2w3

2 (g, w1) 0

150 26 111 h2
2w

3
2 (g, w1) 0

152 27 116 c0w3
2 (g) 0

152 29 131 + 132 α3gw2
2 + h0w1w3

2 (g) 0

153 28 129 + 130 γδ′w2
2 (g, w1) 0

154 30 127 β2gw1w2
2 (g) w2

1 · α2e0w2
2

156 30 + i 131 h3+i
0 αw3

2 (g) 0

158 29 138 e0γgw2
2 (g2) gw1 · γw1w2

2

159 31 135 βg2w1w2
2 − w2

1 · αd0gw2
2

161 29 142 h0e0w3
2 (g, w1) 0

168 31 + i 144 h1+i
0 α2w3

2 (g) 0

171 31 147 h2
1γw3

2 − gw1 · αd0gw2
2

176 31 149 δw3
2 (g) 0

176 32 167 h0αgw3
2 (g) 0

176 33 171 h2
0αgw3

2 (g) 0

177 32 168 h1δw3
2 (g) 0

180 34 + i 168 h1+i
0 α3w3

2 (g) 0
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Table 5.6: The non-cyclic R2-module summands in E4(tmf)

〈x1, x2〉

〈γ, h1w2
2〉 ∼=

Σ5,30R2 ⊕ Σ17,114R2

〈(g2w1, 0), (g5, gw1), (0, g2)〉

〈d0γ, h2w2〉 ∼=
Σ9,48R2 ⊕ Σ9,60R2

〈(g, w1), (0, g)〉

〈d0γw2
2, h2w3

2〉 ∼=
Σ25,160R2 ⊕ Σ25,172R2

〈(g, w1), (0, g)〉

〈βg2w1w2
2, h

2
1γw3

2〉 ∼=
Σ31,190R2 ⊕ Σ31,202R2

〈(g, w1), (0, g)〉

Proposition 5.20. A set of 52 algebra generators for E4(tmf) is listed in
Table 5.7.

Proof. The remaining R2-module generators in Table 5.5 can be expressed as
polynomials in these elements. This is evident from their normal forms at E2 in
the great majority of cases. The factorizations

h0e0 = h2 · d0

α2e0 = d0 · αβ
β2g = γ · γ + 1 · h2

1w2

α3g + h0w1w2 = γ · d0e0 + w1 · h0w2

h0e0w2 = d0 · h2w2

h0e0w
2
2 = h2 · d0w

2
2

α2e0w
2
2 = d0 · αβw2

2

α3gw2
2 + h0w1w

3
2 = γ · d0e0w

2
2 + w1 · h0w

3
2

h0e0w
3
2 = d0 · h2w

3
2

(all valid at the E2-term), account for the remaining module generators. !

Table 5.7: Algebra generators of E4(tmf)

t − s s g x d4(x)

0 1 0 h0 0

1 1 1 h1 0

3 1 2 h2 0
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Table 5.7: Algebra generators of E4(tmf) (cont.)

t − s s g x d4(x)

8 3 2 c0 0

8 4 1 w1 0

12 6 4 h3
0α 0

14 4 4 d0 0

20 4 8 g 0

24 7 7 h0α2 0

25 5 11 γ 0

27 6 10 αβ 0

31 8 13 d0e0 d0w2
1

32 7 11 δ 0

32 7 11 + 12 αg 0

36 10 14 h0α3 0

37 8 17 e0g gw2
1

44 10 17 α2g αβw2
1

48 9 21 h0w2 d0γw1

49 11 20 αe0g δ′w2
1

50 10 21 h2
1w2 α2e0w1

51 9 23 h2w2 0

55 11 23 βg2 αd0gw1

56 11 24 c0w2 0

60 14 28 h3
0αw2 0

72 15 36 h0α2w2 0

80 15 41 δw2 0

84 18 48 h0α3w2 0

96 17 58 h0w2
2 0

97 17 59 h1w2
2 0

99 17 60 h2w2
2 0

104 19 62 c0w2
2 0

104 20 69 w1w2
2 0

108 22 71 h3
0αw2

2 0

110 20 74 d0w2
2 0

120 23 82 h0α2w2
2 0
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Table 5.7: Algebra generators of E4(tmf) (cont.)

t − s s g x d4(x)

123 22 82 αβw2
2 0

127 24 98 d0e0w2
2 d0w2

1w
2
2

128 23 87 δw2
2 0

128 23 87 + 88 αgw2
2 0

132 26 100 h0α3w2
2 0

133 24 103 e0gw2
2 gw2

1w
2
2

140 26 105 α2gw2
2 αβw2

1w
2
2

144 25 111 h0w3
2 d0γw1w2

2

145 27 112 αe0gw2
2 δ′w2

1w
2
2

146 26 109 h2
1w

3
2 α2e0w1w2

2

147 25 113 h2w3
2 0

152 27 116 c0w3
2 0

156 30 131 h3
0αw3

2 0

168 31 144 h0α2w3
2 0

176 31 149 δw3
2 0

180 34 168 h0α3w3
2 0

192 32 172 w4
2 0

Proposition 5.21. The following classes are d4-cycles:

(1) h0, h1, h2, c0, w1, d0, g and γ.
(2) h3

0α, h0α2, αβ, h0α3, c0w2, h3
0αw2, w1w2

2, h3
0αw2

2, d0w2
2, αβw2

2 and w4
2.

(3) δ, αg, δw2, h0α3w2, h0w2
2, h2w2

2, c0w2
2, h0α2w2

2, δw2
2, αgw2

2, h0α3w2
2,

c0w3
2, h3

0αw3
2 and h0α3w3

2.
(4) h2w2, h2w3

2 and δw3
2.

Proof. (1) We proved that d4(x) = 0 for x = h0, h1, h2, c0, w1, d0, g and γ
in Lemma 5.2.

(2) By inspection of Figures 1.11 to 1.18 we see that d4(x) = 0 for x = h3
0α,

h0α2, αβ, h0α3, c0w2, h3
0αw2, w1w2

2, h3
0αw2

2, d0w2
2, αβw2

2 and w4
2, because the

target groups are trivial at the E2-term.
(3) We can read off from Table 5.1 that d4(x) = 0 for x = δ, αg, δw2, h0α3w2,

h0w2
2, h2w2

2, c0w2
2, h0α2w2

2, δw
2
2, αgw2

2, h0α3w2
2, c0w3

2, h3
0αw3

2 and h0α3w3
2, because

the target groups become trivial at the E3-term:

• For x = δ, and for x = αg, the E2-term in the bidegree of d4(x) is
F2{w2

1 · β}, and d2(w2
1 · β) = w2

1 · h0d0 0= 0.
• For x = δw2 the target is F2{w2

1 · βw2} at E2, and d2(w2
1 · βw2) = gw2

1 ·
e0γ + w2

1w2 · h0d0 0= 0.
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• For x = h0α3w2 the target is F2{g2w2
1 · αβ} at E2, and d2(gw2

1 · w2) =
g2w2

1 · αβ.
• For x = h0w2

2 the target is F2{w1 · d0γw2} at E2, and d2(w1 · d0γw2) =
g3w1 · αd0 0= 0.

• For x = h2w2
2 the target is F2{w1 · e0γw2} at E2, and d2(w1 · e0γw2) =

g3w1 · αe0 0= 0.
• For x = c0w2

2 the target is F2{g4w1 · β} at E2, and d2(g · α3w2) = g4w1 ·
β + gw1w2 · h2

1γ = g4w1 · β.
• For x = h0α2w2

2 the target is F2{g2w2
1 ·βw2} at E2, and d2(g2w2

1 ·βw2) =
g3w2

1 · e0γ + g2w2
1w2 · h0d0 = g3w2

1 · e0γ 0= 0.
• For x = δw2

2, and for x = αgw2
2, the target is F2{w2

1w
2
2 · β} at E2, and

d2(w2
1w

2
2 · β) = w2

1w
2
2 · h0d0 0= 0.

• For x = h0α3w2
2 the target is F2{g2w2

1·αβw2} at E2, and d2(g2w2
1·αβw2) =

g5w2
1 · d0 0= 0.

• For x = c0w3
2 the target is F2{g4w1 · βw2} at E2, and d2(g4w1 · βw2) =

g5w1 · e0γ + g4w1w2 · h0d0 = g5w1 · e0γ 0= 0.
• For x = h3

0αw3
2 the target is F2{g6w1 · αβ} at E2, and d2(g5w1 · w2) =

g6w1 · αβ.
• For x = h0α3w3

2 the target is F2{g2w2
1w

2
2 ·αβ} at E2, and d2(gw2

1w
2
2 ·w2) =

g2w2
1w

2
2 · αβ.

(4) Similarly, we see from Table 5.2 that d4(x) = 0 for x = h2w2, h2w3
2 and

δw3
2, because the target groups become trivial at the E4-term:

• For x = h2w2 the E2-term in the bidegree of d4(x) is F2{w1 · e0γ}, and
d3(w1 · e0γ) = w2

1 · h1δ 0= 0.
• For x = h2w3

2 the target is F2{w1w2
2 · e0γ} at E2 and E3, and d3(w1 ·

e0γw2
2) = w2

1w
2
2 · h1δ 0= 0.

• For x = δw3
2 the target is F2{g8 · β, w2

1w
2
2 · βw2} at E2. Here d2(g8 · β) =

g8 · h0d0 = 0 and d2(w2
1w

2
2 · βw2) = gw2

1w
2
2 · e0γ + w2

1w
3
2 · h0d0 0= 0. Hence

the target at E3 is F2{g6 · βg2}, and d3(g4 · w2
2) = g6 · βg2. !

Proposition 5.22.

(1) d4(d0e0) = d0w2
1.

(2) d4(e0g) = gw2
1.

(3) d4(h2
1w2) = α2e0w1.

(4) d4(α2g) = αβw2
1.

(5) d4(h0w2) = d0γw1.
(6) d4(αe0g) = (δ + αg)w2

1 = δ′w2
1.

(7) d4(βg2) = αd0gw1.
(8) d4(h0α2w2) = 0.
(9) d4(h0α2w3

2) = 0.
(10) d4(h1w2

2) = 0.
(11) d4(d0e0w2

2) = d0w2
1w

2
2.

(12) d4(e0gw2
2) = gw2

1w
2
2.

(13) d4(α2gw2
2) = αβw2

1w
2
2.

(14) d4(h0w3
2) = d0γw1w2

2.
(15) d4(αe0gw2

2) = (δ + αg)w2
1w

2
2 = δ′w2

1w
2
2.

(16) d4(h2
1w

3
2) = α2e0w1w2

2.
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Proof. The differentials on x = d0e0, e0g and h2
1w2 have already been iden-

tified. For x = α2g, h0w2, αe0g and βg2 we use multiplicative relations in the
Adams spectral sequence to determine d4(x). For x = h0α2w2 and h0α2w3

2 we use
d4 ◦ d4 = 0 to show that d4(x) = 0. Finally, for the remaining classes x = h1w2

2,
d0e0w2

2, e0gw2
2, α

2gw2
2, h0w3

2, αe0gw2
2 and h2

1w
3
2 we use w1- and w1w2

2-linearity to
determine d4(x). In many cases we (implicitly) refer to Table 5.5 to determine
whether a class is nonzero at E4.

(1)–(3) We know that d4(e0g) = gw2
1 by Theorem 5.12, d4(d0e0) = d0w2

1 by
Corollary 5.13, and d4(h2

1w2) = α2e0w1 by Proposition 5.14.
(4) From d4(w1) = 0, d4(d0) = 0, d4(β2g) = α2e0w1 (by Corollary 5.13) and

the relation
d0 · α2g = w1 · β2g

we deduce that d0 · d4(α2g) = w2
1 · α2e0. A glance at Table 5.5 shows that this is

nonzero at E4, because w2
1 is not in the annihilator ideal of α2e0. Hence d4(α2g) 0= 0,

and αβw2
1 is the only possible value.

(5) From d4(γ) = 0, d4(d0e0) = d0w2
1 and the relation

γ · d0e0 = α3g

we deduce that d4(α3g) = d0γw2
1. From the differential

d2(αe0w2) = α3g2 + h0gw1w2

we know that g · α3g = gw1 · h0w2 at the E4-term. Hence gw1 · d4(h0w2) =
g · d4(α3g) = gw2

1 · d0γ, which is nonzero at E4 (by Table 5.6). Thus d4(h0w2) 0= 0,
and d0γw1 is the only possible value.

(6) The (E2- and) E4-term in the bidegree of d4(αe0g) is F2{δw2
1,αgw2

1, h
7
0w2}.

Multiplication by h0 annihilates only the subgroup F2{δ′w2
1}, where δ′w2

1 = δw2
1 +

αgw2
1. From d4(g) = 0, d4(αg) = 0, d4(e0g) = gw2

1 and the factorization

g · αe0g = αg · e0g

we deduce that g ·d4(αe0g) = αg ·d4(e0g) = αg2w2
1 0= 0. Furthermore, h0 ·αe0g = 0.

Hence d4(αe0g) is nonzero and h0-annihilated, leaving δ′w2
1 as the only possible

value.
(7) From d4(g) = 0, d4(γ) = 0, d4(h2

1w2) = α2e0w1 and the relation

γ3 = g · βg2 + γ · h2
1w2

we deduce that g · d4(βg2) = γ · α2e0w1 = gw1 · αd0g 0= 0 at E4. Hence d4(βg2) is
nonzero, and αd0gw1 is the only possible value.

(8) The (E2- and) E4-term in the bidegree of d4(h0α2w2) is F2{βg2w2
1}, and

d4(βg2w2
1) = w3

1 · αd0g 0= 0

by the previous case. We cannot have d4(h0α2w2) = βg2w2
1, because d4 ◦ d4 = 0.

Hence d4(h0α2w2) = 0.
(9) The (E2- and) E4-term in the bidegree of d4(h0α2w3

2) is F2{βg2w2
1w

2
2}, and

d4(βg2w2
1w

2
2) = w3

1w
2
2 · αd0g 0= 0 .

Hence d4 ◦ d4 = 0 implies d4(h0α2w3
2) 0= βg2w2

1w
2
2, leaving 0 as the only possible

value.
(10) The E2-term in the bidegree of d4(h1w2

2) is F2{α3g3, h5
0w

2
2}, and

d2(g · αe0w2) = g · (α3g2 + h0gw1w2) = α3g3 ,
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so the target E4-term is F2{h5
0w

2
2}. We have w1 · d4(h1w2

2) = d4(w1 · h1w2
2) =

d4(w1w2
2 · h1) = w1w2

2 · d4(h1) = 0, since w1 and w1w2
2 are d4-cycles. Furthermore,

w1 · h5
0w

2
2 0= 0 at E4, so d4(h1w2

2) = 0.
(11) From d4(d0e0) = d0w2

1 we deduce that w1 ·d4(d0e0w2
2) = w1w2

2 ·d4(d0e0) =
w3

1 · d0w2
2 0= 0 at E4. It follows that d4(d0e0w2

2) is nonzero, and d0w2
1w

2
2 is the only

possible value.
(12) The E2-term in the bidegree of d4(e0gw2

2) is F2{h3
0α

3w2
2, gw2

1w
2
2}, which

equals the E4-term in this bidegree. From h0 · h3
0α

3w2
2 0= 0 and

h0 · gw2
1w

2
2 = d2(w1w

2
2 · αe0)

we see that multiplication by h0 annihilates only the subgroup F2{gw2
1w

2
2} of the

E4-term. From d4(e0g) = gw2
1 we deduce that w1 · d4(e0gw2

2) = w1w2
2 · d4(e0g) =

gw2
1 · w1w2

2 0= 0 at E4. Furthermore, h0 · e0gw2
2 = 0. Hence d4(e0gw2

2) is nonzero
and h0-annihilated, and gw2

1w
2
2 is the only possible value.

(13) From d4(α2g) = αβw2
1 we deduce that w1 · d4(α2gw2

2) = w1w2
2 · d4(α2g) =

w3
1 ·αβw2

2 0= 0 at E4. It follows that d4(α2gw2
2) is nonzero, and αβw2

1w
2
2 is the only

possible value.
(14) From d4(h0w2) = d0γw1 we deduce that w1 ·d4(h0w3

2) = w1w2
2 ·d4(h0w2) =

w2
1 · d0γw2

2 0= 0 at E4. It follows that d4(h0w3
2) is nonzero, and d0γw1w2

2 is the only
possible value.

(15) The E2-term in the bidegree of d4(αe0gw2
2) is F2{δw2

1w
2
2,αgw2

1w
2
2, h

7
0w

3
2}.

At the E4-term, multiplication by h0 annihilates only the subgroup F2{δ′w2
1w

2
2}.

From d4(αe0g) = δ′w2
1 we deduce that w1 · d4(αe0gw2

2) = w1w2
2 · d4(αe0g) =

δ′w3
1w

2
2 0= 0 at E4. Furthermore, h0 · αe0gw2

2 = 0. Hence d4(αe0gw2
2) is nonzero

and h0-annihilated, and δ′w2
1w

2
2 is the only possible value.

(16) From d4(h2
1w2) = α2e0w1 we deduce that w1·d4(h2

1w
3
2) = w1w2

2·d4(h2
1w2) =

w2
1 · α2e0w2

2 0= 0 at E4. It follows that d4(h2
1w

3
2) is nonzero, and α2e0w1w2

2 is the
only possible value. !

Theorem 5.23. The d4-differential in E4(tmf) is R2-linear. Its values on a set
of algebra generators are as listed in Table 5.7, and its values on a set of R2-module
generators are as listed in Table 5.5.

Proof. The first two claims follow from Propositions 5.21 and 5.22. As before,
the Leibniz rule lets us calculate d4(x) for the remaining R2-module generators x,
using the factorizations given in the proof of Proposition 5.20:

• d4(h0e0) = d4(h2 · d0) = 0
• d4(d0 · γ) = 0
• d4(α2e0) = d4(d0 · αβ) = 0
• d4(d0 · αg) = 0
• d4(β2g) = d4(γ · γ + h2

1w2) = 0 + α2e0w1

• d4(α3g + h0w1w2) = d4(γ · d0e0 + w1 · h0w2) = γ · d0w2
1 + w1 · d0γw1 = 0

• d4(γδ′) = d4(γ · (δ + αg)) = 0
• d4(γ · e0g) = γ · gw2

1

• d4(h0e0w2) = d4(d0 · h2w2) = 0
• d4(γ3) = 0 · γ2 = 0
• d4(h0e0w2

2) = d4(h2 · d0w2
2) = 0

• d4(γ · h1w2
2) = 0

• d4(γ · w1w2
2) = 0

• d4(γ · d0w2
2) = 0
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• d4(α2e0w2
2) = d4(d0 · αβw2

2) = 0
• d4(d0 · αgw2

2) = 0
• d4(α3gw2

2 + h0w1w3
2) = d4(γ · d0e0w2

2 + w1 · h0w3
2) = γ · d0w2

1w
2
2 + w1 ·

d0γw1w2
2 = 0

• d4(γδ′w2
2) = d4(γ · (δw2

2 + αgw2
2)) = 0

• d4(β2g · w1w2
2) = α2e0w1 · w1w2

2

• d4(γ · e0gw2
2) = γ · gw2

1w
2
2

• d4(βg2 · w1w2
2) = αd0gw1 · w1w2

2

• d4(h0e0w3
2) = d4(d0 · h2w3

2) = 0
• d4(γ · h2

1w
3
2) = γ · α2e0w1w2

2 = αe2
0gw1w2

2 = αd0g2w1w2
2.

The other cases follow easily by h0-, h1- and h2-linearity. !

5.5. The E∞-term for tmf

Given Theorem 5.23, it is elementary to calculate E5(tmf) as an R2-module.
The details are given in Appendix A.3, and with two minor modifications, explained
in Remark 5.24, the results are recorded in Table 5.8. The non-cyclic summands
are displayed in Table 5.9. We note that the E5-term is free over F2[w4

2] and finitely
generated over F2[h0, w1, w4

2]. The class g is nilpotent, with g6 = 0.

Remark 5.24. We rewrite the direct sum

〈e0g
2〉 ⊕ 〈γδ′〉 ∼= R2/(g) ⊕ R2/(g, w1)

as
〈γδ′〉 ⊕ 〈h1c0w2〉 ∼= R2/(g, w1) ⊕ R2/(g) .

This makes the h1-multiplication from (t − s, s) = (56, 11) easier to display, since
h1 · c0w1 = h1c0w1. Likewise, we rewrite the direct sum

〈e0g
2w2

2〉 ⊕ 〈γδ′w2
2〉 ∼= R2/(g) ⊕ R2/(g, w1)

as
〈γδ′w2

2〉 ⊕ 〈h1c0w
3
2〉 ∼= R2/(g, w1) ⊕ R2/(g) .

Table 5.8: R2-module generators of E5(tmf), with i ≥ 0 in each
h0-tower

t − s s g x Ann(x) dec.

0 0 0 1 (g6, g2w1, gw2
1) 1

0 1 0 h0 (g2, gw1) gen.

0 2 0 h2
0 (g2, gw1) h0 · h0

0 3 + i 0 h3+i
0 (g) h2+i

0 · h0

1 1 1 h1 (g2, gw1) gen.

2 2 1 h2
1 (g) h1 · h1

3 1 2 h2 (g, w1) gen.

3 2 2 h0h2 (g, w1) h0 · h2

3 3 1 h2
0h2 (g, w1) h2

0 · h2
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Table 5.8: R2-module generators of E5(tmf), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) dec.

6 2 3 h2
2 (g, w1) h2 · h2

8 3 2 c0 (g, w1) gen.

9 4 2 h1c0 (g, w1) h1 · c0

12 6 + i 4 h3+i
0 α (g) hi

0 · gen.

14 4 4 d0 (g3, g2w1, w2
1) gen.

15 5 6 h1d0 (g, w1) h1 · d0

17 5 7 h0e0 (g, w1) h2 · d0

24 7 + i 7 h1+i
0 α2 (g) hi

0 · gen.

25 5 11 γ − gen.

26 6 9 h1γ (g) h1 · γ
27 6 10 αβ (g, w2

1) gen.

27 7 9 h2
1γ (g, w1) h2

1 · γ
32 7 11 δ (g) gen.

32 7 12 δ′ (g2, w2
1) gen.

32 8 14 h0αg (g) h0 · δ
32 9 14 h2

0αg (g) h2
0 · δ

33 8 15 h1δ (g, w1) h1 · δ′

36 10 + i 14 h1+i
0 α3 (g) hi

0 · gen.

39 9 18 d0γ − d0 · γ
41 10 16 α2e0 (g, w1) d0 · αβ
46 11 18 αd0g (g2, w1) d0 · δ′

48 10 19 h2
0w2 (g2, gw1) gen.

48 11 + i 19 h3+i
0 w2 (g) h1+i

0 · h2
0w2

50 10 20 + 21 γ2 (g5, gw1) γ · γ
51 9 23 h2w2 − gen.

51 10 22 h0h2w2 (g, w1) h0 · h2w2

51 11 21 h2
0h2w2 (g, w1) h2

0 · h2w2

54 10 23 h2
2w2 (g, w1) h2 · h2w2

56 11 24 c0w2 (g) gen.

56 13 26 + 27 α3g + h0w1w2 (g) gen.

57 12 27 + 28 γδ′ (g, w1) γ · δ′
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Table 5.8: R2-module generators of E5(tmf), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) dec.

57 12 28 h1c0w2 (g) γ · δ
60 14 + i 28 h3+i

0 αw2 (g) hi
0 · gen.

65 13 36 h0e0w2 (g, w1) d0 · h2w2

72 15 + i 36 h1+i
0 α2w2 (g) hi

0 · gen.

75 15 38 + 39 γ3 (g, w1) γ2 · γ
80 15 41 δw2 (g) gen.

80 16 49 h0αgw2 (g) h0 · δw2

80 17 49 h2
0αgw2 (g) h2

0 · δw2

81 16 50 h1δw2 (g) h1 · δw2

82 17 51 e0γg2 (g) γ2 · (δ + δ′)

84 18 + i 48 h1+i
0 α3w2 (g) hi

0 · gen.

96 17 58 h0w2
2 (g2, gw1) gen.

96 18 55 h2
0w

2
2 (g2, gw1) h0 · h0w2

2

96 19 + i 57 h3+i
0 w2

2 (g) h2+i
0 · h0w2

2

97 17 59 h1w2
2 − gen.

98 18 57 h2
1w

2
2 (g) h1 · h1w2

2

99 17 60 h2w2
2 (g, w1) gen.

99 18 58 h0h2w2
2 (g, w1) h0 · h2w2

2

99 19 59 h2
0h2w2

2 (g, w1) h2
0 · h2w2

2

102 18 59 h2
2w

2
2 (g, w1) h2 · h2w2

2

104 19 62 c0w2
2 (g, w1) gen.

104 20 69 w1w2
2 (g2, gw1) gen.

105 20 71 h1c0w2
2 (g, w1) h1 · c0w2

2

108 22 + i 71 h3+i
0 αw2

2 (g) hi
0 · gen.

110 20 74 d0w2
2 (g3, g2w1, w2

1) gen.

111 21 79 h1d0w2
2 (g, w1) h1 · d0w2

2

113 21 81 h0e0w2
2 (g, w1) h2 · d0w2

2

120 23 + i 82 h1+i
0 α2w2

2 (g) hi
0 · gen.

122 22 81 h1γw2
2 (g) γ · h1w2

2

123 22 82 αβw2
2 (g, w2

1) gen.

123 23 85 h2
1γw2

2 (g, w1) h1γ · h1w2
2
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Table 5.8: R2-module generators of E5(tmf), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) dec.

128 23 87 δw2
2 (g) gen.

128 23 88 δ′w2
2 (g2, w2

1) gen.

128 24 100 h0αgw2
2 (g) h0 · δw2

2

128 25 102 h2
0αgw2

2 (g) h2
0 · δw2

2

129 24 101 h1δw2
2 (g, w1) h1 · δ′w2

2

129 25 103 γw1w2
2 (g2, gw1) γ · w1w2

2

132 26 + i 100 h1+i
0 α3w2

2 (g) hi
0 · gen.

135 25 108 d0γw2
2 − γ · d0w2

2

137 26 103 α2e0w2
2 (g, w1) d0 · αβw2

2

142 27 109 αd0gw2
2 (g2, gw1, w2

1) d0 · δ′w2
2

144 26 107 h2
0w

3
2 (g2, gw1) gen.

144 27 + i 111 h3+i
0 w3

2 (g) h1+i
0 · h2

0w
3
2

147 25 113 h2w3
2 − gen.

147 26 110 h0h2w3
2 (g, w1) h0 · h2w3

2

147 27 113 h2
0h2w3

2 (g, w1) h2
0 · h2w3

2

150 26 111 h2
2w

3
2 (g, w1) h2 · h2w3

2

152 27 116 c0w3
2 (g) gen.

152 29 131 + 132 α3gw2
2 + h0w1w3

2 (g) gen.

153 28 129 + 130 γδ′w2
2 (g, w1) γ · δ′w2

2

153 28 130 h1c0w3
2 (g) γ · δw2

2

154 30 127 + 128 γ2w1w2
2 (g) γ2 · w1w2

2

156 30 + i 131 h3+i
0 αw3

2 (g) hi
0 · gen.

161 29 142 h0e0w3
2 (g, w1) d0 · h2w3

2

168 31 + i 144 h1+i
0 α2w3

2 (g) hi
0 · gen.

176 31 149 δw3
2 (g) gen.

176 32 167 h0αgw3
2 (g) h0 · δw3

2

176 33 171 h2
0αgw3

2 (g) h2
0 · δw3

2

177 32 168 h1δw3
2 (g) h1 · δw3

2

178 33 173 e0γg2w2
2 (g) γ2 · (δ + δ′)w2

2

180 34 + i 168 h1+i
0 α3w3

2 (g) hi
0 · gen.
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Table 5.9: The non-cyclic R2-module summands in E5(tmf)

〈x1, x2〉

〈γ, h1w2
2〉 ∼=

Σ5,30R2 ⊕ Σ17,114R2

〈(g2w1, 0), (gw2
1, 0), (g5, gw1), (0, g2)〉

〈d0γ, h2w2〉 ∼=
Σ9,48R2 ⊕ Σ9,60R2

〈(w1, 0), (g, w1), (0, g)〉

〈d0γw2
2, h2w3

2〉 ∼=
Σ25,160R2 ⊕ Σ25,172R2

〈(w1, 0), (g, w1), (0, g)〉

Proposition 5.25. A set of 43 algebra generators for E5(tmf) is listed in
Table 5.10.

Proof. The dec.-column in Table 5.8 shows how each R2-module generator
can be decomposed as a polynomial in the listed algebra generators, using only
relations that hold in the E2-term. The algebra generators themselves are indicated
by “gen.”. For typographic reasons, γ ·δ+γ ·δ′ is abbreviated to γ ·(δ+δ′), etc. !

Proposition 5.26. Charts showing E5(tmf) for 0 ≤ t − s ≤ 192 are given
in Figures 5.1 to 5.8. All nonzero h0-, h1- and h2-multiplications are displayed.
The red dots indicate w1-power torsion classes, and black dots indicate w1-periodic
classes. All F2[w1]-module generators are labeled, except those that are also h0-,
h1- or h2-multiples.

Proof. The R2-module structure of E5(tmf) is given by Table 5.8. We em-
phasize the algebra structure at the E5-term by factorizing some of the module
generators, as follows:

h0e0 = h2 · d0

h0αg = h0 · δ
α2e0 = αβ · d0

αd0g = d0 · δ′

αd0g
2 = d0 · δ′ · g .

Similar factorizations apply for w2-, w2
2- or w3

2-multiples of some of these generators.
These relations are all valid already at the E2-term.

Most of the h0-, h1- and h2-multiplications are evident from the normal form
of the generators. The less obvious cases are

h1 · h2
1 = h0 · h0h2

h2 · h2d0 = h0 · h0g

h0 · αβ = h2
1γ

h1 · δ′ = h1δ

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



5.5. THE E∞-TERM FOR tmf 213

Table 5.10. Algebra generators of E5(tmf) = E∞(tmf)

t − s s g x

0 1 0 h0

1 1 1 h1

3 1 2 h2

8 3 2 c0

8 4 1 w1

12 6 4 h3
0α

14 4 4 d0

20 4 8 g

24 7 7 h0α2

25 5 11 γ

27 6 10 αβ

32 7 11 δ

32 7 12 δ′

36 10 14 h0α3

48 10 19 h2
0w2

51 9 23 h2w2

56 11 24 c0w2

56 13 26 + 27 α3g + h0w1w2

60 14 28 h3
0αw2

72 15 36 h0α2w2

80 15 41 δw2

84 18 48 h0α3w2

t − s s g x

96 17 58 h0w2
2

97 17 59 h1w2
2

99 17 60 h2w2
2

104 19 62 c0w2
2

104 20 69 w1w2
2

108 22 71 h3
0αw2

2

110 20 74 d0w2
2

120 23 82 h0α2w2
2

123 22 82 αβw2
2

128 23 87 δw2
2

128 23 88 δ′w2
2

132 26 100 h0α3w2
2

144 26 107 h2
0w

3
2

147 25 113 h2w3
2

152 27 116 c0w3
2

152 29 131 + 132 α3gw2
2

+ h0w1w3
2

156 30 131 h3
0αw3

2

168 31 144 h0α2w3
2

176 31 149 δw3
2

180 34 168 h0α3w3
2

192 32 172 w4
2

h1 · γ2 = h2
0h2w2

h0 · (α3g + h0w1w2) = w1 · h2
0w2 ,

together with some w2-power multiples of these. Again, these relations are valid at
the E2-term. Note also the identites

g · d0γ = w1 · h2w2

h1 · h1δw2 = e0γg2 ,

together with their w2
2-multiples, which are valid starting at the E3-term, and the

relation

g5 · γ = gw1 · h1w
2
2

which is valid from the E4-term and onward.
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Figure 5.1. E5(tmf) = E∞(tmf) for 0 ≤ t − s ≤ 24
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Figure 5.2. E5(tmf) = E∞(tmf) for 24 ≤ t − s ≤ 48
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Figure 5.3. E5(tmf) = E∞(tmf) for 48 ≤ t − s ≤ 72
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Figure 5.4. E5(tmf) = E∞(tmf) for 72 ≤ t − s ≤ 96
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Figure 5.5. E5(tmf) = E∞(tmf) for 96 ≤ t − s ≤ 120
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Figure 5.6. E5(tmf) = E∞(tmf) for 120 ≤ t − s ≤ 144
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Figure 5.7. E5(tmf) = E∞(tmf) for 144 ≤ t − s ≤ 168
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Figure 5.8. E5(tmf) = E∞(tmf) for 168 ≤ t − s ≤ 192
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By recording the F2[w1]-module structure implicit in the R2-module structure
of the E5-term, and accounting for the h0-, h1- and h2-multiplications known from
the E2-term, we deduce that E5(tmf) is a free F2[w4

2]-module, with F2[w1, w4
2]-

module generators concentrated in the range 0 ≤ t − s ≤ 180, as indicated in
Figures 5.1 to 5.8. !

Theorem 5.27. E5(tmf) = E∞(tmf).

Proof. To prove that the Adams spectral sequence for tmf collapses at the
E5-term, we show that each algebra generator x listed in Table 5.10 is an infinite
cycle, i.e., that dr(x) = 0 for each r ≥ 5. For most of these algebra generators all
possible target groups are trivial, as can be seen by inspection of Figures 5.1 to 5.8
and 0.8.

The remaining eight cases are x = h1, γ, αβ, h2w2, h1w2
2, h2w2

2, αβw2
2

and h2w3
2. All differentials on h1 and γ vanish by h0-linearity. All differentials

on h2w2
2 vanish by w1-linearity, since w1 · dr(h2w2

2) = dr(w1 · h2w2
2) = 0. This can

only happen if dr(h2w2
2) = 0, because w1 acts injectively on Es,t

5 (tmf) in all bide-
grees with t − s = 98, and no intermediate differentials can change this. Similarly,
all differentials on αβ, h2w2, αβw2

2 and h2w3
2 vanish by w2

1-linearity.
Finally, all differentials vanish on h1w2

2 by w1-linearity, since w1 · dr(h1w2
2) =

h1 · dr(w1w2
2) = 0. Again, this can only happen if dr(h1w2

2) = 0, because w1 acts
injectively on Es,t

5 (tmf) for t−s = 96 and no earlier differentials can intervene. !
Our discussion of the Adams spectral sequence for tmf continues in Chapter 9,

where we determine the additive and multiplicative extensions involved in the pas-
sage from E∞(tmf) to π∗(tmf).
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CHAPTER 6

The Adams spectral sequence for tmf/2

We calculate the dr-differentials in the Adams spectral sequence for tmf/2 =
tmf ∧ C2. These are nontrivial for r ∈ {2, 3, 4}, and zero for r ≥ 5, so the spectral
sequence collapses at the E5-term. The module structure over the Adams spectral
sequence for tmf suffices to determine all of these differentials. The resulting E∞-
term is the associated graded of a degreewise finite length filtration of π∗(tmf/2).

6.1. The E2-term for tmf/2

The initial term

E2 = E2(tmf/2) ∼= ExtA(2)(M1, F2)

of the mod 2 Adams spectral sequence for tmf/2 was calculated in Part I. The
groups Es,t

2 for 0 ≤ t−s ≤ 96 are displayed in Figures 1.24 to 1.27. By Corollary 4.3
the E2-term for tmf/2 is generated as a module over E2(tmf) = ExtA(2)(F2, F2)
by the eleven classes listed in Table 6.1. As a module over R0 = F2[g, w1, w2],
the E2-term for tmf/2 is presented in Tables 6.2 and 6.3 as a direct sum of cyclic
modules, together with one non-cyclic module, and illustrated in Figure 4.1. Most
entries in these tables are reproduced from Tables 4.2 and 4.3, but the information
about d2-differentials will be obtained in the next section. We note that the E2-
term is free over F2[w2], but not over F2[w1, w2], and is finitely generated over R0.
Following the strategy of Chapter 5 we will keep track of R0-module structure on
the E2-term, R1-module structure on the E3-term, and R2-module structure on
the E4- and E5 = E∞-terms of the Adams spectral sequence for tmf/2. Here
R1 = F2[g, w1, w2

2] and R2 = F2[g, w1, w4
2], as introduced in Definition 5.1.

Table 6.1. E2(tmf)-module generators of E2(tmf/2)

t − s s g x d2(x)

0 0 0 i(1) 0

2 1 1 h̃1 0

7 2 3 h̃2
2 0

9 3 2 c̃0 0

18 6 3 h̃2
0e0 i(h1c0w1)

26 5 8 γ̃ 0

t − s s g x d2(x)

31 6 10 β̃2 0

32 8 7 d̃0e0 0

33 7 10 δ̃′ 0

36 7 12 β̃g h2
1δ̃

′

42 10 12 α̃2e0 i(h1δw1)

219
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Table 6.2: R0-module generators of E2(tmf/2)

t − s s g x Ann(x) d2(x) d2(xw2)

0 0 0 i(1) (0) 0 g2 · h̃2
2

1 1 0 i(h1) (g2, gw1) 0 0

2 1 1 h̃1 (0) 0 g2 · c̃0

2 2 0 i(h2
1) (g) 0 0

3 1 2 i(h2) (g) 0 0

3 2 1 h1h̃1 (g) 0 0

4 3 0 h2
1h̃1 (g) 0 0

6 2 2 i(h2
2) (g, w1) 0 0

7 2 3 h̃2
2 (0) 0 g2 · i(d0)

8 3 1 i(c0) (g) 0 0

9 3 2 c̃0 (0) 0 g2 · d0h̃1

9 4 1 i(h1c0) (g) 0 0

10 4 2 h1c̃0 (g) 0 0

12 3 3 i(α) (0) w1 · i(h2) g2 · e0h̃1 + w1 · i(h2w2)

14 4 3 i(d0) (0) 0 g2 · d0h̃2
2

15 3 4 i(β) (0) 0 g3 · h̃1

16 5 3 d0h̃1 (0) 0 g2w1 · i(β)

17 4 4 i(e0) (0) 0 g2 · i(α2)

18 4 5 i(h2β) (g, w1) 0 0

18 6 3 h̃2
0e0 − w1 · i(h1c0) g2w1 · i(e0) + w1 · i(h1c0w2)

19 5 4 e0h̃1 (0) 0 g2 · i(αd0)

21 6 4 d0h̃2
2 (0) 0 g3w1 · i(1)

24 6 5 i(α2) (0) 0 g2 · i(d0e0)

25 5 7 i(γ) (0) 0 g3 · i(α)

26 5 8 γ̃ (0) 0 g2 · δ̃′

26 6 6 i(h1γ) (g) 0 0

26 7 5 i(αd0) (0) 0 g2w1 · i(γ)

27 6 8 h1γ̃ (g) 0 0

28 7 6 h2
1γ̃ (g) 0 0

30 6 9 i(β2) − 0 g3 · i(e0)

31 6 10 β̃2 (0) 0 g2 · αγ̃
31 8 6 i(d0e0) (0) 0 g2w1 · i(β2)
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Table 6.2: R0-module generators of E2(tmf/2) (cont.)

t − s s g x Ann(x) d2(x) d2(xw2)

32 7 9 i(δ) (g) 0 0

32 8 7 d̃0e0 (0) 0 g2w1 · β̃2

33 7 10 δ̃′ (0) 0 g2 · d0γ̃

33 8 8 i(h1δ) (g) 0 0

33 9 7 h1d̃0e0 (g) 0 0

34 8 10 h1δ̃′ (g) 0 0

35 9 9 h2
1δ̃

′ (g) 0 0

36 7 12 β̃g (0) h2
1δ̃

′ g2 · e0γ̃ + h2
1w2δ̃′

38 8 12 αγ̃ (0) 0 g2 · d0β̃2

40 9 12 d0γ̃ (0) 0 g2 · d0δ̃′

41 8 14 βγ̃ (0) 0 g2 · e0β̃2

42 10 12 α̃2e0 (0) w1 · i(h1δ) g2w1 · βγ̃ + w1 · i(h1δw2)

43 9 14 e0γ̃ (0) 0 g2 · d0β̃g

45 10 14 d0β̃2 (0) 0 g3 · d̃0e0

47 11 14 d0δ̃′ (0) 0 g3w1 · γ̃
48 10 16 e0β̃2 (0) 0 g2 · α2β̃2

50 11 16 d0β̃g (0) 0 g2 · d0e0γ̃

55 12 18 α2β̃2 (0) 0 g3 · α̃2e0

57 13 18 d0e0γ̃ (0) 0 g3w1 · β̃g

Table 6.3: The non-cyclic R0-module summand in E2(tmf/2)

〈x1, x2〉

〈h̃2
0e0, i(β2)〉 ∼=

Σ6,24R0 ⊕ Σ6,36R0

〈(g, w1)〉

6.2. The d2-differentials for tmf/2

To determine the d2-differentials for tmf/2, we use the following preliminary
estimate. See Figures 1.25, 1.26 and 4.1.

Lemma 6.1. If d3(d̃0e0) = i(βw2
1) then d3(βγ̃) = i((δ + αg)w1) = i(δ′w1).

Otherwise, d3(d̃0e0) = 0 and d3(βγ̃) = i(δw1).
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Proof. From w1 · βγ̃ = 1214 = e0 · d̃0e0 with d3(e0) = c0w1 and d3(w1) = 0

we get w1 · d3(βγ̃) = c0w1 · d̃0e0 + e0 · d3(d̃0e0). Here c0w1 · d̃0e0 = 159 = i(δw2
1).

Note that E2 = E3 in the bidegree generated by 158 and 159.
If d3(d̃0e0) = i(βw2

1) then e0 · d3(d̃0e0) = i(βe0w2
1) = i(αgw2

1) = 158, and
w1 · d3(βγ̃) = i(δw2

1) + i(αgw2
1) = 159 + 158. This implies d3(βγ̃) = i(δw1) +

i(αgw1) = 119 + 118.

Otherwise, d3(d̃0e0) = 0, so e0 · d3(d̃0e0) = 0 and w1 · d3(βγ̃) = i(δw2
1) = 159.

This implies d3(βγ̃) = i(δw1) = 119. !

Theorem 6.2. The d2-differential in E2(tmf/2) is R1-linear. Its values on a
set of E2(tmf)-module generators are listed in Table 6.1, and its values on a set of
R1-module generators are listed in Table 6.2.

Proof. The classes g, w1 and w2
2 are d2-cycles in E2(tmf), so the Leibniz

rule implies that multiplication by each of these elements commutes with the d2-
differential in E2(tmf/2). Hence d2 is R1-linear.

The d2-differentials on the E2(tmf)-module generators i(1), h̃1, h̃2
2, c̃0, γ̃, β̃2,

d̃0e0 and δ̃′ are zero because the target groups are trivial.
The d3-differential d3(e0) = c0w1 in E3(tmf) (see Table 5.2) implies d3(i(e0)) =

i(c0w1) in E3 = E3(tmf/2), by naturality with respect to i. Here i(h1e0) = 0, so
i(h1c0w1) = 0 at E3. Since i(h1c0w1) 0= 0 at E2, we must have d2(x) = i(h1c0w1)

for some nonzero x. The only possibility is x = h̃2
0e0.

The d2-boundary d2(β̃g) maps by j to d2(βg) = h0d0g 0= 0 in E2(tmf), using

Table 5.1. Hence d2(β̃g) is nonzero, and h2
1δ̃

′ is the only possible value.

To determine d2(α̃2e0) we use Lemma 6.1, showing that d3(βγ̃) = i(δ′w1) or
i(δw1). From h1 · βγ̃ = 0 and h1δ′ = h1δ we deduce that 0 = d3(h1 · βγ̃) =
h1 · d3(βγ̃) = i(h1δw1) at E3. But i(h1δw1) 0= 0 at E2, so i(h1δw1) = d2(y) for

some nonzero y. The only possibility is y = α̃2e0.
We use Table 5.1 and the Leibniz rule to calculate d2(x) for x ranging through

the R0-module generators for E2(tmf/2) listed in Table 6.2. The less obvious cases
are:

• d2(α · γ̃) = h2w1 · γ̃ = 0
• d2(β · γ̃) = h0d0 · γ̃ = 0

• d2(d0 · β̃g) = d0 · h2
1δ̃

′ = 0.

The vanishing of these products is readily seen in Figure 4.1.
To finish the proof we calculate d2(w2 · x) = d2(w2) · x + w2 · d2(x) = αβg · x +

w2 ·d2(x), for the same generators x, so that xw2 ranges through the remaining R1-
module generators for E2(tmf/2). This is easy when g ∈ Ann(x). In the remaining
cases we use ext to calculate the product αβg · x and to present it in terms of our
R1-module generators for E2(tmf/2):

• αβg · i(1) = 1015 = g2 · h̃2
2

• αβg · i(h1) = 0

• αβg · h̃1 = 1115 = g2 · c̃0

• αβg · h̃2
2 = 1217 = g2 · i(d0)

• αβg · c̃0 = 1317 = g2 · d0h̃1

• αβg · i(α) = 1321 = g2 · e0h̃1
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• αβg · i(d0) = 1421 = g2 · d0h̃2
2

• αβg · i(β) = 1324 = g3 · h̃1

• αβg · d0h̃1 = 1520 = g2w1 · i(β)
• αβg · i(e0) = 1424 = g2 · i(α2)

• αβg · h̃2
0e0 = 1620 = g2w1 · i(e0)

• αβg · e0h̃1 = 1524 = g2 · i(αd0)

• αβg · d0h̃2
2 = 1624 = g3w1 · i(1)

• αβg · i(α2) = 1627 = g2 · i(d0e0)
• αβg · i(γ) = 1530 = g3 · i(α)

• αβg · γ̃ = 1531 = g2 · δ̃′
• αβg · i(αd0) = 1727 = g2w1 · i(γ)
• αβg · i(β2) = 1633 = g3 · i(e0)

• αβg · β̃2 = 1634 = g2 · αγ̃
• αβg · i(d0e0) = 1830 = g2w1 · i(β2)

• αβg · d̃0e0 = 1831 = g2w1 · β̃2

• αβg · δ̃′ = 1734 = g2 · d0γ̃
• αβg · β̃g = 1739 = g2 · e0γ̃

• αβg · αγ̃ = 1839 = g2 · d0β̃2

• αβg · d0γ̃ = 1938 = g2 · d0δ̃′

• αβg · βγ̃ = 1843 = g2 · e0β̃2

• αβg · α̃2e0 = 2038 = g2w1 · βγ̃
• αβg · e0γ̃ = 1943 = g2 · d0β̃g

• αβg · d0β̃2 = 2043 = g3 · d̃0e0

• αβg · d0δ̃′ = 2143 = g3w1 · γ̃
• αβg · e0β̃2 = 2047 = g2 · α2β̃2

• αβg · d0β̃g = 2147 = g2 · d0e0γ̃

• αβg · α2β̃2 = 2251 = g3 · α̃2e0

• αβg · d0e0γ̃ = 2351 = g3w1 · β̃g. !

Remark 6.3. To use ext to assist in calculating the products αβg · x for x ∈
E2(tmf/2), use cocycle tmfC2 0 0, . . . , cocycle tmfC2 13 18, dolifts 0 40
maps and collect maps all. The nonzero products with αβg = 1018 then appear
as lines containing (10 18 F2) in the file all. If the product is a g2-multiple, there
will also appear a line containing (8 18 F2) in the same block, since g2 = 818 in the
minimal A(2)-module resolution for F2. Similarly, g2w1-multiples appear with (12
22 F2), g3-multiples appear with (12 29 F2), and g3w1-multiples appear with (16
35 F2).

6.3. The d3-differentials for tmf/2

It is now an elementary matter to compute E3(tmf/2). This is done in Ap-
pendix B.1 and the results are recorded in Tables 6.4 and 6.5. In the process,

we use the relations i(e0g2) = 1220 = β2gh̃2
2, i(h1c0w2) = 1221 = h2

1w2h̃2
2 and

γ2 = β2g+h2
1w2 to shorten the name of the generator in bidegree (t−s, s) = (57, 12)

from i(h1c0w2 + e0g2) to γ2h̃2
2. We also make the name change gβ̃g = 1121 = β2γ̃
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in bidegree (56, 11), as the latter decomposition is a more useful description of this
element.

Table 6.4: R1-module generators of E3(tmf/2)

t − s s g x Ann(x) d3(x) d3(xw2
2)

0 0 0 i(1) (g3w1) 0 g4 · i(β)

1 1 0 i(h1) (g2, gw1) 0 0

2 1 1 h̃1 (g3) 0 0

2 2 0 i(h2
1) (g) 0 0

3 1 2 i(h2) (g, w1) 0 0

3 2 1 h1h̃1 (g) 0 0

4 3 0 h2
1h̃1 (g) 0 0

6 2 2 i(h2
2) (g, w1) 0 0

7 2 3 h̃2
2 (g2) 0 0

8 3 1 i(c0) (g) 0 0

9 3 2 c̃0 (g2) 0 0

9 4 1 i(h1c0) (g, w1) 0 0

10 4 2 h1c̃0 (g) 0 0

14 4 3 i(d0) (g2) 0 0

15 3 4 i(β) (g2w1) 0 g4 · i(β2)

16 5 3 d0h̃1 (g2) 0 0

17 4 4 i(e0) (g3) w1 · i(c0) w1 · i(c0w2
2)

18 4 5 i(h2β) (g, w1) 0 0

19 5 4 e0h̃1 − w1 · h1c̃0 w1 · h1w2
2 c̃0

21 6 4 d0h̃2
2 (g2) 0 0

24 6 5 i(α2) (g2) 0 0

25 5 7 i(γ) (g2w1) 0 g6 · i(1)

26 5 8 γ̃ (g3w1) 0 g4 · βγ̃
26 6 6 i(h1γ) (g) 0 0

26 7 5 i(αd0) (g2) 0 0

27 6 8 h1γ̃ (g) 0 0

28 7 6 h2
1γ̃ (g) 0 0

30 6 9 i(β2) (g2w1) 0 g5 · i(γ)

31 6 10 β̃2 (g2w1) gw1 · h̃1 gw1 · w2
2h̃1 + g5 · γ̃

31 8 6 i(d0e0) (g2) 0 0
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Table 6.4: R1-module generators of E3(tmf/2) (cont.)

t − s s g x Ann(x) d3(x) d3(xw2
2)

32 7 8 i(αg) (g2) 0 0

32 7 9 i(δ) (g) 0 0

32 8 7 d̃0e0 (g3) w2
1 · i(β) w2

1 · i(βw2
2)

33 7 10 δ̃′ (g2) 0 0

33 8 8 i(h1δ) (g, w1) 0 0

33 9 7 h1d̃0e0 (g) 0 0

34 8 10 h1δ̃′ (g) 0 0

38 8 12 αγ̃ (g2) gw1 · c̃0 gw1 · w2
2 c̃0

40 9 12 d0γ̃ (g2) 0 0

41 8 14 βγ̃ − w1 · i(δ′) w1 · i(δ′w2
2) + g4 · β2γ̃

43 9 14 e0γ̃ (g3) w1 · h1δ̃′ w1 · h1w2
2 δ̃

′

45 10 14 d0β̃2 (g2) gw1 · d0h̃1 gw1 · d0w2
2h̃1

47 11 14 d0δ̃′ (g2) 0 0

48 10 16 e0β̃2 (g2) gw1 · e0h̃1 gw1 · e0w2
2h̃1

49 9 17 i(h1w2) (g2, gw1) g2w1 · i(1) g2w1 · i(w2
2)

50 10 18 i(h2
1w2) (g) 0 0

50 11 16 d0β̃g (g2) 0 0

51 9 19 i(h2w2) − 0 0

51 10 20 h1w2h̃1 (g) g2w1 · h̃1 g2w1 · w2
2h̃1

52 11 18 h2
1w2h̃1 (g) 0 0

54 10 21 i(h2
2w2) (g, w1) 0 0

55 12 18 α2β̃2 (g2) gw1 · i(αd0) gw1 · i(αd0w2
2)

56 11 21 β2γ̃ (g2w1) 0 g6 · β̃2

56 11 22 i(c0w2) (g) 0 0

57 12 20 + 21 γ2h̃2
2 (g, w1) 0 0

57 13 18 d0e0γ̃ (g2) 0 0

58 12 23 h1w2c̃0 (g) 0 0

62 14 22 gα̃2e0 (g2) gw2
1 · i(γ) gw2

1 · i(γw2
2)

66 12 28 i(h2βw2) (g, w1) 0 0

74 14 33 i(h1γw2) (g) 0 0

75 14 35 h1w2γ̃ (g) g2w1 · γ̃ g2w1 · w2
2γ̃

76 15 35 h2
1w2γ̃ (g) 0 0
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Table 6.4: R1-module generators of E3(tmf/2) (cont.)

t − s s g x Ann(x) d3(x) d3(xw2
2)

80 15 38 i(δw2) (g) 0 0

81 16 39 i(h1δw2) − 0 0

81 17 36 h1w2d̃0e0 (g) g2w1 · d̃0e0 g2w1 · w2
2d̃0e0

82 16 41 h1w2δ̃′ (g) 0 0

Table 6.5: The non-cyclic R1-module summands in E3(tmf/2)

〈x1, x2〉

〈e0h̃1, i(h2w2)〉 ∼=
Σ5,24R1 ⊕ Σ9,60R1

〈(g2, w1), (0, g)〉

〈βγ̃, i(h1δw2)〉 ∼=
Σ8,49R1 ⊕ Σ16,97R1

〈(g2w1, w1), (0, g)〉

Proposition 6.4. The eleven classes listed in Table 6.6 generate E3(tmf/2)
as a module over E3(tmf).

Proof. Inspection of Tables 5.2 and 6.4 easily shows that most of the R1-
module generators of E3(tmf/2) are E3(tmf)-multiples of the classes in Table 6.6.
The less evident cases follow from the relations

i(αd0) = 75 = e0 · c̃0

d0β̃g = 1116 = e0 · δ̃′

gα̃2e0 = 1422 = d0e0 · β̃2 ,

which we verify by calculating the relevant Yoneda products using ext. !

Table 6.6: E3(tmf)-module generators of E3(tmf/2)

t − s s g x d3(x)

0 0 0 i(1) 0

2 1 1 h̃1 0

7 2 3 h̃2
2 0

9 3 2 c̃0 0

15 3 4 i(β) 0

26 5 8 γ̃ 0
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Table 6.6: E3(tmf)-module generators for E3(tmf/2) (cont.)

t − s s g x d3(x)

31 6 10 β̃2 gw1h̃1

32 8 7 d̃0e0 i(βw2
1)

33 7 10 δ̃′ 0

38 8 12 αγ̃ gw1c̃0

41 8 14 βγ̃ i(δ′w1)

Proposition 6.5. The d3-differentials on the E3(tmf)-module generators of
E3(tmf/2) are as listed in Table 6.6.

Proof. The target groups of d3 on i(1), h̃1, h̃2
2, c̃0, i(β) are trivial.

Since d3 ◦ d3 = 0 and d3(i(e0w1)) = i(c0w2
1) 0= 0, we cannot have d3(γ̃) =

i(e0w1). The only alternative is d3(γ̃) = 0.

The d3-boundary d3(β̃2) maps by j to d3(β2) = h1gw1 0= 0 in E3(tmf), so

d3(β̃2) 0= 0 and gw1h̃1 is the only possible value.

To determine d3(d̃0e0) we use the relation β2 · d̃0e0 = 1422 = d0e0β̃2. We find

that d3(β2d̃0e0) = h1gw1 · d̃0e0 + β2 · d3(d̃0e0) = β2d3(d̃0e0) since h1 annihilates

E2(tmf/2) in bidegree (t − s, s) = (60, 16). This must equal d3(d0e0β̃2) = d0e0 ·
gw1h̃1 = 1715 = gw2

1 · i(γ) 0= 0. Therefore d3(d̃0e0) is nonzero, and i(βw2
1) is the

only possible value.
Lemma 6.1 then shows that d3(βγ̃) = i(δ′w1).

From the relation e0 · δ̃′ = 1116 = α2 · γ̃ and the differentials d3(e0) = c0w1,

d3(α2) = h1d0w1 and d3(γ̃) = 0 we obtain c0w1 · δ̃′ + e0 · d3(δ̃′) = h1d0w1 · γ̃.

Here c0w1 · δ̃′ = 0 and h1d0w1 · γ̃ = 0, so e0 · d3(δ̃′) = 0. On the other hand,
e0 · i(α2w1) = i(α2e0w1) = 1411 0= 0 cannot be a d2-boundary, hence remains

nonzero at E3(tmf/2). Thus d3(δ̃′) 0= i(α2w1), and 0 is the only possible value.
From the relation e0 · αγ̃ = 1218 = d0 · βγ̃ and the differentials d3(e0) = c0w1,

d3(d0) = 0 and d3(βγ̃) = i(δ′w1) we deduce that c0w1·αγ̃+e0·d3(αγ̃) = d0·i(δ′w1) =
i(αd0gw1) = 1513. Here c0w1 ·αγ̃ = 0, so e0 ·d3(αγ̃) = 1513 0= 0 at E2(tmf/2). This
class is not a d2-boundary, hence remains nonzero at E3(tmf/2), so d3(αγ̃) 0= 0.
The only possible value is gw1c̃0. !

Theorem 6.6. The d3-differential in E3(tmf/2) is R2-linear. Its values on a
set of R2-module generators are listed in Table 6.4.

Proof. The classes g, w1 and w4
2 are d3-cycles in E3(tmf), so the Leibniz

rule implies that multiplication by each of these elements commutes with the d3-
differential in E3(tmf/2). Hence d3 is R2-linear.

The d3-differential on the R1-module generators x in Table 6.4 is given by the
Leibniz rule applied to the (implicit and explicit) factorizations in the proof of
Proposition 6.4, and the d3-differentials from Tables 5.2 and 6.6. The less obvious
cases are:

• d3(e0 · h̃1) = c0w1 · h̃1 = 82 = w1 · h1c̃0

• d3(i(α2)) = i(h1d0w1) = 0
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• d3(i(αd0)) = d3(e0 · c̃0) = c0w1 · c̃0 = 0
• d3(i(β2)) = i(h1gw1) = 0

• d3(h1 · d̃0e0) = h1 · i(βw2
1) = 0

• d3(e0 · γ̃) = c0w1 · γ̃ = 1210 = h1w1δ̃′

• d3(e0 · β̃2) = c0w1 · β̃2 + e0 · gw1h̃1 = 0 + e0gw1h̃1

• d3(d0β̃g) = d3(e0 · δ̃′) = c0w1 · δ̃′ = 0

• d3(α2 · β̃2) = h1d0w1 · β̃2 + α2 · gw1h̃1 = 0 + 1513 = gw1 · i(αd0)
• d3(β2 · γ̃) = h1gw1 · γ̃ = 0
• d3(h1w2 · c̃0) = g2w1 · c̃0 = 0 at E3

• d3(gα̃2e0) = d3(d0e0 · β̃2) = d0e0 · gw1h̃1 = 1715 = gw2
1 · i(γ)

• d3(i(h1γw2)) = g2w1 · i(γ) = 0 at E3

• d3(h1w2 · d̃0e0) = g2w1 · d̃0e0 + h1w2 · i(βw2
1) = g2w1d̃0e0

• d3(h1w2 · δ̃′) = g2w1 · δ̃′ = 0 at E3.

It remains to determine d3(w2
2 ·x) = d3(w2

2) ·x+w2
2 ·d3(x) = βg4 ·x+w2

2 ·d3(x)
for the same generators x. This is easy when g4 ∈ Ann(x). In the other cases we
use ext to calculate the product βg4 ·x and to present it in terms of our R2-module
generators for E3(tmf/2):

• βg4 · i(γ) = 2473 = g6 · i(1)
• βg4 · i(β2) = 2578 = g5 · i(γ)

• βg4 · β̃2 = 2580 = g5 · γ̃
• βg4 · β2γ̃ = 30110 = g6 · β̃2. !

Remark 6.7. To calculate the products βg4 ·x with ext, use cocycle, dolifts
and collect as in Remark 6.3. The nonzero products with βg4 = 1956 then appear
as lines containing (19 56 F2) in the file all. If the product is a g5-multiple, there
will also appear a line containing (20 67 F2) in the same block, since g5 = 2067

in the minimal A(2)-module resolution for F2. Similarly, g6-multiples appear with
(24 90 F2).

6.4. The d4-differentials for tmf/2

The calculation of E4(tmf/2) as the homology of (E3(tmf/2), d3) is carried out
in Appendix B.2 and the results are recorded in Tables 6.7 and 6.8.

At this stage of the calculation it is convenient to change generators in order
to simplify the calculation of the next stage of the spectral sequence and to give
more informative or convenient names for some of the elements. This happens in
bidegrees (58, 12) and (154, 28), where we change basis and also change names of
elements. In bidegrees (51, 10) and (81, 16) we simply change the names of the
generators.

In bidegree (t − s, s) = (58, 12), we will replace αgγ̃ = 1222 by δ′γ̃ = 1222 +

1223 = (αg+δ)γ̃ so that the differential d4(α2gβ̃2) = w2
1 ·δ′γ̃ is simply a map between

cyclic summands. We treat its w2
2-multiple in (t − s, s) = (154, 28) similarly: we

replace αgw2
2γ̃ = 28116 by δ′w2

2γ̃ = 28116 + 28117 = (αg + δ)w2
2γ̃.

It is then also convenient to change the names of h1w2c̃0 = 1223 = δγ̃ and
h1w3

2 c̃0 = 28117 = δw2
2γ̃.
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As in Appendix B.2, in bidegree (t − s, s) = (51, 10) we use the relation γγ̃ =

gβ̃2 + h1w2h̃1 to replace the latter expression. In bidegree (t − s, s) = (81, 16) we

use the relation γ2β̃2 = βg2γ̃ + i(h1δw2) to replace the latter sum.

Table 6.7: R2-module generators of E4(tmf/2)

t − s s g x Ann(x) d4(x)

0 0 0 i(1) (g6, g2w1) 0

1 1 0 i(h1) (g2, gw1) 0

2 1 1 h̃1 (g3, gw1) 0

2 2 0 i(h2
1) (g) 0

3 1 2 i(h2) (g, w1) 0

3 2 1 h1h̃1 (g) 0

4 3 0 h2
1h̃1 (g) 0

6 2 2 i(h2
2) (g, w1) 0

7 2 3 h̃2
2 (g2) 0

8 3 1 i(c0) (g, w1) 0

9 3 2 c̃0 (g2, gw1) 0

9 4 1 i(h1c0) (g, w1) 0

10 4 2 h1c̃0 (g, w1) 0

14 4 3 i(d0) (g2) 0

15 3 4 i(β) (g4, g2w1, w2
1) 0

16 5 3 d0h̃1 (g2, gw1) 0

18 4 5 i(h2β) (g, w1) 0

21 6 4 d0h̃2
2 (g2) 0

24 6 5 i(α2) (g2) w2
1 · h̃2

2

25 5 7 i(γ) (g5, g2w1, gw2
1) 0

26 5 8 γ̃ − 0

26 6 6 i(h1γ) (g) 0

26 7 5 i(αd0) (g2, gw1) w2
1 · c̃0

27 6 8 h1γ̃ (g) 0

28 7 6 h2
1γ̃ (g) 0

30 6 9 i(β2) (g4, g2w1) w1 · d0h̃2
2

31 8 6 i(d0e0) (g2) w2
1 · i(d0)

32 7 8 + 9 i(δ′) (g2, w1) 0

32 7 9 i(δ) (g) 0
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Table 6.7: R2-module generators of E4(tmf/2) (cont.)

t − s s g x Ann(x) d4(x)

33 7 10 δ̃′ (g2) 0

33 8 8 i(h1δ) (g, w1) 0

33 9 7 h1d̃0e0 (g) w2
1 · d0h̃1

34 8 10 h1δ̃′ (g, w1) 0

37 8 11 i(e0g) (g2) gw2
1 · i(1)

39 9 11 e0gh̃1 − 0

40 9 12 d0γ̃ (g2) 0

47 11 14 d0δ̃′ (g2) 0

50 10 18 i(h2
1w2) (g) gw1 · d0h̃2

2

50 11 16 d0β̃g (g2) w2
1 · δ̃′

51 9 19 i(h2w2) − 0

51 10 19 + 20 γγ̃ (g5, gw1) 0

52 11 18 h2
1w2h̃1 (g) 0

54 10 21 i(h2
2w2) (g, w1) 0

56 11 21 β2γ̃ − w1 · d0δ̃′

56 11 22 i(c0w2) (g) 0

57 12 20 + 21 γ2h̃2
2 (g, w1) 0

57 13 18 d0e0γ̃ (g2) w2
1 · d0γ̃

58 12 22 + 23 δ′γ̃ (g) 0

58 12 23 δγ̃ (g) 0

63 13 25 e0gγ̃ (g2) gw2
1 · γ̃

65 14 25 d0gβ̃2 (g) 0

66 12 28 i(h2βw2) (g, w1) 0

69 13 30 i(h1gw2) (g, w1) 0

72 16 28 g2d̃0e0 (g, w1) 0

74 14 33 i(h1γw2) (g) w1 · d0gβ̃2

75 16 31 α2gβ̃2 (g) w2
1 · δ′γ̃

76 15 35 h2
1w2γ̃ (g) gw1 · d0δ̃′

80 15 38 i(δw2) (g) 0

81 16 38 + 39 γ2β̃2 (g2, w1) 0

81 16 39 i(h1δw2) (g) 0

82 16 41 h1w2δ̃′ (g) 0
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Table 6.7: R2-module generators of E4(tmf/2) (cont.)

t − s s g x Ann(x) d4(x)

82 18 34 g2α̃2e0 (g) w2
1 · d0gβ̃2

97 17 50 i(h1w2
2) (g2, gw1) 0

98 17 51 w2
2h̃1 − 0

98 18 53 i(h2
1w

2
2) (g) 0

99 17 52 i(h2w2
2) (g, w1) 0

99 18 55 h1w2
2h̃1 (g) 0

100 19 55 h2
1w

2
2h̃1 (g) 0

102 18 56 i(h2
2w

2
2) (g, w1) 0

103 18 57 w2
2h̃

2
2 (g2) 0

104 19 59 i(c0w2
2) (g, w1) 0

104 20 58 i(w1w2
2) (g2) 0

105 19 60 w2
2 c̃0 (g2, gw1) 0

105 20 60 i(h1c0w2
2) (g, w1) 0

106 20 62 h1w2
2 c̃0 (g, w1) 0

110 20 65 i(d0w2
2) (g2) 0

112 21 67 d0w2
2h̃1 (g2, gw1) 0

114 20 67 i(h2βw2
2) (g, w1) 0

117 22 72 d0w2
2h̃

2
2 (g2) 0

119 23 74 i(βw1w2
2) (g2, w1) 0

120 22 75 i(α2w2
2) (g2) w2

1 · w2
2h̃

2
2

122 22 76 i(h1γw2
2) (g) 0

122 23 77 i(αd0w2
2) (g2, gw1) w2

1 · w2
2 c̃0

123 22 78 h1w2
2γ̃ (g) 0

124 23 80 h2
1w

2
2γ̃ (g) 0

127 24 82 i(d0e0w2
2) (g2) w2

1 · i(d0w2
2)

128 23 82 + 83 i(δ′w2
2) − 0

128 23 83 i(δw2
2) (g) 0

129 23 84 w2
2 δ̃

′ (g2) 0

129 24 86 i(h1δw2
2) (g, w1) 0

129 25 84 + 85 i(γw1w2
2) (g2, gw1) 0

129 25 85 h1w2
2d̃0e0 (g) w2

1 · d0w2
2h̃1

130 24 88 h1w2
2 δ̃

′ (g, w1) 0
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Table 6.7: R2-module generators of E4(tmf/2) (cont.)

t − s s g x Ann(x) d4(x)

130 25 87 w1w2
2γ̃ (g2) 0

133 24 89 i(e0gw2
2) (g2) gw1 · i(w1w2

2)

134 26 91 i(β2w1w2
2) (g2) w2

1 · d0w2
2h̃

2
2

135 25 93 e0gw2
2h̃1 − 0

136 25 94 d0w2
2γ̃ (g2) 0

143 27 103 d0w2
2 δ̃

′ (g2) 0

146 26 104 i(h2
1w

3
2) (g) gw1 · d0w2

2h̃
2
2

146 27 106 d0w2
2β̃g (g2) w2

1 · w2
2 δ̃

′

147 25 101 i(h2w3
2) − 0

148 27 108 h2
1w

3
2h̃1 (g) 0

150 26 107 i(h2
2w

3
2) (g, w1) 0

152 27 112 i(c0w3
2) (g) 0

153 28 114 + 115 γ2w2
2h̃

2
2 (g, w1) 0

153 29 115 d0e0w2
2γ̃ (g2) w2

1 · d0w2
2γ̃

154 28 116 + 117 δ′w2
2γ̃ (g) 0

154 28 117 δw2
2γ̃ (g) 0

155 30 118 + 119 γw1w2
2γ̃ (g) 0

159 29 123 e0gw2
2γ̃ (g2) gw1 · w1w2

2γ̃

160 31 124 β2w1w2
2γ̃ (g2) w2

1 · d0w2
2 δ̃

′

161 30 127 d0gw2
2β̃

2 (g) 0

162 28 122 i(h2βw3
2) (g, w1) 0

165 29 128 i(h1gw3
2) (g, w1) 0

168 32 137 g2w2
2d̃0e0 (g, w1) 0

170 30 135 i(h1γw3
2) (g) w1 · d0gw2

2β̃
2

171 32 141 α2gw2
2β̃

2 (g) w2
1 · δ′w2

2γ̃

172 31 141 h2
1w

3
2γ̃ (g) gw1 · d0w2

2 δ̃
′

176 31 144 i(δw3
2) (g) 0

177 32 149 i(h1δw3
2) (g) 0

178 32 151 h1w3
2 δ̃

′ (g) 0

178 34 151 g2w2
2α̃

2e0 (g) w2
1 · d0gw2

2β̃
2
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Table 6.8: The non-cyclic R2-module summands in E4(tmf/2)

〈x1, x2〉

〈γ̃, w2
2h̃1〉 ∼=

Σ5,31R2 ⊕ Σ17,115R2

〈(g2w1, 0), (g5, gw1), (0, g3), (0, g2w1)〉

〈e0gh̃1, i(h2w2)〉 ∼=
Σ9,48R2 ⊕ Σ9,60R2

〈(w1, 0), (g, w1), (0, g)〉

〈β2γ̃, i(δ′w2
2)〉 ∼=

Σ11,67R2 ⊕ Σ23,151R2

〈(g2w1, 0), (g4, w1), (0, g2)〉

〈e0gw2
2h̃1, i(h2w3

2)〉 ∼=
Σ25,160R2 ⊕ Σ25,172R2

〈(w1, 0), (g, w1), (0, g)〉

Proposition 6.8. The 19 classes listed in Table 6.9 generate E4(tmf/2) as a
module over E4(tmf).

Proof. Inspection of Tables 5.5 and 6.7 easily shows that most of the R2-
module generators of E4(tmf/2) are E4(tmf)-multiples of the classes in Table 6.9.
The less evident cases follow from the relations

h1d̃0e0 = w1 · i(γ) + d0e0 · h̃1

d0gβ̃2 = δ′ · δ̃′

i(h1gw2) = h2
2w2 · i(β)

g2d̃0e0 = αd0g · γ̃
i(h1γw2) = h0w2 · γ̃

α2gβ̃2 = αe0g · γ̃

γ2β̃2 = βg2 · γ̃ + i(h1δw2)

h1w2δ̃′ = c0w2 · γ̃

g2α̃2e0 = α3g · γ̃

h1w
2
2d̃0e0 = i(γw1w

2
2) + d0e0w

2
2 · h̃1

d0gw2
2β̃

2 = d0γw2
2 · γ̃

i(h1gw3
2) = h2

2w
3
2 · i(β)

g2w2
2d̃0e0 = d0γ · w2

2 δ̃
′

i(h1γw3
2) = h0w

3
2 · γ̃

α2gw2
2β̃

2 = αe0gw2
2 · γ̃
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h1w
3
2 δ̃

′ = c0w
3
2 · γ̃

g2w2
2α̃

2e0 = α3gw2
2 · γ̃ ,

which we verify by calculating the relevant Yoneda products using ext. Note that
α3g = (α3g + h0w1w2) + w1 · h0w2 lies in E4(tmf). !

Table 6.9: E4(tmf)-module generators of E4(tmf/2)

t − s s g x d4(x)

0 0 0 i(1) 0

2 1 1 h̃1 0

7 2 3 h̃2
2 0

9 3 2 c̃0 0

15 3 4 i(β) 0

24 6 5 i(α2) w2
1 · h̃2

2

26 5 8 γ̃ 0

26 7 5 i(αd0) w2
1 · c̃0

30 6 9 i(β2) w1 · d0h̃2
2

33 7 10 δ̃′ 0

50 11 16 d0β̃g w2
1 · δ̃′

56 11 21 β2γ̃ w1 · d0δ̃′

98 17 51 w2
2h̃1 0

103 18 57 w2
2h̃

2
2 0

105 19 60 w2
2 c̃0 0

120 22 75 i(α2w2
2) w2

1 · w2
2h̃

2
2

122 23 77 i(αd0w2
2) w2

1 · w2
2 c̃0

129 23 84 w2
2 δ̃

′ 0

146 27 106 d0w2
2β̃g w2

1 · w2
2 δ̃

′

Proposition 6.9. The d4-differentials on the E4(tmf)-module generators of
E4(tmf/2) are as given in Table 6.9.

Proof. For x ∈ {i(1), h̃1, h̃2
2, c̃0, i(β), γ̃, δ̃′} the bidegree of d4(x) is zero at E2.

For x = w2
2h̃1, x = w2

2h̃
2
2 and x = w2

2 c̃0 the target of d4 on x is generated

at E2 by 2147 = g2d0e0γ̃ = d2(w2 · d0β̃g), 2251 = g3α̃2e0 = d2(w2 · α2β̃2) and

2351 = g3w1β̃g = d2(w2 ·d0e0γ̃), respectively. For x = w2
2 δ̃

′, the target is generated

at E2 by y = 2777 = i(αg3w1w2), and d2(y) = g5w1 · e0h̃1 0= 0. Hence the target is

zero at E3 for x ∈ {w2
2h̃1, w2

2h̃
2
2, w

2
2 c̃0, w2

2 δ̃
′}.
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The remaining differentials are consequences of the differential d4(d0e0) = d0w2
1

in E4(tmf), cf. Corollary 5.13, or of naturality with respect to j : tmf/2 → Σtmf ,
as we now show.

For x = i(α2) the relation d0 · x = 109 = d0e0 · h̃2
2, verified by ext, gives

d0 · d4(x) = w2
1 · d0h̃2

2 0= 0 at E4, so d4(x) 0= 0 and 102 = w2
1 · h̃2

2 is the only possible
value.

For x = i(αd0) the relation γ · x = 1215 = i(d0e0g), verified by ext, gives
γ · d4(x) = gw2

1 · i(d0) 0= 0 at E4, so d4(x) 0= 0 and 112 = w2
1 · c̃0 is the only possible

value.
For x = i(β2) the relation w1 · x = 109 = d0e0 · h̃2

2, verified by ext, gives

w1 · d4(x) = w2
1 · d0h̃2

2 0= 0 at E4, so d4(x) 0= 0 and 104 = w1 · d0h̃2
2 is the only

possible value.
For x = d0β̃g naturality with respect to j, and j(x) = d0 · βg = αe0g, show

that d4(x) maps by j to d4(αe0g) = w2
1 · δ′ 0= 0, so d4(x) = 1510 = w2

1 · δ̃′ is the
only possibility.

For x = β2γ̃ naturality with respect to j, and j(x) = β2γ = βg2, show that

d4(x) maps to d4(βg2) = w1 · αd0g 0= 0, and d4(x) = 1514 = w1 · d0δ̃′ is the only
possibility.

For x = i(α2w2
2) the target bidegree of d4 is generated at E2 by 2665 = w2

1 ·w2
2h̃

2
2

and 2666 = g4w1β̃2 = d2(g2 · w2d̃0e0). Hence w2
1 · w2

2h̃
2
2 is the only nonzero class at

E3 and E4. The relation d0 · x = d0e0 · w2
2h̃

2
2 gives d0 · d4(x) = w2

1 · d0w2
2h̃

2
2 0= 0, so

d4(x) = 2665 = w2
1 · w2

2h̃
2
2.

For x = i(αd0w2
2) the target bidegree of d4 is generated at E2 by 2765 = w2

1 ·w2
2 c̃0

and 2766 = g4w1δ̃′ = d2(g2w1 · w2γ̃). Hence w2
1 · w2

2 c̃0 is the only nonzero class at
E3 and E4. The relation γ · x = i(d0e0gw2

2) gives γ · d4(x) = gw2
1 · i(d0w2

2) 0= 0, so
d4(x) = 2765 = w2

1 · w2
2 c̃0.

For x = d0w2
2β̃g the target bidegree of d4 is generated at E2 by 3194 = w2

1 ·w2
2 δ̃

′

and y = 3195 = g4w1 · w2c̃0. Here d2(y) = g6w1 · d0h̃1 0= 0. Hence w2
1 · w2

2 δ̃
′ is

the only nonzero class at E3 and E4. Naturality with respect to j, and j(x) =
d0w2

2 · βg = αe0gw2
2, show that d4(x) maps to d4(αe0gw2

2) = δ′w2
1w

2
2 0= 0, which

implies that d4(x) = 3194 = w2
1 · w2

2 δ̃
′. !

Theorem 6.10. The d4-differential in E4(tmf/2) is R2-linear. Its values on a
set of R2-module generators are listed in Table 6.7.

Proof. The classes g, w1 and w4
2 are d4-cycles in E4(tmf), so multiplication

by each of these commutes with the d4-differential in E4(tmf/2).
The d4-differential on the E4(tmf)-module generators was computed in Propo-

sition 6.9. The Leibniz rule then gives the value of d4 on the remaining elements
in terms of E4(tmf)-multiples of the R2-module generators. We use ext to rewrite
these as R2-multiples of the R2-module generators, leaving out some straightfor-
ward cases:

• d4(h1d̃0e0) = d4(w1 · i(γ) + d0e0 · h̃1) = 0 + d0w2
1 · h̃1

• d4(e0gh̃1) = gw2
1 · h̃1 = 0 at E4

• d4(i(h2
1w2)) = i(α2e0w1) = 1411 = gw1 · d0h̃2

2

• d4(h2
1w2 · h̃1) = α2e0w1 · h̃1 = 1511 = gw2

1 · i(β) = 0 at E4

• d4(d0e0 · γ̃) = d0w2
1 · γ̃
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• d4(e0g · γ̃) = gw2
1 · γ̃

• d4(d0gβ̃2) = d4(δ′ · δ̃′) = 0
• d4(h2w2 · i(β)) = 0
• d4(h1gw2) = d4(h2

2w2 · i(β)) = 0

• d4(g2d̃0e0) = d4(αd0g · γ̃) = 0

• d4(i(h1γw2)) = d4(h0w2 · γ̃) = d0γw1 · γ̃ = 1825 = w1 · d0gβ̃2

• d4(α2gβ̃2) = d4(αe0g · γ̃) = δ′w2
1 · γ̃

• d4(h2
1w2 · γ̃) = α2e0w1 · γ̃ = 1925 = gw1 · d0δ̃′

• d4(γ2β̃2) = d4(βg2 ·γ̃+i(h1δw2)) = αd0gw1 ·γ̃+0 = 2028 = w1 ·g2d̃0e0 = 0
at E4

• d4(h1w2δ̃′) = d4(c0w2 · γ̃) = 0

• d4(g2α̃2e0) = d4(α3g · γ̃) = d0γw2
1 · γ̃ = 2225 = w2

1 · d0gβ̃2

• d4(h1w2
2d̃0e0) = d4(i(γw1w2

2) + d0e0w2
2 · h̃1) = 0 + d0w2

1w
2
2 · h̃1

• d4(w1w2
2 · i(β2)) = w1w2

2 · d0w1h̃2
2

• d4(e0gw2
2 · h̃1) = gw2

1w
2
2 · h̃1 = 0 at E4

• d4(i(h2
1w

3
2)) = i(α2e0w1w2

2) = 3099 = gw1 · d0w2
2h̃

2
2

• d4(h2
1w

3
2 · h̃1) = α2e0w1w2

2 · h̃1 = 3199 = gw1 · i(βw1w2
2) = 0 at E4

• d4(w1w2
2 · β2γ̃) = w1w2

2 · d0w1δ̃′

• d4(d0gw2
2β̃

2) = d4(d0γw2
2 · γ̃) = 0

• d4(h2w3
2 · i(β)) = 0

• d4(i(h1gw3
2)) = d4(h2

2w
3
2 · i(β)) = 0

• d4(g2w2
2d̃0e0) = d4(d0γ · w2

2 δ̃
′) = 0

• d4(i(h1γw3
2)) = d4(h0w3

2 · γ̃) = d0γw1w2
2 · γ̃ = 34134 = w1 · d0gw2

2β̃
2

• d4(α2gw2
2β̃

2) = d4(αe0gw2
2 · γ̃) = δ′w2

1w
2
2 · γ̃

• d4(h2
1w

3
2 · γ̃) = α2e0w1w2

2 · γ̃ = 35134 = gw1 · d0w2
2 δ̃

′

• d4(h1w3
2 δ̃

′) = d4(c0w3
2 · γ̃) = 0

• d4(g2w2
2α̃

2e0) = d4(α3gw2
2 · γ̃) = d0γw2

1w
2
2 · γ̃ = 38134 = w2

1 · d0gw2
2β̃

2. !

6.5. The E∞-term for tmf/2

The calculation of E5(tmf/2) as the homology of (E4(tmf/2), d4) is carried out
in Appendix B.3, and the result is displayed in Tables 6.10 and 6.11. In this section
we show that the twelve classes in Table 6.12 generate E5(tmf/2) as a module
over E5(tmf) = E∞(tmf), and use this to deduce that E5(tmf/2) = E∞(tmf/2).

Passing from E4 to E5, we introduced shorter monomial names for some d4-
cycles which were sums in E4(tmf/2). These were

i(γ2) = 1017 + 1018 = g · i(β2) + i(h2
1w2)

γ2γ̃ = 1534 + 1535 = g · β2γ̃ + h2
1w2γ̃

γ2d̃0e0 = 1834 + 1835 = w1 · i(h1γw2) + g2α̃2e0

i(γ2w1w
2
2) = 30115 + 30116 = g · i(β2w1w

2
2) + w1 · i(h2

1w
3
2)

γ2w1w
2
2γ̃ = 35153 + 35154 = g · β2w1w

2
2γ̃ + w1 · h2

1w
3
2γ̃ .

In order to make the h1-action on i(c0w2) more visible, we now make a change of ba-

sis, replacing i(e0g2) = 1220 by i(e0g2)+γ2h̃2
2 = 1221 = i(h1c0w2) and keeping γ2h̃2

2
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as a generator. Similarly, we replace i(e0g2w2
2) = 28114 by i(e0g2w2

2) + γ2w2
2h̃

2
2 =

28115 = i(h1c0w3
2), while keeping γ2w2

2h̃
2
2.

Table 6.10: R2-module generators of E5(tmf/2)

t − s s g x Ann(x) dec.

0 0 0 i(1) (g6, g2w1, gw2
1) gen.

1 1 0 i(h1) (g2, gw1) h1 · i(1)

2 1 1 h̃1 (g3, gw1) gen.

2 2 0 i(h2
1) (g) h2

1 · i(1) = h0 · h̃1

3 1 2 i(h2) (g, w1) h2 · i(1)

3 2 1 h1h̃1 (g) h1 · h̃1

4 3 0 h2
1h̃1 (g) h2

1 · h̃1

6 2 2 i(h2
2) (g, w1) h2

2 · i(1)

7 2 3 h̃2
2 (g2, w2

1) gen.

8 3 1 i(c0) (g, w1) h1 · h̃2
2

9 3 2 c̃0 (g2, gw1, w2
1) gen.

9 4 1 i(h1c0) (g, w1) h2
1 · h̃2

2 = h0 · c̃0

10 4 2 h1c̃0 (g, w1) h1 · c̃0

14 4 3 i(d0) (g2, w2
1) d0 · i(1)

15 3 4 i(β) (g4, g2w1, w2
1) gen.

16 5 3 d0h̃1 (g2, gw1, w2
1) d0 · h̃1

18 4 5 i(h2β) (g, w1) h2 · i(β)

21 6 4 d0h̃2
2 (g2, w1) d0 · h̃2

2

25 5 7 i(γ) (g5, g2w1, gw2
1) γ · i(1)

26 5 8 γ̃ − gen.

26 6 6 i(h1γ) (g) h1γ · i(1) = h0 · γ̃
27 6 8 h1γ̃ (g) h1 · γ̃
28 7 6 h2

1γ̃ (g) h2
1 · γ̃

32 7 8 + 9 i(δ′) (g2, w1) δ′ · i(1)

32 7 9 i(δ) (g) δ · i(1)

33 7 10 δ̃′ (g2, w2
1) gen.

33 8 8 i(h1δ) (g, w1) h1δ · i(1) = h0 · δ̃′

34 8 10 h1δ̃′ (g, w1) h1 · δ̃′

39 9 11 e0gh̃1 − d0γ · i(1)

40 9 12 d0γ̃ (g2, w2
1) d0 · γ̃
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Table 6.10: R2-module generators of E5(tmf/2) (cont.)

t − s s g x Ann(x) dec.

46 11 13 i(αd0g) (g, w1) αd0g · i(1)

47 11 14 d0δ̃′ (g2, w1) d0 · δ̃′

50 10 17 + 18 i(γ2) (g3, gw1) γ2 · i(1)

51 9 19 i(h2w2) − h2w2 · i(1)

51 10 19 + 20 γγ̃ (g5, gw1) γ · γ̃
52 11 18 h2

1w2h̃1 (g) h1γ · γ̃
54 10 21 i(h2

2w2) (g, w1) h2
2w2 · i(1)

56 11 22 i(c0w2) (g) c0w2 · i(1)

57 12 21 i(h1c0w2) (g) h1c0w2 · i(1)

57 12 20 + 21 γ2h̃2
2 (g, w1) γδ′ · i(1)

58 12 22 + 23 δ′γ̃ (g, w2
1) δ′ · γ̃

58 12 23 δγ̃ (g) δ · γ̃
65 14 25 d0gβ̃2 (g, w1) δ′ · δ̃′

66 12 28 i(h2βw2) (g, w1) h2w2 · i(β)

69 13 30 i(h1gw2) (g, w1) h2
2w2 · i(β)

72 16 28 g2d̃0e0 (g, w1) d0γ · δ̃′

76 15 34 + 35 γ2γ̃ − γ2 · γ̃
80 15 38 i(δw2) (g) δw2 · i(1)

81 16 38 + 39 γ2β̃2 (g2, w1) gen.

81 16 39 i(h1δw2) (g) h1δw2 · i(1)

82 16 41 h1w2δ̃′ (g) δw2 · h̃1

82 18 34 + 35 γ2d̃0e0 (g) (α3g + h0w1w2) · γ̃
83 17 39 e0g2γ̃ (g) h1δw2 · h̃1

97 17 50 i(h1w2
2) (g2, gw1) h1w2

2 · i(1)

98 17 51 w2
2h̃1 − gen.

98 18 53 i(h2
1w

2
2) (g) h2

1w
2
2 · i(1) = h0 · w2

2h̃1

99 17 52 i(h2w2
2) (g, w1) h2w2

2 · i(1)

99 18 55 h1w2
2h̃1 (g) h1 · w2

2h̃1

100 19 55 h2
1w

2
2h̃1 (g) h2

1 · w2
2h̃1

102 18 56 i(h2
2w

2
2) (g, w1) h2

2w
2
2 · i(1)

103 18 57 w2
2h̃

2
2 (g2, w2

1) gen.

104 19 59 i(c0w2
2) (g, w1) h1 · w2

2h̃
2
2
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Table 6.10: R2-module generators of E5(tmf/2) (cont.)

t − s s g x Ann(x) dec.

104 20 58 i(w1w2
2) (g2, gw1) w1w2

2 · i(1)

105 19 60 w2
2 c̃0 (g2, gw1, w2

1) gen.

105 20 60 i(h1c0w2
2) (g, w1) h2

1 · w2
2h̃

2
2 = h0 · w2

2 c̃0

106 20 62 h1w2
2 c̃0 (g, w1) h1 · w2

2 c̃0

110 20 65 i(d0w2
2) (g2, w2

1) d0w2
2 · i(1)

112 21 67 d0w2
2h̃1 (g2, gw1, w2

1) d0w2
2 · h̃1

114 20 67 i(h2βw2
2) (g, w1) h2w2

2 · i(β)

117 22 72 d0w2
2h̃

2
2 (g2, gw1, w2

1) d0w2
2 · h̃2

2

119 23 74 i(βw1w2
2) (g2, w1) d0w2

2 · c̃0

122 22 76 i(h1γw2
2) (g) h1γw2

2 · i(1)

123 22 78 h1w2
2γ̃ (g) h1w2

2 · γ̃
124 23 80 h2

1w
2
2γ̃ (g) h1γw2

2 · h̃1

128 23 82 + 83 i(δ′w2
2) − δ′w2

2 · i(1)

128 23 83 i(δw2
2) (g) δw2

2 · i(1)

129 23 84 w2
2 δ̃

′ (g2, w2
1) gen.

129 24 86 i(h1δw2
2) (g, w1) h1δw2

2 · i(1) = h0 · w2
2 δ̃

′

129 25 84 + 85 i(γw1w2
2) (g2, gw1) γw1w2

2 · i(1)

130 24 88 h1w2
2 δ̃

′ (g, w1) h1 · w2
2 δ̃

′

130 25 87 w1w2
2γ̃ (g2, gw1) w1w2

2 · γ̃
135 25 93 e0gw2

2h̃1 − d0γw2
2 · i(1)

136 25 94 d0w2
2γ̃ (g2, w2

1) d0w2
2 · γ̃

142 27 101 i(αd0gw2
2) (g, w1) αd0gw2

2 · i(1)

143 27 103 d0w2
2 δ̃

′ (g2, gw1, w2
1) d0w2

2 · δ̃′

147 25 101 i(h2w3
2) − h2w3

2 · i(1)

148 27 108 h2
1w

3
2h̃1 (g) h1γw2

2 · γ̃
150 26 107 i(h2

2w
3
2) (g, w1) h2

2w
3
2 · i(1)

152 27 112 i(c0w3
2) (g) c0w3

2 · i(1)

153 28 115 i(h1c0w3
2) (g) h1c0w3

2 · i(1)

153 28 114 + 115 γ2w2
2h̃

2
2 (g, w1) γδ′w2

2 · i(1)

154 28 116 + 117 δ′w2
2γ̃ (g, w2

1) δ′w2
2 · γ̃

154 28 117 δw2
2γ̃ (g) δw2

2 · γ̃
154 30 115 + 116 i(γ2w1w2

2) (g) γ2w1w2
2 · i(1)
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Table 6.10: R2-module generators of E5(tmf/2) (cont.)

t − s s g x Ann(x) dec.

155 30 118 + 119 γw1w2
2γ̃ (g) γw1w2

2 · γ̃
161 30 127 d0gw2

2β̃
2 (g, w1) d0γw2

2 · γ̃
162 28 122 i(h2βw3

2) (g, w1) h2w3
2 · i(β)

165 29 128 i(h1gw3
2) (g, w1) h2

2w
3
2 · i(β)

168 32 137 g2w2
2d̃0e0 (g, w1) αd0gw2

2 · γ̃
176 31 144 i(δw3

2) (g) δw3
2 · i(1)

177 32 149 i(h1δw3
2) (g) h1δw3

2 · i(1)

178 32 151 h1w3
2 δ̃

′ (g) δw3
2 · h̃1

178 34 151 + 152 γ2w2
2d̃0e0 (g) (α3gw2

2 + h0w1w3
2) · γ̃

179 33 153 e0g2w2
2γ̃ (g) h1δw3

2 · h̃1

180 35 153 + 154 γ2w1w2
2γ̃ (g) γ2w1w2

2 · γ̃

Table 6.11: The non-cyclic R2-module summands in E5(tmf/2)

〈x1, x2〉

〈γ̃, w2
2h̃1〉 ∼=

Σ5,31R2 ⊕ Σ17,115R2

〈(g2w1, 0), (gw2
1, 0), (g5, gw1), (0, g3), (0, g2w1)〉

〈e0gh̃1, i(h2w2)〉 ∼=
Σ9,48R2 ⊕ Σ9,60R2

〈(w1, 0), (g, w1), (0, g)〉

〈γ2γ̃, i(δ′w2
2)〉 ∼=

Σ15,91R2 ⊕ Σ23,151R2

〈(gw1, 0), (g3, w1), (0, g2)〉

〈e0gw2
2h̃1, i(h2w3

2)〉 ∼=
Σ25,160R2 ⊕ Σ25,172R2

〈(w1, 0), (g, w1), (0, g)〉

Proposition 6.11. The twelve classes in Table 6.12 generate E5(tmf/2) as an
E5(tmf)-module.

Proof. In view of Table 5.8, this is clear from the factorizations in the “dec.”-
column of Table 6.10, which can be verified using ext.

In bidegree (t − s, s) = (83, 17), the differential d2(w2β̃g) = e0g2γ̃ + h2
1w2δ̃′

makes e0g2γ̃ = 1739 equal to h2
1w2δ̃′ = 1740 = h1δw2 · h̃1, starting at the E3-term.
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Likewise, in bidegree (t − s, s) = (179, 33) the generator e0g2w2
2γ̃ = 33153

becomes equal to h2
1w

3
2 δ̃

′ = 33154 = h1δw3
2 · h̃1 at E3. !

Table 6.12: E5(tmf)-module generators of E5(tmf/2)

t − s s g x

0 0 0 i(1)

2 1 1 h̃1

7 2 3 h̃2
2

9 3 2 c̃0

15 3 4 i(β)

26 5 8 γ̃

33 7 10 δ̃′

81 16 38 + 39 γ2β̃2

98 17 51 w2
2h̃1

103 18 57 w2
2h̃

2
2

105 19 60 w2
2 c̃0

129 23 84 w2
2 δ̃

′

Proposition 6.12. Charts showing E5(tmf/2) for 0 ≤ t − s ≤ 192 are given
in Figures 6.1 to 6.8. All nonzero h0-, h1- and h2-multiplications are displayed.
The red dots indicate w1-power torsion classes, and black dots indicate w1-periodic
classes. All R2-module generators are labeled, except those that are also h0-, h1- or
h2-multiples.

Proof. The R2-module structure shown in these charts is made explicit in
Tables 6.10 and 6.11. The h0-, h1- and h2-multiplications follow by comparison with
the E2-term, shown for 0 ≤ t − s ≤ 96 in Figures 1.24 to 1.27. In many cases the
hi-multiplications are also visible from the decompositions given in Table 6.10. !

Theorem 6.13. E5 = E∞ in the Adams spectral sequence for tmf/2.

Proof. It will be useful to consult the charts of E5(tmf/2) in Figures 6.1

to 6.8. The generators i(1), h̃1, h̃2
2, c̃0, i(β) and w2

2h̃
2
2 are infinite cycles because all

possible differentials on these classes land in trivial groups.

The generators δ̃′, γ2β̃2, w2
2 c̃0 and w2

2 δ̃
′ are all annihilated by w2

1 at E5, while
their possible targets are all w1-torsion free at E5. Formally, we have w2

1x = 0, so,
to rule out the possibility that dr(x) = y, it suffices to show that w2

1y 0= 0 at Er.

For x = δ̃′ we must rule out d9(x) = i(w4
1). This is impossible because i(w6

1)
could only have been hit by i(γw3

1), which is an infinite cycle because γ and w1 are
infinite cycles in the Adams spectral sequence for tmf .

For x = γ2β̃2 we must rule out a d7, a d15 and a d24. In this case, since w1x = 0,
we can rule out dr(x) = y by showing that w1y 0= 0 at Er. The possible sources for
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Figure 6.1. E5(tmf/2) = E∞(tmf/2) for 0 ≤ t − s ≤ 24
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Figure 6.2. E5(tmf/2) = E∞(tmf/2) for 24 ≤ t − s ≤ 48

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



6.5. THE E∞-TERM FOR tmf/2 243
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Figure 6.3. E5(tmf/2) = E∞(tmf/2) for 48 ≤ t − s ≤ 72
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Figure 6.4. E5(tmf/2) = E∞(tmf/2) for 72 ≤ t − s ≤ 96
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Figure 6.5. E5(tmf/2) = E∞(tmf/2) for 96 ≤ t − s ≤ 120
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Figure 6.6. E5(tmf/2) = E∞(tmf/2) for 120 ≤ t − s ≤ 144
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Figure 6.7. E5(tmf/2) = E∞(tmf/2) for 144 ≤ t − s ≤ 168
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Figure 6.8. E5(tmf/2) = E∞(tmf/2) for 168 ≤ t − s ≤ 192
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differentials that could have hit one of the w1y are i(γw8
1) and two h1-multiples of

elements that are infinite cycles because the 87-stem of E5(tmf/2) is 0. Since these
possible sources are all infinite cycles, there are no such differentials.

For x = w2
2 c̃0 we must rule out dr(x) = y 0= 0 for r = 8, 16, 24 and 33. The

sources for differentials that could have hit w2
1y in these cases are i(γw12

1 ) and three
h1-multiples of elements that are infinite cycles because the 119-stem of E5(tmf/2)
is 0 above filtration 23.

For x = w2
2 δ̃

′ we must rule out dr(x) = y 0= 0 for r = 9, 16, 24, 32 and 41. The
sources for differentials that could have hit w2

1y are i(γw3
1w

2
2), i(γw15

1 ) and three h1-
multiples of elements that are infinite cycles because the 143-stem of E5(tmf/2) is 0
above filtration 27. The first two possible sources are also infinite cycles, because
γ, w1 and w1w2

2 are infinite cycles for tmf .

For the remaining two generators, γ̃ and w2
2h̃1, we use the long exact sequence

· · · −→ πn(tmf)
2−→ πn(tmf)

i−→ πn(tmf/2)
j−→ πn−1(tmf) −→ . . . .

Our knowledge of E∞(tmf) and E5(tmf/2) will allow us to deduce sufficient infor-
mation about this sequence. The charts of E∞(tmf) in Figures 5.1 to 5.5 will be
helpful in following the argument.

In the 25-stem, E∞(tmf) is generated by γ and h1w3
1, while E5(tmf/2) is

generated by i(γ) and i(h1w3
1). The group π25(tmf) is Z/2 ⊕ Z/2 rather than

Z/4, because multiplication by η acts nontrivially on the homotopy class {h1w3
1}

detected by h1w3
1, so this class cannot be a multiple of 2. Hence π25(tmf/2) has

order (at least) 4, so both i(γ) and i(h1w3
1) survive to E∞(tmf/2). In particular,

d8(γ̃) 0= i(h1w3
1) must be zero.

In the 97-stem, we also claim that π97(tmf) ∼= (Z/2)5 has exponent 2. Multipli-
cation by η acts nontrivially on the homotopy class {h1w12

1 } in Adams filtration 49,
so the Adams filtration ≥ 41 part of π97(tmf) is (Z/2)2. The h1-multiples in Adams
filtration 32 and 24 can be represented by η-multiples, which must have order 2.
Thus the Adams filtration ≥ 24 part of π97(tmf) is (Z/2)4. The same argument
shows that the Adams filtration ≥ 28 part of π105(tmf) has exponent 2. The class
h1w2

2 in Adams filtration 17 is not an h1-multiple at E∞, but w1 ·h1w2
2 = h1 ·w1w2

2.
Since multiplication by {w1} acts injectively from π97(tmf) to π105(tmf), it follows
that {h1w1w2

2} and {h1w2
2} have order 2, proving the claim.

Hence π97(tmf/2) has order (at least) 25. In particular, all five generators of
E5(tmf/2) in degree 97 must remain nonzero at E∞, and none of them can be

hit by a differential from w2
2h̃1. This finishes the proof that w2

2h̃1 is an infinite
cycle. !
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CHAPTER 7

The Adams spectral sequence for tmf/η

We calculate the dr-differentials in the Adams spectral sequence for tmf/η =
tmf ∧ Cη. These are nontrivial for r ∈ {2, 3}, and zero for r ≥ 4, so the spectral
sequence collapses at the E4-term. The module structure over the Adams spectral
sequence for tmf suffices to determine almost all of these differentials. There is one
exceptional case, concerning d3(h2

2β̂), for which we also use the hidden η-extension
to d0w1 for tmf . The resulting E∞-term is the associated graded of a complete
Hausdorff filtration of π∗(tmf/η)∧2 .

7.1. The E2-term for tmf/η

The initial term

E2 = E2(tmf/η) ∼= ExtA(2)(M2, F2)

of the mod 2 Adams spectral sequence for tmf/η was calculated in Part I. The
groups Es,t

2 for 0 ≤ t−s ≤ 96 are displayed in Figures 1.28 to 1.31. By Corollary 4.13
the E2-term for tmf/η is generated as a module over E2(tmf) = ExtA(2)(F2, F2)
by the seven classes listed in Table 7.1. As a module over R0 = F2[g, w1, w2] the
E2-term for tmf/η is presented as a direct sum of cyclic modules in Table 7.2,
most of which is reproduced from Table 4.5. We note that the E2-term is free over
F2[w1, w2], and finitely generated over R0[h0] = F2[h0, g, w1, w2].

We have made the following changes in our choice of R0-module generators in
order to simplify the description of d2 and E3.

(1) In bidegree (t−s, s) = (26, 7), we replace the generator i(αd0) = 713 +714

by α2ĥ0 = 713. We then also replace the tower h1+i
0 αα̂ by the element

h0αα̂ = 714 and the tower h1+i
0 α2ĥ0. These substitutions make use of the

relations
• i(αd0) = α2ĥ0 + h0αα̂

• g · i(αd0) = g · α2ĥ0

• h0α2ĥ0 = h2
0αα̂ + w1 · i(h2β).

(2) In bidegree (t−s, s) = (29, 7), we replace the generator i(αe0) = 716 +717

by αβĥ0 = 716 keeping h0αβ̂ = 717. We then also write the generator in
bidegree (29, 8) as h2

0αβ̂ = 819 rather than as i(h0αe0). These substitu-
tions make use of the relations

• i(αe0) = αβĥ0 + h0αβ̂

• g · i(αe0) = g · αβĥ0

• h2
0αβ̂ = i(h0αe0).

We also use the notation δ′ = δ + αg from Chapter 5 to shorten some formulas.
Recall Definition 5.1: Ri = F2[g, w1, w2i

2 ]. Following the strategy of Chapter 5 we

247
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will keep track of R0-module structure on the E2-term, R1-module structure on the
E3-term, and R2-module structure on the E4 = E∞-terms of the Adams spectral
sequence for tmf/η.

Table 7.1: E2(tmf)-module generators of E2(tmf/η)

t − s s g x d2(x)

0 0 0 i(1) 0

2 1 1 ĥ0 0

5 1 3 ĥ2 0

11 4 3 ĥ1c0 0

14 3 5 α̂ w1ĥ2

17 3 7 β̂ d0ĥ0

36 8 25 d̂0g w1i(αβ)

Table 7.2: R0-module generators of E2(tmf/η), with i ≥ 0 in each
h0-tower

t − s s g x Ann(x) d2(x) d2(xw2)

0 0 0 i(1) (0) 0 g · i(αβ)

0 1 0 i(h0) (g2) 0 0

0 2 0 i(h2
0) (g2) 0 0

0 3 + i 0 i(h3+i
0 ) (g) 0 0

2 1 1 ĥ0 (0) 0 g · αβĥ0

2 2 1 h0ĥ0 (g2) 0 0

2 3 + i 1 h2+i
0 ĥ0 (g) 0 0

3 1 2 i(h2) (g) 0 0

3 2 2 i(h0h2) (g) 0 0

5 1 3 ĥ2 (0) 0 g2 · i(α)

5 2 3 h0ĥ2 (g) 0 0

5 3 2 h2
0ĥ2 (g) 0 0

6 2 4 i(h2
2) (g) 0 0

8 2 5 h2ĥ2 (g) 0 0

8 3 3 i(c0) (g) 0 0

11 4 3 ĥ1c0 (0) 0 gw1 · i(β2)

12 3 4 i(α) (0) w1 · i(h2) w1 · i(h2w2)

+ g2 · d0ĥ2
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Table 7.2: R0-module generators of E2(tmf/η), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d2(x) d2(xw2)

12 4 4 i(h0α) (g2) w1 · i(h0h2) w1 · i(h0h2w2)

12 5 + i 5 i(h2+i
0 α) (g) 0 0

14 3 5 α̂ (0) w1 · ĥ2 w1 · w2ĥ2

+ g · α2β̂

14 4 5 i(d0) (0) 0 g · i(α2e0)

14 4 6 h0α̂ (g2) w1 · h0ĥ2 w1 · h0w2ĥ2

14 5 7 i(h0d0) (g) 0 0

14 5 8 h2
0α̂ (g2) w1 · h2

0ĥ2 w1 · h2
0w2ĥ2

14 6 + i 8 h3+i
0 α̂ (g) 0 0

15 3 6 i(β) (0) i(h0d0) i(h0d0w2)

+ g3 · ĥ0

15 4 7 i(h0β) (g) w1 · i(h2
2) w1 · i(h2

2w2)

16 5 9 d0ĥ0 (0) 0 g2w1 · i(β)

17 3 7 β̂ (0) d0ĥ0 d0w2ĥ0

+ g · αββ̂
17 4 8 + 9 i(e0) (0) 0 g2 · i(α2)

17 4 9 h0β̂ (g) w1 · h2ĥ2 w1 · h2w2ĥ2

17 5 10 + 11 i(h0e0) (g) 0 0

17 5 11 h2
0β̂ (g) w1 · i(c0) w1 · i(c0w2)

17 6 10 i(h2
0e0) (g) 0 0

18 4 10 i(h2β) (g) i(h2
0e0) i(h2

0e0w2)

19 5 12 d0ĥ2 (0) 0 g2 · α2ĥ0

19 6 11 h0d0ĥ2 (g) 0 0

20 4 12 h2β̂ (g) h0d0ĥ2 h0d0w2ĥ2

20 5 14 h0h2β̂ (g) 0 0

23 5 16 h2
2β̂ (g) 0 0

24 6 14 i(α2) (0) 0 g3 · ĥ1c0

24 7 + i 11 i(h1+i
0 α2) (g) 0 0

26 6 15 αα̂ (0) w1 · i(e0) w1 · i(e0w2)

+ g · d0γα̂

26 7 13 α2ĥ0 (0) 0 g3w1 · ĥ2
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Table 7.2: R0-module generators of E2(tmf/η), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d2(x) d2(xw2)

26 7 14 h0αα̂ (g) w1 · i(h0e0) w1 · i(h0e0w2)

26 8 + i 15 h1+i
0 α2ĥ0 (g) 0 0

27 6 16 i(αβ) (0) 0 g3 · i(d0)

28 7 15 d0α̂ (0) w1 · d0ĥ2 w1 · d0w2ĥ2

+ gw1 · β2β̂

29 6 17 αβ̂ (0) gw1 · i(1) gw1 · i(w2)

+ g2 · d̂0g

29 7 16 αβĥ0 (0) 0 g3 · d0ĥ0

29 7 17 h0αβ̂ (g) gw1 · i(h0) gw1 · i(h0w2)

29 8 19 h2
0αβ̂ (g) gw1 · i(h2

0) gw1 · i(h2
0w2)

30 6 18 i(β2) (0) 0 g3 · i(e0)

31 7 18 d0β̂ (0) gw1 · ĥ0 gw1 · w2ĥ0

+ g2 · α2α̂

31 8 21 h0d0β̂ (g) gw1 · h0ĥ0 gw1 · h0w2ĥ0

32 6 19 ββ̂ (0) g · ĥ1c0 g · w2ĥ1c0

+ g2 · γα̂
32 7 20 i(δ) (g) 0 0

36 8 25 d̂0g (0) w1 · i(αβ) w1 · i(αβw2)

+ g2 · αd0β̂

36 9 + i 26 h1+i
0 d̂0g (g) 0 0

38 9 27 α2α̂ (0) w1 · αβĥ0 w1 · αβw2ĥ0

+ g3w1 · β̂
38 10 + i 26 h1+i

0 α2α̂ (g) 0 0

39 8 27 γα̂ (0) w1 · i(β2) w1 · i(β2w2)

+ g3 · αα̂
41 9 29 α2β̂ (0) w1 · i(δ′) w1 · i(δ′w2)

+ g3 · d0α̂

41 10 28 i(α2e0) (0) 0 g4w1 · i(1)

42 8 29 γβ̂ (0) i(α2e0) i(α2e0w2)

+ g3 · αβ̂
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Table 7.2: R0-module generators of E2(tmf/η), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d2(x) d2(xw2)

43 10 29 αd0β̂ (0) gw1 · i(d0) gw1 · i(d0w2)

+ g2w1 · γβ̂
44 9 31 αββ̂ (0) gw1 · i(β) gw1 · i(βw2)

+ g3 · d0β̂

47 9 33 β2β̂ (0) g · α2ĥ0 g · α2w2ĥ0

+ g4 · α̂
53 12 41 d0γα̂ (0) gw1 · i(α2) gw1 · i(α2w2)

+ g3w1 · ββ̂

7.2. The d2-differentials for tmf/η

Theorem 7.1. The d2-differential in E2(tmf/η) is R1-linear. Its values on a
set of E2(tmf)-module generators are listed in Table 7.1, and its values on a set of
R1-module generators are listed in Table 7.2.

Proof. The classes g, w1 and w2
2 are d2-cycles in E2(tmf), so the Leibniz

rule implies that multiplication by each of these elements commutes with the d2-
differential in E2(tmf/η).

Next, we determine d2 on the module generators of E2(tmf/η) over E2(tmf).

See Figures 1.28 and 1.29. The d2-differentials on i(1), ĥ0 and ĥ2 are zero because

the target groups are trivial. The d2-differential on ĥ1c0 is zero by h0-linearity. The
map j : Cη → S2 induces a morphism of Adams spectral sequences

Er(tmf/η)
j−→ E∗,∗−2

r (tmf) .

By Proposition 5.8 (or Table 5.1) the classes α and β both support nontrivial d2-

differentials. Hence their lifts α̂ and β̂ must also support nonzero d2-differentials,
and the only possible values are 56 = w1ĥ2 and 59 = d0ĥ0, respectively.

The case of d2(d̂0g) remains. Here we use the relation e0 · d̂0g = 1241 = d0γ · α̂
and the Leibniz rule to calculate e0 · d2(d̂0g) = d0γ · d2(α̂) = d0γ · w1ĥ2 = 1440 =

gw1 · i(α2) 0= 0. Hence d2(d̂0g) 0= 0, and the only possible value is 1022 = w1 · i(αβ).
Finally, we use Table 5.1 and the Leibniz rule to calculate d2 for x and xw2 =

w2 · x, with x ranging through the list of R0-module generators for E2(tmf/η).
(These elements then range through a list of R1-module generators for the same
E2-term.) In particular d2(w2 ·x) = d2(w2) ·x+w2 ·d2(x) = αβg ·x+w2 ·d2(x). In
this finite range, the action of E2(tmf) on E2(tmf/η) is calculated using ext. !

Remark 7.2. To use ext to assist in calculating the products αβg · x for x ∈
E2(tmf/η), use cocycle tmfCeta 0 0, . . . , cocycle tmfCeta 12 41, dolifts 0
40 maps and collect maps all. The nonzero products with αβg = 1018 then
appear as lines containing (10 18 F2) in the file all. If the product is a g-multiple,
there will also appear a line containing (4 8 F2) in the same block, since g = 48 in
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the minimal A(2)-module resolution for F2. Similarly, gw1-multiples appear with
(8 11 F2), g2-multiples appear with (8 18 F2), and so on.

7.3. The d3-differentials for tmf/η

It is now a simple matter to compute the E3-term of the Adams spectral se-
quence for tmf/η, as a direct sum of R1 = F2[g, w1, w2

2]-modules. This is carried
out in Appendix C.1 and the results are recorded in Tables 7.3 and 7.4, where we
also record the results of this section, calculating the d3-differential. Among the
new relations that appear at the E3-term we emphasize

i(h0d0w2) = g3 · ĥ0

in bidegree (t − s, s) = (62, 13), which follows from the d2-differential on i(βw2).

Table 7.3: R1-module generators of E3(tmf/η), with i ≥ 0 in each
h0-tower

t − s s g x Ann(x) d3(x) d3(xw2
2)

0 0 0 i(1) (gw1) 0 g3 · i(βg)

0 1 0 i(h0) (g2, gw1) 0 0

0 2 0 i(h2
0) (g2, gw1) 0 0

0 3 + i 0 i(h3+i
0 ) (g) 0 0

2 1 1 ĥ0 (g4, gw1) 0 0

2 2 1 h0ĥ0 (g2, gw1) 0 0

2 3 + i 1 h2+i
0 ĥ0 (g) 0 0

3 1 2 i(h2) (g, w1) 0 0

3 2 2 i(h0h2) (g, w1) 0 0

5 1 3 ĥ2 (w1) 0 g5 · i(1)

5 2 3 h0ĥ2 (g, w1) 0 0

5 3 2 h2
0ĥ2 (g, w1) 0 0

6 2 4 i(h2
2) (g, w1) 0 0

8 2 5 h2ĥ2 (g, w1) 0 0

8 3 3 i(c0) (g, w1) 0 0

11 4 3 ĥ1c0 (g) 0 0

12 5 + i 5 i(h2+i
0 α) (g) 0 0

14 4 5 i(d0) (g3, gw1) 0 0

14 6 + i 8 h3+i
0 α̂ (g) 0 0

17 4 8 + 9 i(e0) (g3, w1) 0 0

17 5 10 + 11 i(h0e0) (g, w1) 0 0

19 5 12 d0ĥ2 − 0 0
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Table 7.3: R1-module generators of E3(tmf/η), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d3(x) d3(xw2
2)

20 5 14 h0h2β̂ (g) w1 · ĥ1c0 w1 · w2
2ĥ1c0

23 5 16 h2
2β̂ (g) w1 · i(d0) w1 · i(d0w2

2)

24 6 14 i(α2) (g2, gw1) 0 0

24 7 + i 11 i(h1+i
0 α2) (g) 0 0

26 7 + i 13 hi
0α

2ĥ0 (g) 0 0

27 6 16 i(αβ) (g, w1) 0 0

29 7 16 αβĥ0 (g, w1) 0 0

30 6 18 i(β2) (w1) 0 g6 · ĥ2

32 7 19 + 20 i(αg) (g) 0 0

32 7 19 i(δ′) (g, w1) 0 0

32 8 22 i(h0αg) (g) 0 0

34 8 24 h0gα̂ (g) 0 0

34 9 24 h2
0gα̂ (g) 0 0

35 7 22 i(βg) (w1) 0 g5 · i(β2)

36 9 + i 26 h1+i
0 d̂0g (g) 0 0

38 10 + i 26 h1+i
0 α2α̂ (g) 0 0

48 9 34 i(h0w2) (g2, gw1) 0 0

48 10 33 i(h2
0w2) (g2, gw1) 0 0

48 11 + i 34 i(h3+i
0 w2) (g) 0 0

50 10 36 h0w2ĥ0 (g2, gw1) 0 0

50 11 + i 36 h2+i
0 w2ĥ0 (g) 0 0

51 9 36 i(h2w2) − 0 0

51 10 37 i(h0h2w2) (g, w1) 0 0

53 10 39 h0w2ĥ2 (g, w1) 0 0

53 11 39 h2
0w2ĥ2 (g, w1) 0 0

54 10 40 i(h2
2w2) (g, w1) 0 0

56 10 41 h2w2ĥ2 (g, w1) 0 0

56 11 42 i(c0w2) (g, w1) 0 0

56 12 43 + 44 gd̂0g + i(w1w2) (g) 0 0

58 13 46 + 47 α2gα̂ + w1w2ĥ0 (g) 0 0

59 12 46 + 47 γgα̂ + w2ĥ1c0 (g) 0 0
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Table 7.3: R1-module generators of E3(tmf/η), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d3(x) d3(xw2
2)

60 13 + i 50 i(h2+i
0 αw2) (g) 0 0

62 12 50 + 51 γgβ̂ + i(d0w2) (gw1) 0 g4 · (g3β̂

+ αβw2ĥ0)

62 14 + i 53 h3+i
0 w2α̂ (g) 0 0

65 13 59 + 60 i(h0e0w2) (g, w1) 0 0

67 13 61 + 62 β2gβ̂ + d0w2ĥ2 (w1) 0 g5 · (γgβ̂

+ i(d0w2))

68 13 64 h0h2w2β̂ (g) w1 · (γgα̂ w1 · (γgw2
2α̂

+ w2ĥ1c0) + w3
2ĥ1c0)

71 13 66 h2
2w2β̂ (g) w1 · (γgβ̂ w1 · (γgw2

2β̂

+ i(d0w2)) + i(d0w3
2))

72 14 65 + 66 βg2β̂ + i(α2w2) (gw1) 0 g5 · (β2gβ̂

+ d0w2ĥ2)

72 15 + i 64 i(h1+i
0 α2w2) (g) 0 0

74 15 66 + 67 g3α̂ + α2w2ĥ0 (g) 0 0

74 16 + i 72 h1+i
0 α2w2ĥ0 (g) 0 0

77 15 71 + 72 g3β̂ + αβw2ĥ0 (w1) 0 g5 · (βg2β̂

+ i(α2w2))

80 15 76 i(δw2) (g) 0 0

80 16 83 i(h0αgw2) (g) 0 0

82 16 86 h0gw2α̂ (g) 0 0

82 17 87 h2
0gw2α̂ (g) 0 0

84 17 + i 90 h1+i
0 w2d̂0g (g) 0 0

86 18 + i 90 h1+i
0 α2w2α̂ (g) 0 0

Table 7.4: The non-cyclic R1-module summand in E3(tmf/η)

〈d0ĥ2, i(h2w2)〉 ∼=
Σ5,24R1 ⊕ Σ9,60R1

〈(w1, 0), (g2, w1), (0, g)〉
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Theorem 7.3. The d3-differential in E3(tmf/η) is R2-linear. Its values on a
set of R2-module generators are listed in Table 7.3.

Proof. The E3-term is so sparse that the only R1[h0]-module generators
whose d3 lies in a nonzero bidegree are:

(3,1): i(h2)

(11,4): ĥ1c0

(20,5): h0h2β̂

(23,5): h2
2β̂

(27,6): i(αβ)
(51,9): i(h2w2)

(59,12): γgα̂ + w2ĥ1c0

(65,13): i(h0e0w2)

(68,13): h0h2w2β̂

(71,13): h2
2w2β̂.

Those of the form i(x), where x ∈ E3(tmf), are immediate by naturality. Elimi-
nating these, we have only the following left to consider:

(11,4): ĥ1c0

(20,5): h0h2β̂

(23,5): h2
2β̂

(59,12): γgα̂ + w2ĥ1c0

(68,13): h0h2w2β̂

(71,13): h2
2w2β̂.

We deal with these individually.
Applying j : Es,t

3 (tmf/η) → Es,t−2
3 (tmf), we get j(d3(h0h2β̂)) = d3(h0h2β) =

d3(h1e0) = h1c0w1. The only lift is d3(h0h2β̂) = w1 · ĥ1c0. This then eliminates

the only possibility of a nonzero differential on ĥ1c0, which is d3(ĥ1c0) = h2
0w1ĥ0,

since this would imply that d3(w1ĥ1c0) = h2
0w

2
1ĥ0 0= 0.

Similarly, naturality with respect to j implies that d3(h0h2w2β̂) = w1 · (γgα̂ +

w2ĥ1c0) and d3(γgα̂ + w2ĥ1c0) = 0.

Again, by naturality with respect to j we have that d3(h2
2w2β̂) must map to

d3(h2
2βw2) = d3(h1gw2) = g3w1 = βγgw1 0= 0, and d3(h2

2w2β̂) = w1 · (γgβ̂ +
i(d0w2)) is the only possibility.

Finally, by Theorem 11.71 due to Mimura and Mahowald–Tangora, we know
that η2κ̄ ∈ π22(S) is detected by Pd0 in E∞(S). Hence η2κ̄ ∈ π22(tmf) is detected
by d0w1 in E∞(tmf), as a consequence of Proposition 1.14 due to Adams. This η-
multiple must map to zero in π22(tmf/η), so i(d0w1) = 89+810 must be a boundary.

The only possibility is that d3(h2
2β̂) = w1 · i(d0).

The w2
2-multiples now follow by the Leibniz rule, d3(w2

2 · x) = d3(w2
2) · x + w2

2 ·
d3(x) = βg4 ·x+w2

2 ·d3(x). The second summand is straightforward to write down.
The first summand vanishes whenever g4 ∈ Ann(x). In the remaining eight cases
we use ext to calculate βg4 ·x and to express it in terms of our module generators,
as follows:

• d3(w2
2 · i(1)) = βg4 · i(1) = 19103 = g3 · i(βg).

• d3(w2
2 · ĥ2) = βg4 · ĥ2 = 20117 = g5 · i(1).
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• d3(w2
2 · i(β2)) = βg4 · i(β2) = 25176 = g6 · ĥ2.

• d3(w2
2 · i(βg)) = βg4 · i(βg) = 26180 = g5 · i(β2).

• d3(w2
2 · (γgβ̂ + i(d0w2))) = βg4 · (γgβ̂ + i(d0w2)) = 31251 + 31252 = g4 ·

(g3β̂ + αβw2ĥ0).

• d3(w2
2 · (β2gβ̂ + d0w2ĥ2)) = βg4 · (β2gβ̂ + d0w2ĥ2) = 32271 + 32272 =

g5 · (γgβ̂ + i(d0w2)).

• d3(w2
2 · (βg2β̂ + i(α2w2))) = βg4 · (βg2β̂ + i(α2w2)) = 33289 + 33290 =

g5 · (β2gβ̂ + d0w2ĥ2).

• d3(w2
2 · (g3β̂ + αβw2ĥ0)) = βg4 · (g3β̂ + αβw2ĥ0) = 34300 + 34301 =

g5 · (βg2β̂ + i(α2w2)). !

Remark 7.4. To calculate the products βg4 ·x with ext, use cocycle, dolifts
and collect as in Remark 7.2. The nonzero products with βg4 = 1956 then appear
as lines containing (19 56 F2) in the file all. If the product is a g3-multiple, there
will also appear a line containing (12 29 F2) in the same block, since g3 = 1229

in the minimal A(2)-module resolution for F2. Similarly, g4-multiples appear with
(16 48 F2), and so on.

7.4. The E∞-term for tmf/η

It is now a simple matter to compute the E4-term of the Adams spectral se-
quence for tmf/η, as a direct sum of R2 = F2[g, w1, w4

2]-modules. This is car-
ried out in Appendix C.2 and the results are recorded in Tables 7.5 and 7.6.
We show in Theorem 7.6 that there are no further nonzero differentials, so that
E4(tmf/η) = E∞(tmf/η).

We make one pair of basis changes. We replace i(αg) = 719 +720 by i(δ) = 720.
This has the same R2-annihilator and is consistent with the basis chosen for tmf .
Similarly, we replace i(αgw2

2) = 23163 +23164 by i(δw2
2) = 23164. Note that already

at E2, i(h0αg) = i(h0δ), so we also make this name change in degrees 32, 80, 128
and 176.

Table 7.5: R2-module generators of E4(tmf/η) = E∞(tmf/η), with
i ≥ 0 in each h0-tower

t − s s g x Ann(x) dec.

0 0 0 i(1) (g5, gw1) gen.

0 1 0 i(h0) (g2, gw1) h0 · i(1)

0 2 0 i(h2
0) (g2, gw1) h2

0 · i(1)

0 3 + i 0 i(h3+i
0 ) (g) h3+i

0 · i(1)

2 1 1 ĥ0 (g4, gw1) gen.

2 2 1 h0ĥ0 (g2, gw1) h0 · ĥ0

2 3 + i 1 h2+i
0 ĥ0 (g) h2+i

0 · ĥ0

3 1 2 i(h2) (g, w1) h2 · i(1)
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Table 7.5: R2-module generators of E4(tmf/η) = E∞(tmf/η), with
i ≥ 0 in each h0-tower (cont.)

t − s s g x Ann(x) dec.

3 2 2 i(h0h2) (g, w1) h0h2 · i(1)

5 1 3 ĥ2 (g6, w1) gen.

5 2 3 h0ĥ2 (g, w1) h0 · ĥ2

5 3 2 h2
0ĥ2 (g, w1) h2

0 · ĥ2

6 2 4 i(h2
2) (g, w1) h2

2 · i(1)

8 2 5 h2ĥ2 (g, w1) h2 · ĥ2

8 3 3 i(c0) (g, w1) c0 · i(1)

11 4 3 ĥ1c0 (g, w1) gen.

12 5 + i 5 i(h2+i
0 α) (g) hi

0 · gen.

14 4 5 i(d0) (g3, w1) d0 · i(1)

14 6 + i 8 h3+i
0 α̂ (g) hi

0 · gen.

17 4 8 + 9 i(e0) (g3, w1) gen.

17 5 10 + 11 i(h0e0) (g, w1) h0 · i(e0)

19 5 12 d0ĥ2 − d0 · ĥ2

24 6 14 i(α2) (g2, gw1) gen.

24 7 + i 11 i(h1+i
0 α2) (g) h1+i

0 · i(α2)

26 7 + i 13 hi
0α

2ĥ0 (g) hi
0 · gen.

27 6 16 i(αβ) (g, w1) αβ · i(1)

29 7 16 αβĥ0 (g, w1) αβ · ĥ0

30 6 18 i(β2) (g5, w1) γ · ĥ2

32 7 19 i(δ′) (g, w1) δ′ · i(1)

32 7 20 i(δ) (g) δ · i(1)

32 8 22 i(h0δ) (g) h0δ · i(1)

34 8 24 h0gα̂ (g) δ · ĥ0

34 9 24 h2
0gα̂ (g) h0δ · ĥ0

35 7 22 i(βg) (g3, w1) gen.

36 9 + i 26 h1+i
0 d̂0g (g) hi

0 · gen.

38 10 + i 26 h1+i
0 α2α̂ (g) hi

0 · gen.

48 9 34 i(h0w2) (g2, gw1) gen.

48 10 33 i(h2
0w2) (g2, gw1) h0 · i(h0w2)

48 11 + i 34 i(h3+i
0 w2) (g) h2+i

0 · i(h0w2)
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Table 7.5: R2-module generators of E4(tmf/η) = E∞(tmf/η), with
i ≥ 0 in each h0-tower (cont.)

t − s s g x Ann(x) dec.

50 10 36 h0w2ĥ0 (g2, gw1) gen.

50 11 + i 36 h2+i
0 w2ĥ0 (g) h1+i

0 · h0w2ĥ0

51 9 36 i(h2w2) − h2w2 · i(1)

51 10 37 i(h0h2w2) (g, w1) h0h2w2 · i(1)

53 10 39 h0w2ĥ2 (g, w1) h2w2 · ĥ0

53 11 39 h2
0w2ĥ2 (g, w1) h0h2w2 · ĥ0

54 10 40 i(h2
2w2) (g, w1) h2

2w2 · i(1)

56 10 41 h2w2ĥ2 (g, w1) h2w2 · ĥ2

56 11 42 i(c0w2) (g, w1) c0w2 · i(1)

56 12 43 + 44 gd̂0g + i(w1w2) (g) gen.

58 13 46 + 47 α2gα̂ + w1w2ĥ0 (g) gen.

59 12 46 + 47 γgα̂ + w2ĥ1c0 (g, w1) gen.

60 13 + i 50 i(h2+i
0 αw2) (g) hi

0 · gen.

62 12 50 + 51 γgβ̂ + i(d0w2) (g5, w1) gen.

62 14 + i 53 h3+i
0 w2α̂ (g) hi

0 · gen.

65 13 59 + 60 i(h0e0w2) (g, w1) h2 · (γgβ̂

+ i(d0w2))

67 13 61 + 62 β2gβ̂ + d0w2ĥ2 (g5, w1) gen.

72 14 65 + 66 βg2β̂ + i(α2w2) (g5, gw1) gen.

72 15 + i 64 i(h1+i
0 α2w2) (g) h1+i

0 · (βg2β̂

+ i(α2w2))

74 15 66 + 67 g3α̂ + α2w2ĥ0 (g) gen.

74 16 + i 72 h1+i
0 α2w2ĥ0 (g) h1+i

0 · (g3α̂

+ α2w2ĥ0)

77 15 71 + 72 g3β̂ + αβw2ĥ0 (g4, w1) gen.

80 15 76 i(δw2) (g) δw2 · i(1)

80 16 83 i(h0δw2) (g) h0δw2 · i(1)

82 16 86 h0gw2α̂ (g) δw2 · ĥ0

82 17 87 h2
0gw2α̂ (g) h0δw2 · ĥ0

84 17 + i 90 h1+i
0 w2d̂0g (g) hi

0 · gen.

86 18 + i 90 h1+i
0 α2w2α̂ (g) hi

0 · gen.
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Table 7.5: R2-module generators of E4(tmf/η) = E∞(tmf/η), with
i ≥ 0 in each h0-tower (cont.)

t − s s g x Ann(x) dec.

96 17 100 i(h0w2
2) (g2, gw1) h0w2

2 · i(1)

96 18 101 i(h2
0w

2
2) (g2, gw1) h2

0w
2
2 · i(1)

96 19 + i 105 i(h3+i
0 w2

2) (g) h3+i
0 w2

2 · i(1)

98 17 101 w2
2ĥ0 (g4, gw1) gen.

98 18 104 h0w2
2ĥ0 (g2, gw1) h0 · w2

2ĥ0

98 19 + i 108 h2+i
0 w2

2ĥ0 (g) h2+i
0 · w2

2ĥ0

99 17 102 i(h2w2
2) (g, w1) h2w2

2 · i(1)

99 18 105 i(h0h2w2
2) (g, w1) h0h2w2

2 · i(1)

101 18 107 h0w2
2ĥ2 (g, w1) h0w2

2 · ĥ2

101 19 111 h2
0w

2
2ĥ2 (g, w1) h2

0w
2
2 · ĥ2

102 18 108 i(h2
2w

2
2) (g, w1) h2

2w
2
2 · i(1)

104 18 109 h2w2
2ĥ2 (g, w1) h2w2

2 · ĥ2

104 19 114 i(c0w2
2) (g, w1) c0w2

2 · i(1)

104 20 121 i(w1w2
2) (g) w1w2

2 · i(1)

107 20 124 w2
2ĥ1c0 (g, w1) gen.

108 21 + i 132 i(h2+i
0 αw2

2) (g) hi
0 · gen.

110 20 129 i(d0w2
2) (g3, w1) d0w2

2 · i(1)

110 22 + i 136 h3+i
0 w2

2α̂ (g) hi
0 · gen.

113 20 132 + 133 i(e0w2
2) (g3, w1) gen.

113 21 141 + 142 i(h0e0w2
2) (g, w1) h0 · i(e0w2

2)

115 21 144 d0w2
2ĥ2 − d0w2

2 · ĥ2

120 22 150 i(α2w2
2) (g2, gw1) gen.

120 23 + i 152 i(h1+i
0 α2w2

2) (g) h1+i
0 · i(α2w2

2)

122 23 + i 155 hi
0α

2w2
2ĥ0 (g) hi

0 · gen.

123 22 152 i(αβw2
2) (g, w1) αβw2

2 · i(1)

125 23 160 αβw2
2ĥ0 (g, w1) αβw2

2 · ĥ0

128 23 163 i(δ′w2
2) (g, w1) δ′w2

2 · i(1)

128 23 164 i(δw2
2) (g) δw2

2 · i(1)

128 24 177 i(h0δw2
2) (g) h0δw2

2 · i(1)

130 24 180 h0gw2
2α̂ (g) δw2

2 · ĥ0

130 25 185 h2
0gw2

2α̂ (g) h0δw2
2 · ĥ0
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Table 7.5: R2-module generators of E4(tmf/η) = E∞(tmf/η), with
i ≥ 0 in each h0-tower (cont.)

t − s s g x Ann(x) dec.

132 25 + i 188 h1+i
0 w2

2d̂0g (g) hi
0 · gen.

134 26 + i 190 h1+i
0 α2w2

2α̂ (g) hi
0 · gen.

144 25 198 i(h0w3
2) (g2, gw1) gen.

144 26 201 i(h2
0w

3
2) (g2, gw1) h0 · i(h0w3

2)

144 27 + i 209 i(h3+i
0 w3

2) (g) h2+i
0 · i(h0w3

2)

146 26 204 h0w3
2ĥ0 (g2, gw1) gen.

146 27 + i 212 h2+i
0 w3

2ĥ0 (g) h1+i
0 · h0w3

2ĥ0

147 25 200 i(h2w3
2) − h2w3

2 · i(1)

147 26 205 i(h0h2w3
2) (g, w1) h0h2w3

2 · i(1)

149 26 207 h0w3
2ĥ2 (g, w1) h2w3

2 · ĥ0

149 27 215 h2
0w

3
2ĥ2 (g, w1) h0h2w3

2 · ĥ0

150 26 208 i(h2
2w

3
2) (g, w1) h2

2w
3
2 · i(1)

152 26 209 h2w3
2ĥ2 (g, w1) h2w3

2 · ĥ2

152 27 218 i(c0w3
2) (g, w1) c0w3

2 · i(1)

152 28 231 + 232 gw2
2d̂0g + i(w1w3

2) (g) gen.

154 29 241 + 242 α2gw2
2α̂ + w1w3

2ĥ0 (g) gen.

155 28 234 + 235 γgw2
2α̂ + w3

2ĥ1c0 (g, w1) gen.

156 29 + i 246 i(h2+i
0 αw3

2) (g) hi
0 · gen.

158 30 + i 252 h3+i
0 w3

2α̂ (g) hi
0 · gen.

161 29 255 + 256 i(h0e0w3
2) (g, w1) h2w2

2 · (γgβ̂

+ i(d0w2))

168 31 + i 272 i(h1+i
0 α2w3

2) (g) h1+i
0 w2

2 · (βg2β̂

+ i(α2w2))

170 31 274 + 275 g3w2
2α̂ + α2w3

2ĥ0 (g) gen.

170 32 + i 292 h1+i
0 α2w3

2ĥ0 (g) h1+i
0 · (g3w2

2α̂

+ α2w3
2ĥ0)

176 31 284 i(δw3
2) (g) δw3

2 · i(1)

176 32 303 i(h0δw3
2) (g) h0δw3

2 · i(1)

176 34 308 + 309 βg2w1w2
2β̂ + i(α2w1w3

2) (g) w1w2
2 · (βg2β̂

+ i(α2w2))

178 32 306 h0gw3
2α̂ (g) δw3

2 · ĥ0
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Table 7.5: R2-module generators of E4(tmf/η) = E∞(tmf/η), with
i ≥ 0 in each h0-tower (cont.)

t − s s g x Ann(x) dec.

178 33 315 h2
0gw3

2α̂ (g) h0δw3
2 · ĥ0

180 33 + i 318 h1+i
0 w3

2d̂0g (g) hi
0 · gen.

182 34 + i 322 h1+i
0 α2w3

2α̂ (g) hi
0 · gen.

Table 7.6: The non-cyclic R2-module summands in E4(tmf/η)

〈d0ĥ2, i(h2w2)〉 ∼=
Σ5,24R1 ⊕ Σ9,60R1

〈(w1, 0), (g2, w1), (0, g)〉

〈d0w2
2ĥ2, i(h2w3

2)〉 ∼=
Σ21,136R1 ⊕ Σ25,172R1

〈(w1, 0), (g2, w1), (0, g)〉

Proposition 7.5. Charts showing E4(tmf/η) for 0 ≤ t − s ≤ 192 are given
in Figures 7.1 to 7.8. All nonzero h0-, h1- and h2-multiplications are displayed.
The red dots indicate w1-power torsion classes, and black dots indicate w1-periodic
classes. All R2-module generators are labeled, except those that are also h0-, h1- or
h2-multiples.

Proof. The R2-module structure shown in these charts is made explicit in
Tables 7.5 and 7.6. The h0-, h1- and h2-multiplications mostly follow by comparison
with the E2-term, shown for 0 ≤ t−s ≤ 96 in Figures 1.28 to 1.31. This also shows
that

h2 · (γgα̂ + w2ĥ1c0) = h0 · (γgβ̂ + i(d0w2)) = i(h0d0w2) ,

which we have noted becomes equal to g3 ·ĥ0 at the E3-term. Similarly h2 ·(γgw2
2α̂+

w3
2ĥ1c0) = i(h0d0w3

2) becomes equal to g3 · w2
2ĥ0 in E3(tmf/η). !

Theorem 7.6. E4(tmf/η) = E∞(tmf/η).

Proof. It suffices to verify that dr(x) = 0 for each R2-module generator x
in Table 7.5, for each r ≥ 4. In most cases this is clear because all target groups
are trivial. In the remaining cases, x is (w1- or) w2

1-torsion, so if dr(x) = y then
w2

1y = 0 at the Er-term. Moreover, in each of these cases the E4-term is trivial in
and above the bidegree of w2

1x, so none of the differentials d4, . . . , dr can hit w2
1y.

Hence w2
1y = 0 in E4(tmf/η). Furthermore, w2

1 acts injectively on the E4-term in
the bidegree containing dr(x), and this implies that y = 0. !

We have also determined a set of E∞(tmf)-module generators for E∞(tmf/η),
and expressed the remaining R2-module generators in terms of this module struc-
ture. The results are listed in the following proposition, and in the dec.-column of
Table 7.5.
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Figure 7.1. E4(tmf/η) = E∞(tmf/η) for 0 ≤ t − s ≤ 24
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Figure 7.2. E4(tmf/η) = E∞(tmf/η) for 24 ≤ t − s ≤ 48

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



7.4. THE E∞-TERM FOR tmf/η 263

48 52 56 60 64 68 72
8

12

16

20

24

i(h0w2)

h0w2ĥ0
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Figure 7.3. E4(tmf/η) = E∞(tmf/η) for 48 ≤ t − s ≤ 72
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Figure 7.4. E4(tmf/η) = E∞(tmf/η) for 72 ≤ t − s ≤ 96
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Figure 7.5. E4(tmf/η) = E∞(tmf/η) for 96 ≤ t − s ≤ 120
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Figure 7.6. E4(tmf/η) = E∞(tmf/η) for 120 ≤ t − s ≤ 144
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Figure 7.7. E4(tmf/η) = E∞(tmf/η) for 144 ≤ t − s ≤ 168
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Figure 7.8. E4(tmf/η) = E∞(tmf/η) for 168 ≤ t − s ≤ 192
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Proposition 7.7. The 45 classes listed in Table 7.7 generate E∞(tmf/η) as
a module over E∞(tmf).

Table 7.7: E∞(tmf)-module generators of E∞(tmf/η)

t − s s g x

0 0 0 i(1)

2 1 1 ĥ0

5 1 3 ĥ2

11 4 3 ĥ1c0

12 5 5 i(h2
0α)

14 6 8 h3
0α̂

17 4 8 + 9 i(e0)

24 6 14 i(α2)

26 7 13 α2ĥ0

35 7 22 i(βg)

36 9 26 h0d̂0g

38 10 26 h0α2α̂

48 9 34 i(h0w2)

50 10 36 h0w2ĥ0

56 12 43 + 44 gd̂0g + i(w1w2)

58 13 46 + 47 α2gα̂ + w1w2ĥ0

59 12 46 + 47 γgα̂ + w2ĥ1c0

60 13 50 i(h2
0αw2)

62 12 50 + 51 γgβ̂ + i(d0w2)

62 14 53 h3
0w2α̂

67 13 61 + 62 β2gβ̂ + d0w2ĥ2

72 14 65 + 66 βg2β̂ + i(α2w2)

74 15 66 + 67 g3α̂ + α2w2ĥ0

77 15 71 + 72 g3β̂ + αβw2ĥ0

84 17 90 h0w2d̂0g

86 18 90 h0α2w2α̂

98 17 101 w2
2ĥ0

107 20 124 w2
2ĥ1c0

108 21 132 i(h2
0αw2

2)

110 22 136 h3
0w

2
2α̂
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Table 7.7: E∞(tmf)-module generators of E∞(tmf/η) (cont.)

t − s s g x

113 20 132 + 133 i(e0w2
2)

120 22 150 i(α2w2
2)

122 23 155 α2w2
2ĥ0

132 25 188 h0w2
2d̂0g

134 26 190 h0α2w2
2α̂

144 25 198 i(h0w3
2)

146 26 204 h0w3
2ĥ0

152 28 231 + 232 gw2
2d̂0g + i(w1w3

2)

154 29 241 + 242 α2gw2
2α̂ + w1w3

2ĥ0

155 28 234 + 235 γgw2
2α̂ + w3

2ĥ1c0

156 29 246 i(h2
0αw3

2)

158 30 252 h3
0w

3
2α̂

170 31 274 + 275 g3w2
2α̂ + α2w3

2ĥ0

180 33 318 h0w3
2d̂0g

182 34 322 h0α2w3
2α̂
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CHAPTER 8

The Adams spectral sequence for tmf/ν

We calculate the dr-differentials in the Adams spectral sequence for tmf/ν =
tmf ∧Cν. These are nontrivial for r ∈ {2, 3, 4}, and zero for r ≥ 5, so the spectral
sequence collapses at the E5-term. The module structure over the Adams spectral
sequence for tmf suffices to determine almost all of these differentials. There is one
exceptional case, concerning d2(β2), which we settle by means of an external smash
product pairing. The resulting E∞-term is the associated graded of a complete
Hausdorff filtration of π∗(tmf/ν)∧2 .

8.1. The E2-term for tmf/ν

The initial term

E2 = E2(tmf/ν) ∼= ExtA(2)(M4, F2)

of the mod 2 Adams spectral sequence for tmf/ν was calculated in Part I. The
groups Es,t

2 for 0 ≤ t−s ≤ 96 are displayed in Figures 1.32 to 1.35. By Corollary 4.16
the E2-term for tmf/ν is generated as a module over E2(tmf) = ExtA(2)(F2, F2) by
the 14 classes listed in Table 8.1. As a module over R0 = F2[g, w1, w2] the E2-term
for tmf/ν is presented as a direct sum of cyclic modules in Table 8.2, most of which
is reproduced from Table 4.7 and illustrated in Figure 4.3. We note that the E2-
term is free over F2[w1, w2], and finitely generated over R0[h0] = F2[h0, g, w1, w2].
Recall Definition 5.1. Following the strategy of Chapter 5 we will keep track of
R0-module structure on the E2-term, R1-module structure on the E3-term, and R2-
module structure on the E4- and E5 = E∞-terms of the Adams spectral sequence
for tmf/ν.

Table 8.1: E2(tmf)-module generators of E2(tmf/ν)

t − s s g x d2(x)

0 0 0 i(1) 0

4 3 1 h3
0 0

5 1 2 h1 0

7 2 3 h0h2 0

10 2 4 h2
2 i(h1c0)

12 3 4 c0 0

16 5 7 h2
0α h0w1h0h2

24 4 9 g 0

269
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Table 8.1: E2(tmf)-module generators of E2(tmf/ν) (cont.)

t − s s g x d2(x)

28 7 13 h0α2 0

29 5 13 γ 0

31 6 16 αβ 0

34 6 17 β2 i(h1δ)

36 7 19 δ 0

40 9 24 α3 h0w1αβ

Table 8.2: R0-module generators of E2(tmf/ν), with i ≥ 0 in each
h0-tower

t − s s g x Ann(x) d2(x) d2(xw2)

0 0 0 i(1) (0) 0 g2 · h0h2

0 1 + i 0 i(h1+i
0 ) (g) 0 0

1 1 1 i(h1) (g) 0 0

2 2 1 i(h2
1) (g) 0 0

4 3 + i 1 hi
0h

3
0 (g) 0 0

5 1 2 h1 (0) 0 g2 · i(α)

6 2 2 h1h1 (g) 0 0

7 2 3 h0h2 (0) 0 g2 · i(d0)

7 3 2 h0h0h2 (g) 0 0

8 3 3 i(c0) (g) 0 0

9 4 3 i(h1c0) (g) 0 0

10 2 4 h2
2 (0) i(h1c0) g2 · i(e0)

+ i(h1c0w2)

12 3 4 c0 (g) 0 0

12 3 4 + 5 i(α) (0) 0 g2 · d0h1

12 4 + i 4 i(h1+i
0 α) (g) 0 0

13 4 5 h1c0 (g) 0 0

14 4 6 i(d0) (0) 0 g2 · d0h0h2

14 5 6 i(h0d0) (g) 0 0

15 3 6 i(β) (0) i(h0d0) g2 · e0h1

+ i(h0d0w2)
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Table 8.2: R0-module generators of E2(tmf/ν), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d2(x) d2(xw2)

16 5 7 h2
0α (0) w1 · h0h0h2 g2w1 · i(β)

+ w1 · h0w2h0h2

16 6 + i 7 h1+i
0 h2

0α (g) 0 0

17 4 7 i(e0) (0) 0 g2 · i(α2)

19 5 8 d0h1 (0) 0 g2 · i(αd0)

21 6 9 d0h0h2 (0) 0 g3w1 · i(1)

22 5 9 e0h1 (0) 0 g2 · i(αe0)

24 4 9 g (0) 0 g2 · αβ
24 5 10 h0g (g) 0 0

24 6 10 + 11 i(α2) (0) 0 g2 · i(d0e0)

24 6 11 h2
0g (g) 0 0

24 7 + i 11 i(h1+i
0 α2) (g) 0 0

25 5 12 h1g (g) 0 0

26 6 12 i(h1γ) (g) 0 0

26 7 12 i(αd0) (0) 0 g3w1 · h1

28 7 + i 13 hi
0h0α2 (g) 0 0

29 5 13 γ (0) 0 g2 · αg

29 7 14 i(αe0) (0) 0 g3 · h2
0α

30 6 15 h1γ (g) 0 0

31 6 16 αβ (0) 0 g2 · d0g

31 7 15 h0αβ (g) 0 0

31 8 15 i(d0e0) (0) 0 g3w1 · h2
2

32 7 17 i(δ) (g) 0 0

33 8 17 i(h1δ) (g) 0 0

34 6 17 β2 (0) i(h1δ) g2 · e0g

+ i(h1δw2)

36 7 19 δ (g) 0 0

36 7 19 + 20 αg (0) 0 g2 · d0γ

36 8 19 h0δ (g) 0 0

36 9 20 h2
0δ (g) 0 0

36 10 + i 20 i(h1+i
0 α3) (g) 0 0
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Table 8.2: R0-module generators of E2(tmf/ν), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d2(x) d2(xw2)

37 8 21 h1δ (g) 0 0

38 8 22 d0g (0) 0 g2 · d0αβ

38 9 22 h0d0g (g) 0 0

39 7 21 βg (0) h0d0g g2 · e0γ

+ h0d0w2g

40 9 24 α3 (0) w1 · h0αβ g2w1 · βg

+ w1 · h0w2αβ

40 10 + i 24 h1+i
0 α3 (g) 0 0

41 8 24 e0g (0) 0 g2 · α2g

43 9 26 d0γ (0) 0 g2 · αd0g

45 10 28 d0αβ (0) 0 g3w1 · g

46 9 28 e0γ (0) 0 g2 · α2γ

48 10 30 + 31 α2g (0) 0 g2 · d0e0g

50 11 33 αd0g (0) 0 g3w1 · γ
53 11 36 α2γ (0) 0 g3 · α3

55 12 38 d0e0g (0) 0 g3w1 · β2

8.2. The d2-differentials for tmf/ν

Theorem 8.1. The d2-differential in E2(tmf/ν) is R1-linear. Its values on a
set of E2(tmf)-module generators are listed in Table 8.1, and its values on a set of
R1-module generators are listed in Table 8.2.

Proof. The classes g, w1 and w2
2 are d2-cycles in E2(tmf), so the Leibniz

rule implies that multiplication by each of these elements commutes with the d2-
differential in E2(tmf/ν).

Next, we determine d2 on the module generators of E2(tmf/ν) over E2(tmf).

See Figures 1.32 and 1.33. The d2-differentials on i(1), h3
0, h0h2, c0, g, αβ and δ

are zero because the target groups are trivial. The d2-differentials on h1 and γ are
zero by h0-linearity. The cofiber sequence

S
i−→ Cν

j−→ S4

induces maps of Adams spectral sequences

Er(tmf)
i−→ Er(tmf/ν)

j−→ E∗,∗−4
r (tmf) .

By Theorem 5.10 (or Table 5.2) the class h1c0w1 is a d3-boundary in the Adams
spectral sequence for tmf , so its image i(h1c0w1) must be a d2- or d3-boundary in
the Adams spectral sequence for tmf/ν. For bidegree reasons, the only possibility
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is d2(w1h2
2) = i(h1c0w1). It follows that d2(h2

2) = i(h1c0), by injectivity of the
w1-multiplication from bidegree (t − s, s) = (9, 4).

By Proposition 5.8 (or Table 5.1) the classes h2
0α and α3 both support non-

trivial d2-differentials. Hence their lifts h2
0α and α3 must also support nonzero

d2-differentials, and the only possible values are h0w1h0h2 and h0w1αβ, respec-
tively. The value of d2(h0α2) is either 0 or d0w1h1. It maps under j to d2(h0α2)
in the Adams spectral sequence for tmf , which is zero by the Leibniz rule (or Ta-
ble 5.1). However, j maps d0w1h1 to h1d0w1, which is nonzero in E2(tmf). Hence
d2 vanishes on h0α2.

Only the case of d2(β2) remains. The cofiber sequence

S ∧ Cν
i∧1−→ Cν ∧ Cν

j∧1−→ S4 ∧ Cν

induces a long exact sequence

. . .
δ−→ E2(tmf ∧ Cν)

i∗−→ E2(tmf ∧ Cν ∧ Cν)

j∗−→ E2(tmf ∧ S4 ∧ Cν)
δ−→ . . .

of Adams E2-terms. The connecting homomorphism δ induces multiplication by h2

on E2(tmf ∧Cν) = ExtA(2)(M4, F2). We know from Lemma 1.39 that this E2-term
is a graded algebra over ExtA(2)(F2, F2), with h2 · i(1) = 0, so the h2-multiplication
is zero and the homomorphism i∗ is injective. Alternatively, we can see directly
from Figures 1.32 and 1.33 that h2-multiplication is zero, in the range of bidegrees
shown.

The smash product of tmf -modules induces an external pairing

∧ : E2(tmf ∧ Cν) ⊗ E2(tmf ∧ Cν) −→ E2(tmf ∧ Cν ∧ Cν)

of Adams spectral sequences, taking h2
2 ⊗ g to h2

2 ∧ g in (t − s, s) = (34, 6), with

d2(h2
2 ∧ g) = d2(h2

2) ∧ g + h2
2 ∧ d2(g) = i(h1c0) ∧ g + h2

2 ∧ 0 = i∗(h1c0g)

in bidegree (t − s, s) = (33, 8). An ext-calculation shows that h1c0g = 817 =

i(h1δ), which is nonzero in E2(tmf ∧ Cν). Hence i∗(h1c0g) 0= 0 and h2
2 ∧ g 0= 0

in E2(tmf ∧ Cν ∧ Cν). Note that j∗(h2
2 ∧ g) = Σ4h2

2g = 0 in E2(tmf ∧ S4 ∧ Cν),

by the vanishing of the h2-multiplication. It follows that h2
2 ∧ g = i∗(x) for a

nonzero class x in (t − s, s) = (34, 6), and the only possibility is x = β2. Thus

i∗d2(β2) = d2(i∗(β2)) = d2(h2
2 ∧ g) = i∗(h1c0g). The injectivity of i∗ then implies

that d2(β2) = h1c0g = i(h1δ).
Finally, we use Table 5.1 and the Leibniz rule to calculate d2 for x and xw2 =

w2 · x, with x ranging through the list of R0-module generators for E2(tmf/ν).
These elements then range through a list of R1-module generators for the same E2-
term. In particular d2(w2 ·x) = d2(w2) ·x+w2 ·d2(x), with d2(w2) = αβg = 1018 as
in Table 5.1. In this finite range, the action of E2(tmf) on E2(tmf/ν) is calculated
using ext. !

Remark 8.2. To use ext to assist in calculating the products αβg · x for
x ∈ E2(tmf/ν), use cocycle tmfCnu 0 0, . . . , cocycle tmfCnu 12 38, dolifts
0 40 maps and collect maps all. The nonzero products with αβg = 1018 then
appear as lines containing (10 18 F2) in the file all. If the product is a g2-
multiple, there will also appear a line containing (8 18 F2) in the same block, since

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



274 8. THE ADAMS SPECTRAL SEQUENCE FOR tmf/ν

g2 = 818 in the minimal A(2)-module resolution for F2. Similarly, g2w1-multiples
appear with (12 22 F2), g3-multiples appear with (12 29 F2), etc.

8.3. The d3-differentials for tmf/ν

It is now a simple matter to compute the E3-term of the Adams spectral se-
quence for tmf/ν, as a direct sum of R1 = F2[g, w1, w2

2]-modules. This is carried
out in Appendix D.1 and the results are recorded in Tables 8.3 and 8.4, where we
also record the results of this section, calculating the d3-differential.

Table 8.3: R1-module generators of E3(tmf/ν), with i ≥ 0 in each
h0-tower

t − s s g x Ann(x) d3(x) d3(xw2
2)

0 0 0 i(1) (g3w1) 0 g3 · i(βg)

0 1 + i 0 i(h1+i
0 ) (g) 0 0

1 1 1 i(h1) (g) 0 0

2 2 1 i(h2
1) (g) 0 0

4 3 + i 1 hi
0h

3
0 (g) 0 0

5 1 2 h1 (g3w1) 0 g5 · i(1)

6 2 2 h1h1 (g) 0 0

7 2 3 h0h2 (g2) 0 0

7 3 2 h0h0h2 (g, w1) 0 0

8 3 3 i(c0) (g) 0 0

12 3 4 c0 (g) 0 0

12 3 4 + 5 i(α) (g2) 0 0

12 4 + i 4 i(h1+i
0 α) (g) 0 0

13 4 5 h1c0 (g) 0 0

14 4 6 i(d0) (g2) 0 0

16 6 + i 7 h1+i
0 h2

0α (g) 0 0

17 4 7 i(e0) (g3) w1 · i(c0) w1 · i(c0w2
2)

19 5 8 d0h1 (g2) 0 0

21 6 9 d0h0h2 (g2) 0 0

22 5 9 e0h1 (g3) w1 · h1c0 w1 · h1w2
2c0

24 4 9 g (g3w1) 0 g3 · βgg

24 5 10 h0g (g) 0 0

24 6 10 + 11 i(α2) (g2) 0 0

24 6 11 h2
0g (g) 0 0

24 7 + i 11 i(h1+i
0 α2) (g) 0 0
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Table 8.3: R1-module generators of E3(tmf/ν), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d3(x) d3(xw2
2)

25 5 12 h1g (g) 0 0

26 6 12 i(h1γ) (g) 0 0

26 7 12 i(αd0) (g2) 0 0

28 7 + i 13 hi
0h0α2 (g) 0 0

29 5 13 γ (g3w1) gw1 · i(1) g5 · g

+ gw1 · i(w2
2)

29 7 14 i(αe0) (g2) 0 0

30 6 14 gh2
2 (g2w1) 0 g6 · h1

30 6 15 h1γ (g) 0 0

31 6 16 αβ (g2) 0 0

31 7 15 h0αβ (g, w1) 0 0

31 8 15 i(d0e0) (g2) 0 0

32 7 17 i(δ) (g) 0 0

35 7 18 i(βg) − 0 g5 · gh2
2

36 7 19 δ (g) 0 0

36 7 19 + 20 αg (g2) gw1 · h0h2 gw1 · w2
2h0h2

36 8 19 h0δ (g) 0 0

36 9 19 gh2
0α (g2) 0 0

36 9 20 h2
0δ (g) 0 0

36 10 + i 20 i(h1+i
0 α3) (g) 0 0

37 8 21 h1δ (g) 0 0

38 8 22 d0g (g2) 0 0

40 10 + i 24 h1+i
0 α3 (g) 0 0

41 8 24 e0g (g3) w1 · i(δ) w1 · i(δw2
2)

43 9 26 d0γ (g2) gw1 · i(d0) gw1 · i(d0w2
2)

45 10 28 d0αβ (g2) 0 0

46 9 28 e0γ (g3) gw1 · i(e0) gw1 · i(e0w2
2)

+ w1 · h1δ + w1 · h1w2
2δ

48 9 + i 29 i(h1+i
0 w2) (g) 0 0

48 10 30 + 31 α2g (g2) 0 0

49 9 31 i(h1w2) (g) g2w1 · i(1) g2w1 · i(w2
2)
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Table 8.3: R1-module generators of E3(tmf/ν), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d3(x) d3(xw2
2)

50 10 33 i(h2
1w2) (g) 0 0

50 11 33 αd0g (g2) gw1 · d0h0h2 gw1 · d0w2
2h0h2

52 11 + i 35 hi
0w2h3

0 (g) 0 0

53 11 36 α2γ (g2) gw1 · i(α2) gw1 · i(α2w2
2)

54 10 35 gβ2 (g2w1) 0 g6 · γ
54 10 36 h1w2h1 (g) g2w1 · h1 g2w1 · w2

2h1

55 11 38 h0w2h0h2 − 0 0

55 12 38 d0e0g (g2) 0 0

56 11 40 i(c0w2) (g) 0 0

59 11 41 βgg − gw1 · gh2
2 g5 · gβ2

+ gw1 · gw2
2h

2
2

60 11 42 w2c0 (g) 0 0

60 12 + i 44 i(h1+i
0 αw2) (g) 0 0

60 13 44 gα3 (g2) gw1 · i(d0e0) gw1 · i(d0e0w2
2)

61 12 46 h1w2c0 (g) 0 0

64 14 + i 51 h1+i
0 w2h2

0α (g) 0 0

72 13 56 h0w2g (g) 0 0

72 14 60 h2
0w2g (g) 0 0

72 15 + i 61 i(h1+i
0 α2w2) (g) 0 0

73 13 58 h1w2g (g) g2w1 · g g2w1 · w2
2g

74 14 62 i(h1γw2) (g) 0 0

76 15 + i 66 hi
0w2h0α2 (g) 0 0

78 14 65 h1w2γ (g) g2w1 · γ g2w1 · w2
2γ

79 15 69 h0w2αβ − 0 0

80 15 71 i(δw2) (g) 0 0

84 15 73 w2δ (g) 0 0

84 16 77 h0w2δ (g) 0 0

84 17 79 h2
0w2δ (g) 0 0

84 18 + i 80 i(h1+i
0 α3w2) (g) 0 0

85 16 79 h1w2δ (g) 0 0

88 18 + i 87 h1+i
0 w2α3 (g) 0 0
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Table 8.4: The non-cyclic R1-module summands in E3(tmf/ν)

〈x1, x2〉

〈i(βg), h0w2h0h2〉 ∼=
Σ7,42R1 ⊕ Σ11,66R1

〈(gw1, w1), (0, g)〉

〈βgg, h0w2αβ〉 ∼=
Σ11,70R1 ⊕ Σ15,94R1

〈(gw1, w1), (0, g)〉

Proposition 8.3. The 20 classes listed in Table 8.5 generate E3(tmf/ν) as a
module over E3(tmf).

Table 8.5: E3(tmf)-module generators of E3(tmf/ν)

t − s s g x d3(x)

0 0 0 i(1) 0

4 3 1 h3
0 0

5 1 2 h1 0

7 2 3 h0h2 0

12 3 4 c0 0

12 3 4 + 5 i(α) 0

16 6 7 h0h2
0α 0

24 4 9 g 0

28 7 13 h0α2 0

29 5 13 γ i(gw1)

31 6 16 αβ 0

36 7 19 δ 0

36 7 19 + 20 αg gw1h0h2

40 10 24 h0α3 0

52 11 35 w2h3
0 0

60 11 42 w2c0 0

64 14 51 h0w2h2
0α 0

76 15 66 w2h0α2 0

84 15 73 w2δ 0

88 18 87 h0w2α3 0
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Proof. Inspection of Tables 5.2 and 8.3 easily shows that most of the R1-
module generators of E3(tmf/ν) are E3(tmf)-multiples of the classes in Table 8.5.
The less evident cases follow from the relations

gh2
2 = β2 · i(1)

i(βg) = β2 · h1

gh2
0α = d0e0 · h1

gβ2 = β2 · g

βgg = β2 · γ

gα3 = d0e0 · γ
i(h1γw2) = h2

1w2 · g ,

which we verify by calculating the relevant Yoneda products using ext. !
Proposition 8.4. The d3-differentials on the E3(tmf)-module generators for

E3(tmf/ν) are as listed in Table 8.5.

Proof. To determine d3 on the E3(tmf)-module generators of E3(tmf/ν) we
refer to Figures 1.32 to 1.35, keeping in mind that the E3-term is a subquotient
of the E2-term shown in these charts. The d3-differentials on i(1), h3

0, h0h2, c0,

i(α), h0h2
0α, h0α2, h0α3, w2h3

0 and h0w2h2
0α are zero because the target groups are

trivial, already at the E2-term.
The d3-differentials on g, w2h0α2, w2δ and h0w2α3 are zero because the target

groups are trivial at the E3-term:

• The bidegree (t − s, s) = (23, 7) of d3(g) is generated at E2 by w1 · i(β),
and d2(w1 · i(β)) = w1 · i(h0d0) 0= 0.

• The bidegree (75, 18) of d3(w2h0α2) is generated at E2 by g3w1 · h0h2 =
d2(gw1 · i(w2)).

• The bidegree (83, 18) of d3(w2δ) is generated at E2 by gw1 · w2h0h2, and
d2(gw1 · w2h0h2) = g3w1 · i(d0) 0= 0.

• The bidegree (87, 21) of d3(h0w2α3) is generated at E2 by g3w1 · d0h1 =
d2(gw1 · i(αw2)).

The d3-differential on h1 is zero by h0-linearity.
We show that d3(γ) = i(gw1) as a consequence of the relations gγ = 930 =

γg + i(h1w2) and h0γ = 0. We know from Table 5.2 that d3(g) = 0, d3(γ) = 0 and
d3(h1w2) = g2w1, and we have just seen that d3(g) = 0. Hence gd3(γ) = i(g2w1) 0=
0 in E3(tmf/ν). It follows that d3(γ) is nonzero and annihilated by h0, and the
only possible value is i(gw1).

Furthermore, we show that d3(αg) = gw1h0h2 as a consequence of the relation
e0 · αg = 1136 = α2 · γ. We know from Table 5.2 that d3(e0) = c0w1 and d3(α2) =
h1d0w1, and we have just seen that d3(γ) = i(gw1). Hence

d3(e0 · αg) = c0w1 · αg + e0 · d3(αg) = e0 · d3(αg)

is equal to

d3(α
2 · γ) = h1d0w1 · γ + α2 · i(gw1) = gw1 · i(α2) 0= 0 ,

where c0w1 · αg = 0 and h1d0w1 · γ = 0 can be verified with ext. Hence d3(αg) is
nonzero, and gw1h0h2 is the only possible value.
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For αβ we use naturality with respect to j : Cν → S4. We know that d3(αβ) ∈
{0, e0w1h1} maps by j to d3(αβ) = 0 in E3(tmf). However, j(e0w1h1) = w1 ·h1e0 0=
0. Hence d3(αβ) = 0.

For δ and w2c0 we use d0-linearity of d3, which follows from d3(d0) = 0. We
know that d3(δ) ∈ {0, gw1h0h2}, and d0 · gw1h0h2 = gw1 · d0h0h2 0= 0. Since
d0 · δ = 0 we must have d0 · d3(δ) = 0. Hence d3(δ) = 0.

Finally, d3(w2c0) ∈ {0, gw1αβ}, where d0 · gw1αβ = gw1 · d0αβ 0= 0. From
d0 · w2c0 = 0 we deduce d0 · d3(w2c0) = 0. Hence d3(w2c0) = 0. !

Theorem 8.5. The d3-differential in E3(tmf/ν) is R2-linear. Its values on a
set of R2-module generators are listed in Table 8.3.

Proof. The classes g, w1 and w4
2 are d3-cycles in E3(tmf), so multiplication

by each of these commutes with the d3-differential in E3(tmf/ν).
The d3-differential on the R1-module generators x in Table 8.3 is given by the

Leibniz rule applied to the (implicit and explicit) factorizations in the proof of
Proposition 8.3, and the d3-differentials from Tables 5.2 and 8.5. In several of the
following cases we use ext to rewrite the output of the Leibniz rule in terms of the
R1-module presentation of E3(tmf/ν).

• d3(e0 · h1) = c0w1 · h1 = 89 = w1 · h1c0

• d3(i(α2)) = i(h1d0w1) = 0
• d3(e0 · i(α)) = c0w1 · i(α) = 0

• d3(gh2
2) = d3(β2 · i(1)) = h1gw1 · i(1) = 0

• d3(h1γ) = h1 · i(gw1) = 0
• d3(i(βg)) = d3(β2 · h1) = h1gw1 · h1 = 0

• d3(gh2
0α) = d3(d0e0 · h1) = 0

• d3(e0 · g) = c0w1 · g = 1124 = w1 · i(δ)
• d3(d0 · γ) = d0 · i(gw1) = gw1 · i(d0)
• d3(e0 · γ) = e0 · i(gw1) + c0w1 · γ = 1228 + 1229 = gw1 · i(e0) + w1 · h1δ
• d3(α2 · g) = h1d0w1 · g = 0
• d3(d0 · αg) = d0 · gw1h0h2 = gw1 · d0h0h2

• d3(α2 · γ) = h1d0w1 · γ + α2 · i(gw1) = 1436 = gw1 · i(α2)
• d3(gβ2) = d3(β2 · g) = h1gw1 · g = 0

• d3(βgg) = d3(β2 · γ) = h1gw1 · γ + β2 · i(gw1) = 1442 = gw1 · gh2
2

• d3(h0w2 · i(α)) = 0
• d3(gα3) = d3(d0e0 · γ) = d0e0 · i(gw1) = gw1 · i(d0e0)
• d3(h1w2 · c0) = g2w1 · c0 = 0
• d3(i(h1γw2)) = d3(h2

1w2 · g) = 0
• d3(h1w2 · γ) = g2w1 · γ + h1w2 · i(gw1) = 1769 = g2w1 · γ.

It remains to determine d3(w2
2 ·x) = d3(w2

2) ·x+w2
2 ·d3(x) = βg4 ·x+w2

2 ·d3(x)
for the same generators x. If g4 ∈ Ann(x) this takes no effort. Otherwise we use
ext to calculate:

• βg4 · i(1) = g3 · i(βg)
• βg4 · h1 = 20106 = g5 · i(1)
• βg4 · g = 23144 = g3 · βgg
• βg4 · γ = 24155 = g5 · g
• βg4 · gh2

2 = 25160 = g6 · h1

• βg4 · i(βg) = 26171 = g5 · gh2
2
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• βg4 · gβ2 = 29219 = g6 · γ
• βg4 · βgg = 30232 = g5 · gβ2. !

Remark 8.6. To calculate the products βg4 ·x with ext, use cocycle, dolifts
and collect as in Remark 8.2. The nonzero products with βg4 = 1956 then appear
as lines containing (19 56 F2) in the file all. If the product is a g3-multiple, there
will also appear a line containing (12 29 F2) in the same block, since g3 = 1229

in the minimal A(2)-module resolution for F2. Similarly, g5-multiples appear with
(20 67 F2), and g6-multiples appear with (24 90 F2).

8.4. The d4-differentials for tmf/ν

It is now an elementary matter to compute the E4-term of the Adams spectral
sequence for tmf/ν, as a direct sum of R2 = F2[g, w1, w4

2]-modules. This is carried
out in Appendix D.2 and the results are recorded in Tables 8.6 and 8.7. In this
section we determine the d4-differentials on these R2-module generators, and the
results are also recorded in these tables.

Table 8.6: R2-module generators of E4(tmf/ν), with i ≥ 0 in each
h0-tower

t − s s g x Ann(x) d4(x)

0 0 0 i(1) (g5, gw1) 0

0 1 + i 0 i(h1+i
0 ) (g) 0

1 1 1 i(h1) (g) 0

2 2 1 i(h2
1) (g) 0

4 3 + i 1 hi
0h

3
0 (g) 0

5 1 2 h1 (g6, g2w1) 0

6 2 2 h1h1 (g) 0

7 2 3 h0h2 (g2, gw1) 0

7 3 2 h0h0h2 (g, w1) 0

8 3 3 i(c0) (g, w1) 0

12 3 4 c0 (g) 0

12 3 4 + 5 i(α) (g2) 0

12 4 + i 4 i(h1+i
0 α) (g) 0

13 4 5 h1c0 (g, w1) 0

14 4 6 i(d0) (g2, gw1) 0

16 6 + i 7 h1+i
0 h2

0α (g) 0

19 5 8 d0h1 (g2) 0

21 6 9 d0h0h2 (g2, gw1) 0

24 4 9 g (g6, g2w1) 0

24 5 10 h0g (g) 0
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Table 8.6: R2-module generators of E4(tmf/ν), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d4(x)

24 6 10 + 11 i(α2) (g2, gw1) w2
1 · h0h2

24 6 11 h2
0g (g) 0

24 7 + i 11 i(h1+i
0 α2) (g) 0

25 5 12 h1g (g) 0

26 6 12 i(h1γ) (g) 0

26 7 12 i(αd0) (g2) 0

28 7 + i 13 hi
0h0α2 (g) 0

29 7 14 i(αe0) (g2) w2
1 · (c0 + i(α))

30 6 14 gh2
2 (g5, gw1) w1 · d0h0h2

30 6 15 h1γ (g) w1 · d0h0h2

31 6 16 αβ (g2) 0

31 7 15 h0αβ (g, w1) 0

31 8 15 i(d0e0) (g2, gw1) w2
1 · i(d0)

32 7 17 i(δ) (g, w1) 0

35 7 18 i(βg) − w1 · i(αd0)

36 7 19 δ (g) 0

36 8 19 h0δ (g) 0

36 9 19 gh2
0α (g2) w2

1 · d0h1

36 9 20 h2
0δ (g) 0

36 10 + i 20 i(h1+i
0 α3) (g) 0

37 8 20 + 21 δ′h1 (g2, w1) 0

37 8 21 h1δ (g) 0

38 8 22 d0g (g2) 0

40 10 + i 24 h1+i
0 α3 (g) 0

42 9 25 e0gh1 (g2) gw2
1 · h1

45 10 28 d0αβ (g2) 0

48 9 29 i(h0w2) (g) gw1 · d0h1

48 10 30 + 31 α2g (g2) w2
1 · αβ

48 10 + i 31 i(h2+i
0 w2) (g) 0

49 9 30 + 31 γg (g5, gw1) 0

50 10 33 i(h2
1w2) (g) 0

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



282 8. THE ADAMS SPECTRAL SEQUENCE FOR tmf/ν

Table 8.6: R2-module generators of E4(tmf/ν), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d4(x)

52 11 + i 35 hi
0w2h3

0 (g) 0

54 10 35 gβ2 (g6, g2w1) w1 · d0αβ

55 11 38 h0w2h0h2 − gw1 · i(αd0)

55 12 38 d0e0g (g2) w2
1 · d0g

56 11 39 αgg (g) 0

56 11 40 i(c0w2) (g) 0

60 11 42 w2c0 (g) 0

60 12 + i 44 i(h1+i
0 αw2) (g) 0

61 12 45 e0gg (g2) gw2
1 · g

61 12 46 h1w2c0 (g) 0

63 13 49 d0gγ (g) 0

64 14 + i 51 h1+i
0 w2h2

0α (g) 0

70 15 58 αd0gg (g) 0

72 13 56 h0w2g (g) w1 · d0gγ

72 14 60 h2
0w2g (g) 0

72 15 + i 61 i(h1+i
0 α2w2) (g) 0

73 15 62 α2gγ (g) w2
1 · αgg

+ w2
1 · i(c0w2)

74 14 62 i(h1γw2) (g) gw1 · d0αβ

76 15 + i 66 hi
0w2h0α2 (g) 0

79 15 68 + 69 γ2γ (g2, w1) 0

79 15 69 h0w2αβ (g) w1 · αd0gg

80 15 71 i(δw2) (g) 0

80 17 72 g2α3 (g) w2
1 · d0gγ

84 15 73 w2δ (g) 0

84 16 77 h0w2δ (g) 0

84 17 79 h2
0w2δ (g) 0

84 18 + i 80 i(h1+i
0 α3w2) (g) 0

85 16 79 h1w2δ (g) 0

86 17 82 e0g2γ (g) 0

88 18 + i 87 h1+i
0 w2α3 (g) 0
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Table 8.6: R2-module generators of E4(tmf/ν), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d4(x)

96 17 + i 91 i(h1+i
0 w2

2) (g) 0

97 17 93 i(h1w2
2) (g) 0

98 18 99 i(h2
1w

2
2) (g) 0

100 19 + i 105 hi
0w

2
2h

3
0 (g) 0

102 18 102 h1w2
2h1 (g) 0

103 18 103 w2
2h0h2 (g2, gw1) 0

103 19 108 h0w2
2h0h2 (g, w1) 0

104 19 110 i(c0w2
2) (g, w1) 0

104 20 112 + 113 g4g + i(w1w2
2) (g) 0

108 19 112 w2
2c0 (g) 0

108 19 112 + 113 i(αw2
2) (g2) 0

108 20 + i 118 i(h1+i
0 αw2

2) (g) 0

109 20 120 h1w2
2c0 (g, w1) 0

109 21 124 w1w2
2h1 (g2) 0

110 20 121 i(d0w2
2) (g2, gw1) 0

112 22 + i 132 h1+i
0 w2

2h
2
0α (g) 0

115 21 131 d0w2
2h1 (g2) 0

117 22 138 d0w2
2h0h2 (g2, gw1) 0

120 21 134 h0w2
2g (g) 0

120 22 141 + 142 i(α2w2
2) (g2, gw1) w2

1 · w2
2h0h2

120 22 142 h2
0w

2
2g (g) 0

120 23 + i 147 i(h1+i
0 α2w2

2) (g) 0

121 21 136 h1w2
2g (g) 0

122 22 144 i(h1γw2
2) (g) 0

122 23 149 i(αd0w2
2) (g2) 0

124 23 + i 152 hi
0w

2
2h0α2 (g) 0

125 23 153 i(αe0w2
2) (g2) w2

1 · w2
2(c0 + i(α))

126 22 147 h1w2
2γ (g) w1 · d0w2

2h0h2

127 22 148 w2
2αβ (g2) 0

127 23 155 h0w2
2αβ (g, w1) 0

127 24 160 i(d0e0w2
2) (g2, gw1) w2

1 · i(d0w2
2)
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Table 8.6: R2-module generators of E4(tmf/ν), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d4(x)

128 23 157 i(δw2
2) (g, w1) 0

128 24 162 w1w2
2g (g2) 0

132 23 159 w2
2δ (g) 0

132 24 167 h0w2
2δ (g) 0

132 25 172 gw2
2h

2
0α (g2) w2

1 · d0w2
2h1

132 25 173 h2
0w

2
2δ (g) 0

132 26 + i 177 i(h1+i
0 α3w2

2) (g) 0

133 24 168 + 169 δ′w2
2h1 (g2, w1) 0

133 24 169 h1w2
2δ (g) 0

134 24 170 d0w2
2g (g2) 0

134 26 179 + 180 g5β2 + gw1w2
2h

2
2 (g) w2

1 · d0w2
2h0h2

136 26 + i 185 h1+i
0 w2

2α
3 (g) 0

138 25 181 e0gw2
2h1 (g2) gw1 · w1w2

2h1

139 27 193 i(βgw1w2
2) − w2

1 · i(αd0w2
2)

141 26 191 d0w2
2αβ (g2) 0

144 25 185 i(h0w3
2) (g) gw1 · d0w2

2h1

144 26 194 + 195 α2w2
2g (g2) w2

1 · w2
2αβ

144 26 + i 195 i(h2+i
0 w3

2) (g) 0

146 26 197 i(h2
1w

3
2) (g) 0

148 27 + i 207 hi
0w

3
2h

3
0 (g) 0

151 27 210 h0w3
2h0h2 − gw1 · i(αd0w2

2)

151 28 217 d0e0w2
2g (g2) w2

1 · d0w2
2g

152 27 211 αgw2
2g (g) 0

152 27 212 i(c0w3
2) (g) 0

153 29 227 + 228 γw1w2
2g (g) 0

156 27 214 w3
2c0 (g) 0

156 28 + i 224 i(h1+i
0 αw3

2) (g) 0

157 28 225 e0gw2
2g (g2) gw1 · w1w2

2g

157 28 226 h1w3
2c0 (g) 0

158 30 241 gw1w2
2β

2 (g2) w2
1 · d0w2

2αβ

159 29 237 d0gw2
2γ (g) 0
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Table 8.6: R2-module generators of E4(tmf/ν), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) d4(x)

160 30 + i 246 h1+i
0 w3

2h
2
0α (g) 0

166 31 261 αd0gw2
2g (g) 0

168 29 244 h0w3
2g (g) w1 · d0gw2

2γ

168 30 256 h2
0w

3
2g (g) 0

168 31 + i 265 i(h1+i
0 α2w3

2) (g) 0

169 31 266 α2gw2
2γ (g) w2

1 · αgw2
2g

+ w2
1 · i(c0w3

2)

170 30 258 i(h1γw3
2) (g) gw1 · d0w2

2αβ

172 31 + i 270 hi
0w

3
2h0α2 (g) 0

175 31 273 h0w3
2αβ (g) w1 · αd0gw2

2g

176 31 275 i(δw3
2) (g) 0

176 33 291 g2w2
2α

3 (g) w2
1 · d0gw2

2γ

180 31 277 w3
2δ (g) 0

180 32 289 h0w3
2δ (g) 0

180 33 299 h2
0w

3
2δ (g) 0

180 34 + i 307 i(h1+i
0 α3w3

2) (g) 0

181 32 291 h1w3
2δ (g) 0

182 33 302 e0g2w2
2γ (g) 0

184 34 + i 315 h1+i
0 w3

2α
3 (g) 0

Table 8.7: The non-cyclic R2-module summands in E4(tmf/ν)

〈x1, x2〉

〈i(βg), h0w2h0h2〉 ∼=
Σ7,42R2 ⊕ Σ11,66R2

〈(g3, 0), (gw1, w1), (0, g)〉

〈i(βgw1w2
2), h0w3

2h0h2〉 ∼=
Σ27,166R2 ⊕ Σ27,178R2

〈(g, w1), (0, g)〉

Proposition 8.7. The 43 classes listed in Table 8.8 generate E4(tmf/ν) as a
module over E4(tmf).
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Table 8.8: E4(tmf)-module generators of E4(tmf/ν)

t − s s g x d4(x) reason

0 0 0 i(1) 0 E2 = 0

4 3 1 h3
0 0 E2 = 0

5 1 2 h1 0 h0-lin.

7 2 3 h0h2 0 E2 = 0

12 3 4 c0 0 E2 = 0

12 3 4 + 5 i(α) 0 E2 = 0

16 6 7 h0h2
0α 0 E2 = 0

24 4 9 g 0 E2 = 0

24 6 10 + 11 i(α2) w2
1 · h0h2 (1)

28 7 13 h0α2 0 E2 = 0

29 7 14 i(αe0) w2
1 · (c0 + i(α)) (2)

30 6 14 gh2
2 w1 · d0h0h2 (3)

31 6 16 αβ 0 E2 = 0

35 7 18 i(βg) w1 · i(αd0) (4)

36 7 19 δ 0 E2 = 0

40 10 24 h0α3 0 E2 = 0

48 10 30 + 31 α2g w2
1 · αβ j-nat.

52 11 35 w2h3
0 0 (5)

54 10 35 gβ2 w1 · d0αβ j-nat.

60 11 42 w2c0 0 E2 = 0

64 14 51 h0w2h2
0α 0 E3 = 0

76 15 66 w2h0α2 0 E4 = 0

84 15 73 w2δ 0 E3 = 0

88 18 87 h0w2α3 0 E3 = 0

100 19 105 w2
2h

3
0 0 E3 = 0

103 18 103 w2
2h0h2 0 E3 = 0

108 19 112 w2
2c0 0 E3 = 0

108 19 112 + 113 i(αw2
2) 0 E3 = 0

112 22 132 h0w2
2h

2
0α 0 E3 = 0

120 22 141 + 142 i(α2w2
2) w2

1 · w2
2h0h2 (6)

124 23 152 w2
2h0α2 0 E3 = 0

125 23 153 i(αe0w2
2) w2

1 · w2
2(c0 + i(α)) (7)
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Table 8.8: E4(tmf)-module generators of E4(tmf/ν) (cont.)

t − s s g x d4(x) reason

126 22 147 h1w2
2γ w1 · d0w2

2h0h2 (8)

127 22 148 w2
2αβ 0 E3 = 0

132 23 159 w2
2δ 0 E3 = 0

136 26 185 h0w2
2α

3 0 E3 = 0

144 26 194 + 195 α2w2
2g w2

1 · w2
2αβ j-nat.

148 27 207 w3
2h

3
0 0 (9)

156 27 214 w3
2c0 0 E4 = 0

160 30 246 h0w3
2h

2
0α 0 E3 = 0

172 31 270 w3
2h0α2 0 E4 = 0

180 31 277 w3
2δ 0 E4 = 0

184 34 315 h0w3
2α

3 0 E3 = 0

Proof. Most of the factorizations are visible by comparing Table 8.6 with
Tables 5.5 and 8.8. The non-obvious factorizations are

h1γ = 615 = γ · h1 + gh2
2

gh2
0α = 919 = d0e0 · h1

i(h0αw2) = 1244 = h0 · w2c0

d0gγ = 1349 = d0γ · g

α2gγ = 1562 = αe0g · g

i(h1γw2) = 1462 = h2
1w2 · g

γ2γ = 1568 + 1569 = βg2 · g + h0w2 · αβ

g2α3 = 1772 = αe0g · αβ
e0g

2γ = 1782 = e0γg · g

gw2
2h

2
0α = 25172 = d0e0w

2
2 · h1

g5β2 + gw1w
2
2h

2
2 = 26179 + 26180 = g4 · gβ2 + d0 · i(α2w2

2)

i(h0αw3
2) = 28224 = h0 · w3

2c0

d0gw2
2γ = 29237 = d0γw2

2 · g

α2gw2
2γ = 31266 = αe0gw2

2 · g

i(h1γw3
2) = 30258 = h2

1w
3
2 · g

g2w2
2α

3 = 33291 = αe0gw2
2 · αβ

e0g
2w2

2γ = 33302 = e0γgw2
2 · g ,

which we verify using ext. !
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Proposition 8.8. The d4-differentials on the E4(tmf)-module generators for
E4(tmf/ν) are as listed in Table 8.8.

Proof. Many of the differentials vanish because the target bidegree is or be-
comes zero at the E2-, E3- or E4-term. These are indicated by “E2 = 0”, “E3 = 0”
or “E4 = 0”, respectively.

First, d4(x) = 0 for x = i(1), h3
0, h0h2, c0, i(α), h0h2

0α, g, h0α2, αβ, δ, h0α3

and w2c0, because in each case the target group is zero at E2 = E2(tmf/ν). This

is clear from Figures 1.32 to 1.34. Next, d4(x) = 0 for x = h0w2h2
0α, w2δ, h0w2α3,

w2
2h

3
0, w2

2h0h2, w2
2c0, i(αw2

2), h0w2
2h

2
0α, w2

2h0α2, w2
2αβ, w2

2δ, h0w2
2α

3, h0w3
2h

2
0α and

h0w3
2α

3, because in each case the target group is zero at E3.

h0w2h2
0α: The target is generated by 1850 = g2w2

1h0h2 = d2(w2
1 · i(w2)).

w2δ: The target is generated by 1978 = i(βg3w1) = d2(g · w2h2
0α), using g ·

h0h0h2 = 0.
h0w2α3: The target is generated by 2287 = g2w2

1αβ = d2(w2
1 · w2g).

w2
2h

3
0: The target bidegree is generated at E2 by 23108 = gw2

1i(βw2). Here
d2(gw2

1 · i(βw2)) = gw2
1 · (g2 · e0h1 + i(h0d0w2)) = g3w2

1 · e0h1 0= 0 at E2,
using g · i(h0d0) = 0.

w2
2h0h2: The target is generated by 22113 = g3w1β2 = d2(d0e0w2g).
w2

2c0: The target is generated by 23122 = βg3w1g = d2(g ·w2α3), using g ·h0αβ =
0.

i(αw2
2): The target is generated by 23122 = βg3w1g = d2(g · w2α3).

h0w2
2h

2
0α: The target bidegree is generated at E2 by 26133 = g2w2

1w2h0h2, and
d2(g2w2

1 · w2h0h2) = g2w2
1 · g2 · i(d0) = g4w2

1 · i(d0) 0= 0 at E2.
w2

2h0α2: The target bidegree is generated at E2 by 27158 = g5w1i(β) and 27159 =

gw2
1 · βw2g. Here g5w1i(β) = d2(g3 · w2h2

0α), using g · h0h0h2 = 0, and
d2(gw2

1 ·βw2g) = gw2
1 · g2 · e0γ = g3w2

1 · e0γ 0= 0 at E2, using g ·h0d0g = 0.

w2
2αβ: The target bidegree is generated at E2 by 26164 = g3w1 · w2h2

2, and

d2(g3w1 · w2h2
2) = g3w1 · (g2 · i(e0) + i(h1c0w2)) = g5w1 · i(e0) 0= 0, using

g · i(h1c0) = 0.
w2

2δ: The target bidegree is generated at E2 by 27175 = g3w1 · i(βw2), and
d2(g3w1 · i(βw2)) = g3w1 · (g2 · e0h1 + i(h0d0w2)) = g5w1 · e0h1 0= 0, using
g · i(h0d0) = 0.

h0w2
2α

3: The target bidegree is generated at E2 by 30188 = g6w1h0h2 and 30189 =
g2w2

1 · w2αβ. Here g6w1h0h2 = d2(g4w1 · i(w2)), and d2(g2w2
1 · w2αβ) =

g2w2
1 · g2 · d0g = g4w2

1 · d0g 0= 0 at E2.

h0w3
2h

2
0α: The target is generated by 34253 = g6w1αβ = d2(g4w1 · g) and 34254 =

g2w2
1w

2
2h0h2 = d2(w2

1w
2
2 · w2).

h0w3
2α

3: The target bidegree is generated at E2 by 38327 = g6w1 · w2h0h2 and
38328 = g2w2

1w
2
2αβ. Here d2(g6w1 · w2h0h2) = g6w1 · g2 · i(d0) = g8w1 ·

i(d0) 0= 0 at E2. On the other hand, g2w2
1w

2
2αβ = d2(w2

1w
2
2 · w2g).

Finally, d4(x) = 0 for x = w2h0α2, w3
2c0, w3

2h0α2 and w3
2δ because in each case

the target group is zero at E4.

w2h0α2: The target bidegree is generated at E2 by 1967 = w2
1 · βgg, and d3(w2

1 ·
βgg) = gw3

1 · gh2
2 0= 0 at E3.
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w3
2c0: The target bidegree is generated at E2 by 31237 = g6 · i(βg) and 31238 =

g3w1 · βw2g. Here d2(g3w1 · βw2g) = g3w1 · (g2 · e0γ + h0d0w2g) = g5w1 ·
e0γ 0= 0 at E2, using g ·h0d0g = 0. Furthermore, d3(g3 ·i(w2

2)) = g6 ·i(βg).
w3

2h0α2: The target bidegree is generated at E2 by 35287 = g5w1 · i(βw2) and
35288 = w2

1 ·βgw2
2g. Here d2(g5w1·i(βw2)) = g5w1·(g2·e0h1+i(h0d0w2)) =

g7w1 ·e0h1 0= 0 at E2, using g ·i(h0d0) = 0. Furthermore, d3(w2
1 ·βgw2

2g) =

w2
1 · (g5 ·gβ2 +gw1 ·gw2

2h
2
2) = gw3

1w
2
2 ·gh2

2 0= 0 at E3, using g2w1 ·gβ2 = 0.
w3

2δ: The target bidegree is generated at E2 by 35308 = g6 · βgg and 35309 =

g3w1w2
2 ·i(β). Here d2(gw2

2 ·w2h2
0α) = gw2

2 ·(g2w1 ·i(β)+w1 ·h0w2h0h2) =
g3w1w2

2 · i(β), using g · h0h0h2 = 0. Finally, d3(g3 · w2
2g) = g6 · βgg.

The reason “h0-lin.” refers to h0-linearity, showing that d4(x) = 0 for x = h1.

h1: We have h0 · d4(h1) = d4(h0 · h1) = 0, since h0 · h1 = 0. This implies
d4(h1) = 0, because h0 acts injectively on the target group at E4.

The reason “j-nat.” refers to naturality with respect to j : Cν → S4, showing
that d4(x) is nonzero for x = α2g, gβ2 and α2w2

2g. Recall Table 5.5.

α2g: From d4(j(α2g)) = d4(α2g) = w2
1 · αβ 0= 0 in E4(tmf) we deduce that

d4(α2g) 0= 0 in E4(tmf/ν), and the only possible target is 1431 = w2
1 ·αβ.

gβ2: From d4(j(gβ2)) = d4(β2g) = w1 · α2e0 0= 0 in E4(tmf) we deduce that
d4(gβ2) 0= 0 in E4(tmf/ν), and the only possible target is 1438 = w1 ·d0αβ.

α2w2
2g: From d4(j(α2w2

2g)) = d4(α2gw2
2) = w2

1 · αβw2
2 0= 0 in E4(tmf) we deduce

that d4(α2w2
2g) 0= 0 in E4(tmf/ν). The target bidegree of the latter d4 is

generated at E2 by 30207 = w2
1 · w2

2αβ and 30208 = g4w1 · w2h0h2. Here
w2

1 · w2
2αβ survives to E4, while d2(g4w1 · w2h0h2) = g6w1 · i(d0) 0= 0.

Hence d4(α2w2
2g) = w2

1 · w2
2αβ.

The d4-differentials on the remaining module generators, x = i(α2), i(αe0), gh2
2,

i(βg), w2h3
0, i(α2w2

2), i(αe0w2
2), h1w2

2γ and w3
2h

3
0, can be found by the following

arguments, numbered (1) to (9), respectively.

(1) From the relation αγ = e0g in E2(tmf) and the differential d4(αe0g) = w2
1 ·

δ′ in E4(tmf) we deduce that γ · d4(i(α2)) = i(d4(α2γ)) = i(d4(αe0g)) =
w2

1 · i(δ′) = gw2
1 · i(α) 0= 0 in E4(tmf/ν). Hence d4(i(α2)) 0= 0, and

1010 = w2
1 · h0h2 is the only possible value.

(2) In case (1) we saw that g · d4(i(αe0)) = i(d4(αe0g)) 0= 0 in E4(tmf/ν), so
that d4(i(αe0)) 0= 0. By h0-linearity 1114 = w2

1 · (c0 + i(α)) is the only
possible value, since h0 · i(αe0) = 0.

(3) From the relation γ ·h1γ = 1138 = h0w2 ·h0h2, present at E2(tmf/ν), and
the differential d4(h0w2) = d0γw1 in E4(tmf), we deduce that γ·d4(h1γ) =
d0γw1 ·h0h2 = 1539 = gw1 · i(αd0) 0= 0 in E4(tmf/ν). Hence d4(h1γ) 0= 0,
and 1015 = w1 · d0h0h2 is the only possible value. Since d4(γ · h1) = 0,

and gh2
2 = 614 = h1γ + γh1, it follows that d4(gh2

2) = w1 · d0h0h2.
(4) From the relation gw1 · i(βg) = w1 · h0w2 · h0h2 in E4(tmf/ν), arising at

E3 from d2(w2h2
0α), and the differential d4(h0w2) = d0γw1 in E4(tmf),

we deduce as in case (3) that gw1 · d4(i(βg)) = w1 · d0γw1 · h0h2 = 1950 =
gw2

1 ·i(αd0) 0= 0 in E4(tmf/ν). Hence d4(i(βg)) 0= 0, and 1118 = w1 ·i(αd0)
is the only possible value.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



290 8. THE ADAMS SPECTRAL SEQUENCE FOR tmf/ν

(5) The target group of d4 on w2h3
0 is generated by 1535 = w2

1 · i(βg), and

d4(w2
1 · i(βg)) = w3

1 · i(αd0) 0= 0 by case (4). Hence d4(w2h3
0) = 0, since

d2
4 = 0.

(6) From the relation αγ = e0g in E2(tmf) and the differential d4(αe0gw2
2) =

w2
1 · δ′w2

2 in E4(tmf) we deduce that γ · d4(i(α2w2
2)) = i(d4(α2γw2

2)) =
i(d4(αe0gw2

2)) = w2
1 · i(δ′w2

2) = gw2
1 · i(αw2

2) 0= 0 in E4(tmf/ν). Hence
d4(i(α2w2

2)) 0= 0.
The target group is generated at E2 by 26149 = w2

1w
2
2h0h2 and 26150 =

g4w1αβ. Here w2
1 ·w2

2h0h2 0= 0 in E4(tmf/ν), whereas g4w1αβ = d2(g2w1 ·
w2g) is 0 at E3 and E4. Hence d4(i(α2w2

2)) = w2
1 · w2

2h0h2.
(7) In case (6) we saw that g·d4(i(αe0w2

2)) = i(d4(αe0gw2
2)) 0= 0 in E4(tmf/ν),

so that d4(i(αe0w2
2)) 0= 0.

By h0-linearity the possible targets are spanned at E2 by 27160 =
g4w1 ·αg and 27162 = w2

1 · w2
2(c0 + i(α)). Here g4w1 ·αg = d2(g2w1 · w2γ)

is 0 at E3 and E4, so the only possible value is d4(i(αe0w2
2)) = w2

1 ·w2
2(c0+

i(α)).
(8) From the relation γ · h1w2

2γ = 27210 = h0w3
2 · h0h2, present at E2(tmf/ν),

and the differential d4(h0w3
2) = d0γw1w2

2 in E4(tmf), we deduce that
γ·d4(h1w2

2γ) = d0γw1w2
2 ·h0h2 = 31227 = gw1·i(αd0w2

2) 0= 0 in E4(tmf/ν).
Hence d4(h1w2

2γ) 0= 0.
The target group is generated at E2 by 26162 = g4 ·d0αβ and 26163 =

w1w2
2 · d0h0h2. Here g4 · d0αβ = d2(g2 · d0w2g) is 0 at E3 and E4. Hence

d4(h1w2
2γ) = w1 · d0w2

2h0h2.

(9) The target group of d4 on w3
2h

3
0 is generated at E2 by 31218 = g5w1 · βg

and 31219 = gw2
1w

2
2 · i(β). Here g5w1 · βg = d2(g3 · w2α3) is 0 at E3 and

E4, using g · h0αβ = 0. Furthermore, using the relation βgw1 = αd0e0

and case (7) we calculate that d4(w1 · i(βgw1w2
2)) = d4(d0w1 · i(αe0w2

2)) =

d0w3
1 ·w2

2(c0 + i(α)) = 35223 = w3
1 · i(αd0w2

2) 0= 0 at E4. Hence d4(w3
2h

3
0) =

0, since d2
4 = 0. !

Theorem 8.9. The d4-differential in E4(tmf/ν) is R2-linear. Its values on a
set of R2-module generators are listed in Table 8.6.

Proof. The classes g, w1 and w4
2 are d4-cycles in E4(tmf), so multiplication

by each of these commutes with the d4-differential in E4(tmf/ν).
The d4-differential on the R2-module generators x in Table 8.6 is given by the

Leibniz rule applied to the (implicit and explicit) factorizations in the proof of
Proposition 8.7, and the d4-differentials from Tables 5.5 and 8.8. In the following
cases we use ext to rewrite the output of the Leibniz rule in terms of the R2-module
presentation of E4(tmf/ν).

• d4(i(h0w2)) = i(d0γw1) = 1331 = gw1 · d0h1

• d4(i(h2
1w2)) = i(α2e0w1) = 1434 = gw1 · d0h0h2 = 0 at E4

• d4(h0w2 · h0h2) = d0γw1 · h0h2 = 1539 = gw1 · i(αd0)
• d4(h0w2 · g) = d0γw1 · g = 1761 = w1 · d0gγ
• d4(α2gγ) = d4(αe0g · g) = δ′w2

1 · g = 1962 + 1963 = w2
1 ·αgg + w2

1 · i(c0w2)
• d4(i(h1γw2)) = d4(h2

1w2 · g) = α2e0w1 · g = 1865 = gw1 · d0αβ
• d4(γ2γ) = d4(βg2 ·g+h0w2 ·αβ) = αd0gw1 ·g+d0γw1 ·αβ = 1972+1972 = 0
• d4(h0w2 · αβ) = d0γw1 · αβ = 1972 = w1 · αd0gg
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• d4(g2α3) = d4(αe0g · αβ) = δ′w2
1 · αβ = 2175 = w2

1 · d0gγ
• d4(e0g2γ) = d4(e0γg · g) = γgw2

1 · g = 2184 = gw2
1 · γg = 0 at E4

• d4(g5β2 + gw1w2
2h

2
2) = d4(g4 · gβ2 + d0 · i(α2w2

2)) = g4 · d0w1αβ + d0 ·
w2

1w
2
2h0h2 = w2

1 · d0w2
2h0h2 at E4

• d4(i(h0w3
2)) = i(w1 · d0γw2

2) = 29207 = gw1 · d0w2
2h1

• d4(i(h2
1w

3
2)) = i(w1 · α2e0w2

2) = 30214 = gw1 · d0w2
2h0h2 = 0 at E4

• d4(h0w3
2 · h0h2) = d0γw1w2

2 · h0h2 = 31227 = gw1 · i(αd0w2
2)

• d4(h0w3
2 · g) = d0γw1w2

2 · g = 33274 = w1 · d0gw2
2γ

• d4(α2gw2
2γ) = d4(αe0gw2

2 · g) = δ′w2
1w

2
2 · g = 35279 +35280 = w2

1 ·αgw2
2g +

w2
1 · i(c0w3

2)
• d4(i(h1γw3

2)) = d4(h2
1w

3
2 · g) = α2e0w1w2

2 · g = 34282 = gw1 · d0w2
2αβ

• d4(h0w3
2 · αβ) = d0γw1w2

2 · αβ = 35297 = w1 · αd0gw2
2g

• d4(g2w2
2α

3) = d4(αe0gw2
2 · αβ) = δ′w2

1w
2
2 · αβ = 37304 = w2

1 · d0gw2
2γ

• d4(e0g2w2
2γ) = d4(e0γgw2

2 ·g) = γgw2
1w

2
2 ·g = gw1 ·γw1w2

2g = 0 at E4. !

8.5. The E∞-term for tmf/ν

It is now a routine matter to compute E5 of the Adams spectral sequence for
tmf/ν. This is carried out in Appendix D.3. The result is a direct sum of cyclic
R2-modules, and is recorded in Table 8.9.

Table 8.9: R2-module generators of E5(tmf/ν), with i ≥ 0 in each
h0-tower

t − s s g x Ann(x) dec.

0 0 0 i(1) (g5, gw1) gen.

0 1 + i 0 i(h1+i
0 ) (g) h1+i

0 · i(1)

1 1 1 i(h1) (g) h1 · i(1)

2 2 1 i(h2
1) (g) h2

1 · i(1)

4 3 + i 1 hi
0h

3
0 (g) hi

0 · gen.

5 1 2 h1 (g6, g2w1, gw2
1) gen.

6 2 2 h1h1 (g) h1 · h1

7 2 3 h0h2 (g2, gw1, w2
1) gen.

7 3 2 h0h0h2 (g, w1) h0 · h0h2

8 3 3 i(c0) (g, w1) h1 · h0h2

12 3 4 c0 (g) gen.

12 3 5 c0 + i(α) (g2, w2
1) gen.

12 4 + i 4 i(h1+i
0 α) (g) h1+i

0 · c0

13 4 5 h1c0 (g, w1) h1 · c0

14 4 6 i(d0) (g2, gw1, w2
1) d0 · i(1)

16 6 + i 7 h1+i
0 h2

0α (g) hi
0 · gen.

19 5 8 d0h1 (g2, gw1, w2
1) d0 · h1
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Table 8.9: R2-module generators of E5(tmf/ν), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) dec.

21 6 9 d0h0h2 (g2, w1) d0 · h0h2

24 4 9 g (g6, g2w1, gw2
1) gen.

24 5 10 h0g (g) h0 · g

24 6 11 h2
0g (g) h2

0 · g

24 7 + i 11 i(h1+i
0 α2) (g) h3+i

0 · g

25 5 12 h1g (g) h1 · g

26 6 12 i(h1γ) (g) h2
1 · g

26 7 12 i(αd0) (g2, w1) d0 · (c0 + i(α))

28 7 + i 13 hi
0h0α2 (g) hi

0 · gen.

30 6 14 + 15 γh1 (g5, gw1) γ · h1

31 6 16 αβ (g2, w2
1) gen.

31 7 15 h0αβ (g, w1) h0 · αβ
32 7 17 i(δ) (g, w1) h1 · αβ
36 7 19 δ (g) gen.

36 8 19 h0δ (g) h0 · δ
36 9 20 h2

0δ (g) h2
0 · δ

36 10 + i 20 i(h1+i
0 α3) (g) h3+i

0 · δ
37 8 20 + 21 δ′h1 (g2, w1) δ′ · h1

37 8 21 h1δ (g) h1 · δ
38 8 22 d0g (g2, w2

1) d0 · g

40 10 + i 24 h1+i
0 α3 (g) hi

0 · gen.

44 10 27 i(α2g) (g, w1) d0γ · h1

45 10 28 d0αβ (g2, w1) d0 · αβ
48 10 + i 31 i(h2+i

0 w2) (g) h2+i
0 w2 · i(1)

49 9 30 + 31 γg (g5, gw1) γ · g

50 10 33 i(h2
1w2) (g) h1γ · g

51 12 34 i(d0e0g) (g, w1) αd0g · h1

52 11 + i 35 hi
0w2h3

0 (g) hi
0 · gen.

55 11 37 + 38 γ2h1 (g2, w1) γ2 · h1

56 11 39 + 40 δ′g (g, w2
1) δ′ · g

56 11 40 i(c0w2) (g) c0w2 · i(1)
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Table 8.9: R2-module generators of E5(tmf/ν), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) dec.

56 13 39 + 40 i(α3g (g) (α3g

+ h0w1w2) + h0w1w2) · i(1)

60 11 42 w2c0 (g) gen.

60 12 + i 44 i(h1+i
0 αw2) (g) h1+i

0 · w2c0

61 12 46 h1w2c0 (g) h1 · w2c0

62 13 47 e0g2h1 (g) h2
1 · w2c0

63 13 49 d0gγ (g, w1) d0γ · g

64 14 + i 51 h1+i
0 w2h2

0α (g) hi
0 · gen.

70 15 58 αd0gg (g, w1) αd0g · g

72 14 60 h2
0w2g (g) h2

0w2 · g

72 15 + i 61 i(h1+i
0 α2w2) (g) h3+i

0 w2 · g

74 14 61 + 62 γ2g (g5, gw1) γ2 · g

76 15 + i 66 hi
0w2h0α2 (g) hi

0 · gen.

79 15 68 + 69 γ2γ (g2, w1) gen.

80 15 71 i(δw2) (g) δw2 · i(1)

80 17 72 + 73 (α3g (g) (α3g

+ h0w1w2)g + h0w1w2) · g

81 16 73 e0g2g (g) h1 · i(δw2)

84 15 73 w2δ (g) gen.

84 16 77 h0w2δ (g) h0 · w2δ

84 17 79 h2
0w2δ (g) h2

0 · w2δ

84 18 + i 80 i(h1+i
0 α3w2) (g) h3+i

0 · w2δ

85 16 79 h1w2δ (g) h1 · w2δ

86 17 82 e0g2γ (g) h2
1 · w2δ

88 18 + i 87 h1+i
0 w2α3 (g) hi

0 · gen.

96 17 + i 91 i(h1+i
0 w2

2) (g) h1+i
0 w2

2 · i(1)

97 17 93 i(h1w2
2) (g) h1w2

2 · i(1)

98 18 99 i(h2
1w

2
2) (g) h2

1w
2
2 · i(1)

100 19 + i 105 hi
0w

2
2h

3
0 (g) hi

0 · gen.

102 18 102 h1w2
2h1 (g) h1w2

2 · h1

103 18 103 w2
2h0h2 (g2, gw1, w2

1) gen.
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Table 8.9: R2-module generators of E5(tmf/ν), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) dec.

103 19 108 h0w2
2h0h2 (g, w1) h0 · w2

2h0h2

104 19 110 i(c0w2
2) (g, w1) h1 · w2

2h0h2

104 20 112 + 113 g4g + i(w1w2
2) (g) g4 · g + w1w2

2 · i(1)

108 19 112 w2
2c0 (g) gen.

108 19 113 w2
2c0 + i(αw2

2) (g2, w2
1) gen.

108 20 + i 118 i(h1+i
0 αw2

2) (g) h1+i
0 · w2

2c0

109 20 120 h1w2
2c0 (g, w1) h1 · w2

2c0

109 21 124 w1w2
2h1 (g2, gw1) w1w2

2 · h1

110 20 121 i(d0w2
2) (g2, gw1, w2

1) d0w2
2 · i(1)

112 22 + i 132 h1+i
0 w2

2h
2
0α (g) hi

0 · gen.

115 21 131 d0w2
2h1 (g2, gw1, w2

1) d0w2
2 · h1

117 22 138 d0w2
2h0h2 (g2, w1) d0w2

2 · h0h2

120 21 134 h0w2
2g (g) h0w2

2 · g

120 22 142 h2
0w

2
2g (g) h2

0w
2
2 · g

120 23 + i 147 i(h1+i
0 α2w2

2) (g) h3+i
0 w2

2 · g

121 21 136 h1w2
2g (g) h1w2

2 · g

122 22 144 i(h1γw2
2) (g) h2

1w
2
2 · g

122 23 149 i(αd0w2
2) (g2, gw1, w2

1) d0w2
2 · (c0 + i(α))

124 23 + i 152 hi
0w

2
2h0α2 (g) hi

0 · gen.

127 22 148 w2
2αβ (g2, w2

1) gen.

127 23 155 h0w2
2αβ (g, w1) h0 · w2

2αβ

128 23 157 i(δw2
2) (g, w1) h1 · w2

2αβ

128 24 162 w1w2
2g (g2, gw1) w1w2

2 · g

132 23 159 w2
2δ (g) gen.

132 24 167 h0w2
2δ (g) h0 · w2

2δ

132 25 173 h2
0w

2
2δ (g) h2

0 · w2
2δ

132 26 + i 177 i(h1+i
0 α3w2

2) (g) h3+i
0 · w2

2δ

133 24 168 + 169 δ′w2
2h1 (g2, w1) δ′w2

2 · h1

133 24 169 h1w2
2δ (g) h1 · w2

2δ

134 24 170 d0w2
2g (g2, w2

1) d0w2
2 · g
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Table 8.9: R2-module generators of E5(tmf/ν), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) dec.

134 26 179 + 180 γ2g3g (g) γ2g3 · g

+ 181 + γw1w2
2h1 + γw1w2

2 · h1

136 26 + i 185 h1+i
0 w2

2α
3 (g) hi

0 · gen.

140 26 190 i(α2gw2
2) (g, w1) d0γw2

2 · h1

141 26 191 d0w2
2αβ (g2, gw1, w2

1) d0w2
2 · αβ

144 26 + i 195 i(h2+i
0 w3

2) (g) h2+i
0 w3

2 · i(1)

146 26 197 i(h2
1w

3
2) (g) h1γw2

2 · g

147 28 211 i(d0e0gw2
2) (g, w1) αd0gw2

2 · h1

148 27 + i 207 hi
0w

3
2h

3
0 (g) hi

0 · gen.

152 27 211 + 212 δ′w2
2g (g, w2

1) δ′w2
2 · g

152 27 212 i(c0w3
2) (g) c0w3

2 · i(1)

152 29 224 + 225 i(α3gw2
2 (g) (α3gw2

2

+ h0w1w3
2) + h0w1w3

2) · i(1)

153 29 227 + 228 γw1w2
2g (g) γw1w2

2 · g

156 27 214 w3
2c0 (g) gen.

156 28 + i 224 i(h1+i
0 αw3

2) (g) h1+i
0 · w3

2c0

157 28 226 h1w3
2c0 (g) h1 · w3

2c0

158 29 235 e0g2w2
2h1 (g) h2

1 · w3
2c0

159 29 237 d0gw2
2γ (g, w1) d0γw2

2 · g

160 30 + i 246 h1+i
0 w3

2h
2
0α (g) hi

0 · gen.

166 31 261 αd0gw2
2g (g, w1) αd0gw2

2 · g

168 30 256 h2
0w

3
2g (g) h2

0w
3
2 · g

168 31 + i 265 i(h1+i
0 α2w3

2) (g) h3+i
0 w3

2 · g

172 31 + i 270 hi
0w

3
2h0α2 (g) hi

0 · gen.

176 31 275 i(δw3
2) (g) δw3

2 · i(1)

176 33 291 + 292 (α3gw2
2 (g) (α3gw2

2

+ h0w1w3
2)g + h0w1w3

2) · g

177 32 285 e0g2w2
2g (g) h1 · i(δw3

2)

178 34 302 + 303 γ2w1w2
2g (g) γ2w1w2

2 · g

180 31 277 w3
2δ (g) gen.

180 32 289 h0w3
2δ (g) h0 · w3

2δ
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Table 8.9: R2-module generators of E5(tmf/ν), with i ≥ 0 in each
h0-tower (cont.)

t − s s g x Ann(x) dec.

180 33 299 h2
0w

3
2δ (g) h2

0 · w3
2δ

180 34 + i 307 i(h1+i
0 α3w3

2) (g) h3+i
0 · w3

2δ

181 32 291 h1w3
2δ (g) h1 · w3

2δ

182 33 302 e0g2w2
2γ (g) h2

1 · w3
2δ

184 34 + i 315 h1+i
0 w3

2α
3 (g) hi

0 · gen.

Next, we determine a set of E5(tmf)-module generators for E5(tmf/ν), and
express the remaining R2-module generators in terms of this module structure. The
results are listed in the following proposition, and in the dec.-column of Table 8.9.

Proposition 8.10. The 34 classes listed in Table 8.10 generate E5(tmf/ν) as
a module over E5(tmf).

Table 8.10. E5(tmf)-module generators of E5(tmf/ν)

t − s s g x

0 0 0 i(1)

4 3 1 h3
0

5 1 2 h1

7 2 3 h0h2

12 3 4 c0

12 3 5 c0 + i(α)

16 6 7 h0h2
0α

24 4 9 g

28 7 13 h0α2

31 6 16 αβ

36 7 19 δ

40 10 24 h0α3

52 11 35 w2h3
0

60 11 42 w2c0

64 14 51 h0w2h2
0α

76 15 66 w2h0α2

79 15 68 + 69 γ2γ

t − s s g x

84 15 73 w2δ

88 18 87 h0w2α3

100 19 105 w2
2h

3
0

103 18 103 w2
2h0h2

108 19 112 w2
2c0

108 19 113 w2
2c0 + i(αw2

2)

112 22 132 h0w2
2h

2
0α

124 23 152 w2
2h0α2

127 22 148 w2
2αβ

132 23 159 w2
2δ

136 26 185 h0w2
2α

3

148 27 207 w3
2h

3
0

156 27 214 w3
2c0

160 30 246 h0w3
2h

2
0α

172 31 270 w3
2h0α2

180 31 277 w3
2δ

184 34 315 h0w3
2α

3

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



8.5. THE E∞-TERM FOR tmf/ν 297

Proof. Most of the factorizations are evident from Tables 5.8 and 8.9. Using
ext, we find the following less obvious factorizations, which are valid at E2:

i(c0) = 33 = h1 · h0h2

i(h0α) = 44 = h0 · c0

i(h0α
2) = 711 = h3

0 · g

i(h1γ) = 612 = h2
1 · g

i(αd0) = 712 = d0 · (c0 + i(α))

i(δ) = 717 = h1 · αβ
i(h0α

3) = 1020 = h3
0 · δ

i(α2g) = 1027 = d0γ · h1

i(h2
1w2) = 1033 = h1γ · g

i(d0e0g) = 1234 = αd0g · h1

i(h0αw2) = 1244 = h0 · w2c0

i(h0d0w2) = 1348 = h2
1 · w2c0

d0gγ = 1349 = d0γ · g

i(h0α
2w2) = 1561 = h3

0w2 · g

i(h0α
3w2) = 1880 = h3

0 · w2δ

h0d0w2g = 1783 = h2
1 · w2δ .

Finally, we use the identities

e0g
2h1 = i(h0d0w2) + d2(i(βw2))

e0g
2g = h1 · i(δw2) + d2(w2β2)

e0g
2γ = h0d0w2g + d2(βw2g)

and their w2
2-multiples, which can be read off from Table 8.2. !

Proposition 8.11. Charts showing E5(tmf/ν) for 0 ≤ t − s ≤ 192 are given
in Figures 8.1 to 8.8. All nonzero h0- and h1-multiplications are displayed. All h2-
multiplications are zero. The red dots indicate w1-power torsion classes, and black
dots indicate w1-periodic classes. All R2-module generators are labeled, except those
that are also h0-, h1- or h2-multiples.

Proof. Table 8.9 exhibits the E5-term as a direct sum of cyclic R2-modules.
Most of the nontrivial h0- and h1-multiplications are evident from the x- and dec.-
columns of that table. The remaining nonzero h0- and h1-multiplications are found
by inspection of the E2-term, as calculated by ext and displayed in Figures 1.32
to 1.35. Those valid at the E2-term are:

h1 · h1h1 = h0h0h2

h1 · (c0 + i(α)) = h1c0

h1 · γh1 = h0αβ

h0 · i(α3g + h0w1w2) = w1 · i(h2
0w2)
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0 4 8 12 16 20 24
0

4

8

12

16

i(1)

h3
0

h1

h0h2

c0
c0+i(α)

i(d0)

h0h2
0α

d0h1

d0h0h2

g

Figure 8.1. E5(tmf/ν) = E∞(tmf/ν) for 0 ≤ t − s ≤ 24

24 28 32 36 40 44 48
4

8

12

16

20

g

i(αd0) h0α2

γh1 αβ

δ

δ′h1
d0g

h0α3 i(α2g) d0αβ i(h2
0w2)

Figure 8.2. E5(tmf/ν) = E∞(tmf/ν) for 24 ≤ t − s ≤ 48
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48 52 56 60 64 68 72
8

12

16

20

24

i(h2
0w2)

γg

i(d0e0g)

w2h3
0

γ2h1 δ′g

i(c0w2)

i(α3g+h0w1w2)

w2c0

d0gγ

h0w2h2
0α

αd0gg

h2
0w2g

Figure 8.3. E5(tmf/ν) = E∞(tmf/ν) for 48 ≤ t − s ≤ 72

72 76 80 84 88 92 96
12

16

20

24

28

h2
0w2g γ2g

w2h0α2 γ2γ i(δw2)

(α3g+h0w1w2)g

w2δ

h0w2α3

i(h0w2
2)

Figure 8.4. E5(tmf/ν) = E∞(tmf/ν) for 72 ≤ t − s ≤ 96
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96 100 104 108 112 116 120
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0
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2h1 w2
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g4g+i(w1w2
2)

w2
2c0

w2
2c0+i(αw2

2)

w1w2
2

h1

i(d0w2
2)

h0w2
2h2

0α

d0w2
2h1

d0w2
2h0h2

h0w2
2g

Figure 8.5. E5(tmf/ν) = E∞(tmf/ν) for 96 ≤ t − s ≤ 120
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w2
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2

h1
d0w2

2g

(1)

(1):γ2g3g+γw1w2
2h1

h0w2
2α

3 i(α2gw2
2) d0w2

2αβ i(h2
0w3

2)

Figure 8.6. E5(tmf/ν) = E∞(tmf/ν) for 120 ≤ t − s ≤ 144
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144 148 152 156 160 164 168
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Figure 8.7. E5(tmf/ν) = E∞(tmf/ν) for 144 ≤ t − s ≤ 168
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2
)g

γ2w1w2
2g

w3
2δ

h0w3
2α

3

i(w4
2)

Figure 8.8. E5(tmf/ν) = E∞(tmf/ν) for 168 ≤ t − s ≤ 192
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h0 · (α3g + h0w1w2)g = w1 · h2
0w2g

h1 · h1w
2
2h1 = h0w

2
2h0h2

h0 · (g4g + i(w1w
2
2)) = w1 · i(h0w

2
2)

h1 · (g4g + i(w1w
2
2)) = w1 · i(h1w

2
2)

h1 · (w2
2c0 + i(αw2

2)) = h1w
2
2c0

h1 · w1w
2
2h1 = w1 · h1w

2
2h1

h0 · w1w
2
2g = w1 · h0w

2
2g

h1 · w1w
2
2g = w1 · h1w

2
2g

h0 · i(α3gw2
2 + h0w1w

3
2) = w1 · i(h2

0w
3
2)

h1 · γw1w
2
2g = w1 · i(h2

1w
3
2)

h0 · (α3gw2
2 + h0w1w

3
2)g = w1 · h2

0w
3
2g .

In addition, we have the relations

h1 · δ′g = h1 · i(c0w2) = g · δ′h1 + d2(w2h2
2)

h1 · δ′w2
2g = h1 · i(c0w

3
2) = g · δ′w2

2h1 + d2(w
3
2h

2
2) .

The h2-multiplications are zero, because ExtA(2)(M4, F2) is a bigraded algebra by
Lemma 1.39. !

Theorem 8.12. E5(tmf/ν) = E∞(tmf/ν).

Proof. To prove that the Adams spectral sequence for tmf/ν collapses at the
E5-term, we use Theorem 5.27 and show that each E5(tmf)-module generator x
listed in Table 8.10 is an infinite cycle, i.e., that dr(x) = 0 for each r ≥ 5. In most
cases this is clear because all target groups are trivial. Furthermore, all differentials
on h1 must vanish by h0-linearity.

The remaining cases are x = αβ, γ2γ, w2
2h0h2 and w2

2αβ, each of which is
(w1- or) w2

1-torsion. If dr(x) = y, then w2
1y = 0 at the Er-term. Since E5(tmf/ν)

is trivial in the topological degree of w2
1x, this can only happen if w2

1y = 0 at
the E5-term. Since all possible targets y are w1-torsion free at E5, this implies
y = 0. !
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CHAPTER 9

The homotopy groups of tmf

In this chapter we use our mod 2 Adams spectral sequence calculations, together
with the known image of π∗(tmf) in the ring of modular forms, to determine the
structure of π∗(tmf)∧2 ∼= π∗(tmf) ⊗ Z2 as a graded ring, or more precisely, as a
graded Z2-algebra. All spectra are hereafter implicitly completed at the prime 2
(until Chapter 13), but we shall omit this from the notation.

The algebra generators fall into eight families, parameterized, roughly speaking,
by the powers ∆k, 0 ≤ k ≤ 7, of the discriminant ∆. These are then made periodic
with period 192 by an element M ∈ π192(tmf) detected by ∆8. We name “M”
for Mark Mahowald, who first saw much of this structure. These generators are
listed in Figure 9.1. The k-th term in a family is written with the subscript k,
except that we usually omit the subscript 0 since the classes η, ν, ε, κ and κ̄ are
the images under the unit map S → tmf of classes known by those names in π∗(S).
The remaining classes ηk, νk, εk and κk are higher analogs of these. The classes in
the left part of Figure 9.1 have finite additive order, while those in the right part
are of infinite additive order.

η ν ε κ κ̄ B C M

η1 ν1 ε1 B1 C1 D1

ν2 B2 C2 D2

B3 C3 D3

η4 ν4 ε4 κ4 B4 C4 D4

ν5 ε5 B5 C5 D5

ν6 B6 C6 D6

B7 C7 D7

Figure 9.1. Z2-algebra generators of π∗(tmf)

These two sets of generators are intimately related. For example, in Chapter 10
we will see that the duality exhibited by tmf implies that the order of the subgroup
〈νk〉 generated by νk is equal to the index of 〈BD7−k〉 in 〈B7−k〉. For this formula
to apply for all 0 ≤ k ≤ 7, we will introduce the notations ν3 = η3

1 and ν7 = 0, even
though these classes are not algebra generators. We also extend the notation above
by the rule xk+8 = xkM for any generator x, for convenience in making general
statements.

The classes B = B0 and C = C0 map to generators of π8(ko) and π12(ko)
under a natural map tmf → ko, see Proposition 9.21. Accordingly, we refer to the
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class B as the “Bott element”. The classes νk, εk, κk and κ̄ are B-power torsion,
while the classes ηk, Bk, Ck, Dk and M are B-periodic. The classes Bk, Ck and Dk

map to the modular forms c4∆k, 2c6∆k and an appropriate 2-power multiple of ∆k,
respectively.

The classes Bk have a kind of dual aspect. Many of them have a 2-torsion class
in the same degree whose action on the B-power torsion submodule of π∗(tmf) is
the same. Mahowald referred to this with his statement that “ε tries to act like the
Bott element.” (See Proposition 9.40 for a precise statement of this.) For example,
there is a hidden relation εκ = Bκ ∈ π22(tmf). Since B is not in the image of
π∗(S) → π∗(tmf), this takes the subtler form εκ = {Pd0} in π∗(S), but is already

present there. Replacing B by the sum B̃ = B + ε simplifies this to the relation
B̃κ = 0. Since Bε = ε2 = 0, we have B̃2 = B2, so that a class is B-power torsion if
and only if it is B̃-power torsion. Both B and B̃ map to c4 in the ring of modular
forms, and are hard to distinguish in the elliptic [75] and Adams–Novikov [23]
spectral sequences. One of the virtues of the Adams spectral sequence for π∗(tmf)
is that the B-power torsion classes lie in low Adams filtration, making it relatively
easy to establish relations that are difficult to detect with other tools.

The classes Bk are the easiest to work with in the Adams spectral sequence,
but in the end we will find that using the B̃k gives the cleanest expression for the
algebra structure. In particular, the Z[M ]-subalgebra generated by the B̃k, Ck

and Dk is isomorphic to its image in the ring of modular forms. It also has an
extremely simple action on the B-power torsion generators. For example, the B̃k

and Ck annihilate them all, and the Ck annihilate the ηk as well.
The final section in this chapter gives a complete description of π∗(tmf) as

a Z2-algebra. This can be found in Theorems 9.51, 9.53 and 9.54, Figures 9.6
through 9.13, and Tables 9.8 and 9.9. In the end, there is one sign which we have
not determined: ν4ν6 = sνν2M , where s ∈ {±1}. This same sign appears in
ν4D4 = 2sνM and ν6D4 = 2sν2M .

The plan of the chapter is as follows.
In Section 9.1 we start by recalling the structure of E∞(tmf) as a graded F2-

algebra. It has the 43 generators shown in Table 9.1. As a preliminary definition, we
specify the Z2-algebra generators of π∗(tmf) displayed in Figure 9.1 by the classes
in E∞(tmf) that detect them, as shown in the E∞(tmf) and π∗(tmf) columns of
Table 9.1. This determines the generators of π∗(tmf) modulo higher Adams filtra-
tion. We also compute certain Massey products in the Adams spectral sequence
E2-term, which stem from multiplication by the discriminant ∆. They show that
our grouping into families is consistent, whether done in terms of the detecting
classes at E∞ or in terms of the image in modular forms.

In the next section, we determine all the hidden 2-, η- and ν-extensions in
E∞(tmf). Our calculations of the Adams spectral sequences for tmf/2 and tmf/ν
are key to our determination of the hidden 2- and ν-extensions. The η-extensions
follow from these. In the process, we refine our specification of the algebra genera-
tors so that the ηk and εk all have additive order 2, see Lemma 9.7. The last result
in this section is the interesting relation

ν2ν4 = ηε4 + η1κ̄
4 .

It exhibits a hidden ν-extension from the E∞-class detecting νν4 to the E∞-class
detecting ηε4. However, this is not the whole relation in homotopy: there is also
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the higher filtration term η1κ̄4. A hidden extension is simply the lowest filtration
part of a nonzero product that is zero at E∞.

In Section 9.3, we recall the homomorphism from π∗(tmf) to the ring of integral
modular forms. Next, in Section 9.4 we refine our definition of the 40 algebra
generators of π∗(tmf): For each generator we specify its image in modular forms,
together with its detecting class in E∞(tmf). This leaves some ambiguity in a
number of cases. Where possible, we eliminate this immediately. For example,
when we define η1 it will be apparent that we can add a term of higher Adams
filtration to ensure that η1B = ηB1, and we do this. Where indeterminacy remains
we make it explicit, and note where in the succeeding sections it will be reduced or
eliminated.

We determine the remaining multiplicative structure in Section 9.5, and in
Section 9.6 we put our description of the algebra π∗(tmf) in its final form.

9.1. Algebra generators for the E∞-term

The E∞-term of the Adams spectral sequence for tmf is generated as an F2-
algebra by the 43 classes listed in Table 5.10. These are reproduced in Table 9.1.
Each entry also lists an element of π∗(tmf) which represents it, the image of that
element in mf∗/2 (to be determined in Section 9.3), and the values of the Massey
products ∆(x) = 〈h2, g, x〉 and ∆′(x) = 〈x, h2, g〉 (which we determine next). An
entry “−” in the ∆ or ∆′ column means that the Massey product is not defined,
while an entry “?” indicates that we have not calculated this particular Massey
product.

Table 9.1: Algebra generators of E∞(tmf) and π∗(tmf)

t − s s g E∞(tmf) π∗(tmf) mf∗/2 ∆ ∆′

0 1 0 h0 2ι = 2D 2 − −
1 1 1 h1 η 0 − γ

3 1 2 h2 ν 0 0 −
8 3 2 c0 ε 0 δ {δ, δ′}
8 4 1 w1 B c4 − −
12 6 4 h3

0α C 2c6 h0α3 ?

14 4 4 d0 κ 0 − −
20 4 8 g κ̄ 0 − 0

24 7 7 h0α2 D1 8∆ h0 · h2
0w2 ?

25 5 11 γ η1 0 − h1w2

27 6 10 αβ ν1 0 − h0 · h2w2

32 7 11 δ B1 + ε1 c4∆ c0w2 ?

32 7 12 δ′ ε1 0 − c0w2

36 10 14 h0α3 C1 2c6∆ h3
0αw2 ?
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Table 9.1: Algebra generators of E∞(tmf) and π∗(tmf) (cont.)

t − s s g E∞(tmf) π∗(tmf) mf∗/2 ∆ ∆′

48 10 19 h2
0w2 D2 4∆2 − −

51 9 23 h2w2 ν2 0 0 −
56 11 24 c0w2 B2 c4∆2 δw2 {δw2, δ′w2}
56 13 26 + 27 α3g + h0w1w2 2B2 2c4∆2 − −
60 14 28 h3

0αw2 C2 2c6∆2 h0α3w2 ?

72 15 36 h0α2w2 D3 8∆3 h2
0 · h0w2

2 ?

80 15 41 δw2 B3 c4∆3 c0w2
2 ?

84 18 48 h0α3w2 C3 2c6∆3 h3
0αw2

2 ?

96 17 58 h0w2
2 D4 2∆4 − −

97 17 59 h1w2
2 η4 0 − γw2

2

99 17 60 h2w2
2 ν4 0 0 −

104 19 62 c0w2
2 ε4 0 δw2

2 {δw2
2, δ

′w2
2}

104 20 69 w1w2
2 B4 c4∆4 − −

108 22 71 h3
0αw2

2 C4 2c6∆4 h0α3w2
2 ?

110 20 74 d0w2
2 κ4 0 − −

120 23 82 h0α2w2
2 D5 8∆5 h0 · h2

0w
3
2 ?

123 22 82 αβw2
2 ν5 0 − h0 · h2w3

2

128 23 87 δw2
2 B5 + ε5 c4∆5 c0w3

2 ?

128 23 88 δ′w2
2 ε5 0 − c0w3

2

132 26 100 h0α3w2
2 C5 2c6∆5 h3

0αw3
2 ?

144 26 107 h2
0w

3
2 D6 4∆6 − −

147 25 113 h2w3
2 ν6 0 0 −

152 27 116 c0w3
2 B6 c4∆6 δw3

2 {δw3
2, δ

′w3
2}

152 29 131 α3gw2
2 2B6 2c4∆6 − −

+ 132 + h0w1w3
2

156 30 131 h3
0αw3

2 C6 2c6∆6 h0α3w3
2 ?

168 31 144 h0α2w3
2 D7 8∆7 h3

0 · w4
2 ?

176 31 149 δw3
2 B7 c4∆7 c0w4

2 ?

180 34 168 h0α3w3
2 C7 2c6∆7 h3

0αw4
2 ?

192 32 172 w4
2 M ∆8 − −
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Table 9.2: ∆ and ∆′ on certain decomposable elements of E∞(tmf)

t − s s g E∞(tmf) π∗(tmf) mf∗/2 ∆ ∆′

0 3 0 h3
0 8ι = 8D 8 h0α2 h0α2

24 7 7 h0α2 D1 8∆ h3
0w2 ?

48 11 19 h3
0w2 2D2 8∆2 h0α2w2 h0α2w2

72 15 36 h0α2w2 D3 8∆3 h3
0w

2
2 ?

96 19 57 h3
0w

2
2 4D4 8∆4 h0α2w2

2 h0α2w2
2

120 23 82 h0α2w2
2 D5 8∆5 h3

0w
3
2 ?

144 27 111 h3
0w

3
2 2D6 8∆6 h0α2w3

2 ?

168 31 144 h0α2w3
2 D7 8∆7 h3

0w
4
2 ?

8 7 1 h3
0w1 8B 8c4 h0α2w1 ?

32 11 10 h0α2w1 8B1 8c4∆ h3
0w1w2 ?

56 15 24 h3
0w1w2 8B2 8c4∆2 h0α2w1w2 ?

80 19 43 h0α2w1w2 8B3 8c4∆3 h3
0w1w2

2 ?

104 23 66 h3
0w1w2

2 8B4 8c4∆4 h0α2w1w2
2 ?

128 27 94 h0α2w1w2
2 8B5 8c4∆5 h3

0w1w3
2 ?

152 31 127 h3
0w1w3

2 8B6 8c4∆6 h0α2w1w3
2 ?

176 35 164 h0α2w1w3
2 8B7 8c4∆7 h3

0w1w4
2 ?

9.1.1. The Massey products ∆ and ∆′. The discriminant ∆ = (c2
6 −

c3
4)/1728 is not in the image of the map tmf∗ → mf∗/2. There is a class in the

E2-term of the Adams–Novikov spectral sequence that would have mapped to the
discriminant had it survived, but which supports a differential d5(∆) = h2g im-
posing the relation νκ̄ = 0. In the Adams spectral sequence, there is no such
class at E2, but precursor spectral sequences like the May spectral sequence (where
d4(b2

30) = h12b2
21 by [144, §3.2] or [81, §3.2]) and the Davis–Mahowald spectral

sequence (where d1(x4
7) = h2g by Lemma 3.28) have differentials that impose the

relation h2g = 0. Any such class gives rise to a Massey product at E2 (Adams spec-
tral sequence) or E6 (Adams–Novikov spectral sequence) which, in favorable cases,
detects the Toda bracket 〈ν, κ̄,−〉. In the Adams spectral sequence this Massey
product is ∆(x) = 〈h2, g, x〉. Here, we compute this Massey product and a related
one at E2 of the Adams spectral sequence, and show that they group the generators
of π∗(tmf) into a small number of families, explaining and justifying our notations
for these generators.

Definition 9.1. Let E2 = ExtA(2)(F2, F2). For x ∈ E2 satisfying gx = 0, let

∆(x) = 〈h2, g, x〉 ∈ E2/(h2E2 + E2x) .

For x ∈ E2 satisfying h2x = 0, let

∆′(x) = 〈x, h2, g〉 ∈ E2/(xE2 + E2g) .
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As is customary, we regard these as subsets of E2, but when they are sin-
gletons {y} we will write them simply as y. Since E2(tmf) = 0 in bidegree
(t − s, s) = (24, 4), the contributions E2x and xE2 to the indeterminacy always
vanish. Hence the indeterminacy of ∆(x) is h2E2, and that of ∆′(x) is E2g.

Theorem 9.2. The Massey products ∆(x) are shown for classes detecting the
algebra generators of E∞(tmf) in Table 9.1, and for the other elements here in
Table 9.2. Repeated application of ∆ gives classes detecting the following sequences
of elements of π∗(tmf):

• 8D 2→ D1 2→ 2D2 2→ D3 2→ 4D4 2→ D5 2→ 2D6 2→ D7 2→ 8M.
• C 2→ C1 2→ C2 2→ C3 2→ C4 2→ C5 2→ C6 2→ C7 2→ CM.
• B+ε 2→ B1+ε1 2→ B2 2→ B3 2→ B4+ε4 2→ B5+ε5 2→ B6 2→ B7 2→ (B+ε)M.
• 8B 2→ 8B1 2→ 8B2 2→ 8B3 2→ 8B4 2→ 8B5 2→ 8B6 2→ 8B7 2→ 8BM.

Proof. These calculations are a simple matter for ext: We compute the chain
map for the cocycle sg = s g and inspect the file s g/brackets.sym. The lines
which record the Massey products 〈h2, g,−〉 are all of the form

s1 g1 in < h2, 8, s g >.

where s1 − s = 4. This difference in degrees tells us that the middle term is
g = 48 = 4 8, and the presence of this line says that the coefficient of s1 g1 in the
Massey product is nonzero, if the Massey product is defined. Thus, for example

7 7 in < h2, 8, 3 0 >

tells us that the coefficient of the generator 77 = 7 7, detecting h0α2, in the Massey
product 〈h2, g, h3

0〉 is nonzero. The Massey product is defined and there are no other
lines indicating that other terms occur in the Massey product, so we conclude that
∆(h3

0) = 〈h2, g, h3
0〉 = h0α2 with 0 indeterminacy.

The B-, C- and D-families merit special attention. In each case, we have
∆(xw2) = w2∆(x), since there are no nonzero h2-multiples in the bidegrees in
which these 24 values of ∆ lie. Therefore, it is necessary to calculate only the first
two Massey products in each family of eight elements. In addition they are all
defined with 0 indeterminacy.

For the “discriminant” family we have ∆(h3
0) = h0α2 and ∆(h0α2) = h3

0w2.
The coefficients 8, 4, 2 and 1 of the Dk reflect the h0-divisibility of these classes in
E∞(tmf).

Second, the “2c6” family is much more uniform: the Massey products ∆(h3
0α) =

h0α3 and ∆(h0α3) = h3
0αw2 imply that Ck 2→ Ck+1 for each k, with C0 = C and

Ck+8 = CkM .
Third, we consider two sequences of elements of Ext which contain information

about the “Bott”, or “c4” family. In degree 8, either B, detected by w1, or B + ε,
detected by c0, generates a Z-summand and maps to c4 ∈ mf∗/2. The Massey
product ∆ is not defined on w1, but is defined on c0, where we get ∆(c0) = δ. In
degree 32, similarly, either B1, detected by αg = δ + δ′, or B1 + ε1, detected by δ,
generates a Z-summand and maps to c4∆ ∈ mf∗/2. However, the Massey product ∆
is not defined on αg or δ′, but is defined on δ, where it gives ∆(δ) = c0w2. The
sequence of Massey products c0 2→ δ 2→ c0w2 2→ · · · detects the B + ε 2→ B1 + ε1 2→
B2 2→ B3 2→ B4 + ε4 2→ · · · sequence.

Due to hidden extensions, the 2-power multiples of these classes are mostly not
detected by their h0-power multiples. Accordingly, we also calculate ∆ on E2-classes
detecting 8 times each of these classes. The Massey products ∆(h3

0w1) = h0α2w1
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and ∆(h0α2w1) = h3
0w1w2, together with w2-linearity, then give the sequence of

Massey products detecting the very uniform sequence 8B 2→ 8B1 2→ 8B2 2→ · · · . !

On B-power torsion classes the operator ∆ is often undefined or zero mod-
ulo indeterminacy. For these classes, the closely related Massey product ∆′(x) =
〈g, h2, x〉 plays the role of tying them together into systematic families. It is not as
simple to calculate, because the ext program as currently constituted only calcu-
lates the Massey products 〈x, y, hi〉 = 〈hi, y, x〉. (It calculates this from the chain
map lifting x.) Identities for the relevant Massey products are used to get around
this.

Because of the identities h3
1 = h0h2

2 and h2
1γ = h0αβ, we consider the elements

in the η- and ν-families together. At the E2-term, the behavior is quite uniform.
These results and their meaning for the ηk and νk are shown in Figures 9.2 and 9.3.

Theorem 9.3. The following Massey products are defined in E2(tmf) with 0
indeterminacy:

(1) ∆′(h1wi
2) = γwi

2.
(2) ∆′(γwi

2) = h1w
i+1
2 .

(3) ∆′(h0h2wi
2) = αβwi

2.
(4) ∆′(αβwi

2) = h0h2w
i+1
2 .

Proof. The ext program can calculate that ∆′(h1) = 〈h1, h2, g〉 = γ.
We can then write ∆′(γ) = a0h1w2 and ∆′(h1γ) = {a1h2

1w2, a1h2
1w2 +β2g} for

some coefficients ai ∈ F2. Since ∆′(h1γ) ⊇ ∆′(h1)γ = {γ2} = {h2
1w2 + β2g}, we

conclude that a1 = 1. Since h1∆′(γ) ⊆ ∆′(h1γ) = {h2
1w2, γ2}, we conclude that

a0 = 1 also. Now we will show that multiplication by w2 is an isomorphism in the
relevant degrees, establishing the first two formulas claimed. The elements h1wi

2

and γwi
2 lie in bidegrees (s, t) = (1 + 4k, 2 + 28k), where k = 2i or k = 2i + 1,

respectively. A monomial

hn1
0 hn2

1 hn3
2 cn4

0 αn5βn6dn7
0 en8

0 γn9δn10gn11wn12
1 wn13

2

has

s = (n1 + n2 + n3) + 3(n4 + n5 + n6) + 4(n7 + n8 + n11 + n12) + 5n9 + 7n10 + 8n13

and

t = n1 + 2n2 + 4n3 + 11n4 + 15n5 + 18n6 + 18n7+

21n8 + 24n11 + 12n12 + 30n9 + 39n10 + 56n13

so that, if it lies in a bidegree (s, t) = (1 + 4k, 2 + 28k), then

7s−t = 5 = 6n1+5n2+3n3+10n4+6n5+3n6+10n7+7n8+4n11+16n12+5n9+10n10.

Evidently n1 = n4 = n5 = n7 = n8 = n12 = n10 = 0 and

5 = 5n2 + 3n3 + 3n6 + 4n11 + 5n9.

The only non-negative integer solutions have n2 or n9 equal to 1 and all other
terms 0, corresponding to the h1wi

2 and γwi
2. Therefore w2-multiplication acts

isomorphically on these bidegrees, as claimed.
Similarly, we can write ∆′(h0h2) = b0αβ and ∆′(h2

0h2) = ∆′(h3
1) = b1h0αβ for

some coefficients bi ∈ F2. From ∆′(h3
1) ⊇ h2

1∆
′(h1) = h2

1γ = h0αβ we conclude
that b1 = 1. Then h0∆′(h0h2) ⊆ ∆′(h2

0h2) = h0αβ implies that b0 = 1 also.
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We can write ∆′(αβ) = b2h0h2w2 for some coefficient b2 ∈ F2. We then have
h0∆′(αβ) ⊆ ∆′(h0αβ) = ∆′(h2

1γ), which must be either h1γ2 or 0. Since it contains
h1γ∆′(h1), it is h1γ2, and ∆′(αβ) = h0h2w2.

Next we can write ∆′(h0h2w2) = b3αβw2 and

∆′(h2
0h2w2) = {b4h0αβw2, b4h0αβw2 + βg3}

for some coefficients bi ∈ F2. Then ∆′(h2
0h2w2) = ∆′(h1γ2) ⊇ ∆′(h1)γ2 = γ3 =

h0αβw2 +βg3 implies that b4 = 1. Then h0∆′(h0h2w2) ⊆ ∆′(h2
0h2w2) implies that

b3 = 1 also.
As above, multiplication by w2 is an isomorphism in the relevant degrees, es-

tablishing the last two formulas claimed, as follows. The classes h0h2wi
2 and αβwi

2

lie in bidegrees (s, t) = (2 + 4k, 5 + 28k). A monomial lying in such a degree must
satisfy

7s−t = 9 = 6n1+5n2+3n3+10n4+6n5+3n6+10n7+7n8+4n11+16n12+5n9+10n10.

Evidently n4 = n7 = n12 = n10 = 0 and

9 = 6n1 + 5n2 + 3n3 + 6n5 + 3n6 + 7n8 + 4n11 + 5n9.

It is easily verified that there are six non-negative integer solutions to this, corre-
sponding to wi

2-multiples of the five elements h0h2, h0β = h2α, αβ, h1g and γg.
Of these, only h0h2 and αβ have (s, t) of the form (2 + 4k, 5 + 28k). !

The elements produced by iterating the Massey product ∆′ on the set of h0- and
h1-multiples of h1 and h2 then fit into the very simple pattern shown in Figures 9.2
and 9.3. We note that each of these classes in π∗(tmf) for which ∆′ of the detecting
class at E2 does not survive to E∞ supports a hidden ν-multiplication. This could
be used as a means to detect such hidden extensions, but we have been able to
determine them all using primary information and induced maps.

Theorem 9.4. The following Massey products are defined in E2(tmf):

(1) ∆′(c0wi
2) = {δwi

2, δ
′wi

2}.
(2) ∆′(δ′wi

2) = c0w
i+1
2 .

Proof. We can write ∆′(c0) as {a0δ, a0δ+αg} for some a0 ∈ F2. Multiplying
by h1 gives that a0h1δ ∈ ∆′(h1c0), which is either h1δ = c0γ or 0. It must contain
∆′(h1)c0, so a0 = 1. Thus, ∆′(c0) = {δ, δ′}.

Next, we can write ∆′(δ′) = a1c0w2 for some a1 ∈ F2. Multiplying by h1 we
get that ∆′(h1δ) = {a1h1c0w2, a1h1c0w2 + e0g2γg}. This must contain δ′∆′(h1) =
δ′γ = h1c0w2 + e0g2, so that a1 = 1.

To finish the proof, we show that c0wi
2, δwi

2, δ′wi
2 and αgwi

2 are the only
elements in bidegrees of the form (s, t) = (3 + 4k, 11 + 28k). As in Theorem 9.3,
we must solve

7s − t = 10 = 6n1 + 5n2 + 3n3 + 10n4 + 6n5

+ 3n6 + 10n7 + 7n8 + 4n11 + 16n12 + 5n9 + 10n10.

Evidently n12 = 0 and

10 = 6(n1 + n5) + 5(n2 + n9) + 3(n3 + n6) + 7n8 + 4n11 + 10(n4 + n7 + n10).

It is easily verified that there are 13 non-negative integer solutions to this, cor-
responding to wi

2-multiples of the elements c0, d0, δ, h2e0 = h0g, αg, h2
2g = 0,

h2βg = 0, β2g, h2
1, γ

2, h1γ. Of these, only c0wi
2, δw

i
2, δ

′wi
2 and αgwi

2 have (s, t) of
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h1 !!
h1 !!

h0BB
h0BB

h1

""

h2
1

""

h3
1 = h2

0h2

""

h0h2

""

h2

γ

""

h1γ

""

h2
1γ = h0αβ

""

αβ

""

h1w2

""

{h2
1w2, γ2}

""

h1γ2 = h2
0h2w2

""

h0h2w2

""

h2w2

γw2

""

h1γw2

""

{h2
1γw2 = h0αβw2, γ3}

""

αβw2

""

h1w2
2

""

{h2
1w

2
2, γ

2w2}

""

h1γ2w2 = h2
0h2w2

2

""

h0h2w2
2

""

h2w2
2

γw2
2

""

h1γw2
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Figure 9.2. ∆′ on E2-classes, connecting the η- and ν-families

the form (3 + 4k, 11 + 28k), so that w2-multiplication proves the cases i > 0 from
the i = 0 case. !

As with the η- and ν-families, although iteration of ∆′ produces the sequence

c0 2→ δ′ 2→ c0w2 2→ δ′w2 2→ · · · ,

the process is interrupted in homotopy by the hidden ν-extension νε1 = ν1B 0= 0,
which we will show in the next section. Thus, in homotopy, we have only the
elements ε 2→ ε1 and ε4 2→ ε5.

Finally, the classes detecting κ and κ4 are connected by multiplication by w2
2,

which justifies grouping these two elements into one family.
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η
!!

η
!! 2BB 2BB

η

""
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η3 = 4ν
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""
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""
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""
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1 ηη2
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""

±2ν2 ν2

η3
1

""

η4 ηη4

""

η2η4 = 4ν4

""

2ν4

""

ν4

η1η4 ηη1η4 = 2ν5

""

±ν5

""

η2
1η4 = 4ν6 ±2ν6 ν6

Figure 9.3. ∆′ on homotopy classes, connecting the η- and ν-families

9.2. Hidden extensions

In this section we determine all of the hidden 2-, ν- and η-extensions, in turn.
The results are displayed as dashed or dotted lines in Figures 9.6 through 9.13.

Isaksen [82, Def. 4.2] has given a precise clarification of the notion of a hidden
extension in the Adams spectral sequence for a ring spectrum, such as tmf . The
definition easily extends to the case of a pairing of spectra, such as the module
action of tmf on tmf/2.

Definition 9.5. Let X ∧Y → Z be a pairing of spectra, with induced pairings
π∗(X) ⊗ π∗(Y ) → π∗(Z) of homotopy groups and E∞(X) ⊗ E∞(Y ) → E∞(Z) of
Adams E∞-terms. Let α ∈ π∗(X) be detected by a ∈ E∞(X), and consider classes
b ∈ E∞(Y ) and c ∈ E∞(Z). We say that there is a hidden α-extension from b to c
if

(1) ab = 0,
(2) there is an element β ∈ π∗(Y ) detected by b such that αβ ∈ π∗(Z) is

detected by c, and
(3) there is no element β′ ∈ π∗(Y ) of higher Adams filtration than β such

that αβ′ is detected by c.

Remark 9.6. If conditions (1) and (2) hold, but an element β′ exists that
makes condition (3) fail, then we will say (in Chapter 12) that the α-multiplication
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from b (detecting β) to c is eclipsed by the α-multiplication from b′ (detecting β′)
to c.

9.2.1. Hidden 2-extensions. We now determine the graded group struc-
ture of π∗(tmf) using the structure of i : E∞(tmf) → E∞(tmf/2) obtained in Sec-
tions 5.5 and 6.5.

Lemma 9.7. We can (and do) choose η1, ε1, η4, ε4 and ε5 to have additive
order 2.

Proof. We use the homotopy cofiber sequence

tmf
2−→ tmf

i−→ tmf/2
j−→ Σtmf

and the associated short exact sequence

(9.1) 0 → πn(tmf)/2
i−→ πn(tmf/2)

j−→ 2πn−1(tmf) → 0 ,

where 2A = ker(2: A → A) and A/2 = cok(2: A → A) for any abelian group A.

Consider classes x in π∗(tmf/2) that are detected by γ̃, δ̃′, w2
2h̃1, w2

2 c̃0 and w2
2 δ̃

′ in
E∞(tmf/2). Their images j(x) ∈ 2π∗(tmf) are of additive order 2, and are detected

by j(γ̃) = γ, j(δ̃′) = δ′, j(w2
2h̃1) = h1w2

2, j(w2
2 c̃0) = c0w2

2 and j(w2
2 δ̃

′) = δ′w2
2,

respectively. These images show that η1, ε1, η4, ε4 and ε5 can be chosen to have
order 2. !

Theorem 9.8. The Adams spectral sequence for tmf contains precisely the
following hidden 2-extensions. First we have six extensions that occur together with
all their w1- and w4

2-power multiples:

(32) From h2
0 · αg to w1 · h0α2, with 4B1 ∈ {h2

0αg} and 8B1 ∈ {h0α2w1}.
(56) From c0w2 to α3g+h0w1w2, with B2 ∈ {c0w2} and 2B2 ∈ {α3g+h0w1w2}.
(80) From h2

0·δw2 to w1·h0α2w2, with 4B3 ∈ {h2
0αgw2} and 8B3 ∈ {h0α2w1w2}.

(128) From h2
0 · αgw2

2 to w1 · h0α2w2
2, detecting 4B5 ∈ {h2

0αgw2
2} and 8B5 ∈

{h0α2w1w2
2}.

(152) From c0w3
2 to α3gw2

2 + h0w1w3
2, with B6 ∈ {c0w3

2} and 2B6 ∈ {α3gw2
2 +

h0w1w3
2}.

(176) From h2
0 · δw3

2 to w1 · h0α2w3
2, detecting 4B7 ∈ {h2

0αgw3
2} and 8B7 ∈

{h0α2w1w3
2}.

In addition we have seven extensions that only occur together with their w4
2-power

multiples:

(40) From g2 to w1 · δ′, with κ̄2 ∈ {g2} and 2κ̄2 ∈ {δ′w1}.
(54) From h2 · h2w2 to d0g2 = g2 · d0, with νν2 ∈ {h2

2w2} and 2νν2 ∈ {d0g2}.
(60) From g3 to δ′gw1 = gw1 · δ′, with κ̄3 ∈ {g3} and 2κ̄3 ∈ {δ′gw1}.

(110) From d0w2
2 to γ2g3 = g3 · γ2, with κ4 ∈ {d0w2

2} and 2κ4 ∈ {γ2g3}.
(130) From d0gw2

2 = g · d0w2
2 to γ2g4 = g4 · γ2, with κ4κ̄ ∈ {d0gw2

2} and
2κ4κ̄ ∈ {γ2g4}.

(150a) From h2 · h2w3
2 to d0g2w2

2 = g2 · d0w2
2, with νν6 ∈ {h2

2w
3
2} and 2νν6 ∈

{d0g2w2
2}.

(150b) From g2 ·d0w2
2 to d0δ′w1w2

2 = w1 ·αd0gw2
2, with 2νν6 and κ4κ̄2 ∈ {d0g2w2

2}
and 4νν6 = 2κ4κ̄2 ∈ {d0δ′w1w2

2}.

Proof. We start with the hidden 2-extensions between w1-periodic classes.
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(32) First we determine π33(tmf) from E∞(tmf). From 2η1 = 0 (Lemma 9.7)
we know that (the Adams filtration ≥ 5 part of) π25(tmf) is isomorphic
to (Z/2)2. Multiplying by B, and using the known action of w1 on the
E∞-term, it follows that the Adams filtration ≥ 9 part of π33(tmf) is
isomorphic to (Z/2)2. We can represent h1δ by the η-multiple ηε1, so there
is no hidden 2-extension from h1δ, since 2η = 0. Hence π33(tmf) ∼= (Z/2)3.

From E∞(tmf/2) we see that π33(tmf/2) has order 24. Using the
exact sequence (9.1) we deduce that 2π32(tmf) ∼= Z/2. This shows that
ε1 is the unique element of order 2 in π32(tmf).

Clearly π31(tmf) = 0, so π32(tmf)/2 ∼= π32(tmf/2), which has or-
der 23. It follows that π32(tmf) ∼= Z2 ⊕ Z/2 (implicitly 2-completed),
with i : Z2 ⊕ Z/2 → (Z/2)3 surjective. The homotopy classes B4, B1

and ε1 in π32(tmf) map to homotopy classes in π32(tmf/2) detected by
i(w4

1), i(αg) = i(δ)+ i(δ′) and i(δ′). Since the latter three classes generate
the E∞-term for tmf/2 in topological degree t−s = 32, the corresponding
homotopy classes generate π32(tmf/2). It follows as a matter of algebra
that B4, B1 and ε1 generate π32(tmf).

It also follows that there is a hidden 2-extension from h2
0αg represented

by 4B1 to h0α2w1 represented by 8B1. To verify this, note that if 8B1

were not detected by h0α2w1, then no linear combination of the three
classes B4, B1 and ε1 would be detected by h0α2w1, which contradicts
the fact that these classes generate π32(tmf).

Regarding w1- and w4
2-power multiples, multiplication by BjM 4 for

j ≥ 0 and 5 ≥ 0 shows that there is a hidden 2-extension from h2
0αgwj

1w
44
2 ,

represented by 4B1BjM 4, to h0α2w1+j
1 w44

2 , represented by 8B1BjM 4.
(This does not mean that every homotopy class detected by h2

0αgwj
1w

44
2

multiplies by 2 to be detected by h0α2w1+j
1 w44

2 . For example, there are
classes β detected by h2

0αgw2
1 for which 2β is detected by h0α2w3

1+h11
0 w2.)

(56) We first calculate π57(tmf). Multiplying the Adams filtration ≥ 9 part
of π33(tmf) by B3 shows that the Adams filtration ≥ 21 part of π57 is
(Z/2)2. In Adams filtration 12 we can represent γδ′ and h1c0w2 by the
homotopy classes η1ε1 and ηB2, both of which are of additive order 2.
Hence π57(tmf) ∼= (Z/2)4.

We also know that π57(tmf/2) has order 24. Using the exact se-
quence (9.1) we deduce that 2π56(tmf) = 0, so that π56(tmf) is 2-torsion
free.

Since π55(tmf) = 0 and π56(tmf/2) has order 23, it follows that
π56(tmf) ∼= Z3, with i : Z3 → (Z/2)3 surjective. The classes B2, B3B1

and B7 map to homotopy classes in π56(tmf/2) that are detected by the
generators i(c0w2), i(αgw3

1) and i(w7
1) of the E∞-term in this topological

degree. It follows that i(B2), i(B3B1) and i(B7) generate π56(tmf/2),
and that B2, B3B1 and B7 generate π56(tmf).

This implies that there is a hidden 2-extension from c0w2 detecting B2

to α3g + h0w1w2, in addition to the previously known hidden 2-extension
from h2

0αgw3
1 to h0α2w4

1. To see this, note that if 2B2 were not detected
by α3g + h0w1w2, then no linear combination of B2, B3B1 and B7 would
be detected by that class in the E∞-term for tmf .
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As in the previous case, this hidden 2-extension propagates freely to
all w1- and w4

2-power multiples.
(80) Multiplying (the Adams filtration ≥ 12 part of) π57(tmf) by B3, we see

that the Adams filtration ≥ 24 part of π81(tmf) is (Z/2)3. In Adams
filtration 16 we can represent h1δw2 by ηB3, of additive order 2, so
π81(tmf) ∼= (Z/2)4. Since π81(tmf/2) has order 25, we deduce that

2π80(tmf) ∼= Z/2. The element κ̄4 detected by g4 has finite order, since
8κ̄ = 0, hence is in fact the unique element of order 2 in π80(tmf).

Since π79(tmf) = 0 and π80(tmf/2) has order 25, it follows that
π80(tmf) ∼= Z4 ⊕ Z/2, with i : Z4 ⊕ Z/2 → (Z/2)5 surjective. The five
homotopy classes B3, κ̄4, B3B2, B6B1 and B10 map to homotopy classes
in π80(tmf/2) that are detected by i(δw2), i(g4), i(c0w3

1w2), i(αgw6
1) and

i(w10
1 ), and which therefore generate this group. It follows that the given

five classes in π80(tmf) generate that group. Hence there must be a hid-
den 2-extension from h2

0αgw2 detecting 4B3 to h0α2w1w2 detecting 8B3.
It propagates freely to all w1- and w4

2-power multiples.
(128) This case is similar to the case n = 32. Multiplying π81(tmf) by B3 we

see that the Adams filtration ≥ 28 part of π105(tmf) is (Z/2)4. We can
represent h1w1w2

2 and γg4 in Adams filtration 21 by the homotopy classes
ηB4 and η1κ̄4, both of which have order 2. Hence Adams filtration ≥ 21
of π105(tmf) is (Z/2)6.

Multiplying by B3 once more, we see that Adams filtration ≥ 33
of π129(tmf) is (Z/2)5. In Adams filtration 24 and 25 we can represent
h1 ·δ′w2

2 and γw1w2
2 by the homotopy classes ηε5 and η1B4, both of which

have order 2. Hence π129(tmf) ∼= (Z/2)7. Since π129(tmf/2) has order 28,
we obtain 2π128(tmf) ∼= Z/2. This shows that ε5 is the unique element of
order 2 in π128(tmf).

Since π127(tmf) = 0 and π128(tmf/2) has order 27, we must have
π128(tmf) ∼= Z6 ⊕ Z/2, with i : Z6 ⊕ Z/2 → (Z/2)7 surjective. The seven
homotopy classes B5, ε5, B3B4, B6B3, B9B2, B12B1 and B16 map to
homotopy classes in π128(tmf/2) that are detected by i(αgw2

2), i(δ′w2
2),

i(w4
1w

2
2), i(δw6

1w2), i(c0w9
1w2), i(αgw12

1 ) and i(w16
1 ), and which therefore

generate this group. It follows that the given seven homotopy classes in
π128(tmf) generate that group. As before, this implies that there must be
a hidden 2-extension from h2

0αgw2
2 detecting 4B5 to h0α2w1w2

2 detecting
8B5. It propagates freely to all w1- and w4

2-power multiples.
(152) This case is very similar to the case n = 56. Multiplying by B3 shows that

Adams filtration ≥ 37 of π153(tmf) is (Z/2)6. Since h1c0w3
2 and γδ′w2

2

in Adams filtration 28 are represented by ηB6 and η1ε5, both of order 2,
it follows that π153(tmf) ∼= (Z/2)8. Since π153(tmf/2) has order 28, we
deduce that π152(tmf) is 2-torsion free.

Since π151(tmf) = 0 and π152(tmf/2) has order 27, we must have
π152(tmf) ∼= Z7. The seven homotopy classes B6, B3B5, B6B4, B9B3,
B12B2, B15B1 and B19 map to classes that generate π152(tmf/2), because
they are detected by i(c0w3

2), i(αgw3
1w

2
2), i(w7

1w
2
2), i(δw9

1w2), i(c0w12
1 w2),

i(αgw15
1 ) and i(w19

1 ), which generate the E∞-term in topological degree t−
s = 152. Hence the seven homotopy classes generate π152(tmf), and there
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must be a hidden 2-extension from c0w3
2 detecting B6 to α3gw2

2 +h0w1w3
2

detecting 2B6. It propagates freely to all w1- and w4
2-power multiples.

(176) This case is similar to that for n = 80. Multiplication by B3 tells us that
the Adams filtration ≥ 40 part of π177(tmf) is (Z/2)7. The class h1δw3

2

in Adams filtration 32 is represented by ηB7, of order 2, so π177(tmf) ∼=
(Z/2)8. Since π177(tmf/2) has order 28, it follows that π176(tmf) is 2-
torsion free.

From π175(tmf) = 0 and π176(tmf/2) having order 28 we obtain
π176(tmf) ∼= Z8. The eight homotopy classes B7, B3B6, B6B5, B9B4,
B12B3, B15B2, B18B1 and B22 map to classes generating π176(tmf/2),
since the detecting classes generate the E∞-term for tmf/2 for t−s = 176.
Hence these eight classes generate π176(tmf), and there must be a hidden
2-extension from h2

0αgw3
2 detecting 4B7 to h0α2w1w3

2 detecting 8B7. It
propagates freely to all w1- and w4

2-power multiples.

We now turn to the hidden 2-extensions between w1-power torsion classes.

(54) From E∞(tmf) we see that π54(tmf) has order 22 = 4 and π55(tmf) = 0,
and from E∞(tmf/2) we see that π55(tmf/2) ∼= Z/2. Using (9.1) we
deduce that π54(tmf) ∼= Z/4. This group is generated by νν2, detected
by h2

2w2, hence must encompass a hidden 2-extension to d0g2, detecting
2νν2 = κκ̄2. Regarding w4

2-power multiples, multiplication by M 4 shows
that there are hidden 2-extensions from h2

2w
1+44
2 to d0g2w44

2 , for all 5 ≥ 0.
(150) From E∞(tmf) we see that π150(tmf) has order 23 = 8 and π151(tmf) = 0,

and from E∞(tmf/2) we see that π151(tmf/2) ∼= Z/2. Using (9.1) we
deduce that π150(tmf) ∼= Z/8. This group is generated by νν6, detected
by h2

2w
3
2, with a hidden 2-extension to d0g2w2

2, and a second hidden 2-
extension to d0δ′w1w2

2. Multiplication by M 4 for 5 ≥ 0 shows that there
are hidden 2-extensions from h2

2w
3+44
2 to d0g2w2+44

2 , and from d0g2w2+44
2

to d0δ′w1w
2+44
2 .

(110) To show that there is a hidden 2-extension from d0w2
2 to γ2g3, we show

that 2κ4 0= 0. Multiplication by κ̄2 takes κ4 to κ̄2κ4, which is detected
by d0g2w2

2. From the case n = 150, we know that 2κ̄2κ4 0= 0 is detected
by d0δ′w1w2

2. Hence 2κ4 0= 0, and the only E∞-class that can detect it is
γ2g3. This hidden 2-extension propagates freely to all w4

2-power multiples.
(130) Multiplying the hidden 2-extension for n = 110 by κ̄ we obtain a hidden

2-extension from d0gw2
2 to γ2g4, as asserted. It propagates freely to all

w4
2-power multiples.

(40) To show that there is a hidden 2-extension from g2 to δ′w1, we show that
2κ̄2 0= 0. Multiplication by κ4 takes κ̄2 to κ̄2κ4, which is detected by
d0g2w2

2. From the case n = 150, we know that 2κ̄2κ4 0= 0 is detected by
d0δ′w1w2

2. Hence 2κ̄2 0= 0. Being a 2-power torsion class, 2κ̄2 can only
be detected by δ′w1, which establishes the claimed hidden 2-extension. It
propagates freely to all w4

2-power multiples.
(60) Multiplying the hidden 2-extension for n = 40 by κ̄ we obtain a hidden

2-extension from g3 to δ′gw1, as asserted. It propagates freely to all w4
2-

power multiples.

To finish the proof, we must check that there are no further hidden 2-extensions
for tmf than those already mentioned. In all cases, this is easily seen by representing
the possible source b of a hidden 2-extension by a homotopy class β that is known
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to be 2-torsion. For instance, in bidegree (t − s, s) = (28, 8) the class gw1 = d2
0

is represented by κ2, and 2κ = 0. As another example, in bidegree (t − s, s) =
(68, 14) the class h2

0gw2 detects κ̄D2, and 8κ̄ = 0, so 2κ̄D2 must be 2-power torsion.
However, π68(tmf) is 2-torsion free above Adams filtration 14, so 2κ̄D2 = 0. !

9.2.2. The Bott torsion. Recall the Bott element B ∈ π8(tmf), with B ∈
{w1}. We now make precise how w1-power torsion classes in E∞(tmf) detect B-
power torsion classes in π∗(tmf).

Lemma 9.9. When viewed as an F2[w1, w4
2]-module, E∞(tmf) splits as a direct

sum of cyclic modules with annihilator ideals (0), (w1) or (w2
1). All w1-power

torsion is w1- or w2
1-torsion.

Proof. The F2[w1, w4
2]-module structure on E∞(tmf) is obtained by restric-

tion from the R2-module structure given in Tables 5.8 and 5.9. Examination of
the annihilator ideals and the non-cyclic summands shows that its w1-torsion free
quotient is free as an F2[w1, w4

2]-module. Furthermore, the w1-power torsion sub-
module of E∞(tmf) splits as a sum of cyclic modules with annihilator ideals (w1)
or (w2

1), as listed in Table 9.3. !

Table 9.3: w1-power torsion in E∞(tmf)

t − s s g x Ann(x) rep.

3 1 2 h2 (w1) ν

3 2 2 h0h2 (w1) 2ν

3 3 1 h2
0h2 (w1) 4ν

6 2 3 h2
2 (w1) ν2

8 3 2 c0 (w1) ε

9 4 2 h1c0 (w1) ηε

14 4 4 d0 (w2
1) κ

15 5 6 h1d0 (w1) ηκ

17 5 7 h2d0 (w1) νκ

20 4 8 g (w2
1) κ̄

20 5 9 h0g (w1) 2κ̄

20 6 7 h2
0g (w1) 4κ̄

21 5 10 h1g (w1) ηκ̄

27 6 10 αβ (w2
1) ν1

27 7 9 h0αβ (w1) 2ν1

32 7 12 δ′ (w2
1) ε1

33 8 15 h1δ (w1) ηε1

34 8 16 d0g (w2
1) κκ̄

39 9 18 d0γ (w1) η1κ
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Table 9.3: w1-power torsion in E∞(tmf) (cont.)

t − s s g x Ann(x) rep.

40 8 18 g2 (w1) κ̄2

41 10 16 αβd0 (w1) ν1κ

45 9 20 γg (w2
1) η1κ̄

46 11 18 d0δ′ (w1) ε1κ

51 9 23 h2w2 (w2
1) ν2

51 10 22 h0h2w2 (w1) 2ν2

51 11 21 h2
0h2w2 (w1) 4ν2

52 11 22 δ′g (w2
1) ε1κ̄

54 10 23 h2
2w2 (w1) νν2

54 12 25 d0g2 (w1) κκ̄2

57 12 27 + 28 γδ′ (w1) η1ε1

60 12 29 g3 (w1) κ̄3

65 13 35 γg2 (w1) η1κ̄2

65 13 36 h2d0w2 (w1) ν2κ

66 15 31 d0δ′g (w1) ε1κκ̄

68 14 34 h2
2d0w2 (w1) νν2κ

70 14 35 γ2g (w1) η2
1 κ̄

75 15 38 + 39 γ3 (w1) η3
1 = ν3

80 16 48 g4 (w1) κ̄4

85 17 54 γg3 (w1) η1κ̄3

90 18 52 γ2g2 (w1) η2
1 κ̄

2

99 17 60 h2w2
2 (w1) ν4

99 18 58 h0h2w2
2 (w1) 2ν4

99 19 59 h2
0h2w2

2 (w1) 4ν4

100 20 67 g5 (w1) κ̄5

102 18 59 h2
2w

2
2 (w1) νν4

104 19 62 c0w2
2 (w1) ε4

105 20 71 h1c0w2
2 (w1) ηε4

105 21 72 γg4 (w1) η1κ̄4

110 20 74 d0w2
2 (w2

1) κ4

110 22 73 γ2g3 (w1) η2
1 κ̄

3

111 21 79 h1d0w2
2 (w1) ηκ4
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Table 9.3: w1-power torsion in E∞(tmf) (cont.)

t − s s g x Ann(x) rep.

113 21 81 h2d0w2
2 (w1) νκ4

116 21 83 h0gw2
2 (w1) κ̄D4

116 22 78 h2
0gw2

2 (w1) 2κ̄D4

117 21 84 h1gw2
2 (w2

1) η4κ̄

123 22 82 αβw2
2 (w2

1) ν5

123 23 85 h0αβw2
2 (w1) 2ν5

124 24 95 gw1w2
2 (w1) κκ4

128 23 88 δ′w2
2 (w2

1) ε5

129 24 101 h1δw2
2 (w1) ηε5

130 24 102 d0gw2
2 (w2

1) κ4κ̄

130 26 96 γ2g4 (w1) η2
1 κ̄

4

135 25 108 d0γw2
2 (w1) η1κ4

137 26 103 αβd0w2
2 (w1) ν5κ

142 27 109 d0δ′w2
2 (w2

1) ε5κ

147 25 113 h2w3
2 (w2

1) ν6

147 26 110 h0h2w3
2 (w1) 2ν6

147 27 113 h2
0h2w3

2 (w1) 4ν6

148 27 114 δ′gw2
2 (w2

1) ε5κ̄

149 29 129 γgw1w2
2 (w1) η1κκ4

150 26 111 h2
2w

3
2 (w1) νν6

150 28 127 d0g2w2
2 (w1) κ4κ̄2

153 28 129 + 130 γδ′w2
2 (w1) η1ε5

161 29 142 h2d0w3
2 (w1) ν6κ

162 31 138 d0δ′gw2
2 (w1) ε5κκ̄

164 30 138 h2
2d0w3

2 (w1) νν6κ

Consider the B-power torsion submodule ΓBπ∗(tmf) ⊂ π∗(tmf). The Adams
filtration F sπ∗(tmf) of π∗(tmf) restricts to a filtration

F sΓBπ∗(tmf) = F sπ∗(tmf) ∩ ΓBπ∗(tmf)

of ΓBπ∗(tmf), and the filtration subquotient

F sΓBπ∗(tmf)

F s+1ΓBπ∗(tmf)
⊂ F sπ∗(tmf)

F s+1π∗(tmf)
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corresponds under the isomorphism F sπ∗(tmf)/F s+1π∗(tmf) ∼= Es,∗
∞ (tmf) to the

classes that can be represented by B-power torsion elements. These classes are
all w1-power torsion. In the case of tmf the converse holds, so that the w1-power
torsion in E∞(tmf) is precisely the associated graded of the restriction of the Adams
filtration to ΓBπ∗(tmf).

Proposition 9.10. Each w1-torsion class in E∞(tmf) is represented by a B-
torsion class in π∗(tmf), each w2

1-torsion class is represented by a B2-torsion class,
and E∞(tmf) is w4

2-torsion free. Hence there are no hidden B- or M -extensions
in the Adams spectral sequence for tmf .

Proof. Each class b in the x-column of Table 9.3 is represented by a class
β ∈ π∗(tmf), as listed in the “rep.”-column. We claim that if wk

1b = 0 then
Bkβ = 0, for k ∈ {1, 2}.

In view of the multiplicative structure, it suffices to verify that B annihilates
β = ν, ε, ηκ, 2κ̄, ηκ̄, 2ν1, ηε1, η1κ, κ̄2, ν1κ, ε1κ, 2ν2, η1ε1, ν2κ, η2

1 κ̄, η3
1 = ν3,

ν4, ε4, ηκ4, κ̄D4, 2ν5, κκ4, ηε5, η1κ4, ν5κ, 2ν6, η1ε5, ν6κ and ε5κκ̄, and that B2

annihilates β = κ, κ̄, ν1, ε1, ν2, κ4, ν5, ε5 and ν6. In most cases, this holds because
Bkβ lies in a trivial Adams filtration. This is most easily seen from Figures 5.1
to 5.8 or Figures 9.6 through 9.13.

For β = ε, 2κ̄, κ̄2, ε4, κ̄D4, κκ4, κ̄, ε1 and ε5 it holds because β is 2-power
torsion (by our choices in Lemma 9.7), and Bkβ lies in a 2-torsion free Adams
filtration.

In the remaining cases, β = ηε1, ν1κ, η1ε1, ν2κ, ηε5, ν5κ, η1ε5, ν6κ and ε5κκ̄,
it holds because β is B-power torsion (by what we have already established for
κ, ε1 and ε5), and Bβ lies in a B-torsion free Adams filtration (because w1 acts
injectively on that part of the E∞-term). !

In the course of the previous proof, we also established the following lemma.

Lemma 9.11. The classes νk, εk, κk and κ̄ are B-power torsion. The minimal
power of B annihilating each is as follows:

(1) B · νk = 0 for k ∈ {0, 3, 4} and B2 · νk = 0 for k ∈ {1, 2, 5, 6}.
(2) B · εk = 0 for k ∈ {0, 4} and B2 · εk = 0 for k ∈ {1, 5}.
(3) B2 · κ = 0 and B2 · κ4 = 0.
(4) B2 · κ̄ = 0.

!
Proposition 9.12. The B-power torsion in π∗(tmf) is the ideal

ΓBπ∗(tmf) = (νk, εk,κk, κ̄)

generated by the ν-, ε-, κ- and κ̄-families, including ν3 = η3
1. It is contained in the

2-power torsion ideal
Γ2π∗(tmf) = (ηk, νk, εk,κk, κ̄)

generated by the η-, ν-, ε-, κ- and κ̄-families.

Proof. The first claim follows from the “rep.”-column of Table 9.3 and the
previous lemma. The second claim follows because the ν-, ε-, κ- and κ̄-families
consist of 2-power torsion, and the remaining (B-periodic) 2-power torsion consists
of multiples of η, η1 and η4. For example, the infinite cycles γw1w2

2 and γ2w1w2
2 in

bidegrees (t−s, s) = (129, 25) and (154, 30) detect η1B4 and η2
1B4, respectively. !
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9.2.3. Hidden ν-extensions. We proceed to determine the action of ν on
π∗(tmf) using the structure of i : E∞(tmf) → E∞(tmf/ν) obtained in Sections 5.5
and 8.5.

Lemma 9.13. The relations ν · (B1 + ε1) = 0, ν · B2 = 0, ν · (B5 + ε5) = 0 and
ν · B6 = 0 hold in π∗(tmf).

Proof. We use the homotopy cofiber sequence

Σ3tmf
ν−→ tmf

i−→ tmf/ν
j−→ Σ4tmf

and the associated short exact sequence

(9.2) 0 → πn(tmf)/ν
i−→ πn(tmf/ν)

j−→ νπn−4(tmf) → 0 ,

where νA = ker(ν : A → Σ−3A) and A/ν = cok(ν : Σ3A → A). Consider classes
x ∈ π∗(tmf/ν) detected by δ, w2c0, w2

2δ and w3
2c0 in E∞(tmf/ν). Their images

j(x) ∈ νπ∗(tmf) are detected by δ, c0w2, δw2
2 and c0w3

2, respectively.
In degree 32 we note that {δ} is the set of 2-adic units times B1 + ε1, plus

Adams filtration ≥ 16. For filtration reasons, ν annihilates Adams filtration ≥ 16
in π32(tmf), so from ν · j(x) = 0 for some j(x) ∈ {δ} we can deduce that ν
annihilates B1 + ε1.

In degree 56 we observe that {c0w2} is the set of 2-adic units times B2, plus
Adams filtration ≥ 19. For filtration reasons, ν annihilates Adams filtration ≥ 19
in π56(tmf), so from ν · j(x) = 0 for some j(x) ∈ {c0w2} we can deduce that ν
annihilates B2.

The proofs for B5 + ε5 and B6 are very similar. !
Theorem 9.14. The Adams spectral sequence for tmf contains precisely the

following 19 hidden ν-extensions, together with their w4
2-power multiples.

(6) From h2
2 to h1c0, with ν2 ∈ {h2

2} and ν3 ∈ {h1c0}.
(25) From γ to gw1, with η1 ∈ {γ} and η1ν ∈ {gw1}.
(32) From δ′ to αβw1, with ε1 ∈ {δ′} and νε1 ∈ {αβw1}.
(32) From αg to αβw1, with B1 ∈ {αg} and νB1 ∈ {αβw1}.
(39) From d0γ to d0gw1, with η1κ ∈ {d0γ} and η1νκ ∈ {d0gw1}.
(50) From γ2 to γgw1, with η2

1 ∈ {γ2} and η2
1ν ∈ {γgw1}.

(51) From h0h2w2 to d0g2, with 2ν2 ∈ {h0h2w2} and 2νν2 ∈ {d0g2}.
(54) From h2

2w2 to γδ′, with νν2 ∈ {h2
2w2} and ν2ν2 ∈ {γδ′}.

(57) From γδ′ to δ′gw1, with ν2ν2 = η1ε1 ∈ {γδ′} and ν3ν2 = η1νε1 ∈ {δ′gw1}.
(97) From h1w2

2 to g5, with η4 ∈ {h1w2
2} and η4ν ∈ {g5}.

(102) From h2
2w

2
2 to h1c0w2

2, with νν4 ∈ {h2
2w

2
2} and ν2ν4 ∈ {h1c0w2

2}.
(122) From h1γw2

2 to h1gw1w2
2, with η1η4 ∈ {h1γw2

2} and η1η4ν ∈ {h1gw1w2
2}.

(128) From δ′w2
2 to αβw1w2

2, with ε5 ∈ {δ′w2
2} and νε5 ∈ {αβw1w2

2}.
(128) From αgw2

2 to αβw1w2
2, with B5 ∈ {αgw2

2} and νB5 ∈ {αβw1w2
2}.

(135) From d0γw2
2 to d0gw1w2

2, with η1κ4 ∈ {d0γw2
2} and η1νκ4 ∈ {d0gw1w2

2}.
(147a) From h0h2w3

2 to d0g2w2
2, with 2ν6 ∈ {h0h2w3

2} and 2νν6 ∈ {d0g2w2
2}.

(147b) From h2
0h2w3

2 to d0δ′w1w2
2, with 4ν6 ∈ {h2

0h2w3
2} and 4νν6 ∈ {d0δ′w1w2

2}.
(150) From h2

2w
3
2 to γδ′w2

2, with νν6 ∈ {h2
2w

3
2} and ν2ν6 ∈ {γδ′w2

2}.
(153) From γδ′w2

2 to δ′gw1w2
2, with ν2ν6 = η1ε5 ∈ {γδ′w2

2} and ν3ν6 = η1νε5 ∈
{δ′gw1w2

2}.
Remark 9.15. In Proposition 9.17 we will refine the hidden extension ν2ν4 ∈

{h1c0w2
2} to the relation ν2ν4 = ηε4 + η1κ̄4.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



324 9. THE HOMOTOPY GROUPS OF tmf

Proof. We first determine the hidden ν-extensions from n = 51 and n = 147,
and their multiplicative consequences.

(51) By Theorem 9.8 there is a hidden 2-extension from h2
2w2 to d0g2. The

ordinary ν-extension from h2w2 to h2
2w2 thus implies a hidden ν-extension

from h0h2w2 detecting 2ν2 to d0g2 detecting 2νν2.
(147) By Theorem 9.8 there are hidden 2-extensions from h2

2w
3
2 to d0g2w2

2,
and from d0g2w2

2 to d0δ′w1w2
2. The ordinary ν-extension from h2w3

2 to
h2

2w
3
2 thus implies hidden ν-extensions from h0h2w3

2 to d0g2w2
2, and from

h2
0h2w3

2 to d0δ′w1w2
2.

(50) Multiplying η2
1 ∈ {γ2} by η4 ∈ {h1w2

2} we obtain η2
1η4 = 4ν6 ∈ {h2

0h2w3
2},

since h1γ2w2
2 = h2

0h2w3
2 already at the E2-term and there are no classes

of higher Adams filtration in π147(tmf). Since ν · 4ν6 0= 0 by case (147),
it follows that ν · η2

1 0= 0, and this product can only be detected by γgw1.
(25) Multiplying η1 ∈ {γ} by η1 we obtain η2

1 ∈ {γ2}. Since ν · η2
1 0= 0 by

case (50), we deduce that ν · η1 0= 0, and being a homotopy class of
order 2, this product can only be detected by gw1.

(39) Multiplying η1 ∈ {γ} by κ ∈ {d0} we obtain η1κ ∈ {d0γ}. Since η1ν ∈
{gw1} by case (25) we find that ν ·η1κ = κ ·η1ν is detected by d0gw1 0= 0.

(57) Multiplying η1 ∈ {γ} by ε1 ∈ {δ′} we obtain η1ε1 ∈ {γδ′}. Since η1ν ∈
{gw1}, it follows that ν · η1ε1 is detected by δ′gw1 0= 0.

(122) Multiplying η1 ∈ {γ} by η4 ∈ {h1w2
2} we obtain η1η4 ∈ {h1γw2

2}. Since
η1ν ∈ {gw1}, we deduce that ν · η1η4 is detected by h1gw1w2

2 0= 0.
(135) Multiplying η1 ∈ {γ} by κ4 ∈ {d0w2

2} we obtain η1κ4 ∈ {d0γw2
2}. Since

η1ν ∈ {gw1}, we find that ν · η1κ4 is detected by d0gw1w2
2 0= 0.

(153) Multiplying η1 ∈ {γ} by ε5 ∈ {δ′w2
2} we obtain η1ε5 ∈ {γδ′w2

2}. Since
η1ν ∈ {gw1}, it follows that ν · η1ε5 is detected by δ′gw1w2

2 0= 0.
(32) Multiplying ε1 ∈ {δ′} by η1 ∈ {γ} we obtain η1ε1 ∈ {γδ′}. Since ν ·η1ε1 0=

0 by case (57), we deduce that ν · ε1 0= 0 must be detected by αβw1.
Lemma 9.13 now shows that B1 ∈ {αg} supports a hidden ν-extension
with the same target as ε1 ∈ {δ′}.

(97) Multiplying η4 ∈ {h1w2
2} by η1 ∈ {γ} we obtain η1η4 ∈ {h1γw2

2}. Since
ν · η1η4 0= 0 by case (122), we find that ν · η4 0= 0 must be detected by g5,
e.g. because the Adams filtration ≥ 26 part of π100(tmf) is 2-torsion free.

(128) Multiplying ε5 ∈ {δ′w2
2} by η1 ∈ {γ} we obtain η1ε5 ∈ {γδ′w2

2}. Since
ν · η1ε5 0= 0 by case (153), it follows that ν · ε5 0= 0 must be detected by
αβw1w2

2. Lemma 9.13 now shows that B5 ∈ {αgw2
2} supports a hidden

ν-extension with the same target as ε5 ∈ {δ′w2
2}.

Next, we use the short exact sequence (9.2) to determine the hidden ν-extensions
on h2

2 and its w2-power multiples.

(6) We claim that ν times the generator ν2 ∈ {h2
2} of π6(tmf) ∼= Z/2 is de-

tected by h1c0. The E∞-terms show that π9(tmf) ∼= (Z/2)2, π9(tmf/ν) ∼=
Z/2, and π5(tmf) = 0, which implies that ν : π6(tmf) → π9(tmf) has im-
age of order 2. Since B · ν2 = 0, the image ν · ν2 = ν3 cannot be detected
by the w1-periodic class h1w1. Hence ν3 must be detected by h1c0.

(54) The E∞-terms show that π57(tmf) ∼= (Z/2)4, π57(tmf/ν) has order 24,
and π53(tmf) ∼= Z/2. Since π56(tmf) is 2-torsion free, π53(tmf) is ν-
torsion, so ν : π54(tmf) → π57(tmf) has image of order 2. Since π54(tmf) ∼=
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Z/4 is generated by νν2, and B ·νν2 = 0, it follows that ν ·νν2 = ν2ν2 0= 0
cannot be detected by a w1-periodic class. Hence ν2ν2 ∈ {γδ′}.

(102) We claim that ν times the generator νν4 ∈ {h2
2w

2
2} of π102(tmf) ∼= Z/2

is detected by h1c0w2
2. The E∞-terms show that π105(tmf) ∼= (Z/2)7,

π105(tmf/ν) has order 26, and π101(tmf) = 0, which implies that the
homomorphism ν : π102(tmf) → π105(tmf) has image of order 2. Since
B2 ·νν4 = 0, the image ν ·νν4 = ν2ν4 cannot be detected by a w1-periodic
class. It can also not be detected by γg4, since i(γg4) = g5h1 0= 0 in
E∞(tmf/ν). (This relation holds already in E2(tmf/ν).) Hence ν2ν4

must be detected by h1c0w2
2.

(150) The E∞-terms show that π153(tmf) ∼= (Z/2)8, π153(tmf/ν) has order 28,
and π149(tmf) ∼= Z/2. Since π152(tmf) is 2-torsion free, π149(tmf) is
ν-torsion, so ν : π150(tmf) → π153(tmf) has image of order 2. Since
π150(tmf) ∼= Z/8 is generated by νν6, and B · νν6 = 0, it follows that
ν · νν6 = ν2ν6 0= 0 cannot be detected by a w1-periodic class. Hence
ν2ν6 ∈ {γδ′w2

2}.

To finish the proof, we must show there are no further hidden ν-extensions. In
most degrees, the result is evident from the fact that E∞(tmf) = 0 in the relevant
bidegrees (e.g., νBi = 0 for i = 0, 3, 4 or 7), or the fact that ν-multiples are
B-torsion, hence cannot be detected by w1-periodic classes. The remaining cases,
ν · B2 = 0 and ν · B6 = 0, were handled in Lemma 9.13. !

9.2.4. Hidden η-extensions. We used the map of Adams spectral sequences
induced by i : tmf → tmf/2 to determine the hidden 2-extensions in the spectral
sequence for tmf . This also determined most of the hidden ν-extensions, except
those on ννk for k = 0, 2, 4, 6, for which we used the spectral sequence map induced
by i : tmf → tmf/ν. It turns out that this information also suffices to determine
the hidden η-extensions.

Theorem 9.16. The Adams spectral sequence for tmf contains precisely the
following hidden η-extensions. First we have four extensions that occur together
with all their w1- and w4

2-power multiples:

(32) From αg to γw1, with B1 ∈ {αg} and ηB1 ∈ {γw1}.
(57) From h1c0w2 to γ2w1, with ηB2 ∈ {h1c0w2} and η2B2 ∈ {γ2w1}.

(128) From αgw2
2 to γw1w2

2, with B5 ∈ {αgw2
2} and ηB5 ∈ {γw1w2

2}.
(153) From h1c0w3

2 to γ2w1w2
2, with ηB6 ∈ {h1c0w3

2} and η2B6 ∈ {γ2w1w2
2}.

In addition we have 24 extensions that only occur together with their w4
2-power

multiples:

(21) From h1g to d0w1, with ηκ̄ ∈ {h1g} and η2κ̄ ∈ {d0w1}.
(27) From αβ to gw1, with ν1 ∈ {αβ} and ην1 ∈ {gw1}.
(34) From d0g to αβw1, with κκ̄ ∈ {d0g} and ηκκ̄ ∈ {αβw1}.
(39) From d0γ to δ′w1, with η1κ ∈ {d0γ} and ηη1κ ∈ {δ′w1}.
(40) From g2 to αβd0, with κ̄2 ∈ {g2} and ηκ̄2 ∈ {αβd0}.
(41) From αβd0 to d0gw1, with ηκ̄2 = ν1κ ∈ {αβd0} and η2κ̄2 = ην1κ ∈

{d0gw1}.
(45) From γg to d0δ′, with η1κ̄ ∈ {γg} and ηη1κ̄ ∈ {d0δ′}.
(51) From h2w2 to δ′g, with ν2 ∈ {h2w2} and ην2 ∈ {δ′g}.
(52) From δ′g to γgw1, with ην2 = ε1κ̄ ∈ {δ′g} and η2ν2 = ηε1κ̄ ∈ {γgw1}.
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(59) From h2w1w2 = d0γg to δ′gw1, with ν2B = η1κκ̄ ∈ {h2w1w2} = {d0γg}
and ην2B = ηη1κκ̄ ∈ {δ′gw1}.

(65a) From γg2 to d0δ′g, with η1κ̄2 ∈ {γg2} and ηη1κ̄2 ∈ {d0δ′g}.
(65b) From h2d0w2 to d0δ′g, with ν2κ ∈ {h2d0w2} and ην2κ ∈ {d0δ′g}.
(99) From h2w2

2 to g5, with ν4 ∈ {h2w2
2} and ην4 ∈ {g5}.

(117) From h1gw2
2 to d0w1w2

2, with η4κ̄ ∈ {h1gw2
2} and ηη4κ̄ ∈ {d0w1w2

2}.
(123) From αβw2

2 to gw1w2
2, with ν5 ∈ {αβw2

2} and ην5 ∈ {gw1w2
2}.

(129) From h1δw2
2 to γ2g4 with ηε5 ∈ {h1δw2

2} and η2ε5 ∈ {γ2g4}.
(130) From d0gw2

2 to αβw1w2
2, with κ4κ̄ ∈ {d0gw2

2} and ηκ4κ̄ ∈ {αβw1w2
2}.

(135) From d0γw2
2 to δ′w1w2

2, with η1κ4 ∈ {d0γw2
2} and ηη1κ4 ∈ {δ′w1w2

2}.
(137) From αβd0w2

2 to d0gw1w2
2, with ν5κ ∈ {αβd0w2

2} and ην5κ ∈ {d0gw1w2
2}.

(147) From h2w3
2 to δ′gw2

2, with ν6 ∈ {h2w3
2} and ην6 ∈ {δ′gw2

2}.
(148) From δ′gw2

2 to γgw1w2
2, with ην6 = ε5κ̄ ∈ {δ′gw2

2} and η2ν6 = ηε5κ̄ ∈
{γgw1w2

2}.
(149) From γgw1w2

2 to d0δ′w1w2
2, with η2ν6 = η1κκ4 ∈ {γgw1w2

2} and η3ν6 =
ηη1κκ4 ∈ {d0δ′w1w2

2}.
(155) From h2w1w3

2 to δ′gw1w2
2, with ν6B ∈ {h2w1w3

2} and ην6B ∈ {δ′gw1w2
2}.

(161) From h2d0w3
2 to d0δ′gw2

2, with ν6κ ∈ {h2d0w3
2} and ην6κ ∈ {d0δ′gw2

2}.

Proof. The proof starts from the nontrivial η3 on ν6 in degree 147, proved
in Theorem 9.14, and deduces the majority of the η-extensions from this and its
consequences.

(147-149) From Theorem 9.14 we have the relation η3 ·ν6 = 4ν ·ν6 ∈ {d0δ′w1w2
2} 0= 0

in degree 150. This implies η · ν6 ∈ {δ′gw2
2} and η2 · ν6 ∈ {γgw1w2

2}, as
these are the only classes of Adams filtration between 26 and 30 in these
degrees.

(129) Next, ην6 = ε5κ̄ because both products are detected by δ′gw2
2, and

from E∞(tmf) we see that there is only one nonzero 2-torsion element
in π148(tmf). Since η2 · ην6 0= 0, by the previous case, we deduce that
η2ε5 0= 0. It follows that η2ε5 must be detected by γ2g4, since this class
detects the unique B-power torsion element of order 2 in π130(tmf).

(21) From ην6 = ε5κ̄ and η2 · ην6 0= 0 we also deduce that η2κ̄ 0= 0, implying
that there is a hidden η-extension from h1g to d0w1, detecting κB.

(40,41) From η2 · κ̄ = κB we get η2 · κ̄2 = κκ̄B, detected by d0gw1. The interme-
diate class ηκ̄2 must be detected by αβd0, since this is the only class of
Adams filtration between 9 and 11 in degree 41.

(65a) Multiplying case (40) by η1 ∈ {γ} shows that η-multiplication takes
η1κ̄2 ∈ {γg2} to ηη1κ̄2 ∈ {γ · αβd0} = {αd0g2} = {d0δ′g}.

(45) Dividing the preceding case by κ̄ gives that η-multiplication sends η1κ̄,
detected by γg, to ηη1κ̄ detected by d0δ′ = αd0g.

(27) Dividing case (41) by d0 shows that ν1, detected by αβ, is sent to ην1,
detected by gw1.

(52) Multiplying the previous case by γ shows that η1ν1, detected by γ · αβ =
αg2 = δ′g, is sent to ηη1ν1, detected by γgw1 0= 0.

(32) In degree 32, filtration 7, there is a Klein 4-group with nonzero elements
αg, δ and δ′, detecting B1, B1 + ε1 and ε1, respectively. We see that ηB1

must be detected in Adams filtration at least 9, since h1αg = 0 in E2(tmf).
Multiplying by g gives αg2 = δ′g, and we have just shown that η times any
class detected by this must be detected by γgw1 in Adams filtration 13.
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The product ηB1 must therefore be detected in Adams filtration exactly
9, i.e., by γw1.

(59) In Adams filtration 13 of degree 59 we have h2w1w2, which equals α2βg in
E3(tmf) from the differential d2(αw2) = d0γg + h2w1w2 and the relation
α2β = d0γ. Multiplying case (32) by αβ we see that η-multiplication
takes ν1 · B1 = η1κκ̄ = ν2B, detected by αβ · αg = d0γg = h2w1w2, to
ην2B, detected by αβ · γw1 = αg2w1 = δ′gw1.

(34) Dividing the preceding case by γ gives that κκ̄, detected by d0g, is sent
to ηκκ̄, detected by αβw1.

(39) Dividing case (59) by g gives that η1κ, detected by d0γ, is sent to ηη1κ,
detected by δ′w1. Here we use the fact that κ is B-power torsion to
conclude that ηη1κ is detected by δ′w1, rather than by αgw1 or δw1, since
the latter two classes are w1-periodic.

(51) Dividing case (59) by w1, we get that ν2, detected by h2w2, is sent to ην2,
detected by δ′g.

(65b) Multiplying by d0 now shows that η-multiplication takes ν2κ, detected by
h2d0w2, to ην2κ, detected by d0δ′g.

(57) In Adams filtration 12 of degree 57, we have a Klein 4-group with nonzero
elements γδ = h1c0w2, αγg and γδ′, detecting ηB2, η1B1 and η1ε1, respec-
tively. Now, η1ε1 = ν2ν2 since γδ′ detects them both (by Theorem 9.14)
and there is only one nonzero B-power torsion class in degree 57. Hence
ηη1ε1 = 0. We have η ·η1B1 = η1 ·ηB1 0= 0 detected by γ2w1, by case (32).
Hence η · ηB2 is also detected by γ2w1.

(128) In degree 128, Adams filtration 23 is a Klein 4-group with nonzero ele-
ments αgw2

2, δw
2
2 and δ′w2

2. These classes are represented by B5, B5 + ε5
and ε5, respectively. The class κ̄B5 is detected by αg2w2

2 = δ′gw2
2 in

degree 148. We have shown that η times any such class is detected in
Adams filtration 29. It follows that ηB5 is detected in Adams filtration
no more than 25. Since h1αgw2

2 = 0, ηB5 must be detected in Adams
filtration no less than 25. Hence ηB5 is detected by γw1w2

2, the unique
class in Adams filtration 25. (It follows that η2 : π128(tmf) → π130(tmf)
maps E23,23+128

∞ (tmf) isomorphically to E26,26+130
∞ (tmf).)

(153) First, γδ′w2
2 is represented by η1ε5, which is B-power torsion. Since

π154(tmf) has no B-power torsion, there is no hidden η-extension from
γδ′w2

2. Now, the identity h1c0w3
2 = γδw2

2 = γδ′w2
2 + αγgw2

2 and the hid-
den η-extension from αgw2

2 to γw1w2
2 (case (128)) show that we have a

hidden η-extension from h1c0w3
2 to γ2w1w2

2.
(123) Since ν5B2 = 0, ην5 is either 0 or is detected by gw1w2

2. It thus suffices
to observe that η times a class detected by γ · αβw2

2 = δ′gw2
2 is nonzero,

by case (148).
(137) Multiplying by d0, we get that η times a class detected by αβd0w2

2 must
be detected by d0gw1w2

2.
(155) Multiplying case (147) by w1 proves this.
(161) Multiplying case (147) by d0 proves this.
(130) Multiplying κ4κ̄, detected by d0gw2

2, by η must give either 0 or a class
detected by αβw1w2

2. It must be nonzero because multiplying by γ gives
the product in case (155). This uses the equality h2w1w3

2 = d0γgw2
2 in

E3(tmf) coming from d2(αw3
2).
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(135) Similarly, multiplying by g shows that this also follows from case (155).
(99) We have ν4κ = νκ4, because there is only one B-power torsion class

detected by h2d0w2
2. By Theorem 9.14 the product η1ν4 · κ = η1ν · κ4 =

κ̄B · κ4 is detected by d0gw1w2
2 0= 0 in Adams filtration 28. It follows

that η1ν4 0= 0 is detected in Adams filtration ≤ 24, and gw1w2
2 is the

only nonzero class in sufficiently low Adams filtration. Hence η · η1ν4 is
detected by h1gw1w2

2 0= 0, which implies that ην4 0= 0. Being a 2-torsion
class, it can only be detected by g5, so ην4 ∈ {g5}.

(117) We prove this by lifting to the top cell of C2. Consider the following
commutative diagram. The elements we are interested in are named in
the left hand and right hand columns; see Tables 6.10 and 6.11.

h1gw2
2 π117(tmf)

η
!! π118(tmf) d0w1w2

2

g · w2
2h̃1 π118(tmf/2)

j

,,,,

η
!!

κ̄

""

π119(tmf/2)

∼=j

,,

κ̄

""

i(βw1w2
2)

g2 · w2
2h̃1 π138(tmf/2)

η
!!

j
""""

π139(tmf/2)

j

""

g · i(βw1w2
2)

αβd0w2
2 π137(tmf)

η
!! π138(tmf) d0gw1w2

2

First note that π117(tmf) and π118(tmf) are both of order 2, and that
π119(tmf) = 0. Hence the map j in the upper right of the diagram is
an isomorphism. To show that η times {h1gw2

2} is nonzero, it suffices to

show that η times any lift in {gw2
2h̃1} is nonzero. To show that, it suffices

to show that η · j(κ̄ · {gw2
2h̃1}) 0= 0. Clearly κ̄{gw2

2h̃1} ⊂ {g2w2
2h̃1}. Since

π137(tmf) has exponent 2, the map j in the lower left of the diagram is an

epimorphism. The class αβd0w2
2 has Adams filtration 26, and g2w2

2h̃1 is
the only class in π138(tmf/2) in filtration less than or equal to 26. Thus

j({g2w2
2h̃1}) = {αβd0w2

2}. By case (137) above, η acts nontrivially on any
class in {αβd0w2

2}, and we are done. (Alternatively, this can be deduced
from the vanishing of π119(tmf/η), which is clear from Figure 7.5.)

This exhausts the nonzero hidden η-extensions. In all other cases, a hidden
η-extension would have to map from a w1-power torsion class, which detects a
B-power torsion class, to a w1-periodic class, which can only detect B-periodic
classes. !

Proposition 9.17. ν2ν4 = ηε4 + η1κ̄4.

Proof. The B-power torsion subgroup of π105(tmf) is (Z/2)2, generated by
ηε4 and η1κ̄4, which are detected in adjacent Adams filtrations by h1c0w2

2 and γg4.
By Theorem 9.14, ν2ν4 is also detected by h1c0w2

2, so ν2ν4−ηε4 is either 0 or η1κ̄4.
We have η1ν2 = 0 because π31(tmf) = 0, and η1ε4 = ηε5 since both are B-power
torsion classes detected by c0γw2

2 = h1δw2
2. Hence η1(ν2ν4 − ηε4) = η2ε5 0= 0 by

Theorem 9.16. It follows that ν2ν4 − ηε4 = η1κ̄4, since it is not 0. !
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9.3. The image of π∗(tmf) in modular forms

To determine the ring structure on the torsion free quotient of π∗(tmf), we
make a comparison with the elliptic spectral sequence of [75, §4.3], with edge
homomorphism

e : π∗(tmf) −→ mf∗/2 = Z[c4, c6,∆]/(c3
4 − c2

6 = 1728∆) .

Here mf∗/2 is the ring of integral modular forms, with c4, c6 and ∆ in weights ∗/2 =
4, 6 and 12, corresponding to topological degrees ∗ = 8, 12 and 24.

By [75, Prop. 4.6] and [23, §8], the image of the edge homomorphism is the
subring of mf∗/2 given additively as

(9.3) Z{ai,j,kci
4c

j
6∆

k | i ≥ 0, j ∈ {0, 1}, k ≥ 0}

where

ai,j,k =






24/ gcd(k, 24) for i = j = 0,

1 for i ≥ 1 and j = 0,

2 for j = 1.

See also [54, §13.4] and [89, Thm. 1.2]. As stated this is an integral result, but
following our standing conventions we are only concerned with its conclusion after
implicit 2-completion.

Definition 9.18. For k ≥ 0 let ek = max{3 − ord2(k), 0} and dk = 2ek , so
that

dk =






8 for k ≡ 1, 3, 5, 7 mod 8,

4 for k ≡ 2, 6 mod 8,

2 for k ≡ 4 mod 8,

1 for k ≡ 0 mod 8

is the 2-primary component of a0,0,k. It follows that 8/dk = gcd(k, 8).

Proposition 9.19. The kernel of the edge homomorphism π∗(tmf) → mf∗/2

is equal to the 2-power torsion ideal in π∗(tmf). Hence the torsion free quotient of
π∗(tmf) is isomorphic to the image of the edge homomorphism.

(1) The generators Bk in π∗(tmf) can be chosen to map to c4∆k in mf∗/2,
for 0 ≤ k ≤ 7.

(2) The generators Ck can be chosen to map to 2c6∆k, for 0 ≤ k ≤ 7.
(3) The generators Dk can be chosen to map to dk∆k, for 1 ≤ k ≤ 7, where

dk ∈ {2, 4, 8} is defined as above.
(4) The generator M can be chosen to map to ∆8.
(5) The remaining algebra generators are 2-power torsion, and map to zero.

Remark 9.20. The modular form image in mf∗/2 and Adams detecting class
in E∞(tmf) uniquely determine each algebra generator Bk, Ck and Dk in π∗(tmf),
for 0 ≤ k ≤ 7, with the following exceptions: C2 is determined modulo 2κ̄3 = ν3ν2,
B3 is determined modulo κ̄4, and C6 is determined modulo ν3ν6. In each of the
three exceptional cases the ambiguity is a class of order 2. A specific choice of B3

will be made in Definition 9.22, but see also Definition 9.50.

Our proof of the proposition above makes use of the case j = 1 of (9.3). It also
uses the construction in [91, Thm. 1.2] of an E∞ ring spectrum map ι′ : tmf →
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tmf1(3) - BP 〈2〉, with an associated map of elliptic spectral sequences, yielding a
commutative diagram

(9.4) π∗(tmf)
e !!

ι′

""

mf∗/2

ι′

""

π∗(tmf1(3))
e
∼=

!! mf1(3)∗/2

with horizontal edge homomorphisms. To justify the formulas connecting mf∗/2

to mf1(3)∗/2 and π∗(BP 〈2〉), we first review some of the theory of Γ1(3)-modular
forms.

Following Mahowald and Rezk [105] we consider the moduli stack M1(3) of
elliptic curves with level structure of type Γ1(3), i.e., with a chosen point of order 3.
There is an étale map M1(3) → Mell that represents forgetting the level structure,
and the Goerss–Hopkins–Miller sheaf of E∞ ring spectra over Mell pulls back to
a similar sheaf over M1(3). We let TMF1(3) be the global sections (= homotopy
limit) of this sheaf, so that there is a canonical map TMF → TMF1(3) of E∞ ring
spectra. Since we are implicitly working locally at p = 2, each elliptic curve with
Γ1(3) structure is uniquely strictly isomorphic, cf. [105, Prop. 3.2], to a non-singular
Weierstrass curve of the form

y2 + a1xy + a3y = x3 ,

with a2 = a4 = a6 = 0. This defines an elliptic curve with a flex point at (x, y) =
(0, 0), which gives the point of order 3. The classical expressions for c4, c6 and ∆
of an elliptic curve in Weierstrass form, as given in Joseph Silverman’s book [157,
§III.1], then simplify to c4 = a1(a3

1 − 24a3), c6 = −a6
1 + 36a3

1a3 − 216a2
3 and ∆ =

a3
3(a

3
1 − 27a3). It follows that π∗(TMF1(3)) ∼= MF1(3)∗/2 = Z[a1, a3][1/∆]. The 2-

series of the associated formal group law can be calculated with the recipe of [157,
§IV.1], and begins

[2](z) = 2z − a1z
2 − 7a3z

4 + . . . .

Hence the complex orientation MU → TMF1(3) sends v1 to −a1 ≡ a1 mod 2
and v2 to −7a3 ≡ a3 mod (2, a1). Here we use that vn maps to the coefficient of
z2n

in the 2-series, modulo (2, . . . , vn−1), both for the Araki and the Hazewinkel
generators [144, A2.2.4 and p. 371].

Using chromatic fracture squares, Lawson and Naumann [91, §3] proceed to
construct a map Tmf → Tmf1(3) of E∞ ring spectra, whose K(2)-localization agrees
with the canonical map mentioned above. Passing to connective covers, they obtain
the E∞ ring spectrum map ι′ : tmf → tmf1(3), where π∗(tmf1(3)) ∼= mf1(3)∗/2 =
Z[a1, a3]. Furthermore, tmf1(3) is a (generalized) BP 〈2〉, in the sense that the
composite homomorphism

Z[v1, v2] → π∗(MU) → π∗(tmf1(3))

is an isomorphism. Moreover, they show in [91, Thm. 4.4] that H∗(tmf1(3)) ∼=
A//E(2), and ι′ induces the evident surjection A//E(2) → A//A(2) in mod 2 co-
homology.

Alternatively, one can follow the later work of Hill and Lawson [70, Thm. 5.17],
who show that the Goerss–Hopkins–Miller étale sheaf over Mell extends to a log-
étale sheaf over the compactification Mell. The direct image log structure from
Mell gives Mell the structure of a (Deligne–Mumford) log stack [70, Def. 3.1], and
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the extended sheaf can be pulled back along any log-étale cover of Mell. In par-
ticular, there is a compactification M1(3) of M1(3) classifying generalized elliptic
curves with Γ1(3) level structure. When the compactification is equipped with the
direct image log structure, the forgetful map M1(3) → Mell is log-étale. Passing
to global sections, Hill and Lawson recover the map Tmf → Tmf1(3) of E∞ ring
spectra, and an associated map of descent spectral sequences [70, Thm. 6.1]. A
presentation of M1(3) as a weighted projective space shows that the descent spec-
tral sequence for Tmf1(3) collapses at the E2-term, which is concentrated along
the 0- and 1-lines. In particular, π∗(Tmf1(3)) agrees with mf1(3)∗/2 = Z[a1, a3] in
non-negative degrees.

Passing to connective covers, this leads to diagram (9.4), with tmf1(3) a gener-
alized BP 〈2〉. The edge homomorphism e : π∗(BP 〈2〉) ∼= π∗(tmf1(3)) → mf1(3)∗/2

satisfies e(v1) ≡ a1 mod 2 and e(v2) ≡ a3 mod (2, a1), while the homomorphism
ι′ : mf∗/2 → mf1(3)∗/2 is given by

(9.5)

c4 2−→ a1(a
3
1 − 3 · 23a3)

c6 2−→ −a6
1 + 9 · 22a3

1a3 − 27 · 23a2
3

∆ 2−→ a3
3(a

3
1 − 27 · a3) .

Here we have emphasized the powers of 2 that are present, in order to make it easier
to recognize how (products of) the classes on the right hand side are detected in
the Adams spectral sequence for tmf1(3).

Proof of Proposition 9.19. We compare diagram (9.4) with the map of
Adams spectral sequences

E∗,∗
2 (tmf) !!

ι′

""

π∗(tmf)

ι′

""

E∗,∗
2 (tmf1(3)) !! π∗(tmf1(3)) .

The left hand homomorphism ι′ : E∗,∗
2 (tmf) → E∗,∗

2 (tmf1(3)) was calculated in
Lemma 1.17 and given in Table 1.3.

In degree ∗ = 8, B ∈ {w1} maps to a multiple e(B) = xc4 of the generator of
mf4 = Z{c4}. Its image ι′(xc4) = xa1(a3

1−3 ·23a3) must be detected by ι′(w1) = v4
1

in E∞(tmf1(3)). Here a1(a3
1 − 3 · 23a3) ∈ {v4

1}, so x is a 2-adic unit. Replacing B
by B/x we may thus arrange that e(B) = c4.

In degree ∗ = 12, C ∈ {h3
0α} maps to a multiple e(C) = xc6 of the generator of

mf6 = Z{c6}. Its image ι′(xc6) = x(−a6
1 + 9 · 22a3

1a3 − 27 · 23a2
3) must be detected

by ι′(h3
0α) = v4

0v2
2 in E∞(tmf1(3)). Here −a6

1 + 9 · 22a3
1a3 − 27 · 23a2

3 ∈ {v3
0v2

2}, so
x is 2 times a unit. Dividing C by this unit we obtain e(C) = 2c6.

In degree ∗ = 24, D1 ∈ {h0α2} maps to a linear combination e(D1) = xc3
4 +y∆

of the generators of mf12 = Z{c3
4,∆}. Subtracting xB3 from D1 does not alter its

detecting class in the Adams E∞-term, so we may assume that x = 0 and e(D1) =
y∆. The image ι′(y∆) = ya3

3(a
3
1 − 27 · a3) must be detected by ι′(h0α2) = v3

0v4
2 in

E∞(tmf1(3)). Here a3
3(a

3
1 − 27 · a3) ∈ {v4

2}, so y is d1 = 23 times a unit. Dividing
D1 by this unit we get e(D1) = 23∆.

In degree ∗ = 32, B1 ∈ {αg} maps to a sum e(B1) = xc4
4 + yc4∆ in mf16.

Subtracting xB4 from B1 we may assume that x = 0 and e(B1) = yc4∆. Due to
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the hidden 2-extension from h2
0αg to h0α2w1, we instead consider 8B1 ∈ {h0α2w1},

with e(8B1) = 8yc4∆. The image

ι′(8yc4∆) = 8ya1(a
3
1 − 3 · 23a3)a

3
3(a

3
1 − 27 · a3)

must be detected by ι′(h0α2w1) = v3
0v4

1v4
2 in E∞(tmf1(3)). Here ι′(c4∆) ∈ {v4

1v4
2},

so 8y is 23 times a unit. Dividing B1 by y we get e(B1) = c4∆.
In degree ∗ = 36, C1 ∈ {h0α3} maps to a sum e(C1) = xc3

4c6 + yc6∆ in mf18.
By formula (9.3), x and y are both even. Hence we can subtract (x/2)B3C from C1

to arrange that x = 0 and e(C1) = yc6∆. The image ι′(yc6∆) must be detected
by ι′(h0α3) = v4

0v6
2 . Here ι′(c6∆) ∈ {v3

0v6
2}, so y is 2 times a unit. Dividing C1 by

that unit we get e(C1) = 2c6∆.
In degree ∗ = 48, D2 ∈ {h2

0w2} maps to a sum e(D2) = xc6
4 + yc3

4∆ + z∆2

in mf24 = Z{c6
4, c

3
4∆,∆2}. Subtracting xB6 + yB2B1 from D2 does not alter its

detecting class in the Adams E∞-term, so we may assume that x = 0, y = 0 and
e(D2) = z∆2. The image ι′(z∆2) must be detected by ι′(h2

0w2) = v2
0v8

2 . Here
ι′(∆2) ∈ {v8

2}, so z is d2 = 22 times a unit. Dividing D2 by this unit we get
e(D2) = 22∆2.

In degree ∗ = 56, B2 ∈ {c0w2} maps to a sum e(B2) = xc7
4 + yc4

4∆ + zc4∆2

in mf28. Subtracting xB7 + yB3B1 from B2 we may assume that e(B2) = zc4∆2.
Due to the hidden 2-extension from c0w2 to α3g + h0w1w2, we instead consider
2B2 ∈ {α3g + h0w1w2}, with e(2B2) = 2zc4∆2. The image ι′(2zc4∆2) must be
detected by ι′(α3g + h0w1w2) = v0v4

1v8
2 . Here ι′(c4∆2) ∈ {v4

1v8
2}, so 2z is 2 times a

unit. Dividing B2 by that unit we get e(B2) = c4∆2.
The proofs for C2 ∈ {h3

0αw2}, C3 ∈ {h0α3w2}, C4 ∈ {h3
0αw2

2}, C5 ∈ {h0α3w2
2},

C6 ∈ {h3
0αw3

2} and C7 ∈ {h0α3w3
2} are very similar to the one for C1. In each case

we use that e(Ck) is divisible by 2 in mf∗/2 by (9.3).
The proofs for D3 ∈ {h0α2w2}, D5 ∈ {h0α2w2

2} and D7 ∈ {h0α2w3
2} are very

similar to the one for D1.
The proofs for B3 ∈ {δw2}, B5 ∈ {αgw2

2} and B7 ∈ {δw3
2} are very similar to

the one for B1.
In degree ∗ = 96, D4 ∈ {h0w2

2} maps to a sum e(D4) = xc12
4 + yc9

4∆+ zc6
4∆

2 +
sc3

4∆
3+t∆4 in mf48. Subtracting xB12+yB8B1+zB5B2+sB2B3 from D4 we may

assume that e(D4) = t∆4. The image ι′(t∆4) must be detected by ι′(h0w2
2) = v0v16

2 .
Here ι′(∆4) ∈ {v16

2 }, so t is d4 = 2 times a unit. Dividing by this unit we get
e(D4) = 2∆4.

The proof for B4 ∈ {w1w2
2} is very similar to that for B.

The proof for D6 ∈ {h2
0w

3
2} is very similar to that for D2.

The proof for B6 ∈ {c0w3
2} is very similar to that for B2.

Finally, in degree ∗ = 192, M ∈ {w4
2} ⊂ π∗(tmf) maps to a linear combination

e(M) ∈ mf∗/2 of terms ci
4∆

j with i + 3j = 24 and 0 ≤ j ≤ 8. Subtracting
from M the corresponding linear combination of terms Bi−1Bj for 0 ≤ j ≤ 7, we
may assume that e(M) = x∆8. The image ι′(x∆8) ∈ π∗(tmf1(3)) must then be
detected by ι′(w4

2) = v32
2 . Here ι′(∆8) ∈ {v32

2 }, so x is a 2-adic unit. Dividing M
by that unit we get e(M) = ∆8, while still keeping M ∈ {w4

2}.
In view of Theorem 9.8, the 2-torsion free quotient of π∗(tmf) is generated

as a Z[B, M ]-module (implicitly 2-completed) by Dk, Bk and Ck in degrees 24k,
8 + 24k and 12 + 24k, for 0 ≤ k ≤ 7, subject to the relations B · Dk = dkBk. These
relations lift from E∞(tmf) to π∗(tmf) because all classes of higher Adams filtration
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in degree 8 + 24k are detected by the edge homomorphism, and the relations

c4 · dk∆
k = dk · c4∆

k

evidently hold in mf∗/2. Since the edge images e(Dk) = dk∆k, e(Bk) = c4∆k and
e(Ck) = 2c6∆k satisfy no other Z[c4,∆8]-module relations than these, it follows
that e maps the 2-torsion free quotient of π∗(tmf) injectively to mf∗/2. This proves
that the kernel of e is precisely Γ2π∗(tmf). !

By [91, Thm. 1.2], the map ι′ : tmf → tmf1(3) - BP 〈2〉 sits in a commutative
square

tmf
q0

!!

ι′

""

ko

c

""

tmf1(3)
c̃ !! ku

of E∞ ring spectra, realizing the square of cyclic A-modules

A//A(2) A//A(1)BB

A//E(2)

,,

A//E(1)BB

,,

in cohomology. The Adams spectral sequences for tmf1(3) - BP 〈2〉, ko and ku
collapse at the E2-term, and we have induced graded ring homomorphisms

π∗(tmf)
q0

!!

ι′

""

Z[η, A, B]

(2η, η3, ηA, A2 − 4B)

c

""

Z[a1, a3]
c̃ !! Z[v1]

(implicitly 2-localized or 2-completed). The complexification map c induces η 2→ 0,
A 2→ 2v2

1 and B 2→ v4
1 , while the map c̃ is constructed [91, p. 2784] so as to induce

a1 2→ −v1 and a3 2→ 0.

Proposition 9.21. The ring homomorphism q0 : π∗(tmf) → π∗(ko) is given
on the B-, C-, D- and M -families of generators by

B 2−→ B

C 2−→ −AB

while Bk 2→ 0, Ck 2→ 0, Dk 2→ 0 and M 2→ 0 for 1 ≤ k ≤ 7.

Proof. Since c : π∗(ko) → π∗(ku) is injective in degrees ∗ ≡ 0 mod 4, it
suffices to verify that cq0 = c̃ι′ is given by B 2→ v4

1 , C 2→ −2v6
1 , Bk 2→ 0, Ck 2→ 0,

Dk 2→ 0 and M 2→ 0, where 1 ≤ k ≤ 7. This follows from the choices of modular
form images made in Proposition 9.19, together with the formulas c4 2→ v4

1 , c6 2→
−v6

1 and ∆ 2→ 0 for the composite c̃ι′ : mf∗/2 → π∗(ku), which follow directly
from (9.5). !

For degree reasons, it is clear that the 2-power torsion ν-, ε-, κ- and κ̄-families
map to 0 in π∗(ko), but to determine the images of η1 and η4, more specific choices
must be made. We do this in the following section.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



334 9. THE HOMOTOPY GROUPS OF tmf

9.4. Algebra generators for π∗(tmf)

We now aim to characterize the 40 homotopy classes from Figure 9.1, which
generate π∗(tmf) as a graded commutative ring, or more precisely (due to our
implicit 2-completion), as a Z2-algebra. Each of these algebra generators will be
detected in E∞(tmf) by one of the 43 generators from Table 9.1, with the minor
modification that B1 ∈ {αg} and B5 ∈ {αgw2

2}, where αg = δ + δ′ and αgw2
2 =

δw2
2+δ′w2

2 occur as sums of generators in that table. Due to the additive extensions
found in Section 9.2, the remaining three generators (namely h0, α3g+h0w1w2 and
α3gw2

2+h0w1w3
2) from Table 9.1 are not needed to generate π∗(tmf) as a Z2-algebra.

The detecting classes in E∞(tmf) only determine these 40 algebra generators
for π∗(tmf) modulo classes of higher Adams filtration. By also specifying their
images in mf∗/2 under the edge homomorphism to modular forms, as in Section 9.3,
we eliminate most of the ambiguity in the definition of the generators of infinite
additive order. Nonetheless, some ambiguity remains, which we account for on a
case-by-case basis in the following definition.

Definition 9.22.

(1) Let B ∈ π8(tmf), C ∈ π12(tmf) and M ∈ π192(tmf) be the classes de-
tected by w1, h3

0α and w4
2 in E∞(tmf), and mapping to c4, 2c6 and ∆8 in

mf∗/2, respectively.
(2) Let η ∈ π1(tmf), ν ∈ π3(tmf), ε ∈ π8(tmf), κ ∈ π14(tmf) and κ̄ ∈

π20(tmf) be the images of the classes with the same names in π∗(S).
These satisfy 2η = 0, 8ν = 0, 2ε = 0, 2κ = 0 and 8κ̄ = 0 in π∗(S)
(implicitly 2-completed), as well as in π∗(tmf), and are detected in the
E∞-term by h1, h2, c0, d0 and g, respectively.

(3) The classes D = 1, B, C, η, ν, ε and κ generate the remaining algebra
generators for π∗(tmf), up to scalars, by “formally multiplying by powers
of ∆ = v4

2 .” As discussed in Section 9.1, classes detecting these elements
at the E2-term are related by the Massey products ∆ and ∆′. For each
class x ∈ πn(tmf) in the above list we write xk for the corresponding
algebra generator in πn+24k(tmf), for some or all 1 ≤ k ≤ 7. In some
general formulas it is convenient to use the conventions that x0 = x and
xk+8 = xkM , but the latter products are not needed to generate π∗(tmf).

(4) Hence, let Dk ∈ π24k(tmf) for 1 ≤ k ≤ 7 be the classes detected by h0α2,
h2

0w2, h0α2w2, h0w2
2, h0α2w2

2, h2
0w

3
2 and h0α2w3

2 in E∞(tmf), respectively,
and mapping to dk∆k in mf∗/2, where dk = 2ek is as in Definition 9.18.

(5) Let Bk ∈ π8+24k(tmf) for 1 ≤ k ≤ 7 be classes detected by αg, c0w2,
δw2, w1w2

2, αgw2
2, c0w3

2 and δw3
2, respectively, and mapping to c4∆k in

each case. These conditions uniquely specify the Bk, except for k = 3: If
B̄3 denotes a class detected by δw2 and mapping to c4∆3, then B̄3 and
B̄3 + κ̄4 are the two elements of π80(tmf) that meet these two conditions.
Exactly one of B̄3 and B̄3 + κ̄4 satisfies

κ̄B3 = κ̄5 ,

and we let B3 be this one. The choices of classes Dk and Bk are compat-
ible, in the sense that

B · Dk = dkBk .
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(6) Let Ck ∈ π12+24k(tmf) for 1 ≤ k ≤ 7 be classes detected by h0α3, h3
0αw2,

h0α3w2, h3
0αw2

2, h0α3w2
2, h3

0αw3
2 and h0α3w3

2, respectively, and mapping
to 2c6∆k in mf∗/2. These conditions uniquely specify the Ck, except for
k ∈ {2, 6}: each choice of C2 or C6 can be altered by adding ν3ν2 = 2κ̄3

or ν3ν6, respectively, without changing the detecting classes in E∞(tmf)
or the images in mf∗/2. We leave this additive indeterminacy in C2 and
C6 unspecified.

(7) Let ηk ∈ π1+24k(tmf) for k ∈ {1, 4} be the classes detected by γ and h1w2
2,

respectively, and subject to the condition

B · ηk = ηBk .

This determines η1 uniquely, since multiplication by B maps π25(tmf) ∼=
(Z/2)2 isomorphically to Adams filtration ≥ 9 of π33(tmf), where ηB1 is
detected by γw1. It also determines η4 uniquely, since multiplication by B
maps π97(tmf) ∼= (Z/2)5 isomorphically to the part of Adams filtration
≥ 21 of π105(tmf) that maps to {0, h1w1w2

2} ⊂ E21,21+105
∞ (tmf), where

ηB4 is detected by h1w1w2
2. This definition is compatible with the earlier

specification made in Lemma 9.7, namely that 2η1 = 0 and 2η4 = 0, since
π25(tmf) and π97(tmf) both have exponent 2.

(8) Let νk ∈ π3+24k(tmf) for k ∈ {1, 2, 4, 5, 6} be classes detected by αβ, h2w2,
h2w2

2, αβw2
2 and h2w3

2, respectively. These are uniquely determined up to
odd multiples, and satisfy 4ν1 = 0, 8ν2 = 0, 8ν4 = 0, 4ν5 = 0 and 8ν6 = 0,
as is easily seen from the E∞-term for tmf . This leaves Z/4× ambiguity
in the choices of ν1 and ν5, and Z/8× ambiguity in the choices of ν2, ν4

and ν6. We shall see in Proposition 9.35 that ν5 and ν6 can be uniquely
chosen to make

ν1ν5 = 2νν6 and ν2ν4 = 3νν6 ,

leaving only the multiplicative ambiguity in the choices of ν1, ν2 and ν4.
In Theorem 9.54, we will see that we can choose ν4 so that

νD4 = 2ν4 ,

and this further reduces the ambiguity in the choice of ν4 to a factor in
{1, 5} ⊂ Z/8×. In some general formulas, it will be convenient to let
ν3 = η3

1 , detected by γ3, and ν7 = 0 ∈ π171(tmf), so that νk has order
d7−k for each 0 ≤ k ≤ 7.

(9) Let εk ∈ π8+24k(tmf) for k ∈ {1, 4, 5} be classes detected by δ′, c0w2
2 and

δ′w2
2, respectively. We showed in Lemma 9.7 that we can choose these

homotopy classes so that 2ε1 = 0, 2ε4 = 0 and 2ε5 = 0. This uniquely
determines these elements in π∗(tmf), since in each case the 2-torsion
subgroup is Z/2.

(10) Finally, let κ4 ∈ π110(tmf) be a class detected by d0w2
2. It is easily seen

from the E∞-term for tmf that 4κ4 = 0, and we saw in Theorem 9.8 that
2κ4 0= 0. This determines κ4 up to sign. In case (150a) of Theorem 9.8
we showed that κ4κ̄2 = ±2νν6, and we choose the sign of κ4 to make

κ4κ̄
2 = 2νν6 .

While the preceding definition contains forward references to results which allow
us to reduce or eliminate ambiguity, those results and the resulting specificity in our

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



336 9. THE HOMOTOPY GROUPS OF tmf

choices of generators are not used until the results have been proved. Their inclusion
above is done simply to collect everything in one definition for the convenience of
the reader.

Remark 9.23. We note the following comparisons with other notations:

(1) The generators Bk specified above are the most convenient for the calcu-
lations in this section and the next, but for our final description of the
multiplicative structure in π∗(tmf) we will find it best to replace them by
generators B̃k, which sometimes have lower Adams filtration. See Defini-
tion 9.50.

(2) There is no relation between our classes η1 and η4 and Mahowald’s classes
ηj ∈ π2j (S) detected by h1hj , cf. [101]. The latter homotopy classes are
decomposable for j ≤ 3, and Mahowald’s η4 equals Toda’s η∗ in π16(S),
so the notation ηj is mostly needed for j ≥ 5, in which case there is
no conflict of notation. The image of Mahowald’s η4 in π∗(tmf) is zero,
because π16(tmf) is 2-torsion free.

(3) Henriques [54, Ch. 13] writes {2ν∆} for our class ν1, and {ν∆5} for our
class ν5 (but {2ν∆5} was intended). There are relations η2 ·η1 = 2 ·ν1 and
ν · η1 = η · ν1. The first of these would look more familiar in Henriques’
notation, but the second relation is more familiar in our notation, which
is typographically simpler.

(4) As we will prove in Proposition 11.77, the element ε1 ∈ π32(tmf) is the
image of a homotopy class [q] in π32(S) detected by q ∈ E6,6+32

∞ (S), see Ta-
ble 1.1. However, [q] has Adams filtration 6 and ε1 has Adams filtration 7,
so we prefer to keep separate notations. Further, as we have observed, all
the εk play a similar role, making the more consistent notation preferable.

Remark 9.24. The following indeterminacies remain in our choices of algebra
generators for π∗(tmf):

(1) The complex and quaternionic Hopf fibrations specify the classes η and ν
in π∗(S), respectively, as well as their images in π∗(tmf). The elements
ε and κ in π∗(tmf) are characterized by being of order 2. The class
κ̄ ∈ π20(S) was only defined up to a factor in Z/8× = {1, 3, 5, 7} in [130,
Lemma 15.4]. A more precise choice can be made using fourfold Toda
brackets 〈ν, η, 2,κ〉 or 〈κ, 2, η, ν〉, as in [87, Lemma 5.3.8] and [23, (8.1)],
but in each case the indeterminacy 4κ̄ = ν2κ remains. The image of κ̄ in
π∗(tmf) is then as uniquely specified as it is in π∗(S). The products ηκ̄,
νκ̄ = 0, εκ̄, κκ̄ and κ̄2 are unambiguously defined.

(2) The classes Dk for 1 ≤ k ≤ 7 and M are uniquely determined by their
modular form images.

(3) The classes Bk for 0 ≤ k ≤ 7 are uniquely determined by their detecting
E∞-classes and modular form images, except for B3, which is unambigu-
ously specified by the relation κ̄B3 = κ̄5. This choice is made so that the
formula ηiνj = κ̄Bi+j−1 in Proposition 9.38 will hold for all i and j.

(4) The classes Ck for 0 ≤ k ≤ 7 are uniquely determined by their modular
form images, except for C2 and C6. We leave these two classes unspecified,
with additive indeterminacy 2κ̄3 = ην2ε = ν3ν2 = εε1κ̄ and ην6ε = ν3ν6 =
εε5κ̄, respectively. See Proposition 9.41 for the factorizations involving ε.
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(5) The classes ηk for k ∈ {1, 4} are uniquely determined by their detecting
classes in E∞(tmf) and the relations ηkB = ηBk.

(6) The νk for k ∈ {1, 2, 4, 5, 6} are specified by their detecting classes in
E∞(tmf), together with the equations ν1ν5 = 2νν6, ν2ν4 = 3νν6 and
νD4 = 2ν4. This leaves multiplicative indeterminacy Z/4× for ν1, Z/8×

for ν2, and {1, 5} ⊂ Z/8× for ν4.
(7) The εk for k ∈ {1, 4, 5} are uniquely determined by their detecting classes

in E∞(tmf), together with the fact that they have order 2. The latter
clause could be replaced by the condition that they be B-power torsion.

(8) The class κ4 is uniquely determined by its detecting class in E∞(tmf) and
the relation κ4κ̄2 = 2νν6.

To summarize: The classes that have not been uniquely specified are C2, C6, ν1, ν2

and ν4. The classes ν5, ν6 and κ4 depend, in well-defined manner, on the choices
of ν1, ν2 and ν4.

Definition 9.25. Let N∗ ⊂ π∗(tmf) be the Z[B]-submodule generated by all
classes in degrees 0 ≤ ∗ < 192, and let N = tmf/M be the homotopy cofiber of the
map

M : Σ192tmf −→ tmf .

Theorem 9.26. As a Z[B]-module, N∗ is a split extension

0 → ΓBN∗ −→ N∗ −→ N∗/ΓBN∗ → 0 .

The B-power torsion submodule ΓBN∗ is given in Table 9.4. It is concentrated in
degrees 3 ≤ ∗ ≤ 164, and is finite in each degree. The action of B is as indicated
in the table, together with 2κ̄2 = ε1B, 2κ̄3 = ην2B and 4νν6 = ε5κB.

The B-torsion free quotient of N∗ is the direct sum

N∗/ΓBN∗ =
7⊕

k=0

ko[k]

of the following eight (implicitly 2-completed) Z[B]-modules, with ko[k] concentrated
in degrees ∗ ≥ 24k:

ko[0] = Z[B]{1, C} ⊕ Z/2[B]{η, η2}
ko[1] = Z{D1} ⊕ Z[B]{B1, C1} ⊕ Z/2[B]{η1, ηη1}
ko[2] = Z{D2} ⊕ Z[B]{B2, C2} ⊕ Z/2[B]{ηB2, η

2
1}

ko[3] = Z{D3} ⊕ Z[B]{B3, C3} ⊕ Z/2[B]{ηB3, η
2B3}

ko[4] = Z{D4} ⊕ Z[B]{B4, C4} ⊕ Z/2[B]{η4, ηη4}
ko[5] = Z{D5} ⊕ Z[B]{B5, C5} ⊕ Z/2[B]{ηB5, η1η4}
ko[6] = Z{D6} ⊕ Z[B]{B6, C6} ⊕ Z/2[B]{ηB6, η

2B6}
ko[7] = Z{D7} ⊕ Z[B]{B7, C7} ⊕ Z/2[B]{ηB7, η

2B7} .

The Z[B]-module structures are such that B ·D1 = 8B1, B ·D2 = 4B2, B ·D3 = 8B3,
B · D4 = 2B4, B · D5 = 8B5, B · D6 = 4B6 and B · D7 = 8B7. In other words,
B · Dk = dkBk for each 1 ≤ k ≤ 7.

Proof. In view of Definition 9.22 this summarizes information from Tables 5.8
and 5.9, Theorems 9.8, 9.14 and 9.16, and Proposition 9.10. A splitting of the
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extension is provided by the chosen lifts 1, C, η, . . . , C7, ηB7, η2B7 in N∗ ⊂ π∗(tmf)
of the Z[B]-module generators of the ko[k]. !

The α ∈ πn(S) column of Table 9.4 will be explained in Section 11.11. We note
that N∗ is not a direct sum of cyclic Z[B]-modules. For instance, B · ε1 = 2 · κ̄2 and
B · D1 = 8 · B1.

Theorem 9.27. As a Z[B, M ]-module, π∗(tmf) is a split extension

0 → ΓBπ∗(tmf) −→ π∗(tmf) −→ π∗(tmf)/ΓBπ∗(tmf) → 0 .

Here
ΓBπ∗(tmf) ∼= ΓBN∗ ⊗ Z[M ]

with ΓBN∗ given in Table 9.4, and

π∗(tmf)/ΓBπ∗(tmf) ∼=
7⊕

k=0

ko[k] ⊗ Z[M ]

with ko[k] given as above.

Proof. Since w4
2 (detecting M) acts freely on the Adams E∞-term for tmf ,

the composite homomorphism

N∗ ⊗ Z[M ] −→ π∗(tmf) ⊗ π∗(tmf)
·−→ π∗(tmf)

is an isomorphism of Z[B, M ]-modules. This theorem therefore follows from the
previous one. !

Corollary 9.28. The composite

N∗ ⊂ π∗(tmf) −→ π∗(N)

is an isomorphism of Z[B]-modules. !
Remark 9.29. The submodule N∗ ⊂ π∗(tmf) is preserved by the action of η,

ν, ε, κ and κ̄. To check this, note that the B2-torsion classes κC7, κ̄B7 and κ̄C7

are zero. It follows that the isomorphisms N∗ ⊗ Z[M ] ∼= π∗(tmf) and N∗ ∼= π∗(N)
also respect the action by these elements.

Table 9.4: B-power torsion in πn(tmf) for 0 ≤ n < 192, with
generators β ∈ {b} and some lifts α ∈ ι−1(β) ⊂ πn(S)

n ΓBπn(tmf) β ∈ πn(tmf) b ∈ E∞(tmf) α ∈ πn(S)

3 Z/8 ν h2 ν

6 Z/2 ν2 h2
2 ν2

8 Z/2 ε c0 ε + ησ

9 Z/2 ηε h1c0 ηε + η2σ

14 Z/2 κ d0 κ

15 Z/2 ηκ h1d0 ηκ

17 Z/2 νκ h2d0 νκ

20 Z/8 κ̄ g κ̄
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Table 9.4: B-power torsion in πn(tmf) for 0 ≤ n < 192, with
generators β ∈ {b} and some lifts α ∈ ι−1(β) ⊂ πn(S) (cont.)

n ΓBπn(tmf) β ∈ πn(tmf) b ∈ E∞(tmf) α ∈ πn(S)

21 Z/2 ηκ̄ h1g ηκ̄

22 Z/2 η2κ̄ = κB d0w1 η2κ̄

27 Z/4 ν1 αβ −
28 Z/2 ην1 = κ̄B gw1 εκ̄

32 Z/2 ε1 δ′ [q]

33 Z/2 ηε1 h1δ η[q]

34 Z/2 κκ̄ d0g κκ̄

35 Z/2 ηκκ̄ = ν1B αβw1 ηκκ̄

39 Z/2 η1κ d0γ [u]

40 Z/4 κ̄2 g2 κ̄2

41 Z/2 ηκ̄2 αβd0 ηκ̄2

42 Z/2 η2κ̄2 = κκ̄B d0gw1 η2κ̄2

45 Z/2 η1κ̄ γg {w}
46 Z/2 ηη1κ̄ d0δ′ η{w}
51 Z/8 ν2 h2w2 −
52 Z/2 ην2 δ′g κ̄[q]

53 Z/2 η2ν2 = η1κ̄B γgw1 ηκ̄[q]

54 Z/4 νν2 h2
2w2 α54

57 Z/2 ν2ν2 γδ′ να54

59 Z/2 ν2B h2w1w2 κ{w}
60 Z/4 κ̄3 g3 κ̄3

65 (Z/2)2 η1κ̄2 γg2 κ̄{w}
− − ν2κ h2d0w2 α65

66 Z/2 ην2κ d0δ′g ηκ̄{w}
68 Z/2 νν2κ h2

2d0w2 να65

70 Z/2 η2
1 κ̄ γ2g α70

75 Z/2 η3
1 γ3 −

80 Z/2 κ̄4 g4 κ̄4

85 Z/2 η1κ̄3 γg3 κ̄2{w}
90 Z/2 η2

1 κ̄
2 γ2g2 {w}2

99 Z/8 ν4 h2w2
2 −
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Table 9.4: B-power torsion in πn(tmf) for 0 ≤ n < 192, with
generators β ∈ {b} and some lifts α ∈ ι−1(β) ⊂ πn(S) (cont.)

n ΓBπn(tmf) β ∈ πn(tmf) b ∈ E∞(tmf) α ∈ πn(S)

100 Z/2 ην4 g5 κ̄5

102 Z/2 νν4 h2
2w

2
2 (?)

104 Z/2 ε4 c0w2
2 (?)

105 (Z/2)2 ηε4 h1c0w2
2

− − η1κ̄4 γg4 κ̄3{w}
110 Z/4 κ4 d0w2

2 (?)

111 Z/2 ηκ4 h1d0w2
2

113 Z/2 νκ4 h2d0w2
2

116 Z/4 κ̄D4 h0gw2
2 (?)

117 Z/2 η4κ̄ h1gw2
2 (?)

118 Z/2 ηη4κ̄ = κ4B d0w1w2
2

123 Z/4 ν5 αβw2
2 −

124 Z/2 ην5 gw1w2
2

125 Z/2 η2ν5 = η4κ̄B h1gw1w2
2 κ̄4{w}

128 Z/2 ε5 δ′w2
2 (?)

129 Z/2 ηε5 h1δw2
2

130 Z/4 κ4κ̄ d0gw2
2

131 Z/2 ηκ4κ̄ = ν5B αβw1w2
2

135 Z/2 η1κ4 d0γw2
2 (?)

136 Z/2 ηη1κ4 = ε5B δ′w1w2
2

137 Z/2 ν5κ αβd0w2
2

138 Z/2 ην5κ = κ4κ̄B d0gw1w2
2

142 Z/2 ε5κ d0δ′w2
2

147 Z/8 ν6 h2w3
2 −

148 Z/2 ην6 δ′gw2
2

149 Z/2 η2ν6 γgw1w2
2

150 Z/8 νν6 h2
2w

3
2 (?)

153 Z/2 ν2ν6 γδ′w2
2

155 Z/2 ν6B h2w1w3
2

156 Z/2 ην6B δ′gw1w2
2

161 Z/2 ν6κ h2d0w3
2 (?)
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Table 9.4: B-power torsion in πn(tmf) for 0 ≤ n < 192, with
generators β ∈ {b} and some lifts α ∈ ι−1(β) ⊂ πn(S) (cont.)

n ΓBπn(tmf) β ∈ πn(tmf) b ∈ E∞(tmf) α ∈ πn(S)

162 Z/2 ην6κ d0δ′gw2
2

164 Z/2 νν6κ h2
2d0w3

2

Definition 9.30. Let

T = Z[η, ν, B, M ]/(2η, η3 + 4ν, ην, 2ν2, νB, ν4)

be the (implicitly 2-completed) subalgebra of π∗(tmf) generated by η, ν, B and M .

Proposition 9.31. As a T -module, π∗(tmf) is generated by the classes listed
in the x-column of Table 9.5. Here x ∈ πn(tmf) is detected by the given class in
Es,s+n

∞ (tmf) and maps to the given modular form in mfn/2. Its annihilator ideal

in T is Ann(x), with radical
√

Ann(x) viewed as an ideal in Z[B, M ] ∼= Tred =
T/(η, ν).

Proof. This summarizes information from Tables 5.8 and 5.9, Theorems 9.8,
9.14 and 9.16, and Propositions 9.10 and 9.17. The products η · Dk for 1 ≤ k ≤ 7
are zero because ηBDk = dkηBk and dk is even. !

Remark 9.32. Note that π∗(tmf) is not a direct sum of cyclic T -modules. For
instance, η ·ε = ν3 ·1, 4 · κ̄ = ν2 ·κ and η2 · κ̄ = B ·κ. These, and the other T -module
relations, are visible in Figures 9.6 through 9.13

Table 9.5: T -module generators of π∗(tmf)

n s x E∞(tmf) mf Ann(x)
√

Ann(x)

0 0 1 1 1 (0) (0)

8 3 ε c0 0 (2, η2, ν, B) (2, B)

12 6 C h3
0α 2c6 (η, ν) (0)

14 4 κ d0 0 (2, η2, ν3, 2B, ηB, B2) (2, B)

20 4 κ̄ g 0 (8, ν, 2B, ηB, B2) (2, B)

24 7 D1 h0α2 8∆ (η, ν) (0)

25 5 η1 γ 0 (2, ν2, η2B) (2)

27 6 ν1 αβ 0 (4, η2, ν, 2B, ηB, B2) (2, B)

32 7 B1 αg c4∆ (2ν, ν2, νB) (0)

32 7 ε1 δ′ 0 (2, η2, ν2, ηB, B2) (2, B)

34 8 κκ̄ d0g 0 (2, η2, ν, ηB, B2) (2, B)

36 10 C1 h0α3 2c6∆ (η, ν) (0)

39 9 η1κ d0γ 0 (2, η2, ν2, B) (2, B)

40 8 κ̄2 g2 0 (4, ν, B) (2, B)

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



342 9. THE HOMOTOPY GROUPS OF tmf

Table 9.5: T -module generators of π∗(tmf) (cont.)

n s x E∞(tmf) mf Ann(x)
√

Ann(x)

45 9 η1κ̄ γg 0 (2, η2, ν, ηB, B2) (2, B)

48 10 D2 h2
0w2 4∆2 (η, 2ν, ν2) (0)

50 10 η2
1 γ2 0 (2, η2, ν2, ηB) (2)

51 9 ν2 h2w2 0 (8, 4ν, 2B, ν3 + ηB, B2) (2, B)

56 11 B2 c0w2 c4∆2 (ν) (0)

60 12 κ̄3 g3 0 (4, η, ν, B) (2, B)

60 14 C2 h3
0αw2 2c6∆2 (η, ν) (0)

65 13 η1κ̄2 γg2 0 (2, η2, ν, B) (2, B)

65 13 ν2κ h2d0w2 0 (2, η2, ν2, B) (2, B)

70 14 η2
1 κ̄ γ2g 0 (2, η, ν, B) (2, B)

72 15 D3 h0α2w2 8∆3 (η, ν) (0)

75 15 η3
1 γ3 0 (2, η, ν, B) (2, B)

80 15 B3 δw2 c4∆3 (ν) (0)

80 16 κ̄4 g4 0 (2, η, ν, B) (2, B)

84 18 C3 h0α3w2 2c6∆3 (η, ν) (0)

85 17 η1κ̄3 γg3 0 (2, η, ν, B) (2, B)

90 18 η2
1 κ̄

2 γ2g2 0 (2, η, ν, B) (2, B)

96 17 D4 h0w2
2 2∆4 (η, ν2) (0)

97 17 η4 h1w2
2 0 (2, ν2, η2B) (2)

99 17 ν4 h2w2
2 0 (8, η2, 2ν, B, ν3) (2, B)

104 19 ε4 c0w2
2 0 (2, η2, ν, B) (2, B)

104 20 B4 w1w2
2 c4∆4 (ν) (0)

108 22 C4 h3
0αw2

2 2c6∆4 (η, ν) (0)

110 20 κ4 d0w2
2 0 (4, η2, 2ν, 2B, ν3, ηB, B2) (2, B)

116 21 κ̄D4 h0gw2
2 0 (4, η, ν, B) (2, B)

117 21 η4κ̄ h1gw2
2 0 (2, η2, ν, ηB, B2) (2, B)

120 23 D5 h0α2w2
2 8∆5 (η, ν) (0)

122 22 η1η4 h1γw2
2 0 (2, η2, ν2, ηB) (2)

123 22 ν5 αβw2
2 0 (4, ν, 2B, ηB, B2) (2, B)

128 23 B5 αgw2
2 c4∆5 (2ν, ν2) (0)

128 23 ε5 δ′w2
2 0 (2, ν2, ηB, B2) (2, B)

130 24 κ4κ̄ d0gw2
2 0 (4, η2, ν, 2B, ηB, B2) (2, B)
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Table 9.5: T -module generators of π∗(tmf) (cont.)

n s x E∞(tmf) mf Ann(x)
√

Ann(x)

132 26 C5 h0α3w2
2 2c6∆5 (η, ν) (0)

135 25 η1κ4 d0γw2
2 0 (2, η2, ν2, B) (2, B)

137 26 ν5κ αβd0w2
2 0 (2, η2, ν, B) (2, B)

142 27 ε5κ d0δ′w2
2 0 (2, η, ν, B2) (2, B)

144 26 D6 h2
0w

3
2 4∆6 (η, 2ν, ν3) (0)

147 25 ν6 h2w3
2 0 (8, 2B, ν3 + ηB, B2) (2, B)

152 27 B6 c0w3
2 c4∆6 (ν) (0)

156 30 C6 h3
0αw3

2 2c6∆6 (η, ν) (0)

161 29 ν6κ h2d0w3
2 0 (2, η2, ν2, B) (2, B)

168 31 D7 h0α2w3
2 8∆7 (η, ν) (0)

176 31 B7 δw3
2 c4∆7 (ν) (0)

180 34 C7 h0α3w3
2 2c6∆7 (η, ν) (0)

We have the following complement to Proposition 9.21.

Proposition 9.33. The ring homomorphism q0 : π∗(tmf) → π∗(ko) is given
on the η-, ν-, ε-, κ- and κ̄-families of generators by

η 2−→ η ,

while the remaining generators map to 0.

Proof. The map E2(tmf) = ExtA(2)(F2, F2) → ExtA(1)(F2, F2) = E2(ko) of
Adams E2-terms takes h1 to h1, so q0 maps η to η. For k ∈ {1, 4}, the relation
ηkB = ηBk implies that q0(ηk)B = ηq0(Bk) = 0, so q0(ηk) = 0 since π∗(ko) is
B-torsion free. The B-power torsion generators νk, εk, κk and κ̄ map to 0 for the
same reason (or because the target is 2-torsion free in these degrees). !

We note that q0 factors through π∗(tmf)/ΓBπ∗(tmf) ∼=
⊕7

k=0 ko[k] ⊗ Z[M ].
On ko[0] it is the injective Z[B]-linear homomorphism given by

1 2−→ 1

η 2−→ η

η2 2−→ η2

C 2−→ −AB ,

while it is zero on the M -multiples of ko[0], and on the summands ko[k]⊗Z[M ] for
1 ≤ k ≤ 7.

9.5. Relations in π∗(tmf)

Using the detecting classes in E∞(tmf), the images in mf∗/2, and the hidden
2-, η- and ν-extensions we have found, we are now able to compute nearly every
product in the algebra π∗(tmf). There is one sign we have not determined: ν4ν6 =
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sνν2M , where s ∈ {±1}. This same sign appears in the products ν4D4 = 2sνM
and ν6D4 = 2sν2M . All other products are completely known. We first make
a systematic study of products involving the 2-power torsion classes in π∗(tmf).
Thereafter we turn to products of 2-power torsion classes and 2-torsion free classes.
Finally we discuss the products of 2-torsion free classes.

Recall that we adopt the conventions that x0 = x and xk+8 = xkM for
x ∈ {η, ν, ε,κ, κ̄, B, C, D}. As a heuristic guide, note that one may expect a close
relationship between all the elements xiyj for a fixed value of n = i + j, on the
grounds that in some spectral sequence these were all represented by xy∆n, up to
scalars for the ν- and D-families. As stated, the heuristic fails for the B-family, as
shown by the relation η1B1 = ηB2 + ν2ν2. However, it applies well with the modi-
fied B̃-family, introduced in Definition 9.50, as we make precise in Corollary 9.56.
Recall also the numerical function dk from Definition 9.18. We have

d7−n/2 =






4 for n ≡ 0, 2, 4, 6 mod 8,

2 for n ≡ 1, 5 mod 8,

1 for n ≡ 3 mod 8

(omitting the case n ≡ 7 mod 8) and

8/dn+2 =






1 for n ≡ 1, 3, 5, 7 mod 8,

2 for n ≡ 0, 4 mod 8,

4 for n ≡ 2 mod 8,

8 for n ≡ 6 mod 8.

We start with the products of the classes in the η-family, with two or more
factors.

Proposition 9.34.

(1) ηiηj = ηkη4 only if {i, j} = {k, 5}, for i, j, k, 5 ∈ {0, 1, 4}.
(2) η2

4 = η2M .
(3) ηiηjηk = (d7−n/2)νn where n = i + j + k. These are the unique classes of

order 2 in their degree.
(4) η4

1 = κ̄5 = ην4 0= 0, while all other 4-fold products of the ηi are 0.
(5) η5

1 = η2ν5 = η1η4ν is the unique nonzero element in π125(tmf).
(6) η6

1 = 4νν6 is the unique element of order 2 in π150(tmf).
(7) η7

1 = 0.

Proof.

(1) The degree of ηiηj determines the set {i, j} for i, j ∈ {0, 1, 4}.
(2) The normalization η4B = ηB4 in our choice of η4 implies that η2

4B2 =
η2B2

4 . We have B2
4 = B2M since both are detected by c2

4∆
8 in the ring

of modular forms and π208(tmf) is 2-torsion free. Hence η2
4 = η2M , since

B2 acts monomorphically on π194(tmf).
(3) For 0 ≤ n ≤ 6 these relations are visible at the E∞-term, since there are

no classes of higher Adams filtration than ηiηjηk in its degree. For n = 2
or 6 this depends on the relation h1γ2 = h2

0h2w2. The remaining cases,
n ∈ {8, 9, 12}, follow from η2

4 = η2M .
(4) The product ηiηjηk is divisible by 2, so will annihilate η4, unless i =

j = k = 1. This applies equally to all 3-element subsets of the factors
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ν ν1 ν2 ν3 ν4 ν5 ν6

ν ν2 0 νν2 0 νν4 0 νν6

ν1 0 2νν2 0 0 0 2aνν6 0

ν2 −νν2 0 νν4 0 bνν6 0 ν2M

ν3 0 0 0 4νν6 0 0 0

ν4 −νν4 0 −bνν6 0 ν2M 0 sνν2M

ν5 0 −2aνν6 0 0 0 2νν2M 0

ν6 −νν6 0 −ν2M 0 −sνν2M 0 νν4M

Figure 9.4. Products of the νi, with νi chosen independently

of a 4-fold product. The relation γ4 = g5 holds in E2(tmf), and this
survives to detect the only element of order 2 in degree 100, which is ην4

by Theorem 9.16.
(5) The group π125(tmf) ∼= Z/2 is generated by η2ν5 = η1η4ν, detected by

h1gw1w2
2. The element η5

1 is detected by γg5, which equals h1gw1w2
2 in

E∞(tmf) because d3(β2w2
2) = h1gw1w2

2 + γg5.
(6) The group π150(tmf) ∼= Z/8 is generated by νν6. We have η6

1 = η1η5
1 =

η2
1η4ν = 4νν6 by cases (3) and (5).

(7) Use π175(tmf) = 0, or note that 4η1 = 0. !

We continue with the products of the classes in the ν-family, first with two
factors.

Proposition 9.35. The product νiνj with i+ j = n lies in π6+24n(tmf), which
is a cyclic group of order 8/dn+2 = gcd(n + 2, 8). In particular, the group is trivial
if n is odd, so νiνj = 0 unless i ≡ j mod 2. We can (and do) choose ν5 and ν6

so that ν1ν5 = 2νν6 and ν2ν4 = 3νν6. This completely determines ν5 and ν6, given
ν1, ν2 and ν4, and makes the relations in Figure 9.5 hold.

ν ν1 ν2 ν3 ν4 ν5 ν6

ν ν2 0 νν2 0 νν4 0 νν6

ν1 0 2νν2 0 0 0 2νν6 0

ν2 −νν2 0 νν4 0 3νν6 0 ν2M

ν3 0 0 0 4νν6 0 0 0

ν4 −νν4 0 −3νν6 0 ν2M 0 s νν2M

ν5 0 −2νν6 0 0 0 2νν2M 0

ν6 −νν6 0 −ν2M 0 −s νν2M 0 νν4M

Figure 9.5. Products of the νi, with specified ν5 and ν6 and s ∈ {±1}
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The ambiguity in ν4ν6 = sνν2M , s ∈ {±1}, is not affected by the choices of
the ν1, ν2 and ν4, and has not yet been determined.

Proof. We start by working out the multiplication table with arbitrary choices
of generators νi, recording the results in Figure 9.4. In it, a, s ∈ {±1} and b ∈
{1, 3, 5, 7} are odd integers depending upon the choices of the νi. Most entries
have well-defined coefficients, independent of the choices of specific generators νi,
because of the orders of the groups. The matrix is antisymmetric because the νi

are all in odd degrees. In particular, the elements along the main diagonal all have
order 2. We have written the result in the simplest form possible for the most part,
but do show the antisymmetry even for classes of order 2.

The products νiνj for 0 ≤ i, j ≤ 6 land in the groups π6+24n(tmf), for 0 ≤ n ≤
12. These are trivial when n is odd, so we only need to discuss the cases when n
is even. Note that in degrees 165 and higher, the B-power torsion classes are all
M -multiples. As a result, in positive degrees k ≡ 3, 5, 6, 7 mod 8, multiplication
by M is an isomorphism πk(tmf) ∼= πk+192(tmf).

(n = 0) π6(tmf) ∼= Z/2 is generated by ν2.
(2) π54(tmf) ∼= Z/4 is generated by νν2. Theorem 9.8 shows that ν2

1 , detected
by α2β2 = d0g2, is twice the generator.

(4) π102(tmf) ∼= Z/2 is generated by νν4. Both νν4 and ν2
2 are detected by

h2
2w

2
2. The product ν1ν3 = η3

1ν1 has Adams filtration ≥ 21 and is therefore
zero.

(6) π150(tmf) ∼= Z/8 is generated by νν6. Theorem 9.8 shows that ν1ν5,
detected by α2β2w2

2 = d0g2w2
2, is a class of order 4, which we can write

as 2aνν6 for some a ∈ {±1}. The product ν2ν4 is detected by h2
2w

3
2 and

can therefore be written as bνν6 for some b ∈ {1, 3, 5, 7}. The product
ν2
3 = η6

1 is 4νν6, the unique class of order 2, by Proposition 9.34.
(8) π198(tmf) ∼= π6(tmf) ∼= Z/2 is generated by ν2M . The products ν2ν6

and ν2
4 are each detected by h2

2w
4
2 and are therefore equal to ν2M . The

product ν3ν5 = η3
1ν5 has Adams filtration ≥ 37, hence is zero.

(10) π246(tmf) ∼= π54(tmf) ∼= Z/4 is generated by νν2M . The product ν4ν6

is detected by h2
2w

5
2, hence can be written as sνν2M for some s ∈ {±1},

while ν2
5 is detected by α2β2w4

2 = d0g2w4
2 and is the unique class of order 2.

(12) π294(tmf) ∼= π102(tmf) ∼= Z/2 is generated by ν2
6 = νν4M , detected by

h2
2w

6
2.

Multiplication by ν from π147(tmf) ∼= Z/8 to π150(tmf) is an isomorphism,
and multiplication by ν1 from π123(tmf) ∼= Z/4 to π150(tmf) is injective. Given
choices of ν1, ν2 and ν4 we can therefore specify unique choices of ν6 and ν5 by the
requirements ν2ν4 = 3νν6 and ν1ν5 = 2νν6. With these choices, a = 1 and b = 3.

The relation ν4ν6 = sνν2M cannot be altered by our remaining choices: mul-
tiplying ν2 or ν4 by an odd integer will modify ν6 by the same factor, and has no
effect on the sign s. !

Remark 9.36. If s = 1, then we can summarize Figure 9.5 by the curious
formula

νi · νj = (i + 1)ννi+j .

This expression is the reason for our choices a = 1 and b = 3 in the normalization
of ν5 and ν6, and suggests that s = 1 is the correct value of the unresolved sign.
If instead s = −1, then this formula fails for {i, j} = {4, 6}. We note that the
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formula is compatible with antisymmetry, because ννn has order dividing n + 2 for
each n ≥ 0.

Because Proposition 9.35 tells us that products νiνj are integer multiples of
ννi+j , we need only compute the products ν2νi, ν3νi, etc., in order to determine all
products of the νi. We do this next. Recall the convention νn+8 = νnM for n ≥ 0.

Proposition 9.37. Products of three or more νi are as follows:

(1) νiνjνk = 0 unless i, j and k are even.
(2) The three- and four-fold products with all even subscripts,

νiνjνk = ν2νi+j+k and νiνjνkν4 = ν3νi+j+k+4 ,

are classes of order 2, given by the following table.

n 0 2 4 6

ν2νn ηε η1ε1 ηε4 + η1κ̄4 η1ε5

ν3νn 0 ην2B = 2κ̄3 0 ην6B

(3) Any five-fold product of the νi is 0.

Proof. This is simply a combination of the results from Proposition 9.35,
Theorem 9.14 and Proposition 9.17. !

Next consider the interaction between the ηi and the νj . Recall the shorthand
ν3 = η3

1 and ν7 = 0.

Proposition 9.38. The products of the ηi and νj depend only on the sum of
the subscripts as follows:

(1) ηiνj = ηνi+j = κ̄Bi+j−1, which is nonzero if and only if i+ j ≡ 1, 2, 4, 5, 6
mod 8. (Here we treat κ̄B−1 as zero.)

(2) ηiηjνk = η2νi+j+k, which is nonzero if and only if i + j + k ≡ 2, 5, 6
mod 8.

(3) ηiηjηkν4 = η3νi+j+k+4, which is nonzero if and only if i + j + k + 5 ≡ 6
mod 8.

(4) ηiηjηkη4νm = 0 for all i, j, k, 5, m.
(5) ηiνjνk = 0 for all i, j, k.

Remark 9.39. In particular, the nonzero ηiηjηkν4 are all multiples of η3ν6 = η6
1

by powers of M .

Proof. We start by considering the ηiνj for i + j = n. First, since i ≡ 0, 1, 4
mod 8, if n ≥ 12 then one of i or j is ≥ 8. Hence, we may assume 0 ≤ n ≤ 11,
as the remaining cases can be reduced to these by considering M -multiples. We
consider each value separately.

(n = 0) We have ην = 0 in π∗(S), and in any case π4(tmf) = 0.
(1) Theorems 9.14 and 9.16 show that ην1 = κ̄B = η1ν.
(2) We must show ην2 = η1ν1 = κ̄B1. In E2(tmf), η1ν1 and κ̄B1 are detected

by αβγ = αg2 = δ′g, while Theorem 9.16 shows that ην2 is detected
by this as well. Hence these classes are all equal to the unique nonzero
B-power torsion element in π52(tmf).

(3) Since there is no 2-power torsion in π76(tmf), the products ην3, η1ν2 and
κ̄B2 are all zero.
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(4) Theorems 9.14 and 9.16 show that ην4, η4ν, κ̄5 = κ̄B3 and η4
1 = η1ν3 are

all detected by g5 = γ4 0= 0. Since these are 2-torsion classes in π100(tmf),
they must all be equal.

(5) We must show ην5 = η1ν4 = η4ν1 = κ̄B4 0= 0. By Theorems 9.14 and 9.16
we have η2ν5 = η1η4ν = ηκ̄B4, detected by h1gw1w2

2. But η1η4ν = ηη4ν1

by case (1) and η1η4ν = ηη1ν4 by case (4). Since x = κ̄B4 is the unique
2-power torsion solution to ηx = ηκ̄B4, the claims follow.

(6) We must show ην6 = η1ν5 = η4ν2 = κ̄B5 0= 0. By Theorem 9.16, ην6 is
detected by δ′gw2

2 = αg2w2
2 = αβγw2

2, which also detects η1ν5 = κ̄B5. By
case (2), we have ηη4ν2 = η1η4ν1, and by case (5) this is equal to ηη1ν5.
Since x = κ̄B5 is the unique 2-power torsion solution to ηx = ηκ̄B5, the
claims follow.

(7) We have ην7 = 0 by definition, while η1ν6 = η4ν3 = κ̄B6 = 0 because
there is no 2-power torsion in π172(tmf).

(8) Since there is no 2-power torsion in π196(tmf), the products ην8, η1ν7,
η4ν4, η8ν and κ̄B7 are all zero.

(9) We have ην9 = η8ν1 = ην1M , which equals η1ν8 = η9ν = η1νM =
κ̄B8 = κ̄BM by case (1). This is the only nonzero 2-power torsion class
in π220(tmf), so it suffices to show that η4ν5 is nonzero. Multiplying by η4,
and using that η2

4 = η2M from Proposition 9.34, we have η2
4ν5 = η2ν5M 0=

0 by Theorem 9.16.
(10) Similarly, ην10 = η1ν9 = η8ν2 = η9ν1 = κ̄B9 0= 0 from case (2) by M -

multiplication. It remains to show that η4ν6 is ην2M , the unique nonzero
2-power torsion class in π244(tmf). Multiplying by η4 works just as in the
preceding case, since η2ν6M 0= 0.

(11) By M -multiplication from the case (3), ην11 = η1ν10 = η8ν3 = η9ν2 =
κ̄B2M = 0, while η4ν7 = 0 because ν7 = 0.

We observe that the ηiνj with i + j = n ≡ 1, 2, 4, 5, 6 mod 8 are nonzero by
Theorem 9.16, while the relation ηiνj = κ̄Bi+j−1 also holds for i + j = n ≡
0, 3, 7 mod 8 since there is no 2-power torsion in degrees congruent to 4, 76 or 172
mod 192.

Next, ηiηjνk = ηiηνj+k = η2νi+j+k, which is nonzero if and only if i + j +
k ≡ 2, 5, 6 mod 8, while ηiηjηkν4 = ηiη2νj+k+4 = η3νi+j+k+4, which is nonzero
precisely when i + j + k + 5 ≡ 6 mod 8. Similarly, ηiηjηkη4νm = ηiη3νj+k+4+m =
η4νi+j+k+4+m = 0.

Finally, by Proposition 9.35, νjνk = cννj+k for some integer c, so that ηiνjνk =
cηiννj+k = cηννi+j+k = 0. !

Next we show that ε acts like B on the B-power torsion classes. A key input is
that fact that the product εκ is nonzero in π22(S). This was proved using unstable
methods by Mimura [129, Thm. B]. We give an independent proof, using only
stable methods, in Theorems 11.71 and 11.61. Recall from Proposition 9.12 that
the B-power torsion in π∗(tmf) is the ideal generated by the ν-, ε- and κ-families,
including ν3, and κ̄.

Proposition 9.40. For x ∈ {ν, ε,κ, κ̄} we have ε · xk = B · xk for each k for
which xk is defined. In contrast, ε ·ηk 0= B ·ηk for k = 0, 1 and 4. Instead, we have
ε · η = ν3, ε · η1 = ηε1, and ε · η4 = ηε4.

Proof. We calculate ε · xk for each xk, in the following order:

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



9.5. RELATIONS IN π∗(tmf) 349

(xk = η) We showed that ν · ν2 = ηε in Theorem 9.14, so ε · η = ν3.
(ν) Since π11(tmf) is trivial, ε · ν = 0 = B · ν.
(ε) Since π16(tmf) contains no 2-torsion, ε · ε = 0 = B · ε.
(κ) By Mimura [129, Thm. B], or our Theorems 11.71 and 11.61, the product

εκ is nonzero of Adams filtration ≥ 7 in π22(S), and must therefore be
detected by Pd0 in E∞(S). The unit map ι : S → tmf takes Pd0 to d0w1,
by Proposition 1.14. Hence both ε · κ and B · κ are detected by d0w1 in
E∞(tmf), and must therefore be equal in π22(tmf).

(κ̄) From εκ = κB we get εκκ̄ = κκ̄B. Since d0 · gw1 0= 0 in E∞(tmf),
multiplication by κ acts injectively on the 2-power torsion in π28(tmf), so
we can conclude that ε · κ̄ = B · κ̄.

(η1) The products ε · η1 and ηε1 are detected by c0γ = h1δ in the Adams
spectral sequence, hence are both equal to the unique nonzero B-power
torsion class in π33(tmf).

(ν2) From ηε = ν3 and Proposition 9.37 we have ε · ην2 = ν3ν2 = B · ην2 0= 0,
so ε · ν2 and B · ν2 are both equal to the unique nonzero class in π59(tmf).

(ν1) By Proposition 9.38 and the previous case, ε · η1ν1 = ε · ην2 = B · ην2 =
B · η1ν1 0= 0, so ε · ν1 and B · ν1 are both equal to the unique nonzero
element in π35(tmf).

(ε1) Both ε1κ̄ and κ̄B1 are detected by δ′g = αg2, hence equal the unique
nonzero B-power torsion class in π52(tmf). By Proposition 9.38 and
case (ν2), ε · ε1κ̄ = ε · κ̄B1 = ε · ην2 0= 0. It follows that both ε · ε1 0= 0 and
B · ε1 are equal to the unique B-torsion class of order 2 in π40(tmf).

(ν3) Since π83(tmf) is trivial, ε · ν3 = 0 = B · ν3.
(η4) The products η4ε1 and ηε5 are both detected by h1δ′w2

2 in the Adams
spectral sequence, hence equal the unique nonzero B-power torsion class in
π129(tmf). Furthermore, ε ·η4 and ηε4 are both detected by h1c0w2

2, hence
agree modulo a B-torsion class of Adams filtration ≥ 21, i.e., modulo η1κ̄4.
Since η1ν2 = 0 and ηε4+η1κ̄4 = ν2ν4 by Proposition 9.17, we cannot have
ε · η4 = ν2ν4, since η1η4ε = ηη4ε1 = η2ε5 0= 0. Having eliminated the only
alternative, we deduce that ε · η4 = ηε4.

(ν4) Since π107(tmf) is trivial, ε · ν4 = 0 = B · ν4.
(ε4) Since the B-torsion in π112(tmf) is zero, ε · ε4 = 0 = B · ε4.
(κ4) From εκ̄ = κ̄B we have εκ4κ̄ = κ4κ̄B, which is nonzero because it is

detected by d0gw1w2
2 0= 0. Hence ε · κ4 = B · κ4 is the unique nonzero

element in π118(tmf).
(ν6) As in case (ν2), we have ε ·ην6 = ν3ν6 = B ·ην6 0= 0, and there is a unique

nonzero class in π155(tmf).
(ν5) As in case (ν1), ε · η1ν5 = ε · ην6 = B · ην6 = B · η1ν5 0= 0, and there is a

unique nonzero class in π131(tmf).
(ε5) As in case (ε1), both ε5κ̄ and κ̄B5 are detected by δ′gw2

2 = αg2w2
2, hence

equal the unique nonzero B-power torsion class in π148(tmf). Thus ε·ε5κ̄ =
ε · κ̄B5 = ε · ην6 = ν3ν6 0= 0. It follows that ε · ε5 0= 0 and B · ε5 are both
equal to the unique nonzero B-torsion class in π136(tmf). !

Most of the following relations involving the εk have already been established.

Proposition 9.41. εkκ̄ = κ̄Bk = ηνk+1 for k = 0, 1, 4 and 5.

Proof. We showed in Proposition 9.38 that κ̄Bk = ηνk+1 for any k.
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In the course of the proof of Proposition 9.40, we also showed that εkκ̄ = κ̄Bk

for k = 0, 1 and 5. It remains to prove that ε4κ̄ = κ̄B4. By Proposition 9.17,

ηε4κ̄ = (ν2ν4 + η1κ̄
4)κ̄ = η1κ̄

5 = ηκ̄B4 .

Dividing by η is possible and proves the relation. !

We next consider products of the εk.

Proposition 9.42.

(1) For two-fold products we have εiεj = 0, unless i+ j ≡ 1 mod 4, for which
εiεj = εεi+j 0= 0.

(2) All products εiεjεk are 0.

Proof. The products εiεj lie in degrees with no B-power torsion unless i+j ≡
1 mod 4. We have just shown that εεj = εjB 0= 0 when j ≡ 1 mod 4, so it remains
only to consider ε1ε4 and ε4ε5.

In Proposition 9.41 we saw that ε1ε4κ̄ = ε4κ̄B1 = κ̄B1B4, which is detected
by g · αg · w1w2

2 = αg2w1w2
2 = δ′gw1w2

2 and is therefore nonzero and equal to
ν3ν6 = ε5κ̄B. Since there is only one nonzero B-torsion class in π136(tmf), ε1ε4 =
ε5B = εε5. For ε4ε5, ε4ε5κ̄ = κ̄B4B5, detected by αg2w1w4

2 = δ′gw1w4
2. This is

nonzero, and ε1BM = ε9B is the unique B-torsion class of order 2 in π232(tmf), so
ε4ε5 = ε9B = εε9.

The three-fold products of the εi are 0 because the two-fold products are mul-
tiples of either Bε1 or Bε5, and we have B2ε1 = 0 and B2ε5 = 0 since there are no
2-torsion classes in these degrees. !

Proposition 9.43. The products of the ηi and εj depend only on the sum of
the subscripts as follows:

(1) ηiεj is always nonzero and can be described as follows:

ηiεj =

{
ηεi+j for i + j ≡ 0, 1 mod 4,

η1εi+j−1 for i + j ≡ 2 mod 4.

These elements satisfy the following relations:

i + j ηiεj

0 ηε = ν3

1 ηε1

2 η1ε1 = ν2ν2

4 ηε4 = ν2ν4 + η1κ̄4

5 ηε5

6 η1ε5 = ν2ν6

(2) ηiηjεk = 0 unless i+ j + k ≡ 5 mod 8, in which case it is the appropriate
power of M times η2ε5 = 2κ4κ̄ = η2

1 κ̄
4.

(3) ηiηjηkε4 = 0 for for all i, j, k, 5.
(4) ηiεjεk = 0 for all i, j, k.
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Proof. (1) Products with ε have already been dealt with in Proposition 9.40.
In particular, we showed that η1ε = ηε1 and that η4ε = ηε4, which we earlier saw
equals ν2ν4 + η1κ̄4.

In Theorem 9.14 we saw that ν2ν2 ∈ {γδ′} and ν2ν6 ∈ {γδ′w2
2}. Clearly

η1ε1 ∈ {γδ′} and η1ε5 ∈ {γδ′w2
2}. Hence ν2ν2 = η1ε1 are both equal to the unique

nonzero B-power torsion class in π57(tmf), and ν2ν6 = η1ε5 are both equal to the
unique nonzero B-power torsion class in π153(tmf).

The relation h1δ′ = c0γ in E2(tmf) implies that η1ε4, η4ε1 and ηε5 are all
detected by the same class at E∞, and this detects the unique nonzero B-power
torsion class in π129(tmf).

The products η4ε4 and η4ε5 are detected by h1c0w4
2 and h1δ′w4

2, detecting ηεM
and ηε1M , respectively. In both cases these are the unique nonzero B-power torsion
classes in their degrees.

(2) The products ηiηjεk are B-power torsion, hence are zero unless n = i +
j + k ≡ 1, 5 mod 8. They must also be zero when n ≡ 1 mod 8 because they
have Adams filtration at least 4n + 5, and the only B-power torsion class in degree
10 + 24n when n ≡ 1 mod 8 is in Adams filtration 4n + 4.

By Theorems 9.16 and 9.8, η2ε5, 2κ4κ̄ and η2
1 κ̄

4 are all detected by γ2g4, hence
are all equal to the unique B-power torsion class of order 2 in π130(tmf).

(3) Since η2ε5 = 2κ4κ̄, while each ηi has order 2, multiplying by another mem-
ber of the η-family must produce 0.

(4) Similarly, products εjεk are always multiples of either Bε1 or Bε5, and it
is easily checked that their products with η, η1 and η4 all lie in Adams filtrations
that have no B-torsion. !

Proposition 9.44. The product νiεj only depends on the sum i + j, with the
usual conventions that ν3 = η3

1, ν7 = 0 and νk+8 = νkM . These products can be
expressed as follows:

i + j νiεj

0 νε = νB = 0

1 ν1ε = ν1B = ηκκ̄

2 ν2ε = ν2B = η1κκ̄

3 ν3ε = ν3B = 0

4 ν4ε = ν4B = 0

5 ν5ε = ν5B = ηκ4κ̄ = η4κκ̄

6 ν6ε = ν6B = η1κ4κ̄

7 ν7ε = ν7B = 0

Proof. When n = i + j ≡ 0, 3 mod 4, π11+24n(tmf) = 0, proving the result
in those cases.

When i + j = 1, the result is established in Theorems 9.14, 9.16 and Proposi-
tion 9.40.

When i+j = 2 we have ν1ε1 = η1κκ̄ since both are detected by αβδ′ = α2βg =
d0γg. By Proposition 9.40 we have ν2ε = ν2B, detected by h2w1w2. These are
equal at E∞ because of the differential d2(αw2) = d0γg + h2w1w2.
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For i + j = 5, Propositions 9.35, 9.38 and 9.43 show that multiplying each of
νε5, ν1ε4, ν4ε1 and ν5ε in π131(tmf) = Z/2 by η1 yields ν3ν6 0= 0, hence they must
be equal. Theorem 9.16 shows this class is ηκ4κ̄, and the equality ηκ4 = η4κ is
already true in E2(tmf).

Similarly, multiplying any of ν1ε5, ν2ε4, ν5ε1 or ν6ε in π155(tmf) = Z/2 by η
yields ν3ν6 0= 0, showing these are all equal. We have ν5ε1 = η1κ4κ̄ because the
classes detecting them are αβw2

2 · δ′ = γ · d0w2
2 · g.

Finally, i+ j = 9 is handled in the same way, multiplying by η1, and i+ j = 10
is handled by multiplying by η. !

Proposition 9.45. The product εiκj equals (ηη)i+j κ̄, where (ηη)n denotes ηkη4
for any k and 5 with k + 5 = n. These can be expressed as follows:

i + j εiκj

0 εκ = η2κ̄

1 ε1κ = ηη1κ̄

4 ε4κ = εκ4 = ηη4κ̄

5 ε5κ = ε1κ4 = η1η4κ̄

8 ε4κ4 = η2κ̄M

9 ε5κ4 = ηη1κ̄M

Proof. We consider these products for n = i + j on a case by case basis.

(n = 0) Theorem 9.16 and Proposition 9.40 imply that η2κ̄ is the unique nonzero
class εκ = κB in π22(tmf), but this also follows directly from case (22)
of Theorem 11.61, which was ultimately used in the proofs of those two
results.

(1) Theorem 9.16 shows that η ·η1κ̄ is detected by d0δ′, and hence equals ε1κ,
since this is the unique nonzero class in π46(tmf).

(4) Theorem 9.16 and Proposition 9.40 show that ηη4κ̄ = εκ4 = κ4B. By
Propositions 9.41 and 9.38 and Theorem 9.16, κ̄ · ε4κ = ην5κ = η4ν1κ =
κ̄ · ηη4κ̄. Multiplication by κ̄ is a monomorphism here and the result
follows.

(5) By Theorem 9.16 the product η · η4κ̄ is detected by d0w1w2
2 while η · ν5κ

is detected by d0gw1w2
2. Hence ηη4κ̄2 = ην5κ, since there is a unique

nonzero B-power torsion class in π138(tmf). Since multiplication by η is a
monomorphism on π137(tmf), η4κ̄2 = ν5κ. Thus κ̄ ·η1η4κ̄ = η1ν5κ = ην6κ
by Proposition 9.38. Now Theorem 9.16 in degree 161 shows this equals
κ̄ · ε5κ 0= 0. Hence ε5κ = η1η4κ̄, since there is only one nonzero class in
π142(tmf). The equation ε5κ = ε1κ4 is already true in E2(tmf).

(8) We must show that ε4κ4 = η2κ̄M . Multiplication by κ̄ is an isomorphism
between the B-power torsion in π22(tmf), spanned by η2κ̄, and the B-
power torsion in π42(tmf), spanned by η2κ̄2, so it suffices to show the
relation holds after multiplication by κ̄. By Theorems 9.14 (in degree 39)
and 9.16 (in degrees 40 and 41), we have κ̄ · η2κ̄ = η1νκ. Note that ηκ4 =
η4κ because they are both detected by h1d0w2

2 and π111(tmf) = Z/2.
Then Propositions 9.41 and 9.38 show that κ̄ · ε4κ4 = κ4 · ε4κ̄ = κ4 · ην5 =
ηκ4 · ν5 = η4κ · ν5 = η4ν5 · κ = η1νκM , as required.
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(9) We have ε5κ4 = ε1κM in π46+192(tmf) = Z/2, since both are detected by
δ′w2

2 · d0w2
2 = d0δ′w4

2. Since ε1κ = ηη1κ̄ by the case i + j = n = 1 of this
proposition, we are done. !

Proposition 9.46. κD4 = 2κ4, κ̄D4, κκ̄D4 = 2κ4κ̄, κ̄2D4 = ηη1κ4, κκ̄2D4 =
4νν6 and κ̄3D4 = ν3ν6 are nonzero.

Proof. By Theorem 9.8, π96(tmf) ∼= Z5 is generated by classes in Adams
filtrations 17, 23, 31, 39 and 48. Since π95(tmf) = 0, these generators must map
nontrivially onto π96(tmf/2), which is (Z/2)5, generated in Adams filtrations 19,
23, 31, 39 and 48. It follows that D4, in Adams filtration 17, must map to a class
detected by 1951 = γ2gγ̃ in E∞(tmf/2). This lies in the R2-module summand

〈γ2γ̃, i(δ′w2
2)〉 ∼=

Σ15,91R2 ⊕ Σ23,151R2

〈(gw1, 0), (g3, w1), (0, g2)〉
of E∞(tmf/2). Since g3 · γ2gγ̃ 0= 0 we see that κ̄iD4 0= 0 for 1 ≤ i ≤ 3. These
are B-power torsion elements, so κ̄2D4 = ηη1κ4 and κ̄3D4 = ν3ν6. Multiplying the
former by κ gives κκ̄2D4 = η3ν6 = 4νν6 0= 0 by Theorem 9.16. This then implies
that κD4 = 2κ4 and κκ̄D4 = 2κ4κ̄, as these are the only B-power torsion classes
of order 2 in their respective degrees. !

With the preceding results in hand we can now give a nearly complete multi-
plicative description of π∗(tmf). Based on this, we will give our final description of
this graded algebra in the next section.

Theorem 9.47. The products of 2-power torsion classes and the Z[η, ν, B, M ]-
module generators of π∗(tmf) are as given in Tables 9.6 and 9.7. The undetermined
constants si are ±1.

Proof. We saw in Table 9.3 and Proposition 9.12 that the 2-power torsion in
π∗(tmf) is generated over Z[B, M ] by products of one or more elements y in the η-,
ν-, ε-, κ- and κ̄-families, together with κ̄D4. The Z[η, ν, B, M ]-module generators x
are the same as the T -module generators from Proposition 9.31 and Table 9.5. We
calculate the products xy in terms of this T -module structure, and list the results
in the multiplication tables at the end of this section. This also determines the
remaining products x · κ̄D4 = D4 · κ̄x, except for the case D4 · κ̄D4 = κ̄D2

4 = 4κ̄M ,
which we shall account for in Theorem 9.48.

The superscripts in square brackets in the multiplication tables refer to the
following set of arguments establishing these products. They are proved in the
order listed here, so that we may, for example, use relations of type [0d] and [6] to
prove a relation of type [8a].

[t] The product is tautologous, as in κ · κ̄ = κκ̄ or κ̄ · κ4 = κ̄κ4 = κ4κ̄.
[Z] The product lies in a zero group, hence is 0.
[B] The product is a B-power torsion class whose Adams filtration is greater

than that of all nonzero B-power torsion classes in its degree.
[T ] The product is a 2-torsion class whose Adams filtration is greater than

that of all nonzero 2-torsion classes in its degree.
[M ] Mimura [129, Thm. B] proved that εκ 0= 0 in π22(S), using unstable

methods. This product has Adams filtration ≥ 7, and can only be detected
by Pd0 ∈ E∞(S). As explained in the proof of Theorem 11.61, it follows
that ηεκ = ν3κ = 4νκ̄ = η3κ̄ 0= 0 is detected by h1Pd0 ∈ E∞(S),
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so η2κ̄ in Adams filtration ≥ 6 must also be detected by Pd0, which
implies that εκ = η2κ̄. Alternatively, we use only stable methods to
prove in Theorem 11.71 that η2κ̄ 0= 0 is detected by Pd0. It follows
that η3κ̄ = ηεκ 0= 0 is detected by h1Pd0, which implies Mimura’s result
εκ 0= 0. Either way, we can compose with ι : S → tmf to deduce that
εκ = η2κ̄ 0= 0 in π22(tmf), detected by d0w1.

[S] We have ν2jD4 = ±2ν2j+4 because both are detected by h0h2w
j+2
2 in

E2(tmf). Similarly, we saw that ν4ν6 = ±νν2M in Proposition 9.35. We
call these signs s, si ∈ {±1} for i = 0, 2, 4, 6, with

• ν4ν6 = sνν2M
• νD4 = 2s0ν4

• ν2D4 = 2s2ν6

• ν4D4 = 2s4νM
• ν6D4 = 2s6ν2M .

From ν2(νD4) = (ν2ν)D4 and ν2ν4 = 3νν6 we deduce that s2 = s0.
From ν4(ν6D4) = (ν4ν6)D4 we deduce that s6 = ss2. From ν6(ν4D4) =
(ν6ν4)D4 we deduce that s4 = ss2. It follows that s and s0 determine the
other three signs, so that

s2 = s0 and s4 = s6 = ss0 .

[0] These are either results of normalization decisions made in our definitions
of the homotopy generators, or the results of propositions proved earlier
in this section. In detail:
[0a] Choosing B3 to be detected by δw2 and to project to c4∆3 in the

ring of modular forms leaves two possible values for κ̄B3. In Defini-
tion 9.22 we chose B3 to make κ̄B3 = κ̄5 = ην4. In case (150a) of
Theorem 9.8 we showed that κ4κ̄2 = ±2νν6. In Definition 9.22 we
chose κ4 to make κ4κ̄2 = 2νν6. In Proposition 9.35 we saw that we
could choose ν5 and ν6 so that ν1ν5 = 2νν6 and ν2ν4 = 3νν6, and
this is the choice we made in Definition 9.22.

[0b] See Proposition 9.34 for the products ηiηj , ηiηjηk, and so on.
[0c] See Proposition 9.35 for the products νiνj .
[0d] See Proposition 9.38 for the products ηiνj .
[0e] Proposition 9.40 shows that η1ε = ηε1, η4ε = ηε4 and ε · xk = B · xk

for x ∈ {ν, ε,κ, κ̄}. Theorems 9.8 and 9.16 then show that these
B-multiples are the 2- and η-multiples given.

[0f ] See Proposition 9.41.
[0g] Proposition 9.42 shows that εiεj = εεi+j when i + j ≡ 1 mod 4, and

0 otherwise. Theorems 9.8 and 9.16 then show that these elements
are the 2- and η-multiples given, taking into account the relation
εεk = εkB.

[0h] See Proposition 9.43 for the products ηiεj .
[0i] Proposition 9.44 shows that νiεj = νi+jε when i + j ≡ 1, 2 mod 4,

and 0 otherwise. Theorem 9.16 then shows that these elements are
the η-multiples given, taking into account the relation νkε = νkB.

[0j] See Proposition 9.45 for the products εiκj .
[0k] See Proposition 9.46.
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[1] The product is correct in E2(tmf), hence in E∞(tmf), with no need to
use the relations in ExtA(2)(F2, F2). It is B-power torsion, and there are
no B-power torsion classes of higher Adams filtration in this degree.

[2] The product in E2(tmf) is the target of a hidden 2- or η-extension, with
no need to use the relations in ExtA(2)(F2, F2). It is B-power torsion, and
there are no B-power torsion classes of higher Adams filtration in this
degree. In detail:
[2a] The product in E2(tmf) is the target of a hidden 2-extension (see

Theorem 9.8).
[2b] The product in E2(tmf) is the target of a hidden η-extension (see

Theorem 9.16).
[3] This is proved in Proposition 9.17.
[4] The product in E2(tmf) can be rewritten using relations in ExtA(2)(F2, F2),

it is B-power torsion, and there are no B-power torsion classes of higher
Adams filtration in this degree. The necessary relations are h2

2d0 = h2
0g

and αd0g = d0δ′.
[5] The product in E2(tmf) can be rewritten using relations in ExtA(2)(F2, F2)

to be the target of a hidden 2- or η-extension. It is B-power torsion, and
there are no B-power torsion classes of higher Adams filtration in this
degree. In detail:
[5a] The product in E2(tmf) is the target of a hidden 2-extension (see

Theorem 9.8). The necessary relation is d2
0 = gw1.

[5b] The product E2(tmf) is the target of a hidden η-extension (see The-
orem 9.16). The necessary relations are d2

0 = gw1, αd0g = d0δ′,
αβγ = αg2 = δ′g and γ4 = g5.

[6] The product takes place in a degree congruent to 59 mod 96, which con-
tains a unique nonzero element detected by h2w1w2 times the appropriate
power of w2

2. The w2
2-linear differential d2(αw2) = d0γg + h2w1w2 from

Table 5.1 shows that the asserted relation holds in E3(tmf), hence also in
E∞(tmf) and π∗(tmf), using α2β = d0γ in ExtA(2)(F2, F2).

[7] These formulas for ηiBj hold in E2(tmf), hence also in E∞(tmf). Multi-
plication by B acts monomorphically on higher Adams filtrations in these
degrees, so it suffices to verify the relations after multiplication by B
or B2. This follows from the relation ηkB = ηBk (Definition 9.22) and
the fact (Proposition 9.19) that BiBj = BBi+j modulo 2-power torsion.
In detail:
[7a] These products hold in E2(tmf), as consequences of the relations

γδ = h1c0w2 or c0γ = h1δ. The relations in π∗(tmf) hold after
multiplication by B. In some cases we use η1ε1 = ν2ν2 or η1ε5 = ν2ν6

to rewrite the expressions in our preferred form.
[7b] The products η1B4 and ηB5 are both detected by γw1w2

2 (using
Theorem 9.16). They must be equal in π∗(tmf), since B2 · η1B4 =
ηBB1B4 = B2 · ηB5.

[7c] The products η4B1 and ηB5 have Adams filtration ≥ 25, since h1w2
2 ·

αg = 0 in E2(tmf). Hence B2 acts injectively on their difference,
which must be zero since B2 ·η4B1 = ηBB1B4 = B2 ·ηB5. Similarly,
η4B5 and ηB1M have Adams filtration ≥ 41, hence are equal, because
B2 · η4B5 = ηBB4B5 = B2 · ηB1M .
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[7d] The products η1B3 and ν2ν4 are both detected by γδw2 = h1c0w2
2

(using Theorem 9.14), hence agree modulo Adams filtration ≥ 21.
This remains true if we add the filtration 21 class ηB4 to ν2ν4.
Moreover, η1B3 and ηB4 + ν2ν4 agree after multiplication by B,
since B · η1B3 = ηB1B3 = B · ηB4 and B · ν2ν4 = 0. Hence
the two classes η1B3 and ηB4 + ν2ν4 can at most differ by the B-
torsion class η1κ̄4. We can detect this after multiplication by κ̄, since
κ̄ · η1κ̄4 = η5

1 = η2ν5 0= 0. Our choice of B3 in Definition 9.22 gives
κ̄ · η1B3 = η1κ̄5 = η2ν5. Furthermore, κ̄ · (ηB4 + ν2ν4) = ηκ̄B4, since
νκ̄ = 0, and Proposition 9.38 shows that this is also equal to η2ν5.
Hence the two classes are equal.

[8] The remaining products ν4Bj , for j ≡ 1, 2 mod 4, lie in groups of order 2.
[8a] To show ν4B1 = ηκ4κ̄ and ν4B5 = ηκκ̄M , observe that in both cases

the right hand side is the unique nonzero element in its degree. It
suffices then to show the left hand sides are nonzero, which we do
by computing their products with η1. We have η1 · ν4B1 = ην5B1 =
ην6B 0= 0, by what we have already shown in cases [0d] and [6].
Similarly, η1 · ν4B5 = ην5B5 is the nonzero element ην2BM .

[8b] The product ν4B2 is either 0 or ν6B. By Theorem 9.16, η · ν6B is
detected by δ′gw1w2

2 in Adams filtration 31, while the product ην4

is detected by g5 in Adams filtration 20. Since c0g = 0 in E2(tmf),
ην4 · B2 has Adams filtration at least 32, and hence must be zero.
Thus ν4B2 0= ν6B must be zero. Similarly, ην4 · B6 has Adams
filtration at least 48, hence is zero, so ν4B6 = 0.

[Dx] Here x is one of the elements η, η1, κ̄ or B. The product is correct after
multiplying by x and multiplication by x acts monomorphically on (B-
power torsion) elements whose Adams filtration is equal to or higher than
that of the product in question. In order:
[Dη] Multiplication by η detects κ̄2 · η4 = η4κ̄ · κ̄, and ηη4κ̄2 = εκ4κ̄ 0= 0,

so η4κ̄2 = ν5κ.
[Dη1] Multiplication by η1 detects Bi·νj for i ≡ 3 mod 4 and j ≡ 2 mod 4,

since η1ν1ε = ην2B and η1ν5ε = ην6B are nonzero, so η1νj = 0
implies νjBi = 0 in these cases.

[Dκ̄] Multiplication by κ̄ detects η1κ̄ ·η4 = η4κ̄ ·η1 = η1η4 · κ̄, and η1η4κ̄2 =
η1ν5κ = ην6κ = ε5κκ̄, where the first equality uses case [Dη]. Hence
η1η4κ̄ = ε5κ. The products Bi · εj for i ≡ 1 mod 4 and j ≡ 0 mod 4
are B-power torsion, and multiplication by κ̄ acts injectively on the
B-power torsion elements in these degrees. From εj · κ̄Bi = εjεiκ̄ =
εεi+j · κ̄, using Propositions 9.41 and 9.42, we deduce εjBi = εεi+j ,
which is then rewritten using εε1 = 2κ̄2 and εε5 = ηη1κ4.

[DB] Multiplication by B detects the products Di · ηj , and ηjBDi =
ηjdiBi = 0 for 1 ≤ i ≤ 7 since di is even and 2ηj = 0.

[Px] If x is one of the generators η1, ν6, κ, κ4 or κ̄ of π∗(tmf), then this relation
follows by multiplying an earlier relation by that generator. Otherwise,
we have one of the following arguments.
[Pa] Using ε · ε5 = ηη1κ4, κ · κ4 = ην5 and η1 · ν5 = ην6 we calculate

ε5κ · ε = ηη1κκ4 = η2η1ν5 = η3ν6 = 4νν6.
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[Pb] Using η4 · κ4 = ηκM it follows that η1κ4 · η4 = η1η4 · κ4 = ηη1κM ,
and ηη1κ = 2κ̄2 by Theorems 9.8 and 9.16.

[Pc] Using ν4 · κ4 = νκM and ν5 · η4 = ην1M we calculate η1κ4 · ν4 =
η1νκM and ν5κ · η4 = ην1κM . Here η1νκ = ην1κ = η2κ̄2 by Theo-
rems 9.14 and 9.16.

[Pd] We have η1η4 · ε = ηη1ε4 = η2ε5, which is 2κ4κ̄ by Theorems 9.8
and 9.16. !

We next turn to the products of classes that are not 2-power torsion. Recall
the numbers ek = max{3− ord2(k), 0} ∈ {0, 1, 2, 3} and dk = 2ek ∈ {1, 2, 4, 8} from
Definition 9.18. The 2-torsion free generators have the following Adams filtrations
(“AF”):

AF (Bk) = 4k +

{
4 for k ≡ 0 mod 4

3 for k 0≡ 0 mod 4

AF (Ck) = 4k + 6

AF (Dk) = 4k + ek .

Theorem 9.48. The products of elements in the B-, C- and D-families are as
follows:

• BiBj = BBi+j, except for
– B2B3 = BB5 + ηη1κ4

– B2B7 = B3B6 = BB1M + 2κ̄2M
– B6B7 = BB5M + ηη1κ4M

• BiCj = BCi+j

• BiDj = djBi+j

• CiCj = 4(B2Bi+j − (1728/di+j+1)Di+j+1)
• CiDj = djCi+j

• DiDj = (didj/di+j)Di+j.

Remark 9.49. With the exception of the four listed products of the form BiBj ,
these are exactly the relations which hold between the images of these classes in
mf∗/2. In those four cases, the 2-torsion “error term” can be written uniformly as
either (ηηκ)i+j , i.e.,

ηη1κ4, ηη1κM, ηη1κ4M ,

or as (εε)i+j , i.e.,

εε5, εε1M, εε5M .

Proof. It is straightforward to check that the images of these relations hold
in mf∗/2, using the relation c2

6 = c3
4 − 1728∆ to obtain the expression for CiCj . It

remains to determine any additional terms in them which lie in the kernel of this
homomorphism, i.e., in the 2-power torsion. We consider these according to the
form of the product.

[BB] The products BiBj and BBi+j lie in degree 16 + 24(i + j) in Adams
filtrations 4(i + j) plus 6, 7 or 8. There are 2-power torsion classes in
these degrees of this high or higher Adams filtration only when i + j ≡ 1
mod 4. These are ηη1κ = 2κ̄2 and ηη1κ4, times the appropriate power
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of M . Multiplication by κ̄ acts monomorphically on the 2-power torsion
in these bidegrees. The claims then follow from the calculations

κ̄ · BB1 = ην2B 0= 0

κ̄ · BB5 = κ̄ · B1B4 = ην6B 0= 0

κ̄ · B2B3 = 0

κ̄ · B2B7 = κ̄ · B3B6 = 0

κ̄ · B4B5 = ην2BM 0= 0

κ̄ · B6B7 = 0 ,

which can be read off from Tables 9.6 and 9.7.
[BC] The products BiCj lie in degree 20+24(i+j) in Adams filtrations 4(i+j)

plus 9 or 10. There is no 2-power torsion of such high Adams filtration in
these degrees.

[BD] The products BiDj lie in degree 8+24(i+ j) in Adams filtrations 4(i+ j)
plus 4, 5, 6 or 7. The 2-power torsion in these degrees lies in Adams
filtrations less than 4(i + j) + 4 unless i + j ≡ 3 mod 8. In these cases,
the Adams filtration of BiDj is greater than 4(i+j)+4, except for B7D4,
where a possible additional term κ̄4M could occur. However, B7D4 and
2B3M are each detected in Adams filtration 16 + 32 by h0δw2 · w4

2 rather
than by the sum of this with g4w4

2. (Alternatively, the product with κ̄
shows that the additional term does not occur.)

[CC] The products CiCj lie in degree 24 + 24(i + j), which has no 2-power
torsion.

[CD] The products CiDj lie in degree 12+24(i+j) in Adams filtrations 4(i+j)
plus 7, 8 or 9. There is 2-power torsion in Adams filtration 4(i + j) + 7
when i + j ≡ 2 mod 4, and CiDj has this same Adams filtration only
when j = 4. Checking E∞(tmf) shows that C2D4 and 2C6 are detected
by h4

0αw3
2, while C6D4 and 2C2M are detected by h4

0αw5
2, with no con-

tribution from the 2-power torsion classes in these degrees. Furthermore,
the indeterminacy in the choice of C2 and C6 has no effect because it is
divisible by ν3, which is annihilated by 2 and by Dk when 1 ≤ k ≤ 7.

[DD] The products DiDj lie in degree 24(i + j), which has no 2-power torsion.
!
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9.6. The algebra structure of π∗(tmf)

Now that we have the complete product structure of π∗(tmf) in hand, we
can make a choice of generators that is optimized for simplicity and the relation
to mf∗/2. To this end, we give an alternative set of generators B̃k ∈ π8+24k(tmf)
and make a more precise choice for ν4 ∈ π3+24·4(tmf).

The exceptional products of the form BiBj found in Theorem 9.48 suggest the

following change: let B̃k = Bk + εk if k ≡ 0, 1 mod 4 and B̃k = Bk otherwise. We
then have κ̄ · B̃k = 0 except when k = 3, so it also makes good sense to reverse our
choice of B3: let B̃3 = B3 + κ̄4.

Definition 9.50. Let

B̃k =






Bk + εk for k ≡ 0, 1 mod 4,

B3 + κ̄4 for k = 3,

Bk otherwise.

Then
AF (B̃k) = 4k + 3

in all cases, with B̃k detected by c0wi
2 in E∞(tmf) for k = 2i, and by δwi

2 for
k = 2i + 1. As usual, we often abbreviate B̃0 to B̃ = B + ε. Note that B̃2 = B2,
since ε2 = 0, so a class is B̃-power torsion if and only if it is B-power torsion.

In Theorem 9.54 we finish our refinement of the generators, by choosing ν4

so that νD4 = 2ν4. In the notation of case [S] of the proof of Theorem 9.47, we
set s0 = 1, so that s2 = 1, s4 = s and s6 = s, where s ∈ {±1} is the remaining
undetermined sign.

Having done this, we now describe the products in π∗(tmf) in terms of our
final, optimized, choice of generators. We break the result into three parts:

(1) The Z[η, ν, B, M ]-module structure is given in Theorem 9.51 and Fig-
ures 9.6 through 9.13.

(2) The products among the 2-torsion free classes B̃k, Ck and Dk are given
in Theorem 9.53.

(3) The products with the 2-power torsion classes ηk, νk, εk, κk and κ̄ are
given in Theorem 9.54 and Tables 9.8 and 9.9.

Theorem 9.51. The Z[η, ν, B, M ]-module structure of π∗(tmf) is given in Fig-
ures 9.6 through 9.13. The B-periodic classes are shown in black, while the B-power
torsion classes are red. The action of B is as shown in those charts on the (black)
classes ηk, Bk, Ck and Dk and agrees with that of ε on the (red) B-power torsion
classes. The element M acts monomorphically in π∗(tmf).

Proof. These figures simply summarize what we have shown in Theorems 9.8,
9.14 and 9.16, Lemma 9.11 and Proposition 9.17. Note that the B-multiples of B-
periodic classes x are usually not labeled in Figures 9.6 to 9.13, but are recognizable
by their location 8 degrees and 4 Adams filtrations higher than the element x. For
B-power torsion classes x the B- and ε-multiples agree, by Proposition 9.40, and
are usually labeled εx when nonzero. !

Remark 9.52. The charts in Figures 9.6 to 9.13 are not Adams spectral se-
quence E∞ charts, though we have placed elements at the location of their detecting
class in E∞ to make the charts as easy to read as possible. Vertical lines denote
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multiplication by 2, lines to one degree higher denote multiplication by η, and lines
(or curves) to three degrees higher denote multiplication by ν. In particular, they
are intended to indicate that νD4 = 2ν4 (Theorem 9.54), not simply ±2ν4, as would
be the case in an Adams E∞ chart.

To avoid congestion in these diagrams, we display the elements Bk rather than
the B̃k. This avoids the issue that B̃k and εk for k ≡ 0 mod 4 have the same
detecting class in E∞(tmf). The translation between the two is easily made by use
of Definition 9.50.

Theorem 9.53. The products of elements in the B̃-, C- and D-families are as
follows:

B̃iB̃j = B̃B̃i+j CiCj = 4(B̃2B̃i+j − (1728/di+j+1)Di+j+1)

B̃iCj = B̃Ci+j CiDj = djCi+j

B̃iDj = djB̃i+j DiDj = (didj/di+j)Di+j .

The ring homomorphism from π∗(tmf) onto its image in mf∗/2 has a section, which
is also a ring homomorphism, sending

∆8 2−→ M c4∆
k 2−→ B̃k

2c6∆
k 2−→ Ck dk∆

k 2−→ Dk .

Proof. To verify the relation B̃iB̃j = B̃B̃i+j we calculate for 0 ≤ i ≤ j ≤ 7

that B̃iB̃j = BBi+j + εεi+j for i + j ≡ 1 mod 4, and B̃iB̃j = BBi+j otherwise, all
of which follows from Theorem 9.48 and Table 9.7.

The remaining products rely upon the facts that the εi and κ̄4 are annihilated
by 2, by B̃2 = B2, by each Cj , and by the Dk for k 0≡ 0 mod 8. Again, these
properties can be read off from Table 9.7.

Let im(e) be the image of the edge homomorphism e : π∗(tmf) → mf∗/2. It is
the subring of Z[c4, c6,∆]/(c3

4 − c2
6 = 1728∆) generated by ∆8, c4∆k, 2c6∆k and

dk∆k for all 0 ≤ k ≤ 7. These generators are subject only to the ideal of relations
generated by the identities

c4∆
i · c4∆

j = c4 · c4∆
i+j

c4∆
i · 2c6∆

j = c4 · 2c6∆
i+j

c4∆
i · dj∆

j = dj · c4∆
i+j

2c6∆
i · 2c6∆

j = 4(c2
4 · c4∆

i+j − (1728/di+j+1) · di+j+1∆
i+j+1)

2c6∆
i · dj∆

j = dj · 2c6∆
i+j

di∆
i · dj∆

j = (didj/di+j) · di+j∆
i+j .

To see that no further relations are required, note that the associated quotient ring
is generated as a Z[c4,∆8]-module by dk∆k, c4∆k and 2c6∆k for all 0 ≤ k ≤ 7,
subject only to the relations c4 ·dk∆k = dk ·c4∆k. It therefore maps isomorphically
to im(e). Hence the first part of the theorem shows that the rules ∆8 2→ M , c4∆k 2→
B̃k, 2c6∆k 2→ Ck and dk∆k 2→ Dk specify a well-defined ring homomorphism
σ : im(e) → π∗(tmf), such that e ◦ σ is the inclusion im(e) ⊂ mf∗/2. !
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Figure 9.6. πn(tmf) for 0 ≤ n ≤ 24
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Figure 9.7. πn(tmf) for 24 ≤ n ≤ 48
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Figure 9.8. πn(tmf) for 48 ≤ n ≤ 72
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Figure 9.9. πn(tmf) for 72 ≤ n ≤ 96
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Figure 9.10. πn(tmf) for 96 ≤ n ≤ 120
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Figure 9.11. πn(tmf) for 120 ≤ n ≤ 144
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Figure 9.13. πn(tmf) for 168 ≤ n ≤ 192
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Theorem 9.54. We can (and do) choose ν4 so that νD4 = 2ν4. This deter-
mines ν4 up to a factor in {1, 5} ⊂ Z/8×.

The products with 2-power torsion elements in π∗(tmf) are then as shown in
Tables 9.8 and 9.9, where s ∈ {±1} is the sign in the product ν4ν6 = sνν2M . The
rows for the B̃k, Ck and odd-indexed D2j+1 are omitted, because all products in
these rows are zero with the exception of

ηiB̃j = ηB̃i+j .

Proof. These tables are largely the same as those at the end of the preceding
section. There are three sets of changes. First, each row of Bk-products is replaced
by the corresponding row of B̃k-products. Having done this, we no longer need the
rows we have omitted, as they contain only 0 entries with the exception of the ηiB̃j .
We retain the rows for the products by the even-indexed D2j because a number of
these products are nonzero.

Second, the B-multiples of B-power torsion classes are rewritten as ε-multiples,
which is justified by Proposition 9.40.

Third, the signs si for i ∈ {0, 2, 4, 6} are all replaced by the appropriate multiple
of s: see case [S] of the proof of Theorem 9.47. There we saw that νD4 = 2s0ν4

with s0 ∈ {±1}. Thus far the generator ν4 of π99(tmf) ∼= Z/8 was only determined
by its detecting class h2w2

2 in the Adams spectral sequence. Hence, by possibly
changing the sign of ν4, we may arrange that s0 = 1 and νD4 = 2ν4. This then
gives the remaining ν2jD4 as in Theorem 9.47. !

This theorem contains the following generalization of Mahowald’s dictum that
Bx = εx for B-power torsion classes x.

Corollary 9.55. If x is B-power torsion then B̃k · x = 0 for all k. Equiva-
lently,

Bkx =






εkx for k = 0, 1, 4, 5,

κ̄4x for k = 3,

0 for k = 2, 6, 7.

Proof. In other words, B̃k · x = 0 for all 0 ≤ k ≤ 7 and x ∈ ΓBπ∗(tmf) =
(νk, εk,κk, κ̄). The honorary case B̃k · ν3 = 0 is not made explicit in our tables, but
η3
1B̃k = η3B̃k+3 = 4νB̃k+3 = 0. !

It also confirms the following heuristic relationship between the products xiyj ,

including the B̃-family but excluding the D-family.

Corollary 9.56.

(1) When x, y ∈ {η, ν, ε,κ, κ̄, B̃, C} and xi and yj are defined, then xiyj de-
pends only on x, y and i + j, except when x = y = ν.

(2) For x = y = ν,
νiνj = (i + 1)ννi+j ,

except when {i, j} = {4, 6} if s = −1.
(3) When x, y, z ∈ {η, ν, ε,κ, κ̄, B̃, C} and xi, yj and zk are defined, then

xiyjzk depends only on x, y, z and i + j + k, except when two or more of
x, y and z equal ν.

(4) η4
1 = ην4 0= 0 while η3η4 = 0, so xiyjzkw4 does sometimes depend on more

than x, y, z, w and i + j + k + 5. !
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Table 9.8: Products in π∗(tmf): the entry in row x (found in the
x-column) and column y (found in the top row) gives xy. Part 1
of 2: ηi- and νi-multiples. Rows B̃k, Ck and D2j+1 omitted: see
Theorem 9.54.

n s x η1 η4 ν1 ν2 ν4 ν5 ν6

8 3 ε ηε1 ηε4 ηκκ̄ ν2ε 0 ηκ4κ̄ ν6ε

14 4 κ η1κ ηκ4 ηκ̄2 ν2κ νκ4 ν5κ ν6κ

20 4 κ̄ η1κ̄ η4κ̄ 0 0 0 0 0

25 5 η1 η2
1 η1η4 ην2 0 ην5 ην6 0

27 6 ν1 ην2 ην5 2νν2 0 0 2νν6 0

32 7 ε1 ν2ν2 ηε5 ν2ε 0 ηκ4κ̄ ν6ε 0

34 8 κκ̄ ν2ε ηκ4κ̄ 0 0 0 0 0

39 9 η1κ 0 ηη1κ4 ην2κ 0 ην5κ ην6κ 0

40 8 κ̄2 η1κ̄2 ν5κ 0 0 0 0 0

45 9 η1κ̄ η2
1 κ̄ ε5κ 0 0 0 0 0

48 10 D2 0 0 0 4ν4 4ν6 0 4νM

50 10 η2
1 η3

1 4ν6 0 0 η2ν6 0 0

51 9 ν2 0 ην6 0 νν4 3νν6 0 ν2M

60 12 κ̄3 η1κ̄3 0 0 0 0 0 0

65 13 η1κ̄2 η2
1 κ̄

2 ην6κ 0 0 0 0 0

65 13 ν2κ 0 ην6κ 0 2κ̄D4 νν6κ 0 4κ̄M

70 14 η2
1 κ̄ 0 0 0 0 0 0 0

75 15 η3
1 ην4 0 0 0 0 0 0

80 16 κ̄4 ηε4 0 0 0 0 0 0

+ν2ν4

85 17 η1κ̄3 2κ4 0 0 0 0 0 0

90 18 η2
1 κ̄

2 0 0 0 0 0 0 0

96 17 D4 0 0 2ν5 2ν6 2sνM 2ν1M 2sν2M

97 17 η4 η1η4 η2M ην5 ην6 0 ην1M ην2M

99 17 ν4 ην5 0 0 −3νν6 ν2M 0 sνν2M

104 19 ε4 ηε5 ηεM ηκ4κ̄ ν6ε 0 ηκκ̄M ν2εM

110 20 κ4 η1κ4 ηκM ν5κ ν6κ νκM ηκ̄2M ν2κM

116 21 κ̄D4 0 0 0 0 0 0 0

117 21 η4κ̄ ε5κ η2κ̄M 0 0 0 0 0
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Table 9.8: Products in π∗(tmf) (Part 1, cont.)

n s x η1 η4 ν1 ν2 ν4 ν5 ν6

122 22 η1η4 4ν6 2ν1M η2ν6 0 0 η2ν2M 0

123 22 ν5 ην6 ην1M −2νν6 0 0 2νν2M 0

128 23 ε5 ν2ν6 ηε1M ν6ε 0 ηκκ̄M ν2εM 0

130 24 κ4κ̄ ν6ε ηκκ̄M 0 0 0 0 0

135 25 η1κ4 0 2κ̄2M ην6κ 0 η2κ̄2M ην2κM 0

137 26 ν5κ ην6κ η2κ̄2M 0 0 0 0 0

142 27 ε5κ 0 0 0 0 0 0 0

144 26 D6 0 0 0 4νM 4ν2M 0 4ν4M

147 25 ν6 0 ην2M 0 ν2M −sνν2M 0 νν4M

161 29 ν6κ 0 ην2κM 0 4κ̄M νν2κM 0 2κ̄D4M

Table 9.9: Products in π∗(tmf): the entry in row x (found in the
x-column) and column y (found in the top row) gives xy. Part 2
of 2: εi-, κi- and κ̄-multiples. Rows B̃k, Ck and D2j+1 omitted:
see Theorem 9.54.

n s x ε ε1 ε4 ε5 κ κ4 κ̄

8 3 ε 0 2κ̄2 0 ηη1κ4 η2κ̄ ηη4κ̄ ην1

14 4 κ η2κ̄ ηη1κ̄ ηη4κ̄ ε5κ ην1 ην5 κκ̄

20 4 κ̄ ην1 ην2 ην5 ην6 κκ̄ κ4κ̄ κ̄2

25 5 η1 ηε1 ν2ν2 ηε5 ν2ν6 η1κ η1κ4 η1κ̄

27 6 ν1 ηκκ̄ ν2ε ηκ4κ̄ ν6ε ηκ̄2 ν5κ 0

32 7 ε1 2κ̄2 0 ηη1κ4 0 ηη1κ̄ ε5κ ην2

34 8 κκ̄ η2κ̄2 ην2κ ην5κ ην6κ 0 0 2νν2

39 9 η1κ 0 0 0 0 η2ν2 η2ν6 ν2ε

40 8 κ̄2 0 0 0 0 2νν2 2νν6 κ̄3

45 9 η1κ̄ η2ν2 0 η2ν6 0 ν2ε ν6ε η1κ̄2

48 10 D2 0 0 0 0 0 0 νν2κ

50 10 η2
1 0 0 0 0 0 0 η2

1 κ̄

51 9 ν2 ν2ε 0 ν6ε 0 ν2κ ν6κ 0

60 12 κ̄3 0 0 0 0 0 0 κ̄4

65 13 η1κ̄2 0 0 0 0 0 0 η1κ̄3
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Table 9.9: Products in π∗(tmf) (Part 2, cont.)

n s x ε ε1 ε4 ε5 κ κ4 κ̄

65 13 ν2κ 0 0 0 0 0 0 0

70 14 η2
1 κ̄ 0 0 0 0 0 0 η2

1 κ̄
2

75 15 η3
1 0 0 0 0 0 0 0

80 16 κ̄4 0 0 0 0 0 0 ην4

85 17 η1κ̄3 0 0 0 0 0 0 ηε4 + ν2ν4

90 18 η2
1 κ̄

2 0 0 0 0 0 0 2κ4

96 17 D4 0 0 0 0 2κ4 0 κ̄D4

97 17 η4 ηε4 ηε5 ηεM ηε1M ηκ4 ηκM η4κ̄

99 17 ν4 0 ηκ4κ̄ 0 ηκκ̄M νκ4 νκM 0

104 19 ε4 0 ηη1κ4 0 2κ̄2M ηη4κ̄ η2κ̄M ην5

110 20 κ4 ηη4κ̄ ε5κ η2κ̄M ηη1κ̄M ην5 ην1M κ4κ̄

116 21 κ̄D4 0 0 0 0 2κ4κ̄ 0 ηη1κ4

117 21 η4κ̄ η2ν5 η2ν6 0 η2ν2M ηκ4κ̄ ηκκ̄M ν5κ

122 22 η1η4 2κ4κ̄ 0 0 0 ηη1κ4 2κ̄2M ε5κ

123 22 ν5 ηκ4κ̄ ν6ε ηκκ̄M ν2εM ν5κ ηκ̄2M 0

128 23 ε5 ηη1κ4 0 2κ̄2M 0 ε5κ ηη1κ̄M ην6

130 24 κ4κ̄ ην5κ ην6κ η2κ̄2M ην2κM 0 0 2νν6

135 25 η1κ4 0 0 0 0 η2ν6 η2ν2M ν6ε

137 26 ν5κ 0 0 0 0 0 0 0

142 27 ε5κ 4νν6 0 0 0 ην6ε 2κ̄3M ην6κ

144 26 D6 0 0 0 0 0 0 νν6κ

147 25 ν6 ν6ε 0 ν2εM 0 ν6κ ν2κM 0

161 29 ν6κ 0 0 0 0 0 0 0

Remark 9.57. The only nonzero products between the 2-power torsion classes
ηi, νi, εi, κi and κ̄ and the 2-torsion free classes B̃j , Cj and Dj (other than D0 = 1)
are the following:

• ηi · B̃j = ηB̃i+j .
• νi · Dj = 4νi+j for i even and j ∈ {2, 6}.
• νi · D4 = ±2νi+4, with a sign depending on i.
• κ · D4 = 2κ4.
• κ̄ · Dj = ννjκ for j ∈ {2, 6}.
• κ̄ · D4 = κ̄D4, one of our generators.
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Remark 9.58. Most of this multiplicative structure was very concisely de-
scribed by Henriques in [54, Ch. 13], on pages 190–192. We offer the following
concordance between his presentation and our results.

(1) The (nonzero) 2- and η-multiplications, and almost all ν-multiplications,
are shown in the picture on page 190, which repeats M -periodically. The
missing ν-multiplications from degrees 0, 51, 96 and 147 are easily deduced
from the ones shown, by means of the additive group structure.

(2) The action by B̃ is trivial in the upper part of Henriques’ picture (including
all classes in degrees ∗ ≡ 3 mod 24), and is periodic in the lower part.
The Z[B̃]-module generators of infinite order correspond to our B̃-, C-
and D-families.

(3) The products among 2-torsion free classes are determined up to 2-power
torsion classes by the ring homomorphism to modular forms, as stated on
page 191. The fact that a multiplicative section can be chosen so that
there are no 2-power torsion correction terms is not made explicit, and
may be new.

(4) Most ε-, κ- and κ̄-multiplications are also shown in the picture on page 190.
The remaining degrees supporting nonzero products with these classes, as
well as with η1 = {η∆}, ν1 = {2ν∆}, ε1 = q and ν2 = {ν∆2}, are listed
in the table on pages 191 and 192. We note the following deviations from
our conclusions:
(κ) A nonzero product from degree 3 is missing.
(κ̄) Some products from degrees 0, 20, 40 and 96 are not shown. The

sign of the product from degree 130 is left undetermined.
(η1) A nonzero product from degree 17 is missing.
(ν1) The sign of the product from degree 123 is left undetermined.
(ε1) A nonzero product from degree 98 is missing.
(ν2) Nonzero products from degrees 48, 144, 147, 150 and 161 are missing.

The indicated product from degree 116 should be omitted. The sign
of the product from degree 96, and the coefficient in Z/8× of the
product from degree 99, are not determined.

(5) The products with η4, ν4, ν5, ν6, ε4, ε5 and κ4 are not listed.

Henriques also shows the Adams E∞-term for tmf on pages 196–197, with hidden
2-, η- and ν-multiplications indicated. Our results appear to agree, except near
degrees 32 and 128. Henriques indicates a class “c4∆ + q” in degree 32 of Adams
filtration 7, equal to our class B1, such that η(c4∆+ q) has Adams filtration 9 and
ν(c4∆ + q) = 0. As our calculations show, the latter ν-product should be nonzero.
The same issue occurs in degree 128 and Adams filtration 23.

Remark 9.59. The multiplicative structure in the Adams–Novikov spectral
sequence for tmf does not seem to suffice to determine the common sign s in the
relations ν4ν6 = sνν2M , ν4D4 = 2sνM and ν6D4 = 2sν2M . In the notation of [23,
§8], the classes ν4ν6 and νν2M are both detected by h2

2∆
10, but this only tells us

that they agree modulo the higher filtration class 2νν2M . Likewise, the classes ν4D4

and 2νM are both detected by 2h2∆8, and must agree modulo 4νM , while ν6D4

and 2ν2M are both detected by 2h2∆10, and must agree modulo 4ν2M . Similarly,
in the elliptic spectral sequence for TMF , and in the homotopy fixed point spectral
sequence for LK(2)TMF = EO2, the sign in these products is invisible at the E∞-
term.
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CHAPTER 10

Duality

10.1. Pontryagin duality in the B-power torsion of π∗(tmf)

The B-power torsion in π∗(tmf) repeats 192-periodically, and is shown in red
in Figures 9.6 through 9.13, and again in Figures 10.1 and 10.2. In the latter
illustrations the groups in degrees 3 ≤ ∗ ≤ 90 are shown in the upper halves with
degrees increasing toward the right, while the groups in degrees 75 ≤ ∗ ≤ 164 are
shown in the lower halves with degrees increasing toward the left. As usual, 2-,
η- and ν-extensions are shown by solid or dashed lines increasing degree by 0, 1
and 3, respectively, but the vertical coordinate has no specific meaning. The mirror
symmetry across the “fold line” in these pictures makes it clear that for 0 ≤ n < 192
the B-power torsion in degree n is abstractly isomorphic to the B-power torsion in
degree 170 − n, except in degrees n ≡ 3 mod 24.

More precisely, we will see in Theorem 10.25 that these finite groups are natu-
rally Pontryagin dual, so that there is a perfect pairing

(−,−) : Θπn(tmf) ×Θπ170−n(tmf) −→ Q/Z

for 0 ≤ n < 192. Here Θπn(tmf) ⊂ ΓBπn(tmf) denotes the self-dual part of the
B-power torsion, i.e., the part in degrees n 0≡ 3 mod 24. A less ad hoc char-
acterization of Θπ∗(tmf) is given in Definition 10.18, which makes it clear that
this is a π∗(tmf)-submodule of ΓBπ∗(tmf). The omitted groups in degrees n ≡ 3
mod 24 are generated by the classes νk for 0 ≤ k ≤ 6, and we will see that there
is a more comprehensive spectral expression of the duality, for which the order
d7−k ∈ {2, 4, 8} of the cyclic group 〈νk〉 corresponds to the index of Z{D7−k} in
Z{B7−k/B}. The spectrum level statement

Σ20tmf - I(tmf/(2∞, B∞, M∞))

is given in Theorem 10.6, and the duality between 〈νk〉 and Z{B7−k/B}/Z{D7−k}
appears in Theorem 10.25. We explain the notation tmf/(2∞, B∞, M∞) in Sec-
tion 10.2 and recall the Brown–Comenetz duality functor I in Section 10.3, where
we also establish the spectrum level duality by a descent argument along ι′ : tmf →
tmf1(3) - BP 〈2〉.

The duality theorem can be re-expressed in terms of local cohomology spectra
and Anderson duality, as we spell out in Proposition 10.12 of Section 10.4:

Σ22tmf - IZ(Γ(B,M)tmf) .

By construction, tmf is the connective cover of an E∞ ring spectrum Tmf , and the
equivalence above extends to an Anderson self-duality of Tmf :

Σ21Tmf - IZ(Tmf) .

377
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This theorem is due to Stojanoska [161, Thm. 13.1], but the published version
assumes that the prime 2 has been inverted. See Theorem 10.13 for a proof follow-
ing [67] of the 2-complete part of this result. Finally, in Section 10.5 we translate the
spectrum level duality equivalence into a series of algebraic duality isomorphisms,
which are summarized in Theorem 10.26.

10.2. Torsion submodules and divisible quotients

Definition 10.1. Let R be a commutative S-algebra (= E∞ ring spectrum),
let M be an R-module spectrum, and let x ∈ πd(R). Let M/x be the homotopy
cofiber of the multiplication-by-x map

ΣdM
x−→ M ,

let M [1/x] be the homotopy colimit of the sequence

M
x−→ Σ−dM

x−→ Σ−2dM
x−→ . . . ,

and let M/x∞ be the homotopy cofiber of the structure map M → M [1/x]. Note
that π∗(M [1/x]) = π∗(M)[1/x], so that there is a short exact sequence

(10.1) 0 → π∗(M)/x∞ −→ π∗(M/x∞) −→ Γxπ∗−1(M) → 0 ,

where ΓxM∗ and M∗/x∞ denote the kernel and cokernel of the localization ho-
momorphism M∗ → M∗[1/x], for any π∗(R)-module M∗. In other words, ΓxM∗
is the x-power torsion submodule of M∗, and M∗/x∞ is an x-divisible quotient of
M∗[1/x]. By reversal of priorities, we can also view M/x∞ as the homotopy colimit
of the homotopy cofibers of the maps xn : M → Σ−ndM , so that

M/x∞ - hocolim
n

Σ−ndM/xn .

We shall also make use of the evident homotopy cofiber sequence

(10.2) M/x −→ ΣdM/x∞ x−→ M/x∞ .

We are interested in cases such as M = R, M = R[1/x] and M = R/x∞. If
also y ∈ πe(R), we obtain a square of homotopy cofiber sequences

R !!

""

R[1/x] !!

""

R/x∞

""

R[1/y] !!

""

R[1/x, 1/y] !!

""

R/(x∞)[1/y]

""

R/y∞ !! R[1/x]/(y∞) !! R/(x∞, y∞)

in the category of R-modules, where R/(x∞, y∞) = R/x∞ ∧R R/y∞ is the iterated
homotopy cofiber of the upper left hand square. Likewise, if z ∈ πf (R) then there
is a cube of homotopy cofiber sequences, with

R/(x∞, y∞, z∞) = R/x∞ ∧R R/y∞ ∧R R/z∞
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being the iterated homotopy cofiber of the initial cube

R !!

##"
""

""
""

""
""

"

""

R[1/x]

CC''
'''

'''
'''

''

""

R[1/y] !!

""

R[1/x, 1/y]

""

R[1/z]

##"
""

""
""

""
"

!! R[1/x, 1/z]

CC''
'''

'''
'''

'

R[1/y, 1/z] !! R[1/x, 1/y, 1/z] .

Remark 10.2. Following Greenlees–May [66, §3], one can work with the ho-
motopy x-power torsion (= local cohomology) spectrum ΓxM , defined as the ho-
motopy fiber of M → M [1/x], in place of the homotopy cofiber M/x∞. Since
ΣΓxM - M/x∞ this only amounts to a shift in grading, which, however, may be
convenient for the discussion of multiplicative structure. There is a natural short
exact sequence

0 → π∗+1(M)/x∞ −→ π∗(ΓxM) −→ Γxπ∗(M) → 0 .

Iterating, Γ(x,y)R = Γx(ΓyR) is the double homotopy fiber of the initial square
above, with Σ2Γ(x,y)R - R/(x∞, y∞). Similarly, Γ(x,y,z)R = Γx(Γy(ΓzR)) is the
triple homotopy fiber of the displayed cube, with Σ3Γ(x,y,z)R - R/(x∞, y∞, z∞).

Lemma 10.3 ([66]). Let x1, . . . , xn ∈ π∗(R). The homotopy type of the R-
module R/(x∞

1 , . . . , x∞
n ) only depends on n and the radical

√
J of the ideal J =

(x1, . . . , xn) in π∗(R).

Proof. In view of the equivalence R/(x∞
1 , . . . , x∞

n ) - ΣnΓ(x1,...,xn)R, this is a
restatement of the fact that Γ(x1,...,xn)R only depends on the radical of (x1, . . . , xn),
which is explained in [66, p. 266]. !

10.3. Brown–Comenetz duality

Recall the Bott element B ∈ π8(tmf) with B ∈ {w1}, and the Mahowald
element M ∈ π192(tmf) with M ∈ {w4

2}. We shall study Z[B, M ]-modules obtained
by restriction along Z[B, M ] → π∗(tmf), or by induction along Z[B] → Z[B, M ].
Recall also the following notation from Section 9.4.

Definition 10.4. Let N∗ ⊂ π∗(tmf) be the Z[B]-submodule generated by the
classes in degrees 0 ≤ ∗ < 192, or equivalently, by the classes in degrees 0 ≤ ∗ ≤ 180.

By the results of the previous chapter, cf. Theorem 9.26, the B-power torsion
ΓBN∗ is finite in degrees 3 ≤ ∗ ≤ 164 and is trivial outside this range. Furthermore,
the B-divisible quotient N∗/B∞ is concentrated in degrees ≤ 172. The group in
degree 172 is a copy of Z generated by C7/B, where C7 ∈ {h0α3w3

2}, and the group
in degree 171 is trivial.

Since w4
2 acts freely on the Adams E∞-term for tmf , the composite homomor-

phism

N∗ ⊗ Z[M ] −→ π∗(tmf) ⊗ π∗(tmf)
·−→ π∗(tmf)
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is an isomorphism of Z[B, M ]-modules. In particular, ΓMπ∗(tmf) = 0 and

π∗(tmf/M∞) ∼= π∗(tmf)/M∞ = N∗ ⊗ Z[M ]/M∞ ,

where Z[M ]/M∞ = Z[M, M−1]/Z[M ] ∼= Z[M−1]{1/M}. Hence there is a short
exact sequence

0 → N∗/B∞ ⊗ Z[M ]/M∞

−→ π∗(tmf/(B∞, M∞)) −→ ΓBN∗−1 ⊗ Z[M ]/M∞ → 0 .

It follows that π∗(tmf/(B∞, M∞)) is concentrated in degrees ∗ ≤ −20, with the
group in degree −20 being a copy of Z generated by C7/BM , and the group in
degree −21 being zero. Using the short exact sequence

0 → π∗(tmf/(B∞, M∞))/2∞

−→ π∗(tmf/(2∞, B∞, M∞)) −→ Γ2π∗−1(tmf/(B∞, M∞)) → 0

we conclude that π∗(tmf/(2∞, B∞, M∞)) is concentrated in degrees ∗ ≤ −20, with
the group in degree −20 being a copy of Z/2∞.

Definition 10.5. Let I = IQ/Z be the Brown–Comenetz dual of the sphere
spectrum [36]. This is the spectrum representing the generalized cohomology theory

X 2−→ In(X) = Hom(πn(X), Q/Z) .

Let I(X) = F (X, I), so that π−nI(X) = In(X). If M is an R-module spectrum,
then I(M) = F (M, I) is naturally an R-module spectrum.

Here is our formulation of the duality theorem.

Theorem 10.6. There is a duality equivalence of (implicitly 2-completed) tmf -
modules

Σ20tmf - I(tmf/(2∞, B∞, M∞)) .

Proof. By the discussion at the beginning of this section, the homotopy
groups of tmf/(2∞, B∞, M∞) are concentrated in degrees ∗ ≤ −20, with the group
in degree −20 being a copy of Z/2∞. Hence the homotopy groups of the Brown–
Comenetz dual I(tmf/(2∞, B∞, M∞)) are concentrated in degrees ∗ ≥ 20, with
the group in degree 20 being isomorphic to Hom(Z/2∞, Q/Z) = Z2. Representing
a (2-adic) generator for this group by a map from S20, we obtain a tmf -module
map

a : Σ20tmf −→ I(tmf/(2∞, B∞, M∞))

between 19-connected spectra, which induces an isomorphism on π20. We will show
that a is in fact an equivalence, as a consequence of an easier duality result for the
truncated Brown–Peterson spectrum BP 〈2〉.

Recall from Remark 1.16 and Equation (9.5) in the proof of Proposition 9.19
that Lawson and Naumann [91] constructed a map of (implicitly 2-complete) com-
mutative S-algebras ι′ : tmf → tmf1(3) - BP 〈2〉, where π∗(BP 〈2〉) = Z[v1, v2]
maps isomorphically to π∗(tmf1(3)) = Z[a1, a3] by v1 2→ −a1 ≡ a1 mod 2 and
v2 2→ −7a3 ≡ a3 mod (2, a1). The map ι′ induces B 2→ c4 = a1(a3

1 − 24a3) and
M 2→ ∆8 with ∆ = a3

3(a
3
1 − 27a3). It is straightforward to check that the radical of

the ideal J = (2, c4,∆8) in π∗(tmf1(3)) equals
√

J = (2, a1, a3), which corresponds
to (2, v1, v2) in π∗(BP 〈2〉).

The main step is to show that the coinduced BP 〈2〉-module map
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b = Ftmf (BP 〈2〉, a) : Ftmf (BP 〈2〉,Σ20tmf)

−→ Ftmf (BP 〈2〉, I(tmf/(2∞, B∞, M∞)))

is an equivalence. We start with the target of b. Induction along ι′ : tmf → BP 〈2〉
takes tmf/(2∞, B∞, M∞) to

BP 〈2〉 ∧tmf tmf/(2∞, B∞, M∞) ∼= BP 〈2〉/(2∞, B∞, M∞)

= BP 〈2〉/(2∞, c∞4 , (∆8)∞)

- BP 〈2〉/(2∞, v∞1 , v∞2 ) .

The middle identity uses that ι′∗ : π∗(tmf) → π∗(BP 〈2〉) maps B and M to c4

and ∆8, respectively. The final equivalence uses that BP 〈2〉/(2∞, c∞4 , (∆8)∞)
and BP 〈2〉/(2∞, v∞1 , v∞2 ) are equivalent as BP 〈2〉-modules because (2, c4,∆8) and
(2, v1, v2) have the same radical in π∗(BP 〈2〉) = Z[v1, v2], cf. Lemma 10.3.

Applying the Brown–Comenetz duality functor I, we see that coinduction
along ι′ takes I(tmf/(2∞, B∞, M∞)) to

Ftmf (BP 〈2〉, I(tmf/(2∞, B∞, M∞))) ∼= I(BP 〈2〉 ∧tmf tmf/(2∞, B∞, M∞))

- I(BP 〈2〉/(2∞, v∞1 , v∞2 )) .

The homotopy groups of BP 〈2〉/(2∞, v∞1 , v∞2 ) are

Z[v1, v2]/(2∞, v∞1 , v∞2 ) = Z/2∞[v−1
1 , v−1

2 ]{1/v1v2} ,

with 1/v1v2 in degree −8. Hence the target

π∗(I(BP 〈2〉/(2∞, v∞1 , v∞2 ))) ∼= Σ8π∗(BP 〈2〉)

of π∗(b) is a free module over π∗(BP 〈2〉), on a single generator in degree 8.
Next, we consider the source of b. Let Φ = ΦA(1) be a finite (8-cell) 12-

dimensional CW spectrum with cohomology realizing A(2)//E(2), i.e., the double
of A(1) = 〈Sq1, Sq2〉. We saw in Lemma 1.42 that such spectra exist. Then
tmf ∧Φ - BP 〈2〉 as tmf -modules, because A//A(2)⊗A(2)//E(2) ∼= A//E(2). The
Spanier–Whitehead dual DΦ = F (Φ, S) has cohomology realizing Σ−12A(2)//E(2)
as an A(2)-module, so there is also an equivalence of tmf -modules F (Φ, tmf) -
Σ−12BP 〈2〉. Coinduction along ι′ therefore takes Σ20tmf to

Ftmf (BP 〈2〉,Σ20tmf) - F (Φ,Σ20tmf) - Σ8BP 〈2〉 ,

in the category of tmf -modules. Hence the source of the homomorphism π∗(b) is
isomorphic to Σ8π∗(BP 〈2〉) as a π∗(tmf)-module, and, in particular, as a graded
abelian group.

The coinduced BP 〈2〉-module map

b = Ftmf (BP 〈2〉, a) : Σ8BP 〈2〉 −→ I(BP 〈2〉/(2∞, v∞1 , v∞2 ))

can be written as F (Φ, a), hence is a map between 7-connected spectra that induces
an isomorphism on π8. It follows that

π∗(b) : Σ8π∗(BP 〈2〉) −→ Σ8π∗(BP 〈2〉)

is surjective, since it is π∗(BP 〈2〉)-linear and maps onto the π∗(BP 〈2〉)-module
generator of the target. Furthermore, its source and target are abstractly isomor-
phic and of finite type as (implicitly 2-completed) graded abelian groups, so the
surjectivity implies that π∗(b) is in fact an isomorphism.
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It follows that b is an equivalence and the homotopy cofiber Cb is contractible.
The Hurewicz theorem then implies that Ca is contractible, and that a is an equiv-
alence, since DΦ ∧ Ca - F (Φ, Ca) - Cb and H−12(DΦ; Z) ∼= H12(Φ; Z) ∼= Z. !

Remark 10.7. The theorem can be reformulated as saying that there is a
perfect (Brown–Comenetz duality) pairing

Σ20tmf ∧ tmf/(2∞, B∞, M∞) −→ I .

When smashed with the perfect (Spanier–Whitehead duality) pairing

DΦ ∧ Φ −→ S

it gives the perfect pairing

Σ8BP 〈2〉 ∧ BP 〈2〉/(2∞, v∞1 , v∞2 ) −→ I .

Lemma 10.8. The π∗(tmf)-module isomorphism

a∗ : π∗(Σ
20tmf)

∼=−→ π∗I(tmf/(2∞, B∞, M∞))

= Hom(π−∗(tmf/(2∞, B∞, M∞)), Q/Z)

is adjoint to a perfect pairing

〈−,−〉 : π∗(Σ
20tmf) × π−∗(tmf/(2∞, B∞, M∞)) −→ Q/Z

with 〈x, y〉 = a∗(x)(y), such that

〈r · x, y〉 = (−1)|r||x|〈x, r · y〉

for r ∈ π∗(tmf), x ∈ π∗(Σ20tmf) and y ∈ π∗(tmf/(2∞, B∞, M∞)) with |r| + |x| +
|y| = 0.

Proof. The formula 〈r · x, y〉 = (−1)|r||x|〈x, r · y〉 follows by adjunction from
a∗(r · x) = r · a∗(x), where (r · a∗(x))(y) = (−1)|r||x|a∗(x)(r · y). !

Remark 10.9. A similar argument proves that Σ4ko - I(ko/(2∞, B∞)), using
ko ∧ Cη - ku and Σ2ku - I(ku/(2∞, v∞1 )). The smash product of the perfect
pairings

Σ4ko ∧ ko/(2∞, B∞) −→ I

and

DCη ∧ Cη −→ S

gives the perfect pairing

Σ2ku ∧ ku/(2∞, v∞1 ) −→ I .

The π∗(ko)-module isomorphism

π∗(Σ
4ko)

∼=−→ π∗I(ko/(2∞, B∞)) = Hom(π−∗(ko/(2∞, B∞)), Q/Z)

is adjoint to a perfect pairing

〈−.−〉 : π∗(Σ
4ko) × π−∗(ko/(2∞, B∞)) −→ Q/Z .

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



10.4. ANDERSON DUALITY 385

10.4. Anderson duality

The natural double duality map ρ : X → I(I(X)) is an equivalence when-
ever each group πn(X) is finite. There is a modification IZ(X) of the Brown–
Comenetz dual, known as the Anderson dual [180], such that the natural map
ρ : X → IZ(IZ(X)) is an equivalence whenever each group πn(X) is finitely gener-
ated. The modification is defined by the homotopy fiber sequence

IZ(X) −→ IQ(X) −→ IQ/Z(X) ,

where IQ/Z(X) = I(X) is the Brown–Comenetz dual of X and IQ(X) = F (X, HQ).
Here HQ represents ordinary rational cohomology

X 2−→ Hn(X; Q) ∼= Hom(πn(X), Q) .

The associated long exact sequence of homotopy groups breaks up into short exact
sequences

(10.3) 0 → Ext(πn−1(X), Z) −→ π−nIZ(X) −→ Hom(πn(X), Z) → 0 .

Lemma 10.10. For each prime p, there is a natural chain of equivalences

I(X/p∞) - IZ(X)∧p .

Proof. Applying the contravariant duality functors to the homotopy cofiber

sequence X
pn

−→ X −→ X/pn we obtain a commutative diagram of horizontal and
vertical homotopy (co-)fiber sequences

IZ(X/pn) !!

""

IZ(X)
pn

!!

""

IZ(X)

""

IQ(X/pn) !!

""

IQ(X)
pn

!!

""

IQ(X)

""

I(X/pn) !! I(X)
pn

!! I(X) .

Here IQ(X/pn) - ∗, so

I(X/p∞) - I(hocolim
n

X/pn) - holim
n

I(X/pn)

- holim
n

ΣIZ(X/pn) - holim
n

IZ(X)/pn - IZ(X)∧p .

!
Using local cohomology spectra and/or Anderson duality, we can reformulate

the duality equivalence of Theorem 10.6 in various ways.

Definition 10.11. For brevity, let tmf ′ = tmf/(B∞, M∞), so that tmf ′ -
Σ2Γ(B,M)tmf .

Proposition 10.12. There are equivalences of (implicitly 2-completed) tmf -
modules

Σ20tmf - IZ(tmf/(B∞, M∞)) = IZ(tmf ′)

Σ22tmf - IZ(Γ(B,M)tmf)

Σ23tmf - I(Γ(2,B,M)tmf) .
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Proof. This follows directly from the tmf -module equivalences

I(tmf ′/2∞) - IZ(tmf ′)∧2

tmf ′ = tmf/(B∞, M∞) - Σ2Γ(B,M)tmf

tmf/(2∞, B∞, M∞) - Σ3Γ(2,B,M)tmf .

!

The topological modular forms spectrum tmf is defined as the connective cover
of an E∞ ring spectrum Tmf , which can be constructed using Goerss–Hopkins–
Miller obstruction theory [62], [54, Ch. 12], or Lurie’s spectral orientation and
deformation theories for p-divisible groups and formal groups [96, §4], [97] and [98].
In either case Tmf is defined as the global sections in a sheaf of E∞ ring spectra
over a compactified moduli stack Mell of generalized elliptic curves. This moduli
stack is covered by the two open substacks of ordinary generalized elliptic curves
(where c4 and B are invertible), and of non-generalized elliptic curves (where ∆
and M are invertible). It follows that there is a homotopy pullback square

Tmf !!

""

Tmf [1/B]

""

Tmf [1/M ] !! Tmf [1/B, 1/M ] .

Since the covering map i : tmf → Tmf induces equivalences after inverting B, M or
both, it also follows that we have a homotopy (co-)fiber sequence of tmf -modules

Σ−2tmf/(B∞, M∞) −→ tmf
i−→ Tmf −→ Σ−1tmf/(B∞, M∞) ,

which we can write in terms of local cohomology spectra as

Γ(B,M)tmf −→ tmf
i−→ Tmf −→ ΣΓ(B,M)tmf .

Using the duality equivalence, we can rewrite this as

(10.4) Σ−22IZ(tmf)
∂−→ tmf

i−→ Tmf
j−→ Σ−21IZ(tmf) .

Vesna Stojanoska [161, Thm. 13.1] showed that Tmf is Anderson self-dual in the
sense that there is an equivalence Σ21Tmf - IZ(Tmf). More precisely, the cited
reference shows this as an equivalence after inverting p = 2, while the corresponding
2-local calculations have not been fully published. In [67, Prop. 4.1], Greenlees
and Stojanoska show how to deduce integral Anderson self-duality for Tmf from
Gorenstein duality for tmf → HZ, and later work [43] by Greenlees and the current
two authors establishes this Gorenstein duality property, also at p = 2. Using our
present notation, the 2-complete part of Stojanoska’s theorem can be demonstrated
as follows. The argument is essentially that of [67].

Theorem 10.13. There is a duality equivalence of (implicitly 2-completed) tmf -
modules

Σ21Tmf - IZ(Tmf) .

Proof. Applying Σ−21IZ to (10.4) we obtain a homotopy (co-)fiber sequence
of tmf -modules

Σ−22IZ(tmf)
δ−→ tmf −→ Σ−21IZ(Tmf) −→ Σ−21IZ(tmf)
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where δ = Σ−22IZ(∂). It suffices to prove that δ is homotopic to ∂, up to sign, since
then Tmf - C∂ - Cδ - Σ−21IZ(Tmf). The homotopy classes of ∂ and δ lie in the
abelian group

G = [Σ−22IZ(tmf), tmf ]tmf
0 = π0Ftmf (Σ−22IZ(tmf), tmf)

and the functor Σ−22IZ induces an involution on G, interchanging ∂ and δ. For
any tmf -module X there are equivalences

Ftmf (Σ−22IZ(tmf), X) - Ftmf (Γ(B,M)tmf, X)

- Ftmf (hocolim
k,4

Σ−8k−1924−2tmf/(Bk, M 4), X)

- holim
k,4

Ftmf (Σ−8k−1924−2tmf/(Bk, M 4), X)

- holim
k,4

X/(Bk, M 4) = X∧
(B,M) .

Here the final homotopy limit defines the (B, M)-completion of X. For X = tmf ,
the completion map X → holimk,4 X/(Bk, M 4) = X∧

(B,M) is an equivalence, since
tmf is bounded below and both B and M have positive degree. Hence G =
π0Ftmf (Σ−22IZ(tmf), tmf) ∼= π0(tmf∧

(B,M))
∼= π0(tmf) ∼= Z (up to implicit 2-

completion), and the only possible involutions on G are given by multiplication
by 1 or −1. This proves that δ - ±∂. !

10.5. Explicit formulas

We now turn the spectrum level duality equivalence from Theorem 10.6 into a
series of algebraic duality statement about π∗(tmf), or more precisely, about the
subquotients of a filtration

0 ⊂ Θπ∗(tmf) ⊂ ΓBπ∗(tmf) ⊂ Γ2π∗(tmf) ⊂ π∗(tmf) .

We will use the following variant of (10.3).

Lemma 10.14. For any R-module spectrum M there is a natural short exact
sequence of π∗(R)-modules

0 → Hom(Γ2π∗−1(M), Q/Z) −→ π−∗I(M/2∞) −→ Hom(π∗(M), Z2) → 0 .

Proof. The short exact sequence

0 → π∗(M)/2∞ −→ π∗(M/2∞) −→ Γ2π∗−1(M) → 0

is Pontryagin dual to a short exact sequence of π∗(R)-modules

0 → Hom(Γ2π∗−1(M), Q/Z)

−→ Hom(π∗(M/2∞), Q/Z) −→ Hom(π∗(M)/2∞, Q/Z) → 0 .

Here Hom(π∗(M/2∞), Q/Z) = π−∗I(M/2∞), by definition, and there is a natural
chain of isomorphisms

Hom(π∗(M)/2∞, Q/Z) = Hom(colim
n

π∗(M)/2n, Q/Z)

∼= lim
n

Hom(π∗(M)/2n, Q/Z) ∼= lim
n

Hom(π∗(M), Z/2n) = Hom(π∗(M), Z2) .

!
Recall our notation tmf ′ = tmf/(B∞, M∞).
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Theorem 10.15. There are short exact sequences of π∗(tmf)-modules

0 → π∗(tmf)/(B∞, M∞) −→ π∗(tmf ′) −→ ΓBπ∗−1(tmf)/M∞ → 0

and

0 → Hom(Γ2π∗−1(tmf ′), Q/Z) −→ π−∗(Σ
20tmf) −→ Hom(π∗(tmf ′), Z2) → 0 .

Proof. The first exact sequence follows from (10.1), since π∗(tmf) ∼= N∗ ⊗
Z[M ] implies ΓBπ∗(tmf/M∞) ∼= ΓBN∗ ⊗ Z[M ]/M∞.

The second exact sequence follows from the duality theorem, in the formulation
Σ20tmf - I(tmf ′/2∞), and Lemma 10.14. !

Recall the Z[B, M ]-module identification π∗(tmf) ∼= N∗ ⊗ Z[M ]. As we saw in
Theorem 9.26, the B-torsion free image of N∗ in N∗[1/B] is the direct sum

N∗/ΓBN∗ =
7⊕

k=0

ko[k]

of the following eight Z[B]-modules, with ko[k] concentrated in degrees ∗ ≥ 24k:

(10.5)

ko[0] = Z[B]{1, C} ⊕ Z/2[B]{η, η2}
ko[1] = Z{D1} ⊕ Z[B]{B1, C1} ⊕ Z/2[B]{η1, ηη1}
ko[2] = Z{D2} ⊕ Z[B]{B2, C2} ⊕ Z/2[B]{ηB2, η

2
1}

ko[3] = Z{D3} ⊕ Z[B]{B3, C3} ⊕ Z/2[B]{ηB3, η
2B3}

ko[4] = Z{D4} ⊕ Z[B]{B4, C4} ⊕ Z/2[B]{η4, ηη4}
ko[5] = Z{D5} ⊕ Z[B]{B5, C5} ⊕ Z/2[B]{ηB5, η1η4}
ko[6] = Z{D6} ⊕ Z[B]{B6, C6} ⊕ Z/2[B]{ηB6, η

2B6}
ko[7] = Z{D7} ⊕ Z[B]{B7, C7} ⊕ Z/2[B]{ηB7, η

2B7} .

The Z[B]-module structures are specified by B · Dk = dkBk for each 1 ≤ k ≤
7, where the numbers dk ∈ {2, 4, 8} are as in Definition 9.18. In each case,
ko[k][1/B] ∼= π∗(KO). It follows that

N∗/B∞ =
7⊕

k=0

ko[k]/B∞

is the direct sum of the following eight Z[B]-modules, with ko[k]/B∞ concentrated
in degrees ∗ ≤ 4 + 24k:

ko[0]/B∞ = Z[B−1]{1/B, C/B} ⊕ Z/2[B−1]{η/B, η2/B}
ko[1]/B∞ = Z[B−1]{B1/B, C1/B}/(8B1/B) ⊕ Z/2[B−1]{η1/B, ηη1/B}
ko[2]/B∞ = Z[B−1]{B2/B, C2/B}/(4B2/B) ⊕ Z/2[B−1]{ηB2/B, η2

1/B}
ko[3]/B∞ = Z[B−1]{B3/B, C3/B}/(8B3/B) ⊕ Z/2[B−1]{ηB3/B, η2B3/B}
ko[4]/B∞ = Z[B−1]{B4/B, C4/B}/(2B4/B) ⊕ Z/2[B−1]{η4/B, ηη4/B}
ko[5]/B∞ = Z[B−1]{B5/B, C5/B}/(8B5/B) ⊕ Z/2[B−1]{ηB5/B, η1η4/B}
ko[6]/B∞ = Z[B−1]{B6/B, C6/B}/(4B6/B) ⊕ Z/2[B−1]{ηB6/B, η2B6/B}
ko[7]/B∞ = Z[B−1]{B7/B, C7/B}/(8B7/B) ⊕ Z/2[B−1]{ηB7/B, η2B7/B} .
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The following lemma specifies a Z[B]-module extension N ′
∗, uniquely up to

isomorphism. It will play an important role in the following calculations. The
notation N ′

∗ is chosen to parallel that of tmf ′.

Lemma 10.16. The restriction of the π∗(tmf)-module extension

0 → π∗(tmf)/B∞ −→ π∗(tmf/B∞) −→ ΓBπ∗−1(tmf) → 0

to a Z[B, M ]-module extension is induced up from a unique Z[B]-module extension

0 → N∗/B∞ −→ N ′
∗ −→ ΓBN∗−1 → 0 .

Hence π∗(tmf/B∞) = N ′
∗ ⊗ Z[M ] and π∗(tmf ′) = N ′

∗ ⊗ Z[M ]/M∞ as Z[B, M ]-
modules.

Proof. We claim that the induction homomorphism

Ext1Z[B](ΓBN∗−1, N∗/B∞) −→ Ext1Z[B,M ](ΓBN∗−1 ⊗ Z[M ], N∗/B∞ ⊗ Z[M ])

∼= Ext1Z[B](ΓBN∗−1, N∗/B∞ ⊗ Z[M ])

is bijective. This follows from the observation that

Exts
Z[B](ΓBN∗−1, N∗/B∞ ⊗ (Z[M ]/Z)) = 0

for s ∈ {0, 1}, since ΓBN∗−1 is concentrated in degrees ∗ ≤ 165, and N∗/B∞ ⊗
(Z[M ]/Z) agrees with N∗[1/B]⊗ (Z[M ]/Z) in degrees ∗ < 192. In more detail, the
groups

Exts
Z[B](ΓBN∗−1, N∗[1/B] ⊗ (Z[M ]/Z))

vanish because B acts nilpotently on ΓBN∗−1 and invertibly on N∗[1/B]. The
groups

Exts+1
Z[B](ΓBN∗−1, N∗/ΓBN∗ ⊗ (Z[M ]/Z))

vanish because ΓBN∗−1 admits a projective Z[B]-module resolution with generators
in degrees ∗ ≤ 173, and N∗/ΓBN∗ ⊗ (Z[M ]/Z) is concentrated in degrees ∗ ≥
192. !

Lemma 10.17. π∗(tmf ′) is bounded above and of finite type.

Proof. It is clear from the formulas for the ko[k]/B∞ that N ′
∗ is of finite type

and bounded above, hence so is its tensor product with Z[M ]/M∞. !

We can now define the Pontryagin self-dual part of ΓBπ∗(tmf) ⊂ π∗(tmf).

Definition 10.18. Let the π∗(tmf)-module Θπ∗−1(tmf) be the image of the
composite homomorphism

Γ2π∗(tmf/B∞) −→ π∗(tmf/B∞) −→ ΓBπ∗−1(tmf)

and let the Z[B]-module ΘN∗−1 be the image of the composite homomorphism

Γ2N
′
∗ −→ N ′

∗ −→ ΓBN∗−1 .

There is an isomorphism

Θπ∗(tmf) ∼= ΘN∗ ⊗ Z[M ]

of Z[B, M ]-modules. When we later use the notation Θπ−∗(Σ20tmf), we mean the
same as Θπ−∗−20(tmf).
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Lemma 10.19. There is a filtration of π∗(tmf)-modules (= ideals)

0 ⊂ Θπ∗(tmf) ⊂ ΓBπ∗(tmf) ⊂ Γ2π∗(tmf) ⊂ π∗(tmf) .

When restricted to a filtration of Z[B, M ]-modules, it is induced up from the filtra-
tion

0 ⊂ ΘN∗ ⊂ ΓBN∗ ⊂ Γ2N∗ ⊂ N∗

of Z[B]-modules. Here

Γ2N∗

ΓBN∗
=

7⊕

k=0

Γ2ko[k]

and
N∗

Γ2N∗
=

7⊕

k=0

ko[k]

Γ2ko[k]
.

Proof. This is clear with the definitions above. Precise formulas for the
Γ2ko[k] and ko[k]/Γ2ko[k] can be read off from the formulas (10.5) for ko[k]. !

Lemma 10.20. There is a filtration of π∗(tmf)-modules

0 ⊂ (Γ2π∗(tmf))/B∞ ⊂ Γ2(π∗(tmf)/B∞) ⊂ Γ2π∗(tmf/B∞) ⊂ π∗(tmf/B∞) .

When viewed as a filtration of Z[B, M ]-modules, it is induced up from the filtration

0 ⊂ (Γ2N∗)/B∞ ⊂ Γ2(N∗/B∞) ⊂ Γ2N
′
∗ ⊂ N ′

∗

of Z[B]-modules. Here

(Γ2N∗)/B∞ ∼=
7⊕

k=0

(Γ2ko[k])/B∞ ,

Γ2(N∗/B∞)

(Γ2N∗)/B∞
∼=

7⊕

k=1

〈Bk/B〉

with 〈Bk/B〉 cyclic of order dk,

Γ2N ′
∗

Γ2(N∗/B∞)
∼= ΘN∗−1

and there is a short exact sequence

0 →
7⊕

k=0

ko[k]/B∞

Γ2(ko[k]/B∞)
−→ N ′

∗
Γ2N ′

∗
−→ ΓBN∗−1

ΘN∗−1
→ 0

of Z[B]-modules.

Proof. Formulas for

(Γ2N∗)/B∞ ∼= (Γ2N∗/ΓBN∗)/B∞ =
7⊕

k=0

(Γ2ko[k])/B∞

and

Γ2(N∗/B∞) =
7⊕

k=0

Γ2(ko[k]/B∞)

can be read off from the formulas for ko[k] and ko[k]/B∞, respectively. This gives
the stated seven-term sum for Γ2(N∗/B∞) modulo (Γ2N∗)/B∞.
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By the definition of ΘN∗−1, we have a 3 × 3 diagram of short exact sequences

0

""

0

""

0

""

0 !! Γ2(N∗/B∞) !!

""

Γ2N ′
∗

!!

""

ΘN∗−1
!!

""

0

0 !! N∗/B∞ !!

""

N ′
∗

!!

""

ΓBN∗−1
!!

""

0

0 !!
N∗/B∞

Γ2(N∗/B∞)
!!

""

N ′
∗

Γ2N ′
∗

!!

""

ΓBN∗−1

ΘN∗−1

!!

""

0

0 0 0

and the remaining claims follow by inspection. !
Corollary 10.21. The π∗(tmf)-module filtration

0 ⊂ (Γ2π∗(tmf))/(B∞, M∞) ⊂ Γ2(π∗(tmf)/(B∞, M∞))

⊂ Γ2π∗(tmf ′) ⊂ π∗(tmf ′)

is isomorphic to

0 ⊂ (Γ2N∗)/B∞ ⊗ Z[M ]/M∞ ⊂ Γ2(N∗/B∞) ⊗ Z[M ]/M∞

⊂ Γ2N
′
∗ ⊗ Z[M ]/M∞ ⊂ N ′

∗ ⊗ Z[M ]/M∞

when viewed as a filtration of Z[B, M ]-modules. !
Theorem 10.22. The duality isomorphism

a∗ : π−∗(Σ
20tmf) ∼= Hom(π∗(tmf ′/2∞), Q/Z)

of Theorem 10.6 specializes to isomorphisms of π∗(tmf)-modules

Γ2a∗ : Γ2π−∗(Σ
20tmf) ∼= Hom(Γ2π∗−1(tmf ′), Q/Z)

and
π−∗(Σ20tmf)

Γ2π−∗(Σ20tmf)
∼= Hom(π∗(tmf ′), Z2) .

Hence there are isomorphisms

Γ2N171−∗ ∼= Hom(Γ2N
′
∗, Q/Z)

N172−∗
Γ2N172−∗

∼= Hom(N ′
∗, Z2)

and a short exact sequence

0 → N172−∗
Γ2N172−∗

−→ Hom(N∗/B∞, Z2) −→ Hom
(ΓBN∗−1

ΘN∗−1
, Q/Z

)
→ 0 ,

all in the category of Z[B]-modules.

Proof. By Lemma 10.17, Γ2π∗−1(tmf ′) is finite in each degree, so the second
short exact sequence in Theorem 10.15 specializes to a π∗(tmf)-isomorphism Γ2a∗
between Hom(Γ2π∗−1(tmf ′), Q/Z) and the 2-power torsion in π−∗(Σ20tmf), as well
as a π∗(tmf)-isomorphism between the 2-torsion free quotient of π−∗(Σ20tmf) and
Hom(π∗(tmf ′), Z2).
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The first π∗(tmf)-isomorphism restricts to a Z[B, M ]-module isomorphism

Γ2N−∗−20 ⊗ Z[M ] ∼= Hom(Γ2N
′
∗−1 ⊗ Z[M ]/M∞, Q/Z)

which is induced up from a Z[B]-module isomorphism

Γ2N−∗−20
∼= Hom(Γ2N

′
∗−1 ⊗ Z{1/M}, Q/Z) .

Here Γ2N ′
∗−1 ⊗ Z{1/M} in total degree ∗ − 1 is isomorphic to Γ2N ′

∗+191, via mul-
tiplication by M , so the first asserted isomorphism follows after reindexing.

The second π∗(tmf)-isomorphism restricts to a Z[B, M ]-module isomorphism

N−∗−20

Γ2N−∗−20
⊗ Z[M ] ∼= Hom(N ′

∗ ⊗ Z[M ]/M∞, Z2)

which is induced up from a Z[B]-isomorphism

N−∗−20

Γ2N−∗−20

∼= Hom(N ′
∗ ⊗ Z{1/M}, Z2) .

Here N ′
∗⊗Z{1/M} in total degree ∗ is isomorphic to N ′

∗+192, so the second asserted
isomorphism also follows after reindexing.

The short exact sequence

0 → N∗/B∞

Γ2(N∗/B∞)
−→ N ′

∗
Γ2N ′

∗
−→ ΓBN∗−1

ΘN∗−1
→ 0

of Lemma 10.20, combined with the facts that N ′
∗/Γ2N ′

∗ is free in each degree and
ΓBN∗−1/ΘN∗−1 is finite in each degree, leads to a short exact sequence

0 → Hom
( N ′

∗
Γ2N ′

∗
, Z2

)
−→ Hom

( N∗/B∞

Γ2(N∗/B∞)
, Z2

)
−→ Hom

(ΓBN∗−1

ΘN∗−1
, Q/Z

)
→ 0 .

Substituting

Hom
( N ′

∗
Γ2N ′

∗
, Z2

)
= Hom(N ′

∗, Z2)

and

Hom
( N∗/B∞

Γ2(N∗/B∞)
, Z2

)
= Hom(N∗/B∞, Z2)

yields the required short exact sequence. !

Definition 10.23. For 0 ≤ k ≤ 6 let 〈νk〉 ⊂ ΓBN∗ ⊂ ΓBπ∗(tmf) denote
the finite abelian group generated by the class νk in degree 3 + 24k, subject to the
interpretations ν0 = ν and ν3 = η3

1 . Note that 〈νk〉 is cyclic of order d7−k ∈ {2, 4, 8}.

Proposition 10.24. The π∗(tmf)-submodule Θπ∗(tmf) of ΓBπ∗(tmf) consists
precisely of the classes in degrees ∗ 0≡ 3 mod 24. Likewise, the Z[B]-submodule
ΘN∗ of ΓBN∗ consists precisely of the classes in degrees ∗ 0≡ 3 mod 24. Hence

ΓBπ∗(tmf)

Θπ∗(tmf)
∼=

6⊕

k=0

〈νk〉 ⊗ Z[M ]

as Z[B, M ]-modules and

ΓBN∗
ΘN∗

∼=
6⊕

k=0

〈νk〉

as Z[B]-modules (with trivial B-action).
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Proof. For the moment we only prove that Θπ∗(tmf) ∼= ΘN∗⊗Z[M ] is trivial
in degrees ∗ ≡ 3 mod 24. By inspection of E∞(tmf) (or π∗(tmf)), it is clear that
π∗(tmf) = 0 for ∗ ≡ −1 mod 24. Hence Γ2N∗ = N∗ = 0 for ∗ ≡ −1 mod 24. By
Theorem 10.22 it follows that Γ2N ′

∗ = 0 for ∗ ≡ 4 mod 24. Thus the image ΘN∗−1

of this group in ΓBN∗−1 is also trivial, for each ∗ − 1 ≡ 3 mod 24.
The proof that all classes in degrees ∗ 0≡ 3 mod 24 lie in Θπ∗(tmf) will be

completed by a counting argument, in the course of the proof of Theorem 10.25. !

Theorem 10.25. The 2-power torsion isomorphism

Γ2a∗ : Γ2π−∗(Σ
20tmf) ∼= Hom(Γ2π∗−1(tmf ′), Q/Z)

of Theorem 10.22 specializes to isomorphisms

Θa∗ : Θπ−∗(Σ
20tmf) ∼= Hom(Θπ∗−2(tmf)/M∞, Q/Z)

ΓBπ−∗(Σ20tmf)

Θπ−∗(Σ20tmf)
∼= Hom

(Γ2(π∗−1(tmf)/(B∞, M∞))

(Γ2π∗−1(tmf))/(B∞, M∞)
, Q/Z

)

Γ2π−∗(Σ20tmf)

ΓBπ−∗(Σ20tmf)
∼= Hom((Γ2π∗−1(tmf))/(B∞, M∞), Q/Z)

of π∗(tmf)-modules. Hence there are isomorphisms

ΘN170−∗ ∼= Hom(ΘN∗, Q/Z)

ΓBN171−∗
ΘN171−∗

∼= Hom
(Γ2(N∗/B∞)

(Γ2N∗)/B∞ , Q/Z
)

Γ2N171−∗

ΓBN171−∗
∼= Hom((Γ2N∗)/B∞, Q/Z)

of Z[B]-modules.

Proof. The 2-power torsion isomorphism specializes to an isomorphism

ΓBa∗ : ΓBπ−∗(Σ
20tmf) ∼= ΓB Hom(Γ2π∗−1(tmf ′), Q/Z)

between the B-power torsion submodules, and an isomorphism

Γ2π−∗(Σ20tmf)

ΓBπ−∗(Σ20tmf)
∼=

Hom(Γ2π∗−1(tmf ′), Q/Z)

ΓB Hom(Γ2π∗−1(tmf ′), Q/Z)

between the B-torsion free quotients. We now make the right hand sides more
explicit.

The Pontryagin dual of the 2-power torsion part of the filtration in Corol-
lary 10.21 is a sequence of surjective π∗(tmf)-module homomorphisms

Hom(Γ2π∗(tmf ′), Q/Z)

−→ Hom(Γ2(π∗(tmf)/(B∞, M∞)), Q/Z)

−→ Hom((Γ2π∗(tmf))/(B∞, M∞), Q/Z) → 0 .

As a sequence of Z[B, M ]-modules, it is isomorphic to

Hom(Γ2N
′
∗ ⊗ Z[M ]/M∞, Q/Z)

−→ Hom(Γ2(N∗/B∞) ⊗ Z[M ]/M∞, Q/Z)

−→ Hom((Γ2N∗)/B∞ ⊗ Z[M ]/M∞, Q/Z) → 0 .
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In view of Lemma 10.20 and Corollary 10.21 the kernel of the first surjection is

K1
∗ = Hom

( Γ2π∗(tmf ′)

Γ2(π∗(tmf)/(B∞, M∞))
, Q/Z

)

∼= Hom(Θπ∗−1(tmf)/M∞, Q/Z)
∼= Hom(ΘN∗−1 ⊗ Z[M ]/M∞, Q/Z) ,

the kernel of the second surjection is

K2
∗ = Hom

(Γ2(π∗(tmf)/(B∞, M∞))

(Γ2π∗(tmf))/(B∞, M∞)
, Q/Z

)

∼= Hom(
7⊕

k=1

〈Bk/B〉 ⊗ Z[M ]/M∞, Q/Z) ,

and both of these are B-power torsion. The kernel K∗ of the composite surjection
thus sits in a short exact sequence

0 → K1
∗ −→ K∗ −→ K2

∗ → 0

and is B-power torsion. On the other hand,

Hom((Γ2N∗)/B∞ ⊗ Z[M ]/M∞, Q/Z)

∼= Hom(
7⊕

k=0

(Γ2ko[k])/B∞ ⊗ Z[M ]/M∞, Q/Z)

is B-torsion free. Hence Hom((Γ2π∗(tmf))/(B∞, M∞), Q/Z) is the B-torsion free
quotient of Hom(Γ2π∗(tmf ′), Q/Z). The isomorphism

Γ2π−∗(Σ20tmf)

ΓBπ−∗(Σ20tmf)
∼= Hom((Γ2π∗−1(tmf))/(B∞, M∞), Q/Z)

is thus the specialization of the 2-power torsion isomorphism to the B-torsion free
quotients.

The specialization of Γ2a∗ to the B-power torsion submodules takes the form

ΓBa∗ : ΓBπ−∗(Σ
20tmf) ∼= K∗−1 ,

so that there is a short exact sequence

0 → K1
∗−1 −→ ΓBπ−∗(Σ

20tmf) −→ K2
∗−1 → 0

of π∗(tmf)-modules. Viewed as Z[B, M ]-modules, it can be rewritten as

0 → Hom(ΘN∗−2 ⊗ Z[M ]/M∞, Q/Z) −→ ΓBN−∗−20 ⊗ Z[M ]

−→ Hom(
7⊕

k=1

〈Bk/B〉∗−1 ⊗ Z[M ]/M∞, Q/Z) → 0 ,

hence is induced up, after regrading by 192− 2 = 190, from a short exact sequence

0 → Hom(ΘN∗, Q/Z) −→ ΓBN170−∗ −→ Hom(
7⊕

k=1

〈Bk/B〉∗+1, Q/Z) → 0

of Z[B]-modules.
We now complete the proof of Proposition 10.24. The total order of the graded

finite abelian group ΘN∗ is equal to the total order of Hom(ΘN∗, Q/Z), and the
total order of ΓBN∗ is equal to the total order of ΓBN170−∗. Hence the total order
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of ΓBN∗/ΘN∗ is equal to the total order of Hom(
⊕7

k=1〈Bk/B〉∗+1, Q/Z), which

is 8 · 4 · 8 · 2 · 8 · 4 · 8 = 217. Since this is equal to the total order of
⊕6

k=0〈νk〉,
it follows that ΘN∗ cannot be strictly smaller than the kernel of the surjection
ΓBN∗ →

⊕6
k=0〈νk〉. Hence ΘN∗ consists of all the classes in ΓBN∗ in degrees ∗ 0≡ 3

mod 24. Inducing up along Z[B] ⊂ Z[B, M ] it follows that Θπ∗(tmf) consists of
all the classes in ΓBπ∗(tmf) in degrees ∗ 0≡ 3 mod 24. This concludes the delayed
part of the proof of Proposition 10.24.

The two remaining π∗(tmf)-module isomorphisms are obtained by specializing
the B-power torsion isomorphism ΓBa∗ to degrees −∗−20 0≡ 3 mod 24 and degrees
− ∗−20 ≡ 3 mod 24, respectively. Since K1

∗−1 is concentrated in the degrees with
∗ 0≡ 1 mod 24, and K2

∗−1 is concentrated in the degrees with ∗ ≡ 1 mod 24, it
follows that

Θπ−∗(Σ
20tmf) ∼= K1

∗−1

and
ΓBπ−∗(Σ20tmf)

Θπ−∗(Σ20tmf)
∼= K2

∗−1 .

When combined with the previous expressions for K1
∗ and K2

∗ , this completes the
proof of the three π∗(tmf)-module isomorphisms. The three Z[B]-module isomor-
phisms follow easily from this. !

To emphasize how the previous results exhibit the spectrum level duality in al-
gebraic terms, we formulate the following summary of the discussion of this section.

Theorem 10.26. (1) The graded ring π∗(tmf) of topological modular forms is
filtered by a sequence of ideals

0 ⊂ Θπ∗(tmf) ⊂ ΓBπ∗(tmf) ⊂ Γ2π∗(tmf) ⊂ π∗(tmf) ,

where Θπ∗(tmf) is the image of the composite homomorphism

Γ2π∗+1(tmf/B∞) −→ π∗+1(tmf/B∞) −→ ΓBπ∗(tmf) .

It consists precisely of the B-power torsion in π∗(tmf) in degrees ∗ 0≡ 3 mod 24.
(2) As a sequence of Z[B, M ]-modules, the filtration is induced up from the

sequence of Z[B]-modules

0 ⊂ ΘN∗ ⊂ ΓBN∗ ⊂ Γ2N∗ ⊂ N∗

where N∗ ⊂ π∗(tmf) is the Z[B]-submodule generated by the classes in degrees
0 ≤ ∗ < 192. The B-power torsion in N∗ is concentrated in degrees 3 ≤ ∗ ≤ 164,
and is finite in each degree. The submodule ΘN∗ is the part of ΓBN∗ in degrees
∗ 0≡ 3 mod 24, and is concentrated in degrees 6 ≤ ∗ ≤ 164.

(3) The duality equivalence a : Σ20tmf - I(tmf/(2∞, B∞, M∞)) specializes to
a Pontryagin self-duality

Θa∗ : ΘN170−∗ ∼= Hom(ΘN∗, Q/Z) ,

illustrated in Figures 10.1 and 10.2.
(4) The remaining B-power torsion

ΓBN∗
ΘN∗

∼=
6⊕

k=0

〈νk〉
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is a direct sum of cyclic groups, with νk in degree 3 + 24k of order d7−k ∈ {2, 4, 8}.
The duality isomorphism specializes to an isomorphism

ΓBN171−∗
ΘN171−∗

∼= Hom
(Γ2(N∗/B∞)

(Γ2N∗)/B∞ , Q/Z
)

which is the direct sum of isomorphisms

Σ−171〈ν7−k〉 ∼= Hom(〈Bk/B〉, Q/Z)

for 1 ≤ k ≤ 7.
(5) The B-periodic 2-torsion is

Γ2N∗
ΓBN∗

∼=
7⊕

k=0

Γ2ko[k] = Z/2[B]{η, η2, η1, ηη1, ηB2, η
2
1 , ηB3, η

2B3,

η4, ηη4, ηB5, η1η4, ηB6, η
2B6, ηB7, η

2B7} .

The duality equivalence specializes to an isomorphism

Γ2N171−∗
ΓBN171−∗

∼= Hom(
( Γ2N∗
ΓBN∗

)
/B∞, Q/Z) ,

which is a direct sum of isomorphisms

Σ−171Γ2ko[7 − k] ∼= Hom((Γ2ko[k])/B∞, Q/Z)

for 0 ≤ k ≤ 7. Alternatively, writing Γ2N∗/ΓBN∗ = Z[B] ⊗ H∗ with H∗ =
Z/2{η, η2, η1, . . . , η2B6, ηB7, η2B7}, the duality equivalence specializes to a Pon-
tryagin self-duality

H179−∗ ∼= Hom(H∗, Q/Z) .

(6) The 2-torsion free quotient is

N∗
Γ2N∗

∼=
7⊕

k=0

ko[k]

Γ2ko[k]
∼= Z[B]{1, C} ⊕

7⊕

k=1

(
Z{Dk} ⊕ Z[B]{Bk, Ck}

)

where B · Dk = dkBk for each 1 ≤ k ≤ 7. The duality equivalence induces a short
exact sequence

0 → N172−∗

Γ2N172−∗
−→ Hom(

( N∗

Γ2N∗

)
/B∞, Z2) −→ Hom(

ΓBN∗−1

ΘN∗−1
, Q/Z) → 0

relating N∗/Γ2N∗ to its Z2-linear dual, with the Pontryagin dual of the remaining
B-power torsion from (4) entering as a correction term. It is the direct sum of an
isomorphism

Σ−172 ko[0]

Γ2ko[0]
∼= Hom(

( ko[7]

Γ2ko[7]

)
/B∞, Z2)

and short exact sequences

0 → Σ−172 ko[7 − k]

Γ2ko[7 − k]
−→ Hom(

( ko[k]

Γ2ko[k]

)
/B∞, Z2) −→ Hom(Σ〈νk〉, Q/Z) → 0

for 0 ≤ k ≤ 6.

Proof. (1) See Proposition 9.12, Definition 10.18 and Proposition 10.24.
(2) See Definition 10.4, Lemma 10.19, Table 9.4 and Proposition 10.24.
(3) See Theorem 10.25.
(4) See Definitions 9.18 and 9.22, and string together parts of Proposition 10.24,

Theorem 10.25 and Lemma 10.20.
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(5) See Equation (10.5), Lemma 10.19 and Theorem 10.25, keeping in mind
that (Γ2N∗)/B∞ = (Γ2N∗/ΓBN∗)/B∞.

(6) See Equation (10.5), Lemma 10.19 and Theorem 10.22, keeping in mind
that N∗/B∞ → (N∗/Γ2N∗)/B∞ induces an isomorphism under Hom(−, Z2). !

We note that ΘN∗ in the B-power torsion ΓBN∗ is Pontryagin 170-self dual,
the B-periodic 2-torsion Γ2N∗/ΓBN∗ is Pontryagin 171-dual to (Γ2N∗/ΓBN∗)/B∞,
and the 2-torsion free quotient N∗/Γ2N∗ is linearly 172-dual to (N∗/Γ2N∗)/B∞,
modulo a correction term arising from ΓBN∗/ΘN∗. John Greenlees has pointed out
how these three different degree shifts can be explained in terms of local cohomology
, which we work out in a joint paper [43].

Proposition 10.27. The specialized π∗(tmf)-module isomorphism

Θπ−∗(Σ
20tmf)

∼=−→ Hom(Θπ∗−2(tmf)/M∞, Q/Z)

is adjoint to a perfect pairing

〈−,−〉 : Θπ−∗(Σ
20tmf) ×Θπ∗−2(tmf)/M∞ −→ Q/Z

such that

〈r · x, y〉 = (−1)|r||x|〈x, r · y〉
for r ∈ π∗(tmf), x ∈ Θπ−∗(Σ20tmf) and y ∈ Θπ∗−2(tmf)/M∞ with |r|+ |x|+ |y| =
0. Similarly, the Z[B]-module isomorphism

ΘN170−∗
∼=−→ Hom(ΘN∗, Q/Z)

is adjoint to a perfect pairing

(−,−) : ΘN170−∗ ×ΘN∗ −→ Q/Z .

Under the isomorphisms Θπ∗(tmf) ∼= ΘN∗ ⊗ Z[M ] and Θπ∗(tmf)/M∞ ∼= ΘN∗ ⊗
Z[M ]/M∞, these pairings are related by

〈xM 4, y/M1+4〉 = (x, y)

for 5 ≥ 0 and |x| + |y| = 170.

Proof. Recall Lemma 10.8. The composite

Θπ−∗(Σ
20tmf) −→ π−∗(Σ

20tmf)
∼=−→ Hom(π∗(tmf ′/2∞, ), Q/Z)

maps the source isomorphically to the homomorphisms that factor through the
composite π∗(tmf)-module homomorphism

π∗(tmf ′/2∞) −→ Γ2π∗−1(tmf ′) −→ Θπ∗−2(tmf)/M∞ .

This leads to the specialized pairing 〈−,−〉. When restricted to Z[B, M ], it takes
the form

〈−,−〉 : ΘN−∗−20 ⊗ Z[M ] ×ΘN∗−2 ⊗ Z[M ]/M∞ −→ Q/Z

and satisfies

〈xM 4, y/M1+4〉 = 〈x, y/M〉
for all 5 ≥ 0. Here |x| + |y/M | = −22, so |x| + |y| = 170. It follows that (x, y) =
〈x, y/M〉 is the pairing adjoint to the given Z[B]-module isomorphism. !
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Remark 10.28. In the proof of Theorem 10.6 we made an arbitrary choice of
a 2-adic generator of π20I(tmf/(2∞, B∞, M∞)) ∼= Z2. Multiplying by any 2-adic
unit u gives another generator, and would multiply the duality equivalence a and
the associated pairings 〈−,−〉 and (−,−) by the same unit u. Hence we can only
expect to give well-defined expressions for the pairings (x, y) ∈ Q/Z when the values
are 0 or 1/2 mod 1.

Once a choice of a is fixed, it is possible to specify a choice of generator ν6 ∈
π147(tmf) ∼= Z/8 in terms of a choice of κ̄ ∈ π20(tmf), e.g., by demanding that
(κ̄, νν6) ≡ 1/8 mod 1 (as opposed to 3/8, 5/8 or 7/8). In view of our conventions
ν2ν4 = 3νν6 and νD4 = 2ν4 from Definition 9.22, this would reduce the combined
multiplicative indeterminacy in ν2 and ν4 by a factor of Z/8×.

Theorem 10.29. The values of the perfect pairing (−,−) : ΘN170−∗ ×ΘN∗ →
Q/Z on classes x, y ∈ ΘN∗ with |x| + |y| = 170 are given in Table 10.1.

Proof. Let n = |x|, so that |y| = 170 − n. When ΘNn = Z/2{x} and
ΘN170−n = Z/2{y}, the duality isomorphism implies that (x, y) = 1/2 mod 1.

For n = 20, ΘN20 = Z/8{κ̄} is perfectly paired to ΘN150 = Z/8{νν6}, so
(κ̄, νν6)

.
= 1/8 mod 1, up to an odd factor. Hence (κ̄, 4νν6) = (κ̄, η2

1 κ̄
5) = 1/2

mod 1 and (ν2κ, νν6) = (4κ̄, νν6) = 1/2 mod 1.
For n ∈ {40, 54, 60}, ΘNn = Z/4{x} is perfectly paired to ΘN170−n = Z/4{y},

for the appropriate x ∈ {κ̄2, νν2, κ̄3} and y ∈ {κ4κ̄, κ̄D4,κ4}, so (x, y) = ±1/4
mod 1 and (x, 2y) = (2x, y) = 1/2 mod 1.

The case n = 65 remains, with Klein four-groups ΘN65 = Z/2{ν2κ, η1κ̄2}
and ΘN105 = Z/2{ηε4, ν2ν4}. Using η- and ν-linearity, we deduce from the cases
n ∈ {66, 68} that

(ν2κ, ηε4) = (ην2κ, ε4) = 1/2 mod 1

(ν2κ, ν2ν4) = (νν2κ, νν4) = 1/2 mod 1

(η1κ̄
2, ηε4) = (ηη1κ̄

2, ε4) = 1/2 mod 1

(η1κ̄
2, ν2ν4) = (η1νκ̄

2, νν4) = 0 mod 1 .

It follows by bilinearity that (ν2κ, η1κ̄4) = 0 mod 1 and (η1κ̄2, η1κ̄4) = 1/2 mod 1,
since η1κ̄4 = ηε4 + ν2ν4. !

Remark 10.30. Heuristically, we have (x, y) = 1/2 mod 1 when x and y for-
mally multiply to

(ηνεκ)6 = (ν4κ)6 = (η3νκ̄)6 = (ε2κκ̄)5 = η2
1κ̄

6 = 2κ4κ̄
3 = κκ̄3D4

These identities follow formally from ηε = ν3, εκ = η2κ̄, ην1 = εκ̄, εε5κ = η2
1 κ̄

5,
η2
1κ̄

3 = 2κ4 and κD4 = 2κ4, but, of course, all of the displayed products actually
evaluate to zero in π170(tmf).

By analogy, π∗(ko) ∼= N1
∗ ⊗ Z[B] as a Z[B]-module, where N1

∗ = Z{1, A} ⊕
Z/2{η, η2}. The 2-power torsion Γ2N1

∗ = Z/2{η, η2} is Pontryagin self-dual, with
(η, η2) = (η2, η) = 1/2 mod 1, but the product η · η2 = η3 is zero in π3(ko).

Remark 10.31. We spell out how the Pontryagin self-duality of ΘN∗ arises
from Theorem 10.6. Let N = tmf/M be the homotopy cofiber of M : Σ192tmf →
tmf , so that the composite homomorphism N∗ ⊂ π∗(tmf) → π∗(N) is an isomor-
phism of Z[B]-modules. Substituting a : Σ20tmf - I(tmf/(2∞, B∞, M∞)) in the
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Table 10.1. Duality pairing in ΘN∗

n x y (x, y)

6 ν2 νν6κ 1/2

8 ε ην6κ 1/2

9 ηε ν6κ 1/2

14 κ ην6ε 1/2

15 ηκ ν6ε 1/2

17 νκ η1ε5 1/2

20 κ̄ η2
1 κ̄

5 1/2

20 2κ̄ κ4κ̄2 1/2

20 ν2κ νν6 1/2

20 2κ̄ νν6 ±1/4

20 κ̄ κ4κ̄2 ±1/4

20 κ̄ νν6 ?/8

21 ηκ̄ η2ν6 1/2

22 εκ ην6 1/2

28 ην1 ε5κ 1/2

32 ε1 ην5κ 1/2

33 ηε1 ν5κ 1/2

34 κκ̄ εε5 1/2

35 νε1 η1κ4 1/2

39 η1κ ν5ε 1/2

40 κ̄2 η2
1 κ̄

4 1/2

40 εε1 κ4κ̄ 1/2

40 κ̄2 κ4κ̄ ±1/4

n x y (x, y)

41 ν1κ ηε5 1/2

42 ην1κ ε5 1/2

45 η1κ̄ η1κ̄5 1/2

46 ε1κ ην5 1/2

52 ην2 εκ4 1/2

53 η2ν2 η4κ̄ 1/2

54 νν2 ν2κ4 1/2

54 κκ̄2 κ̄D4 1/2

54 νν2 κ̄D4 ±1/4

57 η1ε1 νκ4 1/2

59 ν2ε ηκ4 1/2

60 κ̄3 η2
1 κ̄

3 1/2

60 ην2ε κ4 1/2

60 κ̄3 κ4 ±1/4

65 ν2κ ηε4 1/2

65 ν2κ ν2ν4 1/2

65 η1κ̄2 ηε4 1/2

65 η1κ̄2 ν2ν4 0

66 ην2κ ε4 1/2

68 νν2κ νν4 1/2

70 η2
1 κ̄ κ̄5 1/2

80 κ̄4 η2
1 κ̄

2 1/2

85 η1κ̄3 η1κ̄3 1/2

homotopy cofiber sequence

Σ212tmf
M−→ Σ20tmf −→ Σ20N

and applying Brown–Comenetz duality, we obtain a homotopy cofiber sequence

I(Σ20N) −→ tmf/(2∞, B∞, M∞)
M−→ Σ−192tmf/(2∞, B∞, M∞) .

The homotopy fiber of the right hand map is Σ−192N/(2∞, B∞), so we get an
equivalence

Σ172I(N) - N/(2∞, B∞)

of tmf -modules. We can view each homomorphism φ : πk(N) → Q/Z as a homo-
topy class φ ∈ π−kI(N), and Σ172φ then corresponds under the equivalence above
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to a class ψ ∈ π172−k(N/(2∞, B∞)). Its image ∂2(ψ) under the two connecting
homomorphisms

π172−k(N/(2∞, B∞))
∂−→ π171−k(N/B∞)

∂−→ π170−k(N)

lies in ΘN170−k. Our analysis shows that ∂2(ψ) only depends on the restriction
of φ to a homomorphism φ| : ΘNk → Q/Z, and Theorem 10.26(3) asserts that the
correspondence φ| ↔ ∂2(ψ) defines an isomorphism

Hom(ΘNk, Q/Z) ∼= ΘN170−k .
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CHAPTER 11

The Adams spectral sequence for the sphere

Our study of π∗(tmf) relies on some initial information about π∗(S), which we
establish in this chapter. Since the literature on this subject is scattered through
many sources, and since those sources have in many cases been subject to later cor-
rections, we here attempt to give an account that is as succinct and comprehensive
as possible, in the range we need. This has the virtue of shortening and clarifying
many of the arguments, and makes our work reasonably self-contained. The three
results that we will need about the Adams spectral sequence for S are the following:
the product η2κ is zero, the product ηρ is detected by Pc0, and the product η2κ̄ is
detected by Pd0. The first two facts are established in case (16) of Theorem 11.61,
and the third is established in Theorem 11.71.

After completing the calculation of π∗(tmf), we are then able to use the unit
map S → tmf and its associated cofiber sequence to deduce further information
about π∗(S). In order to avoid splitting the statements about π∗(S) into two
disconnected sections, some parts of Theorems 11.52, 11.54, 11.56 and 11.59 are
marked (*). Logically, we first only prove the statements without this mark. These
suffice to give the necessary input for our calculations of the Adams spectral se-
quence and homotopy groups of tmf , given in Chapters 5 and 9. Thereafter we
return to S and use the results about tmf to prove the marked statements. We
have chosen to break with the logical order for this presentation in order to have
the results collected in one place, and to avoid repetition.

Our overall strategy in this chapter is thus as follows: The Adams spectral
sequence for S is a graded commutative algebra spectral sequence, with Steenrod
operations Sqi acting on its initial term E2(S) = ExtA(F2, F2). The differential
structure is therefore determined by the values of the dr-differentials on the algebra
indecomposables of the Er-term, for each r ≥ 2. The H∞ ring structure on S
implies a number of differentials on classes of the form Sqi(x). We summarize this
theory in Section 11.1, and collect results specific to S in Section 11.2. The proven
Adams conjecture, about the (d- and) e-invariant map e : S → j to the image-of-J
spectrum, implies multiple differentials in h0-towers leading up to the vanishing line
of slope 1/2 in the (t − s, s)-plane. We review this theory in Section 11.3, and are
thereafter ready to determine the sequence of (Er, dr)-terms for S, up to topological
degree t−s = 48, in Sections 11.4 through 11.7. The unit map ι : S → tmf and our
results on the Adams spectral sequence for tmf give simplified proofs of several dif-
ferentials above or near a line of slope 1/6. Some differentials below this line remain,
principally d3(h2h5) = h0p and d4(h3h5) = h0x, for which we follow [107] and [22],
comparing S with the finite CW spectra Cν and Cσ∪2σ e16, respectively. It is then
mostly elementary to deduce the structure of π∗(S) as a graded commutative ring
for ∗ ≤ 44, but the details grow more complex as the degree increases. Our results
are collected in the lengthy, but hopefully useful, Theorem 11.61. We give a purely

401
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stable proof in Section 11.9 of the key fact that η2κ̄ ∈ π22(S) is detected by the
nonzero class Pd0 ∈ E∞(S), and therefore equals the product εκ. In Theorem 11.89
we calculate the image of the tmf -Hurewicz homomorphism ι : π∗(S) → π∗(tmf) in
degrees ∗ ≤ 101 and for ∗ = 125, relying on results from [83] for degrees ∗ = 54, 65
and 70. The multiplicative structure also allows us to deduce, in Proposition 11.83,
that ι detects nonzero classes κ̄3{w}, κ̄{w}2, κ̄2{w}2 and κ̄3{w}2 ∈ π∗(S), in de-
grees ∗ = 105, 110, 130 and 150, respectively.

11.1. H∞ ring spectra

The principal spectra whose homotopy groups we are studying in this work,
such as the sphere spectrum S and the topological modular forms spectrum tmf , as
well as the real K-theory spectrum ko and the image-of-J spectrum j, are all E∞
ring spectra [121, Ch. IV]. The presence of an E∞ ring structure on a spectrum Y
gives rise to power operations acting on its homotopy groups π∗(Y ), subject to
suitable natural identities. There are also algebraic Steenrod operations acting
on the Adams E2-term for Y , and these will detect the power operations modulo
Adams filtration. However, not every Steenrod operation comes from a homotopy
operation, and not every element in E2(Y ) comes from a homotopy class. In order
to account for these two discrepancies, the Adams spectral sequence for any E∞
ring spectrum must contain certain universal differentials, for which we can give
explicit formulas. We have already seen these formulas in action in our analysis
of the Adams spectral sequence for tmf , in Chapter 5, and in the present chapter
we will apply the same method to the Adams spectral sequence for the sphere
spectrum. For the convenience of the reader, we here give a review of the main
results regarding these power operations and the associated Adams differentials.

11.1.1. Structured homotopy commutativity. In terms of the Lewis–May
category of spectra, an E∞ ring spectrum Y comes equipped with an action by an
E∞ operad O → L over the linear isometries operad [92, §VII.2]. Such an action
is given by suitably compatible spectrum maps

ξj : O(j) "Σj (Y ∧ · · · ∧ Y ) −→ Y

for all integers j ≥ 0, where Σj denotes the symmetric group on j letters, and
there are j copies of Y in the source of the map. In terms of the categories of
S-modules [58, §II.3 and §II.4] and orthogonal spectra [111, Ex. 4.4], [110, §1.1],
each E∞ ring spectrum can be realized up to equivalence as a commutative monoid
with respect to the symmetric monoidal smash product, i.e., as a commutative S-
algebra and a commutative orthogonal ring spectrum, respectively. For the purpose
of defining power operations in homotopy, as well as for the study of differentials in
the Adams spectral sequence for Y , only a weakened form of the E∞ ring structure
turns out to be needed. More precisely, we shall only make use of the structure
maps ξj in their relaxed incarnation as morphisms in the stable homotopy category.
This “up-to-homotopy” image of an E∞ ring structure is known as an H∞ ring
structure [45, §I.3], [92, §VII.2]. Taking the homotopy category of orthogonal
spectra, equipped with the stable model structure of [111, §9], as our model for the
stable homotopy category, we can write the j-th H∞ structure map as

ξj : EΣj+ ∧Σj (Y ∧ · · · ∧ Y ) −→ Y ,
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where now EΣj - O(j) is any free, contractible Σj-CW complex. If a product
φ : Y ∧ Y → Y makes Y a commutative orthogonal ring spectrum, then ξj can be
taken to be the composite EΣj+ ∧Σj (Y ∧ · · ·∧Y ) → (Y ∧ · · ·∧Y )/Σj → Y , where
the first map collapses EΣj to a point and the second map is induced by the j-fold
multiplication map φj : Y ∧ · · · ∧ Y → Y , keeping in mind the hypothesis that φ is
strictly commutative.

Definition 11.1. For any orthogonal spectrum X we call Dj(X) = EΣj+ ∧Σj

(X ∧ · · ·∧X) the j-th extended power of Y . When j = 2 we also refer to D2(X) =
EΣ2+ ∧Σ2 (X ∧ X) as the quadratic construction on X.

Suppose hereafter that Y is an H∞ ring spectrum. The underlying ring spec-
trum pairing is given by the composite

φ : Y ∧ Y −→ EΣ2+ ∧Σ2 (Y ∧ Y )
ξ2−→ Y ,

where the first map is induced by any choice of point in EΣ2. Since EΣ2 is path
connected, this pairing is homotopy commutative. Let H∗(Y ) = H(Y ; Fp) denote
mod p homology, for any prime p. It follows that the induced pairing

φ∗ : H∗(Y ) ⊗ H∗(Y ) ∼= H∗(Y ∧ Y ) −→ H∗(Y )

makes H∗(Y ) a commutative algebra in the category of A∗-comodules, where A∗
denotes the dual of the mod p Steenrod algebra A. Suppose also that π∗(Y ) is
bounded below with H∗(Y ) of finite type, so that

φ∗ : H∗(Y ) −→ H∗(Y ∧ Y ) ∼= H∗(Y ) ⊗ H∗(Y )

makes H∗(Y ) a cocommutative coalgebra in the category of A-modules. It was
shown by Liulevicius [95, Ch. 2], see also May [118, §11], that there are Steenrod
operations acting in the cohomology of any cocommutative Hopf algebra, such
as A∗, including the E2-term

E2(Y ) = ExtA∗(Fp, H∗(Y )) ∼= ExtA(H∗(Y ), Fp)

=⇒ π∗(Y
∧
p )

of the mod p Adams spectral sequence for Y . These constructions were generalized
by the first author to the cohomology of Hopf algebroids, in [45, Lem. IV.2.3],
and play a corresponding role in the E-based Adams–Novikov spectral sequence
for suitable ring spectra E.

When p = 2 we write the Steenrod operations in ExtA(H∗(Y ), F2) as cohomo-
logically indexed Steenrod squares, viz.

Sqi : Exts,t
A (H∗(Y ), F2) −→ Exts+i,2t

A (H∗(Y ), F2) .

Note that this operation increases the cohomological degree s by i, and doubles
the internal degree t. Only the operations with 0 ≤ i ≤ s can be nonzero, and
Sqs(x) = x2 is given by the square with respect to the usual product on Ext.

For p odd there are analogously defined Steenrod p-th powers, P i and βP i,
acting on ExtA(H∗(Y ), Fp). This case can be found in [45, Ch. IV], which is also
the definitive source for the material here. We shall concentrate on the 2-primary
case.

Remark 11.2. Alternatively, these operations can be homologically indexed
by the change in the topologically significant degree t − s:

Qj : Exts,t
A (H∗(Y ), F2) −→ Exts+t−j,2t

A (H∗(Y ), F2) .
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Thus Sqi = Qj on Exts,t
A for i + j = t. This homological indexing is compatible

with that of the Dyer–Lashof operations present in the homology of an H∞ ring
spectrum, under the edge and Hurewicz homomorphisms, hence the notation Qj .
In [45] the homological indexing was used, but was written Sqj . We now find
the cohomological indexing more convenient, and have therefore translated the
discussion and the main theorems into the cohomological indexing just introduced.

To each element α ∈ πNDj(Sn) we can associate a j-th order power operation
α∗ : πn(Y ) → πN (Y ), which is natural for H∞ ring spectra Y . We concentrate on
the case j = 2, with D2(Sn) = EΣ2+ ∧Σ2 (Sn ∧Sn), referring to [45, §IV.7] for the
case when j = p is an odd prime, and to [42] for the case of a general exponent j.

Definition 11.3. For any α ∈ πND2(Sn) and any H∞ ring spectrum Y let

α∗ : πn(Y ) −→ πN (Y )

be the natural power operation sending the homotopy class of a map y : Sn → Y
to the homotopy class of the composite map

SN α−→ D2(S
n)

D2(y)−→ D2(Y )
ξ2−→ Y .

With these notations, the main results about power operations and differentials
in the Adams spectral sequence for an H∞ ring spectrum Y are the following: First,
in Theorem 11.13, we show how the power operation α∗(y) on a homotopy class y
detected by an infinite cycle x ∈ E2(Y ) = ExtA(H∗(Y ), F2) is detected, modulo
classes of higher Adams filtration, by a linear combination of Steenrod operations
Sqi(x), where the coefficients lie in E2(S) = ExtA(F2, F2) and depend on α. Second,
in Theorem 11.22, we consider a class x ∈ E2(Y ) that survives to the Er-term, and
identify the generically first Adams differential d∗(Sqi(x)) on the class Sqi(x), in
terms of x, dr(x), Steenrod operations on these classes, and coefficients in E2(S).

Let us outline the history of these results. By assumption, the spectrum Y is
bounded below with H∗(Y ) of finite type. It admits an Adams resolution

Y = Y0 ←− Y1 ←− Y2 ←− . . . ,

where each homotopy cofiber Ys,1 = cof(Ys+1 → Ys) is equivalent to a wedge sum
of suspensions of copies of H = HFp and each homomorphism H∗(Ys) → H∗(Ys+1)
is zero. We may, and will, arrange that each H∗(Ys,1) is of finite type. There is a
smash power resolution

Y ∧ · · · ∧ Y ←− (Y ∧ · · · ∧ Y )1 ←− (Y ∧ · · · ∧ Y )2 ←− . . . ,

with j copies of Y at each stage. The j-fold multiplication map φj : Y ∧ · · ·∧Y → Y
lifts to a weak map of Adams resolutions, where “weak” means that the evident
squares are only required to commute up to homotopy. For j = 2 it induces the
product pairing φr : Er(Y )⊗Er(Y ) → Er(Y ) in the Adams spectral sequence for Y .

Daniel Kahn [85] and James Milgram [122] showed, in the case Y = S, that
the lifts (Y ∧ · · · ∧ Y )s → Ys can be gradually prolonged over the extended j-th
powers Dj(Y ) to yield a collection of suitably compatible maps

ξk,s : EΣ(k)
j+ ∧Σj (Y ∧ · · · ∧ Y )s −→ Ys−k ,

where EΣ(k)
j denotes the Σj-equivariant k-skeleton of EΣj . In particular, ξ∞,s

is given by the H∞ structure map ξj . The compatible maps ξk,s give rise to a
geometric construction of the Steenrod operations Sqi(x) and βεP i(x) in the Adams
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E2-term for Y , as well as of the homotopy operations traditionally denoted ∪k(y).
This allowed Kahn and Milgram to give formulas for Adams differentials on these
Steenrod operations when applied to infinite cycles, or, by suitable truncations, to
general elements within a range in which one can act as if one is operating on an
infinite cycle. Jukka Mäkinen, in his thesis [109], showed how to remove this range
restriction when p = 2, accounting for the contribution of the boundary dr(x),
and obtaining much more extensive formulas for differentials on the values of the
Steenrod operations. The first author (of the present book) showed in [37] and [45]
how this could be done for all primes and for all H∞ ring spectra, as well as for
many E-based Adams–Novikov spectral sequences.

11.1.2. Extended powers of Adams resolutions. We now review these
constructions in the context of orthogonal spectra, to show how the compatibility
conditions alluded to above can be clarified in terms of this symmetric monoidal
and topologically enriched model for the stable homotopy category. Let Y7 denote
an Adams resolution

Y = Y0 ←− Y1 ←− Y2 ←− . . .

of Y , as above, with associated free resolution

0 ← H∗(Y )
ε←− F0

∂←− F1
∂←− F2

∂←− . . .

in the category of A-modules. Here Fs = H∗(ΣsYs,1) where

(11.1) Ys,r = cof(Ys+r → Ys) ,

and the homomorphisms ε and ∂ are induced by the evident maps Y0 → Y0,1

and Ys,1 → ΣYs+1 → ΣYs+1,1, respectively. This complex is exact, since each
homomorphism H∗(Ys) → H∗(Ys+1) is zero. Let us write F∨

s = HomA(Fs, Fp), so
that ExtA(H∗(Y ), Fp) is the cohomology of the cocomplex

0 → F∨
0

δ−→ F∨
1

δ−→ F∨
2

δ−→ . . . .

A typical element [x] ∈ Exts,t
A (H∗(Y ), Fp) is represented by a cocycle x in

HomA(Fs,Σ
tFp) = HomA(H∗(ΣsYs,1),Σ

tFp)

∼= HomA(H∗(Ys,1), H
∗(St−s))

∼= [St−s, Ys,1] = πt−s(Ys,1) .

The last isomorphism uses our assumption that H∗(Ys,1) is of finite type. We call
n = t− s the topological degree, s the cohomological degree or filtration, and t the
internal degree of x. It will be convenient to extend the Adams resolution in the
negative direction by letting Ys = Y for s ≤ 0, with Ys+1 → Ys the identity map
for each s < 0.

Remark 11.4. The tensor square F∗ ⊗ F∗, with the diagonal A-module struc-
ture and the boundary operator ∂ ⊗ 1 + 1 ⊗ ∂, is a free A-module resolution of
H∗(Y ) ⊗ H∗(Y ) ∼= H∗(Y ∧ Y ), and can be realized as the algebraic resolution
associated to an Adams resolution

Y ∧ Y = (Y ∧ Y )0 ←− (Y ∧ Y )1 ←− (Y ∧ Y )2 ←− . . . .

Recalling that Y is, in particular, a homotopy commutative ring spectrum, the
product map φ : Y ∧ Y → Y induces the cocommutative A-module coproduct
H∗(Y ) → H∗(Y )⊗H∗(Y ). It can be lifted to an A-module chain map F∗ → F∗⊗F∗,
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406 11. THE ADAMS SPECTRAL SEQUENCE FOR THE SPHERE

which in turn can be realized by a (weak) map (Y ∧ Y )7 → Y7 of Adams resolu-
tions. The twist isomorphisms τ : Y ∧ Y → Y ∧ Y and τ : F∗ ⊗ F∗ → F∗ ⊗ F∗ can
be realized by a (weak) map τ : (Y ∧ Y )7 → (Y ∧ Y )7 of Adams resolutions, but in
this context there is no reason why τ2 should be equal to the identity, i.e., why the
Adams resolution (Y ∧ Y )7 should be Σ2-equivariant in any strict sense.

To obtain a Σ2-equivariant Adams resolution of Y ∧ Y , we now assume that
we are working in the context of orthogonal spectra, in the stable model structure
[111, §9]. We assume that the spectra in the Adams resolution Y7 are all q-cofibrant
and stably q-fibrant, and that each map Ys+1 → Ys is a q-cofibration. In essence,
we may assume that each Ys can be built from Ys+1 or ∗ by attaching cells, and
that each Ys is an Ω-spectrum. We can then form the convolution product (Y ∧Y )7
of two copies of Y7, by setting

(Y ∧ Y )s =
⋃

s1+s2=s

Ys1 ∧ Ys2 .

By the pushout-product axiom for orthogonal spectra each (Y ∧ Y )s is q-cofibrant,
and each inclusion (Y ∧ Y )s+1 → (Y ∧ Y )s is a q-cofibration. (In general, we have
no reason to expect that (Y ∧ Y )s is stably q-fibrant.) Hence there are natural
equivalences

(Y ∧ Y )s,1
(−→ (Y ∧ Y )s/(Y ∧ Y )s+1

∼=←−
∨

s1+s2=s

Ys1/Ys1+1 ∧ Ys2/Ys2+1

(←−
∨

s1+s2=s

Ys1,1 ∧ Ys2,1

and the algebraic free resolution associated to (Y ∧ Y )7 is given by

H∗(Σs(Y ∧ Y )s,1) ∼=
⊕

s1+s2=s

H∗(Σs1Ys1,1) ⊗ H∗(Σs2Ys2,1)

in cohomological degree s, i.e., by the tensor square F∗ ⊗ F∗. Moreover, the sym-
metric monoidal twist isomorphism τ : Y ∧ Y → Y ∧ Y of orthogonal spectra now
restricts to a well-defined Σ2-action on (Y ∧ Y )7, inducing the algebraic twist iso-
morphism τ : F∗ ⊗ F∗ → F∗ ⊗ F∗. Completely similar considerations define a Σj-
equivariant Adams resolution of the j-fold smash power Y ∧ · · · ∧ Y .

We can merge the Σj-equivariant skeleton filtration of EΣj with this Σj-
equivariant Adams resolution, to obtain a doubly-indexed filtration of Dj(Y ) =

EΣj+∧Σj (Y ∧ · · ·∧Y ) by subspectra EΣ(k)
j+ ∧Σj (Y ∧ · · ·∧Y )s for k ≥ 0 and s ≥ 0.

Furthermore, we can convolve this into a singly-indexed filtration Dj(Y )7. As be-
fore we concentrate on the case j = 2, and for definiteness, we shall work with the
following concrete model for the free, contractible Σ2-CW complex EΣ2 - O(2).

Definition 11.5. Let S∞ = S(R∞) be the unit sphere in R∞. The group
Σ2 = {1, T} acts freely on S∞ - EΣ2 by the antipodal action, with T sending
a unit vector x to −x. Its Σ2-equivariant k-skeleton Sk = S(Rk+1) is the unit
sphere in Rk+1, and S∞ has precisely one Σ2-free cell in each dimension k ≥ 0.
The associated cellular chain complex

. . .
∂−→ W2

∂−→ W1
∂−→ W0

ε−→ Z → 0
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is the usual Z[Σ2]-free resolution of Z: each Wk = Hk(Sk/Sk−1; Z) is free over
Z[Σ2] on one generator ek, with boundary ∂(ek) = (T + 1)ek−1 for k ≥ 2 even and
∂(ek) = (T − 1)ek−1 for k ≥ 1 odd. The orbit space P∞ = S∞/Σ2 is the infinite-
dimensional real projective space, with k-skeleton P k = Sk/Σ2 the k-dimensional
projective space. Let P∞

n = P∞/Pn−1 denote the stunted projective space, with
one cell in each dimension k ≥ n (together with the base point), and let Pn+k

n =
Pn+k/Pn−1 denote its n + k-skeleton.

Lemma 11.6 ([16, Prop. 4.3]). Let n ≥ 0. There is a natural homeomorphism

D2(S
n) = S∞

+ ∧Σ2 (Sn ∧ Sn) ∼= ΣnP∞
n ,

which is filtration-preserving in the sense that it sends Sk
+ ∧Σ2 (Sn ∧Sn) ⊂ D2(Sn)

homeomorphically to ΣnPn+k
n . In particular, πND2(Sn) ∼= πN (ΣnP∞

n ).

Remark 11.7. This well-known identification shows that the operations α∗

introduced in Definition 11.3 are precisely parameterized by the stable homotopy
groups of stunted projective spaces. If N = 2n + k and the mod 2 Hurewicz
image h(α) ∈ HND2(Sn) ∼= HN (ΣnP∞

n ) = F2{Σnen+k} is nonzero, then α splits
off the top cell of the N -skeleton ΣnPn+k

n of ΣnP∞
n . Such operations α∗ have

traditionally been denoted ∪k : πn(Y ) → π2n+k(Y ). Of course, α is not usually
uniquely determined by its mod 2 Hurewicz image, and this can lead to some
ambiguity in the meaning of ∪k.

As shown by Liulevicius [95, Ch. 2] and May [118, §11], and already recalled in
Section 1.3, the Steenrod squares in ExtA(H∗(Y ), F2) are induced by any choice of
Σ2-equivariant A-module chain map ∆ : W∗⊗F∗ → F∗⊗F∗ covering the coproduct
H∗(Y ) → H∗(Y ) ⊗ H∗(Y ). Here Σ2 acts freely upon W∗ and through the twist
isomorphism on F∗⊗F∗. Applying HomA(−, F2), we obtain a Σ2-equivariant chain
map Φ : W∗ ⊗ F∨

∗ ⊗ F∨
∗ → F∨

∗ , graded so that we have homomorphisms

Φk,s1,s2 : Wk ⊗ F∨
s1

⊗ F∨
s2

−→ F∨
s1+s2−k

for all k, s1, s2 ≥ 0, compatible with the boundaries in W∗ and F∨
∗ . The Steenrod

square

Sqi : Exts,t
A (H∗(Y ), F2) −→ Exts+i,2t

A (H∗(Y ), F2)

is then defined by the formula Sqi([x]) = [Φs−i,s,s(es−i ⊗ x ⊗ x)] for any cocycle
x ∈ F∨

s . In the remainder of this subsection we will show how Φ and the Sqi admit
a geometric realization, in terms of a filtration-preserving map Ξ7 : D2(Y )7 → Y7.

Definition 11.8. Let

Zk,s = Sk
+ ∧Σ2 (Y ∧ Y )s

for k ≥ 0 and s ≥ 0, and let a : Ys+1 → Ys, b : Zk−1,s → Zk,s and c : Zk,s+1 → Zk,s

denote the various inclusion maps associated to the Adams resolution Y7 of Y and
the bifiltration Z7,7 = S7

+ ∧Σ2 (Y ∧ Y )7 of D2(Y ) = S∞
+ ∧Σ2 (Y ∧ Y ). Note that

bc = cb. Let

D2(Y )4 =
⋃

s−k=4

Zk,s

define the balanced convolution product D2(Y )7 of the filtrations S7 and (Y ∧Y )7.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



408 11. THE ADAMS SPECTRAL SEQUENCE FOR THE SPHERE

Proposition 11.9 ([45, Thm. IV.5.2]). There are maps of orthogonal spectra

ξk,s : Zk,s = Sk
+ ∧Σ2 (Y ∧ Y )s −→ Ys−k

for all k ≥ 0 and s ≥ 0, as well as “horizontal” homotopies

Hk,s : a ◦ ξk,s - ξk+1,s ◦ b

of maps Zk,s → Ys−k−1 and “vertical” homotopies

Vk,s+1 : a ◦ ξk,s+1 - ξk,s ◦ c

of maps Zk,s+1 → Ys−k. Furthermore, these homotopies can be taken to be 2-
categorically compatible, in the sense that there exists a 2-homotopy

aVk,s+1 ∗ Hk,sc ⇐⇒ aHk,s+1 ∗ Vk+1,s+1b

of maps Zk,s+1 → Ys−k−1, between the composite homotopies

aVk,s+1 ∗ Hk,sc : a2 ◦ ξk,s+1 - a ◦ ξk,s ◦ c - ξk+1,s ◦ bc

and

aHk,s+1 ∗ Vk+1,s+1b : a2 ◦ ξk,s+1 - a ◦ ξk+1,s+1 ◦ b - ξk+1,s ◦ cb .

The maps ξk,0 are given by restriction of the H∞ structure map ξ2 : D2(Y ) → Y
along Sk ⊂ S∞. The maps ξ0,s give a (weak) map (Y ∧ Y )7 → Y7 of Adams
resolutions, lifting the ring spectrum product φ : Y ∧ Y → Y .

aVk,s+1 ∗ Hk,sc :

Zk,s+1

c

""

ξk,s+1

DD4444
4444

4444
4444

444

Ys+1−k

a

$$-
--

--
--

--
-

Vk,s+1 Zk,s
b !!

ξk,s

EE,,
,,
,,
,,
,,

Zk+1,s

ξk+1,s

FF55
55
55
55
55
55
55
55
5

Ys−k

a

$$-
--

--
--

--
Hk,s

Ys−k−1

aHk,s+1 ∗ Vk+1,s+1b :

Zk,s+1
b !!

ξk,s+1

DD6666
6666

6666
6666

6666
6 Zk+1,s+1

c

""ξk+1,s+1

GG22
22
22
22
22
22
22
22
22
22
22
22
22

Ys+1−k

a

##"
""

""
""

""
"

Hk,s+1 Zk+1,s

ξk+1,s

HH77
77
77
77
77
77
77
77
7

Ys−k

a

##"
""

""
""

""
"

Vk+1,s+1

Ys−k−1
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a2 ◦ ξk,s+1

aVk,s+1

""

aHk,s+1
!! a ◦ ξk+1,s+1 ◦ b

Vk+1,s+1b

""

""

## 88
88
88
88
88
88
88
88
88
88

88
88
88
88
88
88
88
88
88
88

a ◦ ξk,s ◦ c
Hk,sc

!! ξk+1,s ◦ bc

Proof. This is essentially the statement of Theorem IV.5.2 in [45], except
for the assertion about 2-categorical compatibility of the commuting homotopies,
which we will need when convolving the maps ξk,s. Fortunately, the proof given in
that reference also justifies this slightly stronger statement, as we now outline.

The maps ξk,0 : Sk
+ ∧Σ2 (Y ∧ Y ) → Y−k = Y and ξ0,s : S0

+ ∧Σ2 (Y ∧ Y )s
∼=

(Y ∧ Y )s → Ys are given by restriction of ξ2 : D2(Y ) → Y and the (weak) map
(Y ∧ Y )7 → Y7, as indicated. The horizontal homotopies Hk,0 are constant, but
the vertical homotopies V0,s+1 are generally not constant.

For k ≥ 0 and s ≥ 0 we inductively assume that ξk,s, ξk+1,s, ξk,s+1, Hk,s

and Vk,s+1 have been defined, and must construct ξk+1,s+1, Hk,s+1 and Vk+1,s+1,
together with a commuting 2-homotopy. Contemplating the upper left hand square
of mapping spaces in the diagram

Map(Zk+1,s+1, Ys−k)
b∗ !!

a∗

""

Map(Zk,s+1, Ys−k)

a∗

""

Map(Zk+1,s+1, Ys−k−1)
b∗ !! Map(Zk,s+1, Ys−k−1) Map(Zk,s, Ys−k)

c∗
00&&&&&&&&&&&&&&&

a∗

""

Map(Zk+1,s, Ys−k−1)

c∗
119999999999999999

b∗ !! Map(Zk,s, Ys−k−1)

c∗
00&&&&&&&&&&&&&&&

we find that the obstruction to finding such data lies in

[cof(Zk,s+1
b→ Zk+1,s+1), cof(Ys−k

a→ Ys−k−1)] ∼= [Zk+1,s+1/Zk,s+1, Ys−k−1,1] .

Furthermore, using that c : Zk,s+1 → Zk,s is a q-cofibration and the fact that the
stable model structure is topological, we find that the obstruction can be lifted over
c∗ to come from [Zk+1,s/Zk,s, Ys−k−1,1]. However, c∗ induces the zero homomor-
phism of obstruction groups, since the map (Y ∧Y )s+1 → (Y ∧Y )s induces zero in
cohomology. Hence the obstruction class vanishes, and we can construct ξk+1,s+1

and the required homotopies and 2-homotopy, as asserted. !

The maps, homotopies and 2-homotopies of the previous proposition glue to-
gether to define a map

T = Tel(S7)+ ∧Σ2 Tel((Y ∧ Y )7) −→ Y

from a double mapping telescope, where

Tel(S7) =
⋃

k≥0

[k, k + 1] × Sk
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is the mapping telescope of S0 → S1 → S2 → . . . and

Tel((Y ∧ Y )7) = {0}+ ∧ (Y ∧ Y ) ∪
⋃

s≥0

[s, s + 1]+ ∧ (Y ∧ Y )s+1

is the mapping telescope of · · · → (Y ∧Y )2 → (Y ∧Y )1 → (Y ∧Y ). Here Tel(S7) ⊂
[0,∞) × S∞ is filtered by letting Telk(S) be the part that meets [0, k] × S∞, and
Tel((Y ∧Y )7) ⊂ [0,∞)+∧ (Y ∧Y ) is filtered by letting Tels(Y ∧Y ) be the part that
meets [s,∞)+ ∧ (Y ∧ Y ). The double mapping telescope T is filtered by setting

T4 =
⋃

s−k=4

Telk(S)+ ∧Σ2 Tels(Y ∧ Y ) ,

and T → Y is then filtration-preserving in the sense that it maps T4 to Y4 for all
integers 5. The evident projections Telk(S) → Sk and Tels(Y ∧ Y ) → (Y ∧ Y )s are
deformation retractions, and define a filtration-preserving equivalence T → D2(Y ).
We obtain a zig-zag of filtration-preserving maps

Ξ7 : D2(Y )7
(←− T7 −→ Y7 .

On each filtration quotient, this induces a zig-zag of maps

Ξ̄4 :
D2(Y )4

D2(Y )4+1

(←− T4

T4+1
−→ Y4

Y4+1

where
D2(Y )4

D2(Y )4+1

∼=
∨

s−k=4

Sk

Sk−1
∧Σ2

∨

s1+s2=s

Ys1

Ys1+1
∧ Ys2

Ys2+1
.

Let Ξ̄k,s1,s2 : Sk/Sk−1 ∧ Ys1,1 ∧ Ys2,2 → Ys1+s2−k,1 denote the (weakly defined)
components of Ξ̄4. Passing to cohomology, we get the components

∆k,4 : Wk ⊗ F4 −→
⊕

k+4=s1+s2

Fs1 ⊗ Fs2

of a Σ2-equivariant A-module chain map ∆, as required for the definition of the
Steenrod squares. The components of the dual Σ2-equivariant chain map Φ : W∗ ⊗
F∨
∗ ⊗ F∨

∗ → F∨
∗ can therefore be calculated as the composites

(11.2) Φk,s1,s2 : Wk ⊗ F∨
s1,t1 ⊗ F∨

s2,t2

∼= HomA(H∗(Sk/Sk−1),ΣkF2) ⊗
2⊗

i=1

HomA(H∗(ΣsiYsi,1),Σ
tiF2)

⊗−→ HomA(H∗(Sk/Sk−1) ⊗ H∗(Σs1Ys1,1) ⊗ H∗(Σs2Ys2,1),Σ
k+t1+t2F2)

∼=←− HomA(H∗(Sk/Sk−1 ∧ Σs1Ys1,1 ∧ Σs2Ys2,1),Σ
k+tF2)

(Ξ̄∗
k,s1,s2

)∨

−→ HomA(H∗(ΣsYs−k,1),Σ
k+tF2) = F∨

s−k,t .

Here s = s1 + s2 and t = t1 + t2, the first isomorphism uses the identification
Wk ⊗ F2

∼= HomA(H∗(Sk/Sk−1),ΣkF2), the second homomorphism tensors to-
gether A-module homomorphisms, the next isomorphism is given by the Künneth
theorem, and the final homomorphism is geometrically induced by Ξ̄k,s1,s2 . This is
a cohomological reformulation of Corollary IV.5.3 in [45].
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ΣnP∞
n

∼=
""

ΣnPn+2s−1
n

BB

∼=
""

. . .BB ΣnPn
n

BB

∼=
""

SN α !!

α∗(y)

II

D2(Sn)

D2(ys)

""

S2s−1
+ ∧Σ2 (Sn ∧ Sn)BB

1∧ys∧ys

""

. . .BB Sn ∧ SnBB

ys∧ys

""

D2(Ys)

""

S2s−1
+ ∧Σ2 (Ys ∧ Ys)BB

""

. . .BB Ys ∧ Ys
BB

""

D2(Y )

ξ2

""

S2s−1
+ ∧Σ2 (Y ∧ Y )2s

BB

ξ2s−1,2s

""

. . .BB (Y ∧ Y )2s
BB

ξ0,2s

""

Y Y1
BB . . .BB Y2s

BB

Figure 11.1. Factorization of power operation α∗(y)

11.1.3. A delayed Adams spectral sequence. Our next goal is the de-
tection result, Theorem 11.13, for power operations in the homotopy of H∞ ring
spectra. Let y ∈ πn(Y ) have Adams filtration s, so that it factors as Sn ys−→ Ys → Y
and is detected by the class x ∈ E2(Y ) of the cocycle in F∨

s corresponding to the

composite Sn ys−→ Ys → Ys,1. Let α ∈ πND2(Sn). Using the maps ξk,s from
Proposition 11.9 we can piece together the homotopy commutative diagram shown
in Figure 11.1. In particular, we have the following (weak) map of towers.

(11.3)

SN α !!

α∗(y)
&&
::

::
::

::
: ΣnP∞

n

ξ2D2(y)

""

ΣnPn+2s−1
n

BB

""

. . .BB ΣnPn+k
n

BB

""

. . .BB ΣnPn
n

BB

""

∗BB

""

Y Y1
BB . . .BB Y2s−k

BB . . .BB Y2s
BB Y2s+1

BB

The Adams filtration of the composite α∗(y) will depend on a mixture of the cellular
filtration and the Adams filtrations of the compressions of α through the skeleta of
D2(Sn) ∼= ΣnP∞

n . This can be neatly handled by the following construction.

Definition 11.10. Let Z7 be a tower

Z = Z0 ←− Z1 ←− Z2 ←− . . .

of orthogonal spectra. The delayed mod p Adams spectral sequence for Z7 is the
spectral sequence

Es,t
1 (Z7) = πt−s((S ∧ Z)s,1) =⇒ πt−s(Z

∧
p )

obtained by applying π∗(−) to the convolution product

(S ∧ Z)0 ←− (S ∧ Z)1 ←− (S ∧ Z)2 ←− . . .

of a mod p Adams resolution S = S0 ← S1 ← S2 ← of the sphere spectrum with
the tower Z7.
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We may and will assume that each Si and Zj is q-cofibrant, and that each map
Si+1 → Si and Zj+1 → Zj is a q-cofibration. We shall also assume that each Si

is connective with H∗(Si) of finite type. The convolution product is then given in
filtration k by

(S ∧ Z)k =
⋃

i+j=k

Si ∧ Zj ,

and (S ∧ Z)k,1 -
∨

i+j=k Si,1 ∧ Zj,1. The delayed Adams spectral sequence is
evidently natural in the tower Z7. Its name is meant to suggest that the resolution
of Zk relative to Zk+1 is delayed until Adams filtration k, cf. case (1) of the following
theorem.

Theorem 11.11. Suppose that each Zk is bounded below, with H∗(Zk) of finite
type.

(1) If H∗(Zk) → H∗(Zk+1) is an epimorphism for each k, then

Es,t
2 (Z7) =

⊕

k≥0

Exts−k,t−k
A (H∗(Zk/Zk+1), Fp) .

Furthermore, if H∗(holimk Zk) = 0, then the delayed Adams spectral sequence con-
verges conditionally and strongly to π∗(Z∧

p ).
(2) If H∗(Zk) → H∗(Zk+1) is zero for each k, then

Es,t
2 (Z7) = Exts,t

A (H∗(Z), Fp) ,

and the delayed Adams spectral sequence for Z7 is equal to the ordinary Adams
spectral sequence for Z from the E2-term and onward. In particular, it converges
conditionally and strongly to π∗(Z∧

p ).

Proof. This is a cohomological reformulation of [39, Thm. 5], where related
results and their proofs can also be found.

In case (1) we offer the following variant of the convergence proof given in
[45, Thm. IV.6.1]. Fix an integer n1 so that π∗(Z/p) = 0 for ∗ < n1. Then
H∗(Zk/p) is a quotient of H∗(Z/p) = 0 for ∗ < n1, so the Zk/p are uniformly n1-
connective. The vanishing of H∗(holimk Zk) can be rewritten as H∗(holimk Zk) = 0.
By Adams’ Theorem 15.2 of [9, Part III], it follows that limk and Rlimk of H∗(Zk)
are both zero.

We have a k-indexed tower of short exact sequences

0 → H∗(Zk) −→ H∗((S ∧ Z)k) −→ H∗((S ∧ Z)k/Zk) → 0

and the bonding maps in the right hand tower are zero. Hence limk and Rlimk

for that tower are both zero. By the lim-Rlim exact sequence, limk and Rlimk of
H∗((S ∧ Z)k) are therefore both zero.

The spectra (S ∧ Z)k/p = (S ∧ Z/p)k are uniformly n1-connective. Hence
holimk(S ∧ Z)k/p is bounded below, and H∗(holimk(S ∧ Z)k) = 0 by another
application of Adams’ theorem. By the Hurewicz theorem, holimk(S ∧ Z)k/p is
trivial. By induction on n, it follows that holimk(S ∧ Z)k/pn is trivial for each n.
Passing to the homotopy limit over n, we deduce that holimk((S ∧Z)k)∧p is trivial.
Therefore the homotopy spectral sequence associated to the p-completed tower

((S ∧ Z)0)
∧
p ←− ((S ∧ Z)1)

∧
p ←− ((S ∧ Z)2)

∧
p ←− . . .

is conditionally convergent in the sense of Michael Boardman [29, Def. 5.10], with
abutment π∗(Z∧

p ). The completion map induces an isomorphism from the homotopy
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spectral sequence associated to the tower

(S ∧ Z)0 ←− (S ∧ Z)1 ←− (S ∧ Z)2 ←− . . .

to the conditionally convergent one. This is the delayed mod p Adams spectral
sequence associated to Z7. Since the delayed Adams E2-term is finite in each
degree, we know that RE∞(Z7) = 0. Hence the spectral sequences are strongly
convergent to π∗(Z∧

p ), by [29, Thm. 7.3].
In case (2), the convolved tower (S ∧ Z)7 is itself an Adams resolution, so the

delayed spectral sequence is an instance of the ordinary Adams spectral sequence,
and has the usual convergence properties. !

Remark 11.12. (1) The construction specializes to the ordinary Adams spec-
tral sequence when the tower is “trivial”: Zk = ∗ for k > 0.

(2) The construction also specializes to the ordinary Adams spectral sequence
when Z7 is itself an Adams resolution of Z.

(3) The vanishing of the homotopy limit (or microscope) holimk Zk is trivially
satisfied if the tower is of finite length, with Zk = ∗ for all sufficiently large k. This
situation is adequate for our needs.

(4) A case of the delayed Adams spectral sequence was constructed in an ad
hoc manner by Milgram in [122, Lem. 5.3.1], and used in the same way that we
will use it.

(5) These results are phrased in terms of homology and proved for E-based
Adams–Novikov spectral sequences in [39]. This reference also considers the spec-
tral sequence obtained by applying [X,−]∗ in place of π∗(−), for a fixed spectrum X.

(6) The paper [39] also treats a dual version of the theorem, in which one
uses function spectra of maps from a direct sequence rather than smash products
with an inverse sequence. This dual version was used by Adams (unpublished) to
construct a spectral sequence ExtE∗E(E∗X, E∗Y ) =⇒ [X, Y ∧

E ]∗, without the usual
assumption that E∗X be π∗E-projective. It was also used by Ravenel in his proof
of the Segal conjecture for Cpn , cf. [143, Def. 2.12], where he referred to it as the
“modified Adams spectral sequence”.

11.1.4. Detection of power operations by Steenrod squares. Let Y be
an H∞ ring spectrum, bounded below and with H∗(Y ) of finite type. For notational
simplicity assume that Y is p-complete, and that p = 2.

Theorem 11.13. Suppose that y ∈ πn(Y ) is detected by x ∈ Exts,t
A (H∗(Y ), F2),

where t = s + n. Let P7 be the tower

ΣnP∞
n ←− ΣnPn+2s−1

n ←− · · · ←− ΣnPn+k
n ←− · · · ←− ΣnPn

n ←− ∗
of stunted projective spaces, mapping as in (11.3) to an Adams resolution of Y ,
thereby inducing a morphism Er(P7) → Er(Y ) of spectral sequences.

(1) The E2-term E2(P7) of the delayed Adams spectral sequence for P7 is the
direct sum of

• a free ExtA(F2, F2)-module on generators {∪0, . . . ,∪2s−1}, and
• a copy of ExtA(H∗(ΣnP∞

n+2s), F2) with lowest degree class ∪2s.

(2) For 0 ≤ k ≤ 2s, the class ∪k lies in E2s−k,2t
2 (P7) and maps to the class

Sqs−k(x) ∈ E2s−k,2t
2 (Y ).

(3) If α ∈ πN (ΣnP∞
n ) is detected by

∑2s
k=0 ak∪k in E2(P7), with each ak ∈

ExtA(F2, F2), then α∗(y) ∈ πN (Y ) is weakly detected by
∑2s

k=0 akSqs−k(x).
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Proof. This is the content of Proposition 7.5, Theorem 7.6 and Corollary 7.7
of [45, §IV.7], translated to the case of ordinary mod 2 cohomology. The proof of
Theorem 7.6 relies on the geometric description in (11.2) of the Steenrod squares
in E2(Y ). !

Remark 11.14. (1) Saying that y′ ∈ π∗(Y ) is “weakly detected” by x′ ∈
Es,∗

∞ (Y ) means that y′ lifts to Adams filtration s or higher, and if x′ 0= 0 then it
corresponds to y′ in F sπ∗(Y )/F s+1π∗(Y ) ∼= Es,∗

∞ (Y ), while if x′ = 0 then y′ lifts
to Adams filtration s + 1 or higher.

(2) For α detected in homology by Σnen+k, as in Remark 11.7, this theorem
shows that α∗ = ∪k is detected in the Adams spectral sequence by the Steenrod
operation Sqs−k acting on Exts,t

A (H∗(Y ), F2).
(3) There are occasional homotopy classes of Adams filtration 0 and topological

degree greater than 2t = 2s+2n detected in the summand ExtA(H∗(ΣnP∞
n+2s), F2).

These can be considered to be instances of ∪k, for k > 2s.
(4) There are also elements in the summand ExtA(H∗(ΣnP∞

n+2s), F2) that are
not sums of classes of the form ak∪k. In order to analyze their effect on the class x
we would need to express them in terms of the Atiyah–Hirzebruch spectral sequence
for computing ExtA(H∗(ΣnP∞

n+2s), F2) that arises from filtering H∗(ΣnP∞
n+2s) by

degree.
(5) The classes ∪k for k > s always map to 0 in their bidegree of the Adams

spectral sequence for Y , since Sqs−k(x) = 0 in these cases. They do not necessarily
map to 0 in homotopy; they simply map to classes of higher Adams filtration.

The preceding theorem does not encompass all the information that is available
in the spectral sequence for the tower P7. In particular, we have the following
consequence of the naturality of the delayed Adams spectral sequence.

Corollary 11.15. Differentials and hidden extensions in the spectral sequence
(Er(P7), dr) for ΣnP∞

n map to differentials and hidden extensions in the Adams
spectral sequence (Er(Y ), dr) for Y . !

The first example of this is in the analysis of operations on a class of odd degree.
If y ∈ πn(Y ) with n odd, then it is well known and elementary that 2y2 = 0. The
preceding map of spectral sequences shows more.

Proposition 11.16. If y ∈ πn(Y ) is an odd degree class detected by x in
Adams filtration s ≥ 1, then d2(Sqs−1(x)) = h0x2 and 2y2 = 0. There is a class
y1 ∈ π2n+2(Y ) that is weakly detected by h1Sqs−1(x) and which satisfies 2y1 = η2y2.
This extension is hidden: h0(h1Sqs−1(x)) = 0.

Proof. The truncated tower Z7 with

ΣnPn+1
n ←− ΣnPn

n ←− ∗

in filtrations 2s− 1 through 2s+1, extended by identity maps on either side, maps
to the tower P7 of Theorem 11.13, which in turn maps as in (11.3) to the Adams
resolution of Y . The delayed Adams spectral sequence for this truncated tower
converges to the homotopy of the mod 2 Moore spectrum ΣnPn+1

n
∼= S2n ∪2 e2n+1.

Its E2-term is free over ExtA(F2, F2) on classes ∪0 and ∪1 in Adams bidegrees
(2n, 2s) and (2n + 1, 2s − 1), respectively, which map to Sqs(x) and Sqs−1(x) in
E2(Y ) by Theorem 11.13.
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2n 2n + 4
− 1

2s ∪0

∪1

(E2, d2) for Z7

2n 2n + 4
2s − 1

2s ∪0 h1∪1

E3 = E∞ for Z7

2n 2n + 4
0

4

0

0 1 2

0 1

0

E2 = E∞ for ΣnPn+1
n

Figure 11.2. Delayed and ordinary Adams spectral sequences for
π∗(ΣnPn+1

n ), for n odd

The ordinary Adams spectral sequence for the mod 2 Moore spectrum shows
that π2n(ΣnPn+1

n ) ∼= Z/2 and π2n+2(ΣnPn+1
n ) ∼= Z/4. Since the spectral sequence

for Z7 converges to the same abutment, we must have d2(∪1) = h0∪0 in E2(Z7).
This differential propagates h0- and h2-linearly, and by sparsity the resulting E3-
term must be equal to the E∞-term in degrees less than 2n + 6. Furthermore,
there must be a hidden 2-extension from h1∪1 to h2

1∪0. The relevant terms of
these spectral sequences are shown in Figure 11.2. It follows by naturality that
d2(Sqs−1(x)) = h0Sqs(x) = h0x2 in the Adams spectral sequence for Y .

The generator α of π2n(ΣnPn+1
n ) has order 2, and represents the operation α∗

sending y to y2, so 2y2 = 0. A generator α1 of π2n+2(ΣnPn+1
n ) is detected by h1∪1,

hence represents an operation α∗
1 sending y to a class y1 ∈ π2n+2(Y ) that is weakly

detected by h1Sqs−1(x). Since 2α1 = η2α, it follows by naturality that 2y1 = η2y2.
Hence, if h1Sqs−1(x) 0= 0 and h2

1x
2 0= 0, then there is a hidden 2-extension from

h1Sqs−1(x) to h2
1x

2 in the Adams spectral sequence for Y . !
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Remark 11.17. If we refine our hypotheses, we can be more precise. If n ≡ 3
mod 4 then ηy2 = 0 and 2y1 = 0, while if n ≡ 1 mod 4 then y1 is itself divisible
by 2: there is a class y2 = ∪2(y) ∈ π2n+2(Y ), weakly detected by Sqs−2(x), such
that 2y2 = y1 and η2y2 = 4y2. These relations are computed by comparing the or-
dinary Adams spectral sequence for ΣnP∞

n to the delayed Adams spectral sequence
for the tower Z ′

7 with

ΣnPn+3
n ←− ΣnPn+2

n ←− ΣnPn+1
n ←− ΣnPn

n ←− ∗
in filtrations 2s − 3 through 2s + 1, extended by identity maps on either side. See
[45, Fig. V.3.2 and V.3.4]. There are evident maps of towers Z7 → Z ′

7 → P7, in
the notation of Proposition 11.16 and Theorem 11.13.

The dashed line extending outside the boxes in Figure 11.2 indicates that the
class h2

2∪0 remains nonzero in the spectral sequences of that figure. This class, and
also classes shown within the displayed figure, may well map to zero or acquire new
divisors as we add higher cells to the stunted projective spaces. The additional
relations when n ≡ 3 mod 4 and the additional class y2 when n ≡ 1 mod 4 are
typical examples of this.

11.1.5. Differentials on Steenrod squares. To examine the implications of
the H∞ ring structure on Y for classes x ∈ E2(Y ) that are not permanent cycles, it
is simplest to focus on the consequences for Adams differentials on the Sqi(x). There
are two kinds of contributions to them. The first comes from Steenrod operations
on the boundary, giving terms of the form Sqi+r−1(dr(x)). The second comes from
the geometry of the extended powers, and gives terms similar to those we saw in
the discussion of homotopy operations above. These are of the form ā x dr(x) and
ā Sqi+v(x), where ā is a permanent cycle in the Adams spectral sequence for S. A
partial statement of results, adapted to the case Y = tmf , was given in Section 5.2.
The general statements are as follows.

Definition 11.18 ([45, Def. V.2.15]). For n ≥ 0 let v = v(n) denote the
“vector field number”, i.e., the maximal number v such that the attaching map of
the n-cell in P n factors up to homotopy as

Sn−1 α−→ Pn−v ⊂ Pn−1 .

Let a = a(n) ∈ πv−1(S) denote the top component

Sn−1 α−→ Pn−v −→ Sn−v

of a maximal compression. Let ā ∈ Ef,f+v−1
∞ (S) be the infinite cycle that detects a

in the mod 2 Adams spectral sequence for S. Here f is the Adams filtration of a.

Remark 11.19. Strictly speaking, to be appropriate for small (or negative)
values of n this compression problem should be interpreted as taking place in the
stunted projective spectrum Pn

−∞. For n = 2i − 1 with i ∈ {0, 1, 2, 3} the attaching
map Sn−1 → Pn−1

−∞ factors through P−1
−∞, so that v(n) = n + 1 = 2i and ā = hi.

For all other positive n the attaching map does not compress below P 1
−∞, hence

can equally well be studied at the space level.

Adams’ solution of the vector-field problem for spheres [5] leads to the following
formulas.

Proposition 11.20 ([45, Prop. V.2.16 and V.2.17]). Let the 2-adic valuation
of n + 1 be 4q + r, with 0 ≤ r ≤ 3. Then v = v(n) = 8q + 2r.
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If n is even, then v = 1, a = 2 and ā = h0. If n is odd, then v ≥ 2 and a
generates the image of the J-homomorphism in πv−1(S)∧2 . In particular,

(1) if n ≡ 1 mod 4 then v = 2, a = η and ā = h1,
(2) if n ≡ 3 mod 8 then v = 4, a ≡ ν mod 2ν and ā = h2,
(3) if n ≡ 7 mod 16 then v = 8, a ≡ σ mod 2σ and ā = h3,
(4) if n ≡ 15 mod 32 then v = 9, a = ησ and ā = h1h3, and
(5) if n ≡ 31 mod 64 then v = 10, a = η2σ and ā = h2

1h3.

Definition 11.21. Let A ∈ Es,t
2 , B1 ∈ Es+r1,t+r1−1

2 and B2 ∈ Es+r2,t+r2−1
2

be classes in a spectral sequence with differentials dr : Es,t
r → Es+r,t+r−1

r . The
notation

d∗(A) = B1 " B2

means that dr(A) = 0 for 2 ≤ r < min{r1, r2}, while





dr1(A) = B1 if r1 < r2,

dr(A) = B1 + B2 if r1 = r = r2, and

dr2(A) = B2 if r1 > r2.

Theorem 11.22 ([45, Thm. VI.1.1 and VI.1.2]). Let E∗,∗
r (Y ) be the mod 2

Adams spectral sequence for an H∞ ring spectrum Y , and let x ∈ Es,t
2 (Y ) be an

element that survives to the Er-term, where r ≥ 2. Let 0 ≤ i ≤ s, and let v =
v(t − i), a = a(t − i) and ā be as just defined. Then

d∗(Sqi(x)) = Sqi+r−1(dr(x)) "






0 if v > s − i + 1,

ā x dr(x) if v = s − i + 1,

ā Sqi+v(x) if v = s − i or v ≤ min{s − i, 10}.

Remark 11.23. If r1 < r2 and B1 = 0, then B1 "B2 denotes the zero element
in filtration s + r1. In this case the theorem does not give information about
dr(Sqi(x)) for r > r1. Similar remarks apply if r1 > r2 and B2 = 0. However,
in the (first) case v > s − i + 1 of the theorem the summand B2 = 0 should be
interpreted as lying in arbitrarily high Adams filtration s + r2, so that

d2r−1(Sqi(x)) = Sqi+r−1(dr(x)) .

We note the following special case.

Corollary 11.24. With the notation of Theorem 11.22, let n = t − s be the
topological degree of x. If n is odd then

d2r−1(x
2) = Sqs+r−1(dr(x)) ,

while if n is even and r = 2 then

d3(x
2) = Sqs+1(d2(x)) + h0xd2(x) ,

and if n is even and r > 2 then

dr+1(x
2) = h0xdr(x) .

Proof. This is the i = s case of Theorem 11.22. We then have v = v(t− i) =
v(n), so that v > s − i + 1 = 1 if n is odd, giving the first case. If n is even, then
v = s − i + 1 = 1, so that

d∗(x
2) = Sqs+r−1(dr(x)) " h0xdr(x) .
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If r = 2, both terms are in filtration 2s + 3, proving the second case, and if r > 2,
the second term has the lower filtration, proving the final case. !

The analysis required to prove Theorem 11.22 is too involved to recount com-
pletely here, but we can give a quick overview as follows. An element x of Es,s+n

r (Y )
can be represented by a map (y, ∂y) : (Dn, Sn−1) → (Ys, Ys+r). We define a Σ2-
equivariant filtration

Sn−1 ∧ Sn−1 = Γ2 ⊂ Γ1 ⊂ Γ0 = Dn ∧ Dn

by letting Γ1 = Sn−1 ∧Dn ∪Dn ∧Sn−1. The homotopy orbits Sk
+ ∧Σ2 Γi were ana-

lyzed in [45, §VI.2 and §VI.3]. In particular, we have the following identifications.

Proposition 11.25.

(1) Γ0 is the cone CΓ1, and Sk
+ ∧Σ2 Γ0

∼= C(Sk
+ ∧Σ2 Γ1).

(2) Sk
+ ∧Σ2 (Γ0/Γ1) ∼= ΣnPn+k

n .
(3) Sk

+ ∧Σ2 Γ1 - Σn−1Pn+k
n .

(4) Sk
+ ∧Σ2 Γ2

∼= Σn−1Pn−1+k
n−1 .

(5) The inclusion Sk
+ ∧Σ2 Γ2 −→ Sk

+ ∧Σ2 Γ1 is homotopic to the map

π : Σn−1Pn−1+k
n−1 −→ Σn−1Pn−1+k

n

collapsing the bottom cell, followed by the inclusion

ι : Σn−1Pn−1+k
n −→ Σn−1Pn+k

n .

The maps y and ∂y, and ξk,2s+ir from Proposition 11.9, induce maps

Sk
+ ∧Σ2 Γi −→ Sk

+ ∧Σ2 (Y ∧ Y )2s+ir
ξk,2s+ir−→ Y2s+ir−k

that are compatible as i ∈ {0, 1, 2} and k ≥ 0 vary, up to 2-coherent homotopy,
with the maps in the Adams resolution of Y . Using these, we can show ([45,
Lem. VI.4.2]) that the Steenrod operation Sqs−k(x) is represented by the induced
map of pairs

(D2n+k, S2n+k−1) - (Sk
+ ∧Σ2 Γ0, S

k−1
+ ∧Σ2 Γ0 ∪ Sk

+ ∧Σ2 Γ1) −→ (Y2s−k, Y2s−k+1) .

Let i = s − k. The Adams differential on Sqi(x) is then obtained by lifting the
boundary map S2n+k−1 → Sk−1

+ ∧Σ2 Γ0 ∪ Sk
+ ∧Σ2 Γ1 → Y2s−k+1 into as high an

Adams filtration as is possible. We do this by decomposing the boundary sphere
into two hemispheres, which we analyze separately.

In Figure 11.3, v = v(n + k) = v(t − i) and α is the maximally compressed
attaching map of the top (n − 1) + (n + k) cell of Sk+1

+ ∧Σ2 Γ2
∼= Σn−1Pn+k

n−1 .
Since the top quadrangle gives the characteristic map of this cell, it maps to
Sqs+r−k−1(dr(x)) = Sqi+r−1(dr(x)), no matter what values v and α take on.

In the left hand quadrangle, since Γ0 is the cone on Γ1, and Sk−v
+ ∧Σ2 Γ1 is

Sk−v+1
+ ∧Σ2 Γ2 modulo its bottom cell, we have ā times the map carried by the

top (n − 1) + (n + k − v) cell of Sk−v+1
+ ∧Σ2 Γ2. If v ≤ k this top cell maps by an

equivalence to the top cell of Sk−v
+ ∧Σ2 Γ1, giving āSqi+v(x), modulo “components”

of α supported on cells below the (n−1)+(n+k−v) cell. (This is made precise by
the spectral sequence of Theorem 11.13, and accounts for the restriction to v ≤ 10
in this case.) When v = k+1 this is the bottom cell of Sk−v+1

+ ∧Σ2 Γ2, which we can
show maps to xdr(x), contributing āxdr(x) to the differential on Sqi(x). Finally, if
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Figure 11.3. Maps from two hemispheres

v > k + 1, then α = 0 and this cell contributes nothing. This ends our overview of
the arguments needed to prove Theorem 11.22.

11.2. Steenrod operations in E2(S)

To use the results of the preceding section we need some information about the
action of the Steenrod squares upon the E2-term of the Adams spectral sequence
for the sphere. We collect the results we shall use here.

Recall that in Proposition 1.4 we specified a basis for the algebra indecompos-
ables of E2(S) = ExtA(F2, F2) in topological degrees t−s ≤ 48, together with their
representing ext-cocycles. Let us write

Sq∗(x) = (Sqs(x), Sqs−1(x), . . . , Sq1(x), Sq0(x))

for the total Steenrod operation on a class x ∈ Exts,t
A (F2, F2). At one extreme,

Sqs(x) = x2, which we can calculate by computing chain maps using ext. At the
other extreme, Sq0(x) can also be easily calculated from the dual of the degree-
doubling Frobenius homomorphism in the dual Steenrod algebra, i.e., from the
degree-halving Verschiebung homomorphism in A. In the following proposition, we
report the values in the range t−s ≤ 48 of Sq0 on indecomposables, as well as a few
values beyond this range, when it is possible to do so without having to introduce
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new notation other than C = 627 in bidegree (t − s, s) = (50, 6) and A′′ = 638 in
bidegree (t − s, s) = (64, 6).

Proposition 11.26. Sq0 is an algebra homomorphism whose values on inde-
composables, including all values in the range t − s ≤ 48, satisfy

(1) Sq0(hi) = hi+1;
(2) Sq0(ci) = ci+1, with c0 = 33, c1 = 39, c2 = 319, c3 = 334 and c4 = 355;
(3) Sq0(di) = di+1, with d0 = 43, d1 = 413, d2 = 432 and d3 = 465;
(4) Sq0(ei) = ei+1, with e0 = 45, e1 = 416, e2 = 440 and e3 = 479;
(5) Sq0(fi) = fi+1, with f0 = 46, f1 = 419, f2 = 444 and f3 = 484;
(6) Sq0(gi) = gi+1, with g = g1 = 48, g2 = 422, g3 = 448 and g4 = 489.

In each item above, the first element is defined by the specified cocycle sg, while the
remaining elements are calculated by applying Sq0. In addition,

(7) Sq0(Ph1) = h2g, Sq0(Ph2) = 0, Sq0(Pc0) = c1g, Sq0(Pd0) = d1g and
Sq0(Pe0) = 0;

(8) Sq0(i) = h2C, Sq0(j) = 0, Sq0(k) = h2h5n = h4C and Sq0(5) = h3A′′,
where C = 627 and A′′ = 638;

(9) Sq0(P 2h1) = 0, Sq0(P 2h2) = 0, Sq0(P 2c0) = 0, Sq0(P 2d0) = d1g2 and
Sq0(P 2e0) = 0.

Proof. That Sq0 is an algebra homomorphism is immediate from the Car-
tan formula (1.1). In [118, Proposition 11.10], it is shown that the operation
Sq0 can be calculated by Sq0([a1| . . . |as]) = [a2

1| . . . |a2
s] in the cobar complex

for the dual Steenrod algebra. This implies that if ΦA∗ is the double of the
dual Steenrod algebra, in which the degrees of all the elements are doubled, then
Sq0 : Exts,t

A∗
(F2, F2) → Exts,2t

A∗
(F2, F2) is induced by the degree-preserving Hopf al-

gebra homomorphism F : ΦA∗ → A∗ that sends ξi to ξ2
i for each i ≥ 1. Dually, it is

induced by the degree-preserving Hopf algebra homomorphism V : A −→ ΦA that
sends an “even” Milnor basis element Sq(2r1,...,2rk) to Sq(r1,...,rk), and other Milnor
basis elements to 0. Restricting along this homomorphism gives

Sq0 : Exts,t
A (F2, F2) ∼= Exts,2t

ΦA (F2, F2) −→ Exts,2t
A (F2, F2).

A slight modification of the computer code that calculates chain maps can compute
this: a program startsq0 computes the restriction Vs−1(∂(x)) for each generator
x = s∗g in the minimal A-module resolution (C∗, ∂) of F2, and the same program that
computes lifts for chain maps then solves for an element Vs(x) satisfying ∂(Vs(x)) =
Vs−1(∂(x)). We recover Sq0 as HomA(V∗, F2). This inductive calculation is begun
by setting V0(0∗0) = 0∗0, so that Sq0(1) = 1. !

Proposition 11.27. The elements hi ∈ Ext1,2i

A (F2, F2) dual to the Sq2i

satisfy
the following relations:

(1) Sq∗(hi) = (h2
i , hi+1);

(2) hihi+1 = 0, hih2
i+2 = 0, h2

i hi+2 = h3
i+1 and, for i > 0, h4

i = 0;

(3) h2
i h

2
i+3 = 0, h2i

0 h2
i+2 = 0 and, for i 0= 1, h2i

0 hi+1 = 0.

Proof. The relations h0h1 = 0 and h0h2
2 = 0 are easily checked by hand.

Applying Sq0 repeatedly then gives hihi+1 = 0 and hih2
i+2 = 0 for all i. By

the Cartan formula, 0 = Sq1(hihi+1) = h2
i hi+2 + h3

i+1. These relations then give
h4

i+1 = hi+1h2
i hi+2 = 0.
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Next, Sq2i
(h2i

0 h2
i+2) = h2i+1

0 h2
i+3 shows that h2i

0 h2
i+2 = 0 for all i. In particular,

h2
0h

2
3 = 0. Repeatedly applying Sq0 then shows that h2

i h
2
i+3 = 0 for all i. Applying

Sq2 to h2
0h2 = h3

1 gives h4
0h3 = 0. Then Sq2i

(h2i

0 hi+1) = h2i+1

0 hi+2 shows h2i

0 hi+1 =
0 for all i 0= 1. !

Remark 11.28. The first two items in Proposition 11.27 were shown by Adams
in [3]. The last item was shown by Sergei Novikov [138], and can also be found
in [133]. Novikov’s third identity was incorrectly reported in [45, Ch. VI] to be
h2n

0 hn = 0 (when n > 0). Novikov also established the identities hih2
i+khi+k+3 = 0

and h2
i h

2
i+k+1hi+k+4 = 0 for i ≥ 0 and k ≥ 3.

Proposition 11.29.

(1) Sq∗(c0) = (c2
0 = h2

1d0, h0e0, f0, c1) with f0 = 46.
(2) Sq∗(d0) = (d2

0, 0, r, 0, d1).
(3) Sq∗(e0) = (e2

0 = d0g, m, t, x, e1).
(4) Sq∗(f0) = (0, h3r, y, 0, f1) with y = 616.
(5) Sq∗(g) = (g2, h1h5Ph1, h5Ph2, 0, g2).

Proof. We have already discussed Sqs(x) and Sq0(x) for x in cohomological
degree s. The relations c2

0 = h2
1d0 and e2

0 = d0g can be verified with ext.
The Cartan formula and known relations in ExtA(F2, F2) allow us to determine

the remaining squaring operations on d0 and e0, as well as Sq2(c0). First, we write

Sq∗(d0) = (d2
0 , α3 · k , α2 · r , α1 · n + α′

1 · h4
0h5 , d1)

for some coefficients αi,α′
i ∈ F2. Since c2

0 = h2
1d0, we must have 0 = Sq3(c2

0) =
Sq3(h2

1d0) = α3 · h2
2k. From h2

2k 0= 0 we determine that α3 = 0. Similarly, 0 =
Sq1(c2

0) = Sq1(h2
1d0) = α1 · h2

2n and h2
2n 0= 0 imply that α1 = 0. Using h4

0d0 = 0
we get Sq5(h4

0d0) = α′
1 · h12

0 h5 = 0 with h12
0 h5 0= 0, and hence α′

1 = 0.
Second, we write

Sq∗(e0) = (e2
0 , β3 · m , β2 · t , β1 · x , e1)

for some coefficients βi ∈ F2. The relation h2d0 = h0e0 then gives h3d2
0 =

Sq4(h2d0) = Sq4(h0e0) = h1e2
0 + β3 · h2

0m with h3d2
0 = 0 and h1e2

0 = h2
0m 0= 0,

which implies β3 = 1. The same relation gives α2 · h3r = Sq2(h2d0) = Sq2(h0e0) =
β1 · h2

0x + β2 · h1t. Then h3r = 713 + 714, h2
0x = 714 and h1t = 713 imply that

α2 = β1 = β2. Likewise, h2
2d1 = Sq1(h2d0) = Sq1(h0e0) = β1 · h1x + h2

0e1 with
h2

2d1 0= 0 and h2
0e1 = 0, which implies β1 = 1, hence also α2 = β2 = 1.

Third, applying Sq4 to c2
0 = h2

1d0 we obtain Sq2(c0)2 = Sq4(c2
0) = Sq4(h2

1d0) =
h2

2d
2
0 + h4

1Sq2(d0) = h2
2d

2
0 0= 0, so that Sq2(c0) must be nonzero. The only possible

value is h0e0.
To continue, we need two key computational facts, namely that Sq1(c0) = f0

and Sq2(f0) = y, where c0 = 33, f0 = 46 and y = 616 in the minimal resolution
chosen by ext. These calculations are worked out in [46, Prop. 4 and 11] by the
method of Nassau [135]. Recall from the proof of Proposition 1.4 that we fixed our
choices of f0 and y to conform with these computations.

We can then use the Adem relations to determine the remaining squaring oper-
ations on f0. First, Sq1(f0) = Sq1Sq1(c0) = 0, since Sq1Sq1 = 0. Next, Sq3(f0) =
Sq3Sq1(c0) = Sq2Sq2(c0) = Sq2(h0e0) = h1Sq2(e0)+h2

0Sq1(e0) = h1t+h2
0x = h3r,

since Sq2Sq2 = Sq3Sq1. (The same results were obtained in [46] by direct calcula-
tion.)
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To conclude the proof, we write

Sq∗(g) = (g2 , γ3 · h1h5Ph1 , γ2 · h5Ph2 , 0 , g2)

for some coefficients γi ∈ F2. From h2e0 = h0g we get that Sq3(h2e0) = h2
2t+h3m =

0 must equal Sq3(h0g) = γ2 · h2
0h5Ph2 + γ3 · h2

1h5Ph1 = (γ2 + γ3) · 819, so that
γ2 = γ3. Finally, h2f0 = h1g implies h3y = Sq2(h2f0) = Sq2(h1g) = γ2 · h2h5Ph2,
with h3y 0= 0, so that γ2 = 1. !

Remark 11.30. The values of the squaring operations on c0, d0, e0 and f0 were
calculated by Shunji Mukohda in [133, Prop. 4, 5 and 6] and by James Milgram
in [122, §6]. More precisely, they both showed that Sq1(c0) is an element of the
Massey product 〈h2

0, h
2
3, h2〉 = {f0, f0 + h3

1h4} = {46, 46 + 47}, and that Sq2(f0)
is an element of 〈h4

0, h
2
4, h3〉 = {y, y + h1x} = {616, 616 + 617}. The result in [46]

removes the indeterminacy in these two calculations.

Corollary 11.31.

(1) Sq∗(ci) = (c2
i , hiei, fi, ci+1).

(2) Sq∗(di) = (d2
i , 0, ri, 0, di+1).

(3) Sq∗(ei) = (e2
i , mi, ti, xi, ei+1).

(4) Sq∗(fi) = (0, hi+3ri, yi, 0, fi+1).

The classes ai for a ∈ {r, m, t, x, y} are inductively defined by a0 = a and ai+1 =
Sq0(ai).

Proof. This follows from Proposition 11.29 by repeatedly applying Sq0, since
Sq0Sqi = SqiSq0 is one of the Adem relations (1.2) satisfied by the algebraic
squaring operations. !

Remark 11.32. In the range we are considering here we have full knowledge
of the multiplicative relations from the machine calculation by ext. Outside that
range, the squaring operations are a useful tool for extending them. For example,
from h2f0 = h1g we know immediately that hi+2fi = hi+1gi+1 for all i. From
the vanishing of h8

0c4, h0d1, h3
0e2, h8

0f3 and h3
0g2 we can inductively prove that

h2i

0 ci+1 = 0 for i ≥ 3, h2i

0 di+1 = 0 for i ≥ 0, h2i

0 ei = 0 for i ≥ 3, h2i

0 fi = 0 for i ≥ 3

and h3·2i

0 gi+2 = 0 for i ≥ 0.

Proposition 11.33.

(1) Sq∗(Ph1) = (h1P 2h1, P 2h2, 0, 0, 0, h2g).
(2) Sq∗(Ph2) = (h2P 2h2, h1Pd0 + h2

0i, 0, 0, h2
2g, 0).

(3) Sq∗(Pc0) = (c0P 2c0, h0P 2e0, h0Pj, 0, 0, ζ2 · h0e0g, ζ1 · f0g, c1g).
(4) Sq∗(Pd0) = (d0P 2d0, 0, i2, 0, d2

0g, 0, gr, 0, d1g).

The coefficients ζi ∈ F2 of h0e0g = h4
0x and f0g = h2

0y remain undetermined.

Proof. The values of the Sq0 were computed by ext and recorded in Proposi-
tion 11.26. The other values can be computed as follows, using the Cartan formula
and, in one case, the Adem relations.

We have (Ph1)2 = h1P 2h1, so we may write

Sq∗(Ph1) = (h1P
2h1 , δ4 · P 2h2 , 0 , 0 , 0 , h2g)

for some coefficient δ4 ∈ F2. From h3Ph1 = 65 = c2
0 we find that Sq4(h3Ph1) =

δ4 · h4P 2h2 is equal to Sq4(c2
0) = h2

0e
2
0 = 1011 0= 0, so δ4 = 1.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



11.2. STEENROD OPERATIONS IN E2(S) 423

We have (Ph2)2 = h2P 2h2, so we may write

Sq∗(Ph2) = (h2P
2h2 , ε4 · h1Pd0 + ε′4 · h2

0i , 0 , 0 , ε1 · h2
2g , 0)

for some coefficients ε1, ε4, ε′4 ∈ F2. From h2Ph2 = h2
0d0 we get that Sq4(h2Ph2) =

h3(ε4 · h1Pd0 + ε′4 · h2
0i) = ε′4 · h2

0h3i is equal to Sq4(h2
0d0) = h2

1d
2
0 + h4

0r = 108 0= 0.
Hence ε′4 = 1. Then, h1Ph2 = 0 gives 0 = Sq5(h1Ph2) = h2

1(ε4 · h1Pd0 +
h2

0i) + h2
2P

2h2 = (ε4 + 1) · h3
1Pd0, with h3

1Pd0 0= 0. Hence ε4 = 1. To de-
termine ε1 we use the Adem relations Sq1Sq2 = Sq3Sq0 = Sq0Sq3. On one
hand, Sq1Sq2(g) = Sq1(h5Ph2) = h6Sq1(Ph2) = ε1 · h2

2h6g. On the other hand,
Sq0Sq3(g) = Sq0(h1h5Ph1) = h2h6h2g = h2

2h6g = 775 0= 0. Hence ε1 = 1.
We have (Pc0)2 = c0P 2c0, so we may write

Sq∗(Pc0) = (c0P
2c0 , ζ6 · h0P

2e0 , ζ5 · h0Pj , 0 , 0 , ζ2 · h0e0g , ζ1 · f0g , c1g)

for some coefficients ζi ∈ F2. From h1Pc0 = c0Ph1 we get that Sq5(h1Pc0) =
ζ5 · h0h2Pj is equal to Sq5(c0Ph1) = c1h1P 2h1 + f0P 2h2 = h0h2Pj 0= 0, so
ζ5 = 1. Furthermore, Sq6(h1Pc0) = ζ6 · h2h0P 2e0 + h2

1h0Pj = ζ6 · h0h2P 2e0 is
equal to Sq6(c0Ph1) = f0h1P 2h1 + h0e0P 2h2 = h0h2P 2e0 0= 0, so ζ6 = 1. We have
(Pd0)2 = d0P 2d0, so we may write

Sq∗(Pd0) = (d0P
2d0 , η7 · iPd0 , η6 · i2 , η5 · Q + η′5 · Pu ,

η4 · d2
0g , η3 · gk , η2 · gr , η1 · gn , d1g)

for some coefficients ηi, η′i ∈ F2. From h2Pd0 = d0Ph2, we get that Sq8(h2Pd0) =
h3d0P 2d0 + η7 · h2

2iPd0 = η7 · 1715 is equal to Sq8(d0Ph2) = d2
0(h1Pd0 + h2

0i) = 0,
so that η7 = 0. Also, Sq6(h2Pd0) = η6 · h3i2 + h2

2(η5 · Q + η′5 · Pu) = η6 · 1513

is equal to Sq6(d0Ph2) = r(h1Pd0 + h2
0i) = 1513, showing that η6 = 1. Next,

Sq5(h2Pd0) = h3(η5 · Q + η′5 · Pu) + h2
2(η4 · d2

0g) = η5 · 1416 while Sq5(d0Ph2) =
d1h2P 2h2 + d2

0h
2
2g = 0, showing that η5 = 0.

The relation h2
0Pd0 = (Ph2)2 implies that Sq5(h2

0Pd0) = η′5 ·h2
1Pu+η3 ·h4

0gk =
η′5 · 1511 is equal to Sq5((Ph2)2) = 0, so that η′5 = 0.

The relation gPd0 = d3
0 gives us the final four coefficients. First, Sq8(gPd0) =

g2d0P 2d0+h5Ph2i2+η4 ·g2d2
0g = η4 ·2037 is equal to Sq8(d3

0) = d1d4
0+d2

0r
2 = 2037,

so that η4 = 1. Next, Sq7(gPd0) = h1h5Ph1d2
0g + η3 · g2gk = η3 · 1943, while

Sq7(d3
0) = 0, so that η3 = 0. Similarly, Sq6(gPd0) = g2i2 + h5Ph2d2

0g + η2 · g2gr =
1853 + η2 · 1851, while Sq6(d3

0) = rr2 = 1851 + 1853, so that η2 = 1. Finally,
Sq5(gPd0) = h1h5Ph1gr + η1 · g2gn = η1 · 1754 is equal to Sq5(d3

0) = 0, letting us
conclude that η1 = 0. !

We now apply the H∞ ring structure on S to construct classes in π∗(S) using
power operations, and to find permanent cycles in E∞(S) detecting these classes.
This also allows us to determine some relations in π∗(S). It may be helpful to refer
to Figures 11.10, 11.13 and 11.14.

Proposition 11.34. Let σ2, η◦ and ν◦ be given by the power operations α∗(σ),
for classes α ∈ π∗D2(S7) detected by ∪0, h1∪1 and h0∪4, respectively.

(1) The square σ2 ∈ π14(S) is detected by h2
3 ∈ E∞(S), and satisfies 2σ2 = 0

and ησ2 = 0.
(2) The class η◦ ∈ π16(S) is detected by h1h4 ∈ E∞(S), and satisfies 2η◦ = 0

and νη◦ = 0.
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Figure 11.4. Delayed Adams spectral sequence for π∗(Σ7P∞
7 )

(3) The class ν◦ ∈ π18(S) is defined up to multiplication by an odd integer,
is detected by h2h4 ∈ E∞(S), and satisfies 8ν◦ = 0, ην◦ = 0 and 4ν◦ = η2η◦.
Furthermore, εν◦ is an η2-multiple, possibly zero.

Proof. We apply Theorem 11.13 and Corollary 11.15 to σ : S7 −→ S detected
by h3 ∈ Ext1,8

A (F2, F2), with Sq∗(h3) = (h2
3, h4). The tower P7 we must consider is

Σ7P∞
7 ←− Σ7P 8

7 ←− Σ7P 7
7 ←− ∗ ,

where Σ7P∞
7

∼= D2(S7). We have

E2(P7) = ExtA(F2, F2){∪0,∪1} ⊕ ExtA(H∗(Σ7P∞
9 ), F2) ,

with classes ∪k in bidegrees (t− s, s) = (14+ k, 2− k) for k = 0, 1, 2. This E2-term
is shown in the upper left hand part of Figure 11.4. We have given the filtration 0
class in degree 18 the name ∪4. This can be justified in terms of the spherical
classes in π∗(Σ7P∞

9 ), but is purely a notational convenience for us.
For comparison, the E2-term of the ordinary Adams spectral sequence for

Σ7P∞
7 is shown in Figure 11.5. In particular, π14(Σ7P∞

7 ) ∼= Z/2 and π15(Σ7P∞
7 ) =

0. Since ∪0 maps to σ2, it is immediate from naturality that 2σ2 = 0 and ησ2 = 0.
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Figure 11.5. Adams spectral sequence for π∗(Σ7P∞
7 )

Since π14(Σ7P∞
7 ) ∼= Z/2 we must have d2(∪1) = h0∪0 in E2(P7). This differential

extends h0- and h2-linearly, as illustrated. It follows easily that d2(∪2) = 0 and
d2(∪4) = 0. This leads to the delayed Adams E3-term shown in the upper right
hand part of Figure 11.4. Since π15(Σ7P∞

7 ) = 0 we must have d3(∪2) = h1∪0. Sim-
ilarly, we must have d3(∪4) = h2∪0 because π17(Σ7P∞

7 ) ∼= Z/2 and h1-linearity pre-
cludes the term h2

1∪1 from appearing in d3(∪4). These differentials extend h1- and
h2-linearly, as shown. The resulting delayed Adams E4-term is shown in the lower
part of Figure 11.4. There is no room for further differentials, so E4(P7) = E∞(P7)
in this range of degrees. It follows that π18(Σ7P∞

7 ) ∼= Z/8.
When combined with the fact that the 15-cell ∪8 is spherical in P 15

7 ⊂ P∞
7 ,

cf. Proposition 11.20, this also shows that E2 = E∞ in the ordinary Adams spectral
sequence, in the range of degrees shown.

The map of spectral sequences E2(P7) → E2(S) sends ∪0 to Sq1(h3) = h2
3 and

∪1 to Sq0(h3) = h4, while ∪2 and ∪4 map to 0 since these bidegrees are trivial in
the Adams spectral sequence for the sphere. Hence η◦ ∈ π16(S), the image of the
class {h1∪1} ∈ π16(Σ7P∞

7 ) detected by h1∪1, is detected by h1h4 in E∞(S). It
satisfies 2η◦ = 0 and νη◦ = 0, since {h1∪1} satisfies these relations in π∗(Σ7P∞

7 ).
Let ν◦ ∈ π18(S) be the image of a class α ∈ π18(Σ7P∞

7 ) detected by h0∪4. Since
4{h0∪4} = η2{h1∪1} and η{h0∪4} = 0 we must have 4ν◦ = η2η◦ and ην◦ = 0.
This means that ν◦ must be detected by h2h4 ∈ E∞(S), since this is the only
nonzero class in topological degree 18 and Adams filtration s ≤ 2 in E2(S). It
follows immediately that 8ν◦ = 0. Finally, εα ∈ π26(Σ7P∞

7 ) has order dividing 2,
hence is either zero or detected by 70 = h2

1 · 50 in the ordinary Adams spectral
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sequence for Σ7P∞
7 . In either case, εν◦ is an η2-multiple. (We will see in case (26)

of Theorem 11.61 that this product is zero.) !

Proposition 11.35. Let σ◦ ∈ π19(S) be given by the power operation α∗(ε) =
∪3(ε), where α ∈ π19D2(S8) is detected by ∪3. Then σ◦ is detected by c1 ∈ E∞(S),
and satisfies ησ◦ = 0.

Proof. We apply Theorem 11.13 and Corollary 11.15 to ε : S8 → S detected
by c0 ∈ Ext3,11

A (F2, F2), with Sq∗(c0) = (c2
0, h0e0, f0, c1). The tower P7 is

Σ8P∞
8 ←− Σ8P 13

8 ←− Σ8P 12
8 ←− Σ8P 11

8 ←− Σ8P 10
8 ←− Σ8P 9

8 ←− Σ8P 8
8 ←− ∗ ,

where Σ8P∞
8

∼= D2(S8). We have

E2(P7) = ExtA(F2, F2){∪0, . . . ,∪5} ⊕ ExtA(H∗(Σ8P∞
14 ), F2) ,

with classes ∪k in bidegrees (t− s, s) = (16+ k, 6− k) for 0 ≤ k ≤ 6. The E∞-term
of the delayed Adams spectral sequence for P7 is shown in Figure 11.6, while the
ordinary Adams spectral sequence for Σ8P∞

8 is shown in Figure 11.7. We have
E2 = E∞ in this range, since dr(∪1) = 0 and d2(∪3) = 0 by h0- and h1-linearity,
respectively. Any choice of class α ∈ π19(Σ8P∞

8 ) detected by ∪3 ∈ E0,19
∞ will be

detected by ∪3 ∈ E3,22
∞ (P7). Hence σ◦ = α∗(ε) will be detected by Sq0(c0) = c1 in

E3,22
∞ (S). (It is easy to see that c1 cannot be a boundary in the Adams spectral

sequence for S, hence c1 remains nonzero at E∞.)
Since h1∪3 = 0 in Figure 11.7, we must have ηα = 0 in π20(Σ8P∞

8 ). It follows,
by naturality, that ησ◦ = 0 in π20(S). !

Remark 11.36. Extensive Adams spectral sequence calculations for the stable
homotopy of the stunted projective spaces P∞

n were made by Mahowald in his
memoir [99].

Remark 11.37. The notations η◦, ν◦ and σ◦ are meant to suggest connections
to the homotopy classes η∗ ∈ π16(S), ν∗ ∈ π18(S) and σ̄ ∈ π19(S) defined by Toda
[171, Ch. XIV] in terms of the following secondary compositions (= Toda brackets):

η∗ ∈ 〈σ, 2σ, η〉
ν∗ ∈ 〈σ, 2σ, ν〉
σ̄ ∈ 〈ν, ησ,σ〉 .

These are known to be detected by h1h4, h2h4 and c1, respectively, hence agree
with η◦, ν◦ and σ◦ modulo classes of higher Adams filtration. We outline these
connections here, referring to Section 11.3 for a review of the Adams d- and e-
invariants and Theorem 11.61 for the structure of π∗(S) in this range of degrees.

In the first case, η◦ ≡ η∗ mod ηρ, and this is as precise a comparison we can
make, since the Toda bracket defining η∗ has indeterminacy {0, ηρ}. However, in
Theorem 11.61 we will fix our choice of η∗ to have zero Adams e-invariant. In
[22, p. 313] the authors suggest that this is the “natural” choice for η∗, which they
call η3, but which is now usually denoted η4. We do not know if e(η◦) is 0 or ηj15,
corresponding to η◦ = η∗ or η◦ = η∗ + ηρ, respectively.

In the second case, ν◦
·≡ ν∗ mod ηµ̄, meaning that ν◦ is a 2-adic unit times ν∗

plus a multiple of ηµ̄. Here ηµ̄ is detected by the Adams d-invariant, induced by
the E∞ ring spectrum map d : S → ko, and d(ν◦) = 0 = d(ν∗) since d(σ) = 0.
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Figure 11.6. Delayed E∞-term for π∗(Σ8P∞
8 )
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Figure 11.7. Adams spectral sequence for π∗(Σ8P∞
8 )
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Thus ν◦ is an odd multiple of ν∗. To specify this coefficient we would have to fix a
generator of π18(Σ7P∞

7 ) ∼= Z/8, so as to uniquely define ν◦.
In the third case, σ◦ ≡ σ̄ mod ζ̄, and e(σ̄) = 0 by [8, Thm. 5.3(v)]. We do not

know the value of e(σ◦) ∈ Z/8{j19}, but note that ηζ̄ = 0 implies ησ̄ = ησ◦, which
we have just proved is zero.

We will give a simple proof of the following proposition, using tmf , in Theo-
rem 11.54. However, we also record the following more classical argument, since
the existence of the Kervaire invariant one class θ4 ∈ {h2

4} was a major result in
[107], long predating the theory of topological modular forms. The proof presumes
knowledge of E3(S) in degrees t− s ≤ 30, as given in Theorem 11.52, so the reader
may wish to return here after reaching that result. See also Figure 11.11.

Proposition 11.38.
(1) d3(r) = h1d2

0 in E3(S).
(2) There is a homotopy class θ4 ∈ π30(S) detected by h2

4 ∈ E∞(S).

Proof. (1) Let S7 be a minimal Adams resolution of the sphere, and let
κ : S14 → S be detected by d0 in Adams filtration 4, admitting a lift κ4 : S14 → S4.
Form the quadratic construction ξ2D2(κ) : Σ14P∞

14
∼= D2(S14) → D2(S) → S. By

Proposition 11.9 its restriction to Σ14P 16
14

∼= S2
+ ∧Σ2 (S14 ∧ S14) factors through

Adams filtration 6:

D2(S14)

ξ2D2(κ)

""

Σ14P 16
14

BB

ξ2,8(1∧κ4∧κ4)

""

S14 ∧ S14BB

κ2
4

""

S S6
BB S8 .BB

Here Σ14P 16
14 - (S28 ∨ S29) ∪η+2 e30, as is clear from the action of Sq1 and Sq2

on H∗(P 16
14 ), so the extension over the 30-cell implies that ηκ2

4 = 2y in π29(S6), for
some homotopy class y in this group. The Adams spectral sequence for S6, shifted
up 6 filtrations, is obtained from the one for S by omitting the rows 0 ≤ s < 6. The
differential d2(k) = h0d2

0 in E2(S) therefore shows that Σ6,6E3(S6) in topological
degree 29 has only a single generator h1d2

0, so 2y = 0 in π29(S6). Hence ηκ2
4 = 0 in

π29(S6), meaning that h1d2
0 ∈ Σ6,6E3(S6) must be a boundary, and d3(r) = h1d2

0

is the only possibility, since the filtration 2 class h2
4 ∈ E3(S) is not present in the

truncated spectral sequence.
(2) It follows from (1) that E4(S) = 0 in topological degree 29, so there are no

possible targets for differentials on h2
4. Neither are there any classes in low enough

filtration to hit it, so h2
4 survives as a nonzero class in E∞(S), and therefore detects

a nonzero homotopy class θ4. !

11.3. The Adams d- and e-invariants

To supplement the Adams spectral sequence information obtained from the H∞
ring structure on S, we will use two related refinements of the unit map d : S → ko
to the connective real K-theory spectrum. This map d induces the Adams d-
invariant d : π∗(S) → π∗(ko). The first refinement is a lift through the homotopy
fiber of a map p̃ : ko →

∏
i≥1 Σ

4iHZ, related to Chern and Pontryagin characters.
The second refinement is a lift e : S → j, where j is the homotopy fiber of a lift
ψ̃ : ko → bspin of the Adams operation ψ3 − 1: ko → ko. In the first case it will be
more convenient to map the homotopy fiber of the Hurewicz map h : S → HZ to
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the homotopy fiber of a map p : ko →
∏

i≥0 Σ
4iHZ. In the second case, e induces

a homomorphism e : π∗(S) → π∗(j) that is equivalent on ker(d), up to a sign,
to the Adams e-invariant. We call j the connective image-of-J spectrum. (This
homomorphism e is mostly unrelated to the edge homomorphism in the elliptic
spectral sequence, cf. Section 9.3.)

We first recall work of Maunder [115], [116], building on the construction by
Adams [4] of characteristic classes chr ∈ H2r(ku; Z), showing that classes of the
form P k(hj

0hm) are never boundaries in the Adams spectral sequence for S. We
outline a spectrum-level proof, similar to that of Ravenel [144, §3.4], in Theo-
rem 11.39.

Maunder also applied the Adams e-invariant to obtain information about which
classes P k(hj

0hm) must support Adams differentials. That information is contained
in the statement that e : π∗(S) → π∗(j) is split surjective, see Theorem 11.47.
This is a direct consequence of the Adams conjecture [6, Conj. 1.2], which was
proved independently by Daniel Quillen [141] and Dennis Sullivan [164]. A more
elementary proof was found later by James Becker and Daniel Gottlieb [24].

11.3.1. Maunder’s theorem. For k = 2r5 with r ≥ 0 and 5 odd, let P 2r

(x) =

〈hr+3, h2r+2

0 , x〉 and set P k = (P 2r

)4, so that it has bidegree (s, t) = (4k, 12k). In
the following version of Maunder’s results we consider the Adams periodicity opera-
tor P k to be defined in the region near the line t−s = 2s where it is an isomorphism
by [7, Thm. 1.2]. See also Theorem 4.9.

Theorem 11.39 ([116, Thm. 2.4, Thm. 2.5]).
(1) The elements P k(hj

0hm) ∈ E2(S) are not dr-boundaries, for any r ≥ 2,
m ≥ 2, 0 ≤ j < 2m−1 and k such that P k is defined on hj

0hm.
(2) The elements P k(a), with

a ∈ {h1, h
2
1, h2, h0h2, h

2
0h2 = h3

1, h
2
0h3, h

3
0h3}

and k ≥ 0, are dr-cycles and not dr-boundaries for all r ≥ 2, hence survive as
nonzero classes in E∞(S).

Proof. We argue using the commutative diagram

S
h !!

d

""

HZ !!

in0

""

Ch

g

""

ko
p

!!
∨

i≥0 Σ
4iHZ !! Cp ,

with horizontal homotopy cofiber sequences. The unit maps h : S → HZ and
d : S → ko induce the Hurewicz homomorphism and Adams d-invariant, respec-
tively. Recall from Section 2.6 that H∗(ko) = A//A(1) = A/A(Sq1, Sq2) and
H∗(ko) = F2[ξ4

1 , ξ̄2
2 , ξ̄3, ξ̄4, . . . ]. The left action of Sq1 on H∗(ko) is dual to a right

action on H∗(ko), given by ξ4
1 2→ 0, ξ̄2

2 2→ 0 and ξ̄k 2→ ξ̄2
k−1 for k ≥ 3, with Margolis

homology
H(H∗(ko), Sq1) = F2[ξ

4
1 ] .

The projection H∗(ko) → F2[ξ4
1 ] sending ξ4

1 to itself, and sending ξ̄2
2 and ξ̄k for

k ≥ 3 to zero, is a homomorphism of A(0)∗-comodule algebras, adjoint to a homo-
morphism

H∗(ko) −→ A∗ !A(0)∗ F2[ξ
4
1 ] ∼= H∗(HZ) ⊗ F2[ξ

4
1 ]
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of A∗-comodule algebras. As shown by Adams [4, Thm. 2(5)] it is realized by a
map of spectra

p : ko −→
∨

i≥0

Σ4iHZ -
∏

i≥0

Σ4iHZ

with i-th component pi : ko → Σ4iHZ an integral lift of the map ko → Σ4iH
representing χSq4i ∈ H4i(ko), dual to ξ4i

1 in the monomial basis generated by the
conjugate classes ξ4

1 , ξ̄2
2 , ξ̄k for k ≥ 3. (The maps pi are the composites of the

natural map ko → ku and the maps constructed by Adams in degrees 4i. They are
related to, but not equal to, the Pontryagin classes in H4i(BO; Z).)

Let in0 : HZ →
∨

i≥0 Σ
4iHZ be the inclusion of the 0-th summand. Then

p ◦ d - in0 ◦ h, and we get an induced map g : Ch → Cp of homotopy cofibers,
well-defined up to homotopy. The maps h and p induce surjections in cohomology,
and the resulting map

0 F2
BB A/A(Sq1)

h∗
BB ker(h∗)BB 0BB

0 A/A(Sq1, Sq2)BB

,,

⊕
i≥0 Σ

4iA/A(Sq1)
p∗

BB

pr0

,,

ker(p∗)

g∗

,,

BB 0BB

of A-module extensions leads to a map

. . . !! E2(S)
h∗ !!

""

F2[h0] !!

in0

""

E2(Ch)
δ !!

g∗

""

Σ−1,0E2(S) !!

""

. . .

. . . !! E2(ko)
p∗

!!
⊕

i≥0 Σ
0,4iF2[h0] !! E2(Cp) !! Σ−1,0E2(ko) !! . . .

of long exact sequences of Adams E2-terms. The suspensions refer to the (s, t)-
bigrading, not the (t − s, s)-bigrading.

By the geometric boundary theorem [38, Prop.], the connecting homomorphism
δ : Es,t

2 (Ch) → Es+1,t
2 (S) is h0- and h1-linear and commutes with the differentials

in these Adams spectral sequences. It is an isomorphism for t−s > 0, mapping the
class h̃m ∈ E0,2m

2 (Ch) dual to the A-module indecomposable χSq2m ∈ ker(h∗) to

the standard generator hm ∈ E1,2m

2 (S), for all m ≥ 1. (Note that χSq2m ≡ Sq2m

modulo decomposables.) It also maps the classes

ã ∈ {h̃1, h1h̃1, h̃2, h0h̃2, h
2
0h̃2 = h2

1h̃1, h
2
0h̃3, h

3
0h̃3}

in E2(Ch) to the corresponding classes a in E2(S), as in the statement of the
theorem. Hence it will suffice to prove that the elements P k(hj

0h̃m) and P k(ã) are
not boundaries in the Adams spectral sequence for Ch, and that the classes P k(ã)
are infinite cycles.

The Margolis homology of Sq1 acting on H∗(HZ) = F2[ξ2
1 , ξ̄2, ξ̄3, . . . ] is F2, and

h and p induce isomorphisms

H(H∗(S), Sq1)
∼=−→ H(H∗(HZ), Sq1)

H(H∗(ko), Sq1)
∼=−→ H(H∗(

∨

i≥0

Σ4iHZ), Sq1) .

It follows [11, Thm. 2.1] that the A∗-comodules cok(h∗) and cok(p∗), and the dual
A-modules ker(h∗) and ker(p∗), are all free as A(0)-modules. They are concentrated
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in degrees ∗ ≥ 2, so we are in a position to use the vanishing and periodicity
theorems of Adams [7, Thm. 2.1 and Thm. 5.4]. First,

Es,t
2 (Ch) = Exts,t

A (ker(h∗), F2)

Es,t
2 (Cp) = Exts,t

A (ker(p∗), F2)

are both 0 in the region t < 2 + T (s), where

T (4k) = 12k

T (4k + 1) = 12k + 2

T (4k + 2) = 12k + 4

T (4k + 3) = 12k + 7 .

It follows that each P k(ã) is an infinite cycle, for k ≥ 0 and ã as above, since all
Adams differentials on these classes land in trivial bidegrees. Second, the Adams
periodicity operators

P : Es,t
2 (Ch) −→ Es+4,t+12

2 (Ch)

P : Es,t
2 (Cp) −→ Es+4,t+12

2 (Cp)

are both isomorphisms for s > 0 and t < 2 + min{4s, 8 + T (s− 1)}. Now E2(ko) =
ExtA(1)(F2, F2) = F2[h0, h1, v, w1]/(h0h1, h3

1, h1v, v2 + h2
0w1) and

⊕
i≥0 Σ

0,4iF2[h0]
both have rank 1 in bidegrees (t−s, s) = (4i, s) for i ≥ 0 and s large. Since E2(Cp)
vanishes in these bidegrees, and the target of p∗ is h0-torsion free, we must have
p∗(wk

1 ) = Σ0,8kh4k
0 and p∗(vwk

1 ) = Σ0,8k+4h4k+3
0 for k ≥ 0. It follows that E2(Cp)

is an extension

0 →
⊕

k≥0

(
Σ0,8kF2[h0]/(h4k

0 ) ⊕ Σ0,8k+4F2[h0]/(h4k+3
0 )

)

−→ E2(Cp) −→ Σ−1,0F2[w1]{h1, h
2
1} → 0 ,

see Figure 11.8.
The A-module indecomposable χSq4i +Σ4i1 in ker(p∗) maps under g∗ to χSq4i

in ker(h∗), which is indecomposable precisely if 4i = 2m for some m ≥ 2. It follows
that, in these cases, the homomorphism g∗ maps h̃m ∈ E0,4i

2 (Ch) to Σ0,4i1 ∈
E0,4i

2 (Cp). By h0-linearity, g∗ maps hj
0h̃m to Σ0,4ihj

0 for each j ≥ 0. In particular,
hj

0h̃m is nonzero for 0 ≤ j < 2m−1 when m ≥ 3, since Σ0,4ihj
0 0= 0 in these cases.

Furthermore, h2
1h̃1 = h2

0h̃2 maps to Σ0,4h2
0 0= 0. By h1-linearity, this implies that

g∗ maps h̃1 to Σ−1,0h1 and h1h̃1 to Σ−1,0h2
1, and that h1 · Σ−1,0h2

1 = Σ0,4h2
0. By

Adams periodicity it then follows that h1 ·Σ−1,0h1wk
1 = Σ0,8k+4h4k+2

0 0= 0 for each
k ≥ 0, as indicated in Figure 11.8.

These h1-extensions imply there is no room for any nonzero differentials in
the Adams spectral sequence for Cp, so that E2(Cp) = E∞(Cp). The remaining
conclusions now follow from this key vanishing result, by naturality for the map
of spectral sequences g∗ : Er(Ch) → Er(Cp), since any such map must take dr-
boundaries to dr-boundaries.

In more detail, we have shown that g∗ maps the classes ã and hj
0h̃m in E2(Ch),

for m ≥ 2 and 0 ≤ j < 2m−1, to nonzero classes in E2(Cp). Applying the Adams
periodicity operator P k, in the range where it is known to act isomorphically, we
deduce that g∗ maps the classes P k(ã) and P k(hj

0h̃m) to nonzero classes in E2(Cp),
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0

Figure 11.8. E2(Cp) = E∞(Cp) for t − s ≤ 16, with vanishing
and periodicity range indicated by upper and lower dashed lines

for the same m and j as above. Since the target classes are not dr-boundaries for
any r ≥ 2, it follows by naturality that the source classes P k(ã) and P k(hj

0h̃m) can
also not be dr-boundaries for any r ≥ 2. !

11.3.2. The image-of-J spectrum. We now review the construction of the
connective image-of-J spectrum j and the map e : S → j merging the Adams d-
and e-invariants, in the context of E∞ ring spectra.

Recall from Section 2.6 that the connective real K-theory spectrum ko is an E∞
ring spectrum with homotopy ring π∗(ko) = Z[η, A, B]/(2η, η3, ηA, A2−4B), where
A ∈ π4(ko) and B ∈ π8(ko). The unit map d : S → ko induces homomorphisms
d : πn(S) → πn(ko), which can only be nontrivial for n = 0 and for n = 8k + r with
k ≥ 0 and r ∈ {1, 2}, since the groups πn(S) are finite for n > 0. Adams proved
that d is nontrivial in all of these degrees.

Theorem 11.40 ([8, Thm. 1.2]). There are unique classes µ8k+1 ∈ π8k+1(S)
and ηµ8k+1 ∈ π8k+2(S) detected by P kh1 and h1P kh1 in the Adams spectral se-
quence. They are of order 2, with d-invariants ηBk ∈ π8k+1(ko) and η2Bk ∈
π8k+2(ko), respectively.

Proof. We outline the proof. Adams constructs a map α : S8/2 → S/2 induc-
ing an isomorphism in K-theory. It has Adams filtration 4, so αk : S8k/2 → S/2
has Adams filtration ≥ 4k. Let η̄ : S1/2 → S be an extension of η : S1 → S over
i : S1 → S1/2, and let µ8k+1 be the composite

S8k+1 i−→ S8k+1/2
αk

−→ S1/2
η̄−→ S .

By construction, 2 · µ8k+1 = 0. Furthermore, d(µ8k+1) = ηBk 0= 0 and µ8k+1 has
Adams filtration ≥ 4k + 1. By Adams periodicity in ExtA(F2, F2) (or by explicit
calculation in the range of degrees we are considering), this means that µ8k+1 can
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only be detected by P kh1. In particular, this class in E2(S) survives to E∞(S) and
cannot be a boundary.

It follows that d(ηµ8k+1) = η2Bk and that ηµ8k+1 has Adams filtration ≥ 4k+2.
Again, there is only one possible detecting class in the Adams E∞-term for S,
namely h1P kh1. !

Remark 11.41. In Toda’s notation [171], µ1 = η, µ9 = µ and µ17 = µ̄.

The definition of the connective image-of-J spectrum and the e-invariant map
depends on the Adams operations. Let q be a natural number and X a finite
cell complex. The complex Adams operation ψq : KU(X) → KU(X) is a natural
ring homomorphism, satisfying ψq(L) = Lq whenever L is the class of a complex
line bundle over X. The real Adams operation ψq : KO(X) → KO(X) is also a
natural ring homomorphism, satisfies ψq(L) = Lq when L is the class of a real
line bundle over X, and ψq ◦ c = c ◦ ψq where c : KO(X) → KU(X) denotes
complexification. See [5, Thm. 4.1]. After inverting q, these operations become
stable, and can be represented by spectrum maps ψq : KU [1/q] → KU [1/q] and
ψq : KO[1/q] → KO[1/q]. In particular, we have maps ψq : KU∧

p → KU∧
p and

ψq : KO∧
p → KO∧

p for each prime p that does not divide q. Passing to connective
covers, we get spectrum maps ψq : ku∧

p → ku∧
p and ψq : ko∧p → ko∧p .

In fact, these can be realized as E∞ ring maps. One way to see this is to use the
discrete models for topological K-theory discussed by May and Jørgen Tornehave
in [121, Ch. VIII]. Suppose that q is a prime power and let Fq be a field with q
elements and algebraic closure F̄q. The bipermutative category GL(F̄q) of finite
dimensional F̄q-vector spaces has a bipermutative subcategory O(F̄q) in which the
morphisms respect a standard inner product, i.e., are represented by orthogonal
matrices. See [121, Ex. VI.5.3]. Let K(F̄q) and KO(F̄q) denote the associated
E∞ ring spectra. As a consequence of Quillen’s work on the algebraic K-theory
of finite fields [142], there are equivalences K(F̄q)∧p - ku∧

p and KO(F̄q)∧p - ko∧p .
The Frobenius automorphism φq : F̄q → F̄q, given by φq(x) = xq, induces functors
φq : GL(F̄q) → GL(F̄q) and φq : O(F̄q) → O(F̄q) respecting the bipermutative struc-
ture. The induced maps φq : K(F̄q)∧p → K(F̄q)∧p and φq : KO(F̄q)∧p → KO(F̄q)∧p are
then E∞ ring spectrum models for the p-adically completed Adams operations ψq.
See [121, Thm. VIII.2.9].

Alternatively, we can appeal to the height 1 case of the Goerss–Hopkins–Miller
theorem [65, Cor. 7.7], showing that KU∧

p = E(Ĝm, Fp) is an E∞ ring spectrum,
and the space of E∞ ring maps KU∧

p → KU∧
p has set of path components isomor-

phic to the automorphism group Aut(Ĝm, Fp) ∼= Z×
p , with each path component

being contractible. Each p-adic unit k ∈ Z×
p then corresponds to an E∞ ring map

ψk : KU∧
p → KU∧

p , up to contractible choice. In particular, ψ−1 acts as complex
conjugation, and we can recover KO∧

p as the homotopy fixed points of the C2-

action on KU∧
p generated by ψ−1. Furthermore, ψk then induces an E∞ ring map

ψk : KO∧
p → KO∧

p , since ψk and ψ−1 commute up to contractible choice. Passing

to connective covers, we have E∞ ring maps ψk : ku∧
p → ku∧

p and ψk : ko∧p → ko∧p
for all p-adic units k.

The operations ψq : K̃U(S2) → K̃U(S2) and ψq : K̃O(S1) → K̃O(S1) are given
by multiplication by q. Hence ψk : ku∧

p → ku∧
p acts on π∗(ku∧

p ) ∼= Zp[u] by ψk(u) =
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k · u, while ψk : ko∧p → ko∧p acts on π∗(ko∧p ) by ψk(η) = kη, ψk(A) = k2A and

ψk(B) = k4B.
We now concentrate on the operation ψ3 : ko∧2 → ko∧2 , with ψ3(η) = η, ψ3(A) =

32A and ψ3(B) = 34B. In the remainder of this section, all spectra are implicitly
2-completed.

Definition 11.42. Let kohψ3
= hoeq(ψ3, 1) be the homotopy equalizer in the

following diagram of E∞ ring spectra, and let ē : S → kohψ3
be the unit map,

lifting d. It exists because ψ3 is unital, so that ψ3 ◦ d = d.

S

ē
""

d

KK
**

**
**

**
*

kohψ3
!! ko

ψ3

!!

1
!! ko

The forgetful functor from E∞ ring spectra to spectra respects the formation
of homotopy equalizers. Hence there is a homotopy cofiber sequence

kohψ3

−→ ko
ψ3−1−→ ko

of spectra. It follows that πn(kohψ3

) ∼= (Z2, Z/2 ⊕ Z, Z/2 ⊕ Z/2, Z/2) for −1 ≤
n ≤ 2, whereas πn(S) ∼= πn(ko) ∼= (0, Z2, Z/2, Z/2) in this range. We use Post-

nikov sections X → τ≤1X for X = S and X = kohψ3
to find a modification j

of kohψ3
that agrees with S, in this range of degrees. The original approach in

[121, Def. VIII.3.1] used discrete models and the spinor norm [121, Ex. VI.5.7] to
obtain this modification.

Definition 11.43. Let j be the homotopy pullback in the following diagram
of E∞ ring spectra, and let e : S → j be the induced E∞ ring map to the homotopy
pullback.

S

CC

e

))
==

==
==

==
= ē

NN

j !!

""

kohψ3

""

τ≤1S !! τ≤1(kohψ3
)

Lemma 11.44. There is a homotopy cofiber sequence of (implicitly 2-completed)
spectra

j −→ ko
ψ̃−→ bspin

∂−→ Σj ,

where bspin → ko is the 3-connected cover and ψ̃ lifts ψ3 − 1: ko → ko.

Proof. The composite map τ≤1d : τ≤1S → τ≤1(kohψ3
) → τ≤1ko is an equiva-

lence, so τ≤1S → τ≤1(kohψ3
) is 1-coconnected, i.e., induces an isomorphism on πn

for n > 1 and an injection for n = 1. Hence its pullback j → kohψ3
is also
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1-coconnected. Consider the map of horizontal homotopy cofiber sequences

j !!

""

ko
ψ̃

!! X

π

""

kohψ3
!! ko

ψ3−1
!! ko

associated to the factorization j → kohψ3 → ko. Here j → ko is 3-connected, i.e.,
induces an isomorphism on πn for n < 3 and a surjection for n = 3, so its homotopy
cofiber X is 3-connected. Furthermore π : X → ko is 2-coconnected, so this map
exhibits X as the 3-connected cover bspin of ko. !

Definition 11.45. Let j8k−1 = ∂(Bk) ∈ π8k−1(j) for k ≥ 1, and let j8k+1 =
e(µ8k+1) ∈ π8k+1(j) and j8k+3 = ∂(ABk) ∈ π8k+3(j) for k ≥ 0.

Lemma 11.46. The map e : S → j is (at least) 2-connected, and for n ≥ 2

πn(j) =






Z2/(16k){j8k−1} for n = 8k − 1,

Z/2{ηj8k−1} for n = 8k,

Z/2{η2j8k−1} ⊕ Z/2{j8k+1} for n = 8k + 1,

Z/2{ηj8k+1} for n = 8k + 2,

Z/8{j8k+3} for n = 8k + 3,

0 otherwise,

with νj8k−1 = 0 and η2j8k+1 = 4j8k+3.

Proof. This is mostly clear from the long exact sequence in homotopy asso-
ciated to the homotopy cofiber sequence in Lemma 11.44. The lift ψ̃ sends Bk to
(34k − 1)Bk, and ord2(34k − 1) = 4 + ord2(k) = ord2(16k). It also sends ABk to
(34k+2 − 1)ABk, and ord2(34k+2 − 1) = 3 = ord2(8). The short exact sequence

0 → π8k+2(bspin)
∂−→ π8k+1(j) −→ π8k+1(ko) → 0

splits, because j8k+1 = e(µ8k+1) has order 2 and maps to ηBk in π8k+1(ko).
Since νBk lies in π8k+3(ko) = 0 we must have νj8k−1 = ∂(νBk) = 0. It remains

to show that η2j8k+1 0= 0, since 4j8k+3 in the only element of order 2 in π8k+3(j).
To see this, we use the commutative diagram

Y !!

""

Σko !!

η

""

Z

""

j !!

""

ko
ψ̃

!!

c

""

bspin

""

ju !! ku
ψ̃

!! bu

of horizontal and vertical homotopy cofiber sequences. Here ju denotes the com-
plex image-of-J spectrum, defined as the connective cover of kuhψ3

. The middle
vertical cofiber sequence expresses part of the real Bott periodicity theorem. The
lift ψ̃ : ku → bu of ψ3 − 1 multiplies by 3k − 1 in degree 2k ≥ 0, so πn(ju) = 0 for
n ≥ 2 even. Hence π8k+2(Y ) → π8k+2(j) is surjective and π8k+3(Y ) → π8k+3(j) is
injective. Let x ∈ π8k+2(Y ) be a lift of ηj8k+1 ∈ π8k+2(j). Their common image in
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π8k+2(ko) is ηd(µ8k+1) = η2Bk 0= 0, so the image of x in π8k+2(Σko) must be the
nonzero class ΣηBk. Multiplying by η, the image of ηx in π8k+3(Σko) is Ση2Bk 0= 0,
so ηx 0= 0. Due to the injectivity noted above, the image η · ηj8k+1 ∈ π8k+3(j) of
ηx is also nonzero. !

We can now formulate a key consequence of the confirmed Adams conjecture.
We shall appeal to this theorem to determine some of the differentials originating
in topological degree 8k − 1 of the Adams spectral sequence for the sphere.

Theorem 11.47 ([6, Conj. 1.2], [141], [164]). The ring map e : S → j induces
a surjective ring homomorphism

e : π∗(S) −→ π∗(j)

which admits an additive section.

Remark 11.48. This is a substantial theorem, and we just mention the role of
the main references. Let SO denote the infinite special orthogonal group. Adams [8,
Thm. 7.16] showed that Whitehead’s [177] J-homomorphism J : πn(SO) → πn(S)
creates enough elements in π∗(S) to ensure that e : πn(S) → πn(j) is surjective.
More precisely, he showed that e is split surjective for all n, up to a possible fac-
tor of 2 in the cases when n = 8k − 1. The subsequent proofs of the Adams
conjecture, first by Quillen [141] and by Sullivan [164], thereafter by Becker and
Gottlieb [24], eliminated the remaining factor of 2. Davis and Mahowald [100],
[53, Thm. 1.1] determined the precise Adams filtration of the classes in the image
of the J-homomorphism, but we shall not rely on this stronger result. However,
see Proposition 11.88 for partial information in this direction.

This now allows us to compute the ring structure in π∗(j). Since it is generated
over π∗(S) by the jn, it suffices to determine the products of these generators.

Proposition 11.49 (cf. [8, Prop. 12.14 and Ex. 12.15]). The products of the jn

are given as follows: j8k−1 · j84+1 = j8k+1 · j84−1 = ηj8(k+4)−1, j8k+1 · j84+1 =
ηj8(k+4)+1, and the remaining products are zero.

Proof. The products in degrees ∗ ≡ 4, 6 mod 8 are trivially zero. The
products in degrees ∗ ≡ 2 mod 8 are detected by their images in π∗(ko), since
π∗(j) → π∗(ko) is an isomorphism in these degrees. Hence j8k−1 · j84+3 = 0, since
j8k−1 and j84+3 both map to zero in π∗(ko). On the other hand, j8k+1 · j84+1 maps
to ηBk · ηB4 = η2Bk+4 0= 0, so j8k+1 · j84+1 = ηj8(k+4)+1. In degrees ∗ ≡ 0 mod 8
we calculate j8k+1 · j84−1 = e(µ8k+1) · ∂(B4) = µ8k+1 · ∂(B4) = ∂(µ8k+1 · B4) =
∂(ηBk ·B4) = ηj8(k+4)−1, since the S-action on j factors through e and the S-action
on bspin factors through the action by ko. !

Remark 11.50. The homotopy cofiber sequence in Lemma 11.44 induces a long
exact sequence of A-modules

· · · −→ H∗(bspin)
ψ̃∗

−→ H∗(ko) −→ H∗(j)
∂∗
−→ Σ−1H∗(bspin) −→ . . .

with H∗(ko) = A/A(Sq1, Sq2), H∗(bspin) = Σ4A/A(Sq1, Sq2Sq3) and ψ̃∗ mapping
Σ41 to Sq4, cf. [104]. Hence there is a (nontrivial) A-module extension

0 → C −→ H∗(j) −→ K → 0 ,

where
C = cok(ψ̃∗) ∼= A/A(Sq1, Sq2, Sq4)
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Figure 11.9. (E2(j), d2) for t − s ≤ 24

and
K = Σ−1 ker(ψ̃∗) ∼= Σ7A/A(Sq1, Sq7, Sq4Sq6 + Sq6Sq4) .

See [50, Thm. 1] or [15, Lem. 7.10(c)]. In spite of the isomorphism C ∼= H∗(tmf),
the monomorphism C → H∗(j) not induced by a map j → tmf under S, since
ν2 ∈ π6(S) is detected by tmf but not by j.

The (E2, d2)-term of the Adams spectral sequence for j is shown, for t−s ≤ 24,
in Figure 11.9. We have recently confirmed [44] the first author’s conjecture that
this spectral sequence collapses at the E3-term, except for a regular pattern of later
differentials connecting the h0-towers in topological degrees 32i and 32i − 1 for
i ≥ 1. The classes detecting ηρ8k−1 2→ ηj8k−1, η2ρ8k−1 2→ η2j8k−1, µ8k+1 2→ j8k+1,
ηµ8k+1 2→ ηj8k+1, and ζ8k+3 2→ j8k+3 map isomorphically at E∞, while the h0-
towers detecting 〈ρ8k−1〉 2→ 〈j8k−1〉 undergo an Adams filtration shift equal to the
2-adic valuation of k: in π∗(S), the h0-tower on ρ8k−1 ends in Adams filtration 4k,
while in π∗(j), the corresponding h0-tower on j8k−1 starts in Adams filtration 4k−3.

11.4. Some d2-differentials for S

We now reach the main object of study in this chapter: the mod 2 Adams
spectral sequence for the sphere spectrum. Its E2-term

Es,t
2 (S) = Exts,t

A (F2, F2) =⇒ πt−s(S)∧2

is given for t ≤ 200 in Figures 1.1 to 1.8. A list of algebra generators for t− s ≤ 48
is given in Table 1.1. In this section we will justify the values of the d2-differentials
listed in that table.

Remark 11.51. In Theorems 11.52, 11.54, 11.56 and 11.59 some statements or
proofs are marked with an asterisk (*). Logically, we first only prove the statements
without this mark. These suffice to give the necessary input for our calculations
of the Adams spectral sequence and homotopy groups of tmf , given in Chapters 5
and 9. After this we can return to S and use the results about tmf to prove the
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Figure 11.10. (E2(S), d2) for t − s ≤ 48
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Figure 11.11. (E3(S), d3) for t − s ≤ 48
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Figure 11.12. (E4(S), d4) for t − s ≤ 48
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Figure 11.13. E5(S) = E∞(S) for t − s ≤ 48
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marked statements. We have chosen to break with the logical order in this presen-
tation in order to have the results collected in one place, and to avoid repetition.
The red arrows and red dots in Figures 11.10 through 11.13 indicate nonzero and
zero differentials, respectively, for which our most straightforward argument relies
on the use of tmf .

Theorem 11.52. In the mod 2 Adams spectral sequence for S:

(1) d2(a) = 0 for a = h0, h1, h2, h3, c0, Ph1, Ph2, d0, Pc0, P 2h1, P 2h2, g,
Pd0, P 2c0, P 3h1, P 3h2, P 2d0, n, d1, q, P 3c0, p, P 4h1, P 4h2, t, x, e1,
P 3d0, u, f1, P 4c0, z, P 5h1, P 5h2, g2, w, N , P 4d0, Pu, B2 and P 5c0.

(2) d2(h4) = h0h2
3 and d2(h5) = h0h2

4.
(3) d2(e0) = h2

1d0, d2(f0) = h2
0e0, d2(c1) = 0, d2(i) = h0Pd0, d2(Pe0) =

h2
1Pd0, d2(j) = h0Pe0, d2(k) = h0d2

0, d2(r) = 0, d2(5) = h0d0e0, d2(P 2e0)
= h2

1P
2d0, d2(Pj) = h0P 2e0, d2(m) = h0d0g, d2(y) = h3

0x, d2(P 2i) =
h0P 3d0, d2(P 3e0) = h2

1P
3d0 and d2(P 2j) = h0P 3e0.

(4) d2(c2) = h0f1.
(5) (*) d2(v) = h0z.
(6) d2(B1) = 0.
(7) d2(Q) = h0i2.

The Adams (E2, d2)-term is shown in Figure 11.10, and the algebra generators
for t − s ≤ 48 of the resulting E3-term are listed in Table 11.1.

Proof. (1) By inspection of E2(S), it is clear that d2(a) = 0 for the algebra
generators a = h0, h2, h3, c0, Ph1, Ph2, d0, Pc0, P 2h1, P 2h2, g, Pd0, P 2c0, P 3h1,
P 3h2, P 2d0, P 3c0, P 4h1, P 4h2, x, P 3d0, u, f1, P 4c0, P 5h1, P 5h2, g2, w, N , P 4d0,
B2 and P 5c0 because the target groups are trivial. Furthermore, d2(a) = 0 for
a = h1, n, d1, q, t, e1 and Pu by h0-linearity, for a = p by h1-linearity, and for
a = z by h2-linearity.

(2) The Adams differentials d2(hi+1) = h0h2
i follow from the H∞ ring structure

on S. We apply Theorem 11.22 for Y = S and x = hi, with Sq0(hi) = hi+1 and
Sq1(hi) = h2

i as in Proposition 11.27, to obtain the formula

d∗(hi+1) = d∗(Sq0(hi)) = Sq1(d2(hi)) " h0Sq1(hi) .

Here Sq1(d2(hi)) has Adams filtration 4 and h0Sq1(hi) has Adams filtration 3, so
the expression simplifies to d2(hi+1) = h0h2

i .
(3) The Adams d2-differential on f0 follows from the H∞ ring structure on S.

We apply Theorem 11.22 for x = c0, with Sq1(c0) = f0 and Sq2(c0) = h0e0 as in
Proposition 11.29, to obtain the formula

d∗(f0) = d∗(Sq1(c0)) = Sq2(d2(c0)) " h0Sq2(c0) ,

which simplifies to d2(f0) = h2
0e0. Then hi-linearity gives d2(e0) = h2

1d0, while the
relation d0f0 = h2k and hi-linearity give d2(k) = h0d2

0, d2(j) = h0Pe0, d2(Pe0) =
h2

1Pd0, d2(i) = h0Pd0, d2(5) = h0d0e0, d2(m) = h0d0g and d2(h0y) = h4
0x. The

H∞ differential for Sq2(f0) = y obtained from Theorems 11.22 and 11.29 improves
the last of these to

d∗(y) = d∗(Sq2(f0)) = Sq3(h2
0e0) " h0Sq3(f0) ,

which simplifies to d2(y) = h0h3r = h0(h1t + h2
0x) = h3

0x. The relation h0d0i =
h2Pj and hi-linearity then give d2(Pj) = h0P 2e0 and d2(P 2e0) = h2

1P
2d0. One

more application of d0- and hi-linearity then gives d2(P 2j) = h0P 3e0, d2(P 3e0) =
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h2
1P

3d0 and d2(P 2i) = h0P 3d0. Finally, d2(c1) 0= h0f0 and d2(r) 0= h0k follow from
the fact that d2 ◦d2 = 0, since d2(h0f0) = h3

0e0 0= 0 and d2(h0k) = h2
0d

2
0 0= 0. Hence

d2(c1) and d2(r) must both be zero.
(Alternatively, we can deduce d2(y) = h3

0x from d2(h0y) = h4
0x and d2(t) = 0

using h1- and h2-linearity.)
(4) The Adams d2-differential on c2 follows from the H∞ ring structure on S.

We apply Theorem 11.22 for x = c1, with Sq0(c1) = c2 and Sq1(c1) = f1 as in
Corollary 11.31, to obtain

d∗(c2) = d∗(Sq0(c1)) = Sq1(d2(c1)) " h0Sq1(c1) ,

which simplifies to d2(c2) = h0f1.
(This differential was overlooked in Mahowald and Tangora’s pioneering 1967

paper [107]. It was found by Milgram [122] in his systematic application of the
differentials implied by the geometric construction of the Steenrod operations in
ExtA(F2, F2).)

(5) We prove this using tmf . In Lemma 1.15 we showed that the morphism
ι : E2(S) → E2(tmf) maps v to e0γ, and in Theorem 5.18 we showed that d3(e0γ) =
w1 · h1δ 0= 0. If d2(v) = 0, then d3(v) = 0 because the target group is trivial,
implying d3(e0γ) = 0 by naturality. This contradiction shows that d2(v) 0= 0,
which can only mean that d2(v) = h0z.

(The original proof [107, Prop. 6.1.5] for this differential uses Cσ.)
(6) We use d0- and h1-linearity of d2 to show that d2(B1) 0= w. This involves

classes in ExtA(F2, F2) beyond the range t−s ≤ 48, for which we refer to Figure 1.3.
The relation d0B1 = 1122 = h1B21 is readily verified by ext, where B21 = 1024.
Here d2(B21) = 0 lives in a trivial group, so d0 · d2(B1) = d2(d0B1) = d2(h1B21) =
h1 ·0 = 0. On the other hand, d0 ·w = 1322 0= 0. Hence d2(B1) 0= w, and d2(B1) = 0
is the only alternative.

(Alternatively, we can deduce this using tmf , since w maps to γg ∈ E2(tmf),
which is not a d2-boundary.)

(7) We use h2
0h3- and h0d2

0-linearity of d2 to show that d2(Q) 0= 0, and d2(Q) =
h0i2 is the only alternative. Using ext we calculate h2

0h3Q = 1617 = h0d2
0j, see Fig-

ure 1.3. Hence h2
0h3 · d2(Q) = d2(h2

0h3Q) = d2(h0d2
0j) = h0d2

0 · d2(j) = h2
0d

2
0Pe0 =

1812 0= 0. This implies d2(Q) 0= 0. !

Remark 11.53. The nonzero d2-differentials landing in topological degree 48
are d2(528) = d2(h5f0) = h2

0h5e0 = 723, and d2(205) = d2(P 4e0) = h2
1P

4d0 = 225.
The d2-differential on 1413 = ij is zero by h2-linearity.

11.5. Some d3-differentials for S

Theorem 11.54. In the mod 2 Adams spectral sequence for S:

(1) d3(a) = 0 for a = h0, h1, h2, h3, c0, Ph1, Ph2, d0, Pc0, P 2h1, c1, P 2h2,
g, Pd0, h4c0, h2

0i, P 2c0, P 3h1, P 3h2, h2
4, P 2d0, n, h1h5, d1, q, P 3c0, p,

P 4h1, P 4h2, x, e0g, P 3d0, h5c0, u, Pd0e0, h2
0P

2i, P 4c0, P 5h1, Ph2h5,
P 5h2, g2, h5d0, w, B1, N , d05, P 4d0, e0r, Pu, P 2d0e0 and P 5c0.

(2) d3(h0h4) = h0d0.
(3) d3(h1h4) = 0.
(4) d3(h2h4) = 0.
(5) (*) d3(r) = h1d2

0.
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Table 11.1. Algebra indecomposables in E3(S) for t − s ≤ 48

t − s s g x d3(x)

0 1 0 h0 0

1 1 1 h1 0

3 1 2 h2 0

7 1 3 h3 0

8 3 3 c0 0

9 5 1 Ph1 0

11 5 2 Ph2 0

14 4 3 d0 0

15 2 7 h0h4 h0d0

16 2 8 h1h4 0

16 7 3 Pc0 0

17 9 1 P 2h1 0

18 2 9 h2h4 0

19 3 9 c1 0

19 9 2 P 2h2 0

20 4 8 g 0

22 8 3 Pd0 0

23 4 10 h4c0 0

23 9 5 h2
0i 0

24 11 3 P 2c0 0

25 13 1 P 3h1 0

27 13 2 P 3h2 0

30 2 10 h2
4 0

30 6 10 r h1d2
0

30 12 3 P 2d0 0

31 4 12 h3
0h5 h0r

31 5 13 n 0

31 8 10 d0e0 h5
0r

32 2 12 h1h5 0

32 4 13 d1 0

32 6 12 q 0

32 15 3 P 3c0 0

33 4 14 p 0

33 17 1 P 4h1 0

t − s s g x d3(x)

34 2 13 h2h5 h0p

35 17 2 P 4h2 0

36 6 14 t 0

37 5 17 x 0

37 8 15 e0g 0

38 2 14 h3h5 0

38 4 16 e1 h1t

38 16 3 P 3d0 0

39 4 18 h5c0 0

39 9 18 u 0

39 12 9 Pd0e0 0

39 17 5 h2
0P

2i 0

40 4 19 f1 0

40 6 18 Ph1h5 0

40 19 3 P 4c0 0

41 10 14 z 0

41 21 1 P 5h1 0

42 6 20 Ph2h5 0

43 21 2 P 5h2 0

44 4 22 g2 0

45 5 24 h5d0 0

45 9 20 w 0

46 7 20 B1 0

46 8 20 N 0

46 11 12 d05 0

46 14 10 i2 h1(Pd0)2

46 20 3 P 4d0 0

47 8 21 Ph5c0 0

47 10 16 e0r 0

47 13 15 Pu 0

47 16 10 P 2d0e0 0

47 18 10 h5
0Q h0P 4d0

48 7 22 B2 0

48 23 3 P 5c0 0

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



446 11. THE ADAMS SPECTRAL SEQUENCE FOR THE SPHERE

(6) d3(h3
0h5) = h0r.

(7) (*) d3(d0e0) = h5
0r.

(8) d3(h2h5) = h0p.
(9) d3(t) = 0.

(10) d3(h3h5) = 0.
(11) d3(e1) = h1t.
(12) d3(f1) = 0.
(13) d3(Ph1h5) = 0.
(14) (*) d3(z) = 0.
(15) d3(i2) = h1(Pd0)2.
(16) (*) d3(Ph5c0) = 0.
(17) (*) d3(h5

0Q) = h0P 4d0.
(18) d3(B2) = 0.

The Adams (E3, d3)-term is shown in Figure 11.11, and the algebra generators
for t − s ≤ 48 of the resulting E4-term are listed in Table 11.2.

Proof. (1) By inspection of E3(S) as a subquotient of E2(S), it is clear that
d3(a) = 0 for the algebra generators a = h0, h2, h3, c0, Ph1, Ph2, d0, Pc0, P 2h1,
c1, P 2h2, g, Pd0, h4c0, h2

0i, P 2c0, P 3h1, P 3h2, h2
4, P 2d0, P 3c0, p, P 4h1, P 4h2,

x, e0g, P 3d0, h5c0, u, Pd0e0, h2
0P

2i, P 4c0, P 5h1, Ph2h5, P 5h2, g2, h5d0, w, B1,
N , d05, P 4d0, e0r, Pu, P 2d0e0 and P 5c0 because the target groups are trivial.
Furthermore, d3(a) = 0 for a = h1, n, d1 and q, by h0-linearity, and for a = h1h5,
by combined h0- and h2-linearity.

(2) By Maunder’s Theorem 11.39, the classes hi
0h4 for 1 ≤ i ≤ 7 are not

boundaries. By Theorem 11.47 the homomorphism

e : π15(S) −→ π15(j) = Z/32

is split surjective. Suppose, for a contradiction, that d3(h0h4) = 0. Then hi
0h4

survives to E∞(S) for each 2 ≤ i ≤ 7, and there must be a class x ∈ {h2
0h4} of

order 64. This is impossible, since ker(e) ⊂ π15(S) has order dividing 8, in view
of the total dimension of the Es,t

3 (S) with t − s = 15. Hence d3(h0h4) must be
nonzero, i.e., equal to h0d0.

(In this degree, we can instead give an elementary argument using Cσ. We
suppose known that π6(S) = Z/2{ν2}, π7(S) = Z/16{σ} and π13(S) = 0, all of
which are evident from E2(S) in this range. The classes h2

3 and d0 in E3(S) cannot
support or be hit by differentials for bidegree reasons, hence detect independent
homotopy classes σ2 and κ in π14(S). By graded commutativity 2σ2 = 0, so that
the image of σ : π7(S) → π14(S) is Z/2{σ2}. Hence we have an exact sequence

0 → Z/2{σ2} −→ π14(S)
i−→ π14(Cσ)

j−→ Z/2{ν2} → 0 .

Let M8 = H∗(Cσ). The map i : E2(S) → E2(Cσ) of Adams spectral sequences
sends d2(f0) = h2

0e0 to d2(48) = 66, with the generators of ExtA(M8, F2) chosen
by ext. See Figure 11.15, where a denotes a class with j(a) = a. By h2- and h0-
linearity, d2(34) = 54 and d2(44) = 64. Hence E3(Cσ) has at most two generators
for t − s = 14, proving that π14(Cσ) has order dividing 4. It follows from the
exact sequence above that π14(S) also has order dividing 4. Hence 2κ = 0, so
h0d0 ∈ E3(S) must be a boundary, and d3(h0h4) = h0d0 is the only possibility.)
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Figure 11.15. (E2(Cσ), d2) for 12 ≤ t − s ≤ 24

(3) The H∞ ring structure gives

d∗(h1h4) = d∗(Sq0(h0h3)) = Sq2(d3(h0h3)) " h1Sq2(h0h3) ,

which simplifies to d3(h1h4) = h1(h0h3)2 = 0.
(Alternatively, we proved in Proposition 11.34 that there is a homotopy class

η◦ detected by h1h4, which ensures that dr(h1h4) = 0 for all r.)
(4) In view of the relation h3

3 = h2
2h4 we have h2 · d3(h2h4) = d3(h3

3), which is
zero because d3(h3) = 0. It follows that d3(h2h4) = 0, since h2 acts injectively on
the target group of this differential.

(Alternatively, we proved in Proposition 11.34 that there is a homotopy class
ν◦ detected by h2h4, which ensures that dr(h2h4) = 0 for all r.)

(5) We can easily prove this using tmf . The map E3(S) → E3(tmf) takes r
to β2, with d3(β2) 0= 0 for tmf by Proposition 5.8. Hence d3(r) cannot be zero,
and h1d2

0 is the only possible value.
(We gave a different proof of this in Proposition 11.38, using the quadratic

construction on κ.)
(6) We prove that d3(h3

0h5) 0= 0 by a counting argument based on the proven
Adams conjecture, Theorem 11.47, asserting that the homomorphism

e : π31(S) −→ π31(j) = Z/64

is split surjective. The image of such a splitting is then a subgroup 〈y〉 of π31(S),
mapping isomorphically to Z/64 under e. (One such subgroup is the image of
the J-homomorphism J : π31(SO) → π31(S), but we will not use this fact.) The
elements 2ky of this subgroup, for 0 ≤ k ≤ 5, must be detected by nonzero classes
xk ∈ E∞(S), with xk+1 in higher Adams filtration than its predecessor xk, and
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with xk+1 = h0xk if the Adams filtrations only differ by 1. Furthermore, hi
0xk = 0

for i + k = 6, since 26y = 0.
We have d3(h8

0h5) = h5
0d3(h3

0h5) = 0 since h5
0 · h0r = 0, and d4(h10

0 h5) =
h2

0d4(h8
0h5) = 0 since h2

0 · h0P 2d0 = 0. Hence hi
0h5 is an infinite cycle for each

10 ≤ i ≤ 15. By Maunder’s Theorem 11.39, none of these classes are boundaries,
hence they remain nonzero in E∞(S).

Suppose, for a contradiction, that d4(h9
0h5) = 0, so that h9

0h5 survives to E∞(S)
and detects a homotopy class z ∈ π31(S). Then 26z will be detected by h15

0 h5 0= 0.
We cannot have 26z = 25y, since 26z maps to zero in π31(j) = Z/64 whereas 25y
maps to the element of order 2. This implies that x5 0= h15

0 h5, so x5 ∈ E∞(S)
must be the class of one of the other h0-torsion classes, h1P 2d0, d0e0, n or h1h2

4,
in topological degree 31 of E3(S). Since hi

0xk = 0 for i + k = 6 it follows that x4

must be one of the h2
0-torsion classes d0e0, n or h1h2

4, that x3 must be one of the
h3

0-torsion classes n or h1h2
4, and that x2 must be h1h2

4. At this point we obtain a
contradiction, since there is no nonzero class in lower Adams filtration than h1h2

4

that could be equal to x1.
This proves that x5 = h15

0 h5 and d4(h9
0h5) = h2

0P
2d0 0= 0. If d3(h3

0h5) were 0,
then d4(h9

0h5) = h6
0d4(h3

0h5) would be a multiple of h6
0 · h2

0r = 0, and this gives
another contradiction. The only remaining possibility is d3(h3

0h5) = h0r 0= 0.
(7) We prove this using tmf . If d3(d0e0) = 0 in E3(S) then ι : E4(S) →

E4(tmf) takes d0e0 to d0e0 with d4(d0e0) = d0w2
1 0= 0 in E4(tmf), as we showed in

Corollary 5.13. Hence d4(d0e0) = P 2d0 0= 0 in E4(S). However, this is impossible
by h0-linearity, since h0 · d0e0 = 0 at E3(S) and h0 · P 2d0 0= 0 at E4(S). The only
alternative is d3(d0e0) = h5

0r.
(The original proof [107, Prop. 4.3.1] used a similar deduction from d4(d2

0e0) 0=
0 in E4(S), which they obtained using Cσ.)

(8) We have not found an H∞-based proof of the differential d3(h2h5) = h0p, in
spite of the operation Sq0(h1h4) = h2h5, due to the intervening class p. We there-
fore reproduce the argument of Barratt, Mahowald and Tangora [22, Prop. 3.3.7],
who deduced this differential from a comparison with Cν. They showed that there
is a hidden ν-extension from h2

4 to p, detecting θ4 ∈ π30(S) and νθ4 ∈ π33(S),
respectively. Since 2θ4 has high Adams filtration (in fact, is zero), it follows that
h0p must be a boundary, and h2h5 is the only possible source of this differential.
This proof relies on the nonzero d2-differential on c2, which was missed in [107],
which explains why the nonzero d3-differential on h2h5 was also missing in that
reference.

See Figure 11.16 for a part of E2(Cν), as calculated by ext, showing only some

of the d2-differentials. There is a unique lift h2
4 = 216 in E2(Cν) of h2

4 ∈ E2(S),

and h3 · h2
4 = 326 = i(c2). From d2(c2) = h0f1 we deduce h3 · d2(h2

4) = d2(i(c2)) =

i(h0f1) = 526 0= 0. Hence d2(h2
4) 0= 0 in E2(Cν), and 419 = i(p) is the only possible

value, where p ∈ E4,37
2 (S). Thus d2(h2

4) = i(p) in E2(Cν).
We have not yet shown that p is an infinite cycle for the sphere spectrum, but we

can limit our attention to the classes in Adams filtration ≤ 4 by mapping S = S0 to
S0,5 = cof(S5 → S0), where S7 is a minimal Adams resolution of S and we are using
the notation of (11.1). A truncated (non-Adams) spectral sequence converging to
π∗(S0,5) is obtained from the Adams spectral sequence for S by omitting the rows
s ≥ 5 from the E1-term, which equals the E2-term by minimality. The tower
S7 ∧ Cν is a (non-minimal) Adams resolution of Cν, and in the same way we
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Figure 11.16. E2(Cν) for 32 ≤ t − s ≤ 44, with some d2-differentials

can get a truncated spectral sequence converging to π∗(S0,5 ∧ Cν), with Er-terms
concentrated in the rows 0 ≤ s ≤ 4.

E2(S)
i !!

""

E2(Cν)

""

E2(S0,5)
i∧1 !! E2(S0,5 ∧ Cν)

Since d2(h2h5) = 0, the class p ∈ E2(S0,5) survives to the E∞-term and detects a
nonzero homotopy class γ ∈ π33(S0,5). Since i(p) is a d2-boundary in E2(Cν), the
image i(γ) ∈ π33(S0,5 ∧Cν) must be zero, meaning that γ = ν ·β for some nonzero
β ∈ π30(S0,5). (This follows from the long exact sequence

· · · −→ πn−3(X)
ν−→ πn(X)

i−→ πn(Cν ∧ X) −→ . . .

for X = S0,5.) Due to the Adams differential d2(h5) = h0h2
4 and its h0-multiple,

the homotopy class β can only be detected by h2
4 ∈ E∞(S0,5). In other words, β

is the image under S → S0,5 of a class θ4 ∈ π30(S) detected by h2
4 ∈ E∞(S), and

γ = νβ is the image of νθ4.
Since h2h2

4 = 0, the product νθ4 must have Adams filtration ≥ 4. Since it
maps to γ ∈ π33(S0,5), detected by p in filtration 4 for S0,5, it follows that νθ4 is
detected by p ∈ E∞(S) in the Adams spectral sequence for S. This proves that p is
an infinite cycle, and that there is a hidden ν-extension from h2

4 to p, in the sense
of Definition 9.5.

If the product h0p remains nonzero at E∞(S), then it will detect 2 · νθ4. How-
ever, 2θ4 must have Adams filtration ≥ 6, as we see by inspection of E3(S). (Using
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the d3-differentials established in cases (5) and (6), it must have Adams filtra-
tion ≥ 12, and we will see in Theorem 11.56 that no other classes than h2

4 survive
to E∞(S) in topological degree 30, so that θ4 is a well-defined class with 2θ4 = 0,
but these facts are not needed at this stage.) Hence 2νθ must have Adams filtra-
tion ≥ 7, and cannot be detected by h0p. This implies that h0p is a boundary in
the Adams spectral sequence for S. By inspection of E3(S), the only possibility is
d3(h2h5) = h0p.

(9) The vanishing of the d3-differential on t follows from the H∞ ring structure.
Theorem 11.22 for x = e0, with Sq2(e0) = t, gives

d∗(t) = d∗(Sq2(e0)) = Sq3(d2(e0)) " 0 ,

which simplifies to d3(t) = Sq3(c2
0) = 0, since d2(e0) = c2

0.
(10) With the aid of ext, we can use h1h6-linearity to show that d3(h3h5) must

be zero. See Figures 1.3 and 1.5. From the Adams differential d2(h6) = h0h2
5 it

follows that d2(h4
0h6) = h5

0h
2
5 0= 0, so d3(h1h6) = 0 because the target group is

trivial. Now h1h6 · h3h5 = 0, so h1h6 · d3(h3h5) = d3(0) = 0. On the other hand,
h1h6 · x = 789 0= 0 in bidegree (t − s, s) = (101, 7) of E2(S), as calculated by ext,
and this class cannot be a d2-boundary for degree reasons. Hence d3(h3h5) 0= x,
and 0 is the only alternative.

(The original argument [107, Cor. 7.3.6] for d3(h3h5) = 0 uses a comparison
with Cσ and Cσ ∪2σ e16. It involves steps, such as their Proposition 7.3.5, that
build on the mistaken assertion that d3(e1) = 0. These are therefore incorrect as
stated, but can probably be rectified.)

(11) The differential d3(e1) = h1t 0= 0 follows from the H∞ ring structure.
Theorem 11.22 for x = e0, with Sq0(e0) = e1 and Sq2(e0) = t, gives

d∗(e1) = d∗(Sq0(e0)) = Sq1(d2(e0)) " h1Sq2(e0)

which simplifies to d3(e1) = Sq1(c2
0) + h1t = h1t.

(This differential was argued to be zero in [107, §8.6], and the error persisted
in [22]. It was corrected by the first author in [40, Thm. 4.1], using the proof just
given.)

(12) The differential d3(f1) = 0 follows from the H∞ ring structure. Theo-
rem 11.22 for x = c1, with Sq1(c1) = f1, gives

d∗(f1) = d∗(Sq1(c1)) = Sq2(d2(c1)) " h1Sq3(c1) ,

which simplifies to d3(f1) = 0 + h1c2
1 = h2

1x = 0.
(13) We can show that d3(Ph1h5) = 0 using the H∞ ring structure and h1-

linearity. Theorem 11.22 for x = g, with Sq3(g) = h1h5Ph1 according to Proposi-
tion 11.29, gives

d∗(h1h5Ph1) = d∗(Sq3(g)) = Sq4(d2(g)) " h1 g d2(g) ,

which simplifies to h1d3(Ph1h5) = d3(h1h5Ph1) = Sq4(d2(g)) = 0. It follows that
we cannot have d3(Ph1h5) = u, since h1u 0= 0 in E3(S). The only alternative is
d3(Ph1h5) = 0.

(We can also prove this using tmf . The map ι : E3(S) → E3(tmf) takes u to
d0γ, which remains nonzero at the E4- and E∞-terms for tmf . Hence u cannot be
d3(Ph1h5).)
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(14) We prove this using tmf . The map E3(S) → E3(tmf) takes h1Pd0e0 to
h1d0e0w1 = h2

0αgw1, which remains nonzero at the E4-term for tmf , as we can
read off from Table 5.5. Hence h1Pd0e0 cannot be d3(z).

(15) Corollary 11.24 and d2(i) = h0Pd0 give

d3(i
2) = Sq8(h0Pd0),

which is h1(Pd0)2 by Proposition 11.33.
(We can also prove this using tmf . The map E3(S) → E3(tmf) takes i2 to

β2w2
1, with d3(β2w2

1) 0= 0, so d3(i2) 0= 0.)
(16) We prove this using tmf . The map E3(S) → E3(tmf) takes d05 to αd0g,

which remains nonzero at the E4-term for tmf , as we can read off from Table 5.5.
Hence d05 cannot be d3(Ph5c0).

(This was proved in [21, p. 541] using the Toda bracket 〈θ4, 2, ηρ〉 and Moss’
theorem [132].)

(17) We prove this using tmf . The map E3(S) → E3(tmf) takes P 2d0e0 to
d0e0w2

1, with d4(d0e0w2
1) = d0w4

1 0= 0 in E4(tmf). Hence d4(P 2d0e0) = P 4d0 0= 0
in E4(S). Now h0 · P 2d0e0 = 0 in E3(S), which implies h0 · P 4d0 = 0 in E4(S) by
h0-linearity of d4. Thus h0P 4d0 ∈ E3(S) must be a d3-boundary, and h5

0Q is the
only possible source of that differential.

(It is possible to give a counting argument for d3(h5
0Q) = h0P 4d0, using the

Adams conjecture as in case (6), but a bit of work is needed to see why a lifting
of π47(j) = Z/32 to π47(S) cannot be detected by some of the h0-torsion classes
h1P 4d0, P 2d0e0, Pu, e0r, Ph5c0, h1B1 and h2g2.)

(18) This is Lemma 3.67 in Isaksen’s memoir [82]. We have d0 · B2 = 1127 =
h2 · B21, with B21 = 1024. See Figure 1.3. Here d2(B21) = 0 and d3(B21) = 0
because the target groups are trivial, so d0 ·d3(B2) = h2 ·0 = 0. On the other hand,
d0 · e0r = 1420 remains nonzero at E3(S) by h0-linearity. Hence d3(B2) 0= e0r. !

Remark 11.55. The nonzero d3-differentials landing in topological degree 48
are d3(626) = d3(h0h5f0) = h2

0B2 = 922 and d3(1113) = d3(gk) = h1Pu = 1412,
according to [21, Diag. A]. The latter differential is only possible because we also
had d2(1316) = d2(Pv) = h2

1Pu = 1511 landing in topological degree 49. It, and
the differential d3(1413) = d3(ij) = 0, are easily shown by comparison with tmf .

11.6. Some d4-differentials for S

Theorem 11.56. In the mod 2 Adams spectral sequence for S:

(1) d4(a) = 0 for a = h0, h1, h2, h3, c0, Ph1, Ph2, d0, h3
0h4, h1h4, Pc0,

P 2h1, h2h4, c1, P 2h2, g, Pd0, h4c0, h2
0i, P 2c0, P 3h1, P 3h2, h2

4, P 2d0,
n, h1h5, d1, q, P 3c0, p, P 4h1, P 4h2, t, h2

2h5, x, P 3d0, h5c0, u, h2
0P

2i,
f1, Ph1h5, P 4c0, z, P 5h1, P 5h2, g2, h5d0, w, B1, d05, P 4d0, Ph5c0, e0r,
Pu, h7

0Q, B2 and P 5c0.
(2) (*) d4(d0e0 + h7

0h5) = P 2d0, d4(Pd0e0) = P 3d0 and d4(P 2d0e0) = P 4d0.
(3) (*) d4(e0g) = d0Pd0.
(4) (*) d4(h0h2h5) = 0.
(5) d4(h3h5) = h0x.
(6) (*) d4(Ph2h5) = 0.
(7) (*) d4(N) = 0.
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Table 11.2. Algebra indecomposables in E4(S) for t − s ≤ 48

t − s s g x d4(x)

0 1 0 h0 0

1 1 1 h1 0

3 1 2 h2 0

7 1 3 h3 0

8 3 3 c0 0

9 5 1 Ph1 0

11 5 2 Ph2 0

14 4 3 d0 0

15 4 4 h3
0h4 0

16 2 8 h1h4 0

16 7 3 Pc0 0

17 9 1 P 2h1 0

18 2 9 h2h4 0

19 3 9 c1 0

19 9 2 P 2h2 0

20 4 8 g 0

22 8 3 Pd0 0

23 4 10 h4c0 0

23 9 5 h2
0i 0

24 11 3 P 2c0 0

25 13 1 P 3h1 0

27 13 2 P 3h2 0

30 2 10 h2
4 0

30 12 3 P 2d0 0

31 5 13 n 0

31 8 10 + 11 d0e0 + h7
0h5 P 2d0

32 2 12 h1h5 0

32 4 13 d1 0

32 6 12 q 0

32 15 3 P 3c0 0

33 4 14 p 0

33 17 1 P 4h1 0

34 3 15 h0h2h5 0

t − s s g x d4(x)

35 17 2 P 4h2 0

36 6 14 t 0

37 3 16 h2
2h5 0

37 5 17 x 0

37 8 15 e0g d0Pd0

38 2 14 h3h5 h0x

38 16 3 P 3d0 0

39 4 18 h5c0 0

39 9 18 u 0

39 12 9 Pd0e0 P 3d0

39 17 5 h2
0P

2i 0

40 4 19 f1 0

40 6 18 Ph1h5 0

40 19 3 P 4c0 0

41 10 14 z 0

41 21 1 P 5h1 0

42 6 20 Ph2h5 0

43 21 2 P 5h2 0

44 4 22 g2 0

45 5 24 h5d0 0

45 9 20 w 0

46 7 20 B1 0

46 8 20 N 0

46 11 12 d05 0

46 20 3 P 4d0 0

47 8 21 Ph5c0 0

47 10 16 e0r 0

47 13 15 Pu 0

47 16 10 P 2d0e0 P 4d0

47 20 4 h7
0Q 0

48 7 22 B2 0

48 23 3 P 5c0 0
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Figure 11.17. E2(Σ8C(2σ)) for 20 ≤ t − s ≤ 32, with some d2-differentials

The Adams (E4, d4)-term is shown in Figure 11.12, and the algebra generators
for t − s ≤ 48 of the resulting E5-term are listed in Table 11.3.

Proof. (1) The target group of d4(a) is trivial for a = h0, h2, h3, c0, Ph1,
Ph2, d0, h3

0h4, Pc0, P 2h1, h2h4, c1, P 2h2, g, Pd0, h2
0i, P 2c0, P 3h1, P 3h2, h2

4, P 2d0,
n, h1h5, P 3c0, p, P 4h1, P 4h2, t, h2

2h5, x, P 3d0, h5c0, u, h2
0P

2i, f1, Ph1h5, P 4c0,
z, P 5h1, P 5h2, g2, h5d0, w, B1, d05, P 4d0, Ph5c0, e0r, Pu, h7

0Q, B2 and P 5c0,
so these differentials are zero. Furthermore, d4(a) = 0 by h0-linearity for a = h1,
h1h4, d1 and q. Finally, d4(h4c0) = 0 by h1-linearity, since h1 · h4c0 = h1h4 · c0 is
a product of d4-cycles, and h1 · Pd0 0= 0. Hence d4(h4c0) 0= Pd0.

(2) We prove this using tmf . The map E4(S) → E4(tmf) takes d0e0 + h7
0h5 to

d0e0, with d4(d0e0) = d0w2
1 0= 0 in E4(tmf). Hence d4(d0e0 + h7

0h5) 0= 0 in E4(S),
and P 2d0 is the only possible value. Similarly, E4(S) → E4(tmf) takes P id0e0 to
d0e0wi

1 with d4(d0e0wi
1) = d0w

2+i
1 0= 0, so d4(P id0e0) 0= 0 must be equal to P 2+id0

for i = 1 and i = 2.
(Alternatively, we can deduce the first of these from the differential d4(h9

0h5) =
h2

0P
2d0 that we established in the proof of case (6) of Theorem 11.54, since h2

0 ·
(d0e0 + h7

0h5) = h9
0h5 in E4(S), so that h2

0 · d4(d0e0 + h7
0h5) = h2

0 · P 2d0, and
d4(d0e0 + h7

0h5) = P 2d0 is the only possibility.)
(3) We prove this using tmf . The map E4(S) → E4(tmf) takes e0g to e0g,

with d4(e0g) = gw2
1 0= 0 for tmf . Hence d4(e0g) 0= 0 for S, and d0Pd0 is the only

possible value.
(The original proof in [107, Thm. 4.2.1] uses Cη.)
(4) We prove that d4(h0h2h5) = 0 using the homotopy cofiber sequence S →

tmf → tmf/S and a harmless forward reference. By Proposition 11.77, which only
depends on the known differential d2(Q) = h0i2 for S, machine calculations by ext
of E2(tmf/S), and our results on the Adams spectral sequence for tmf , the map
ι : S → tmf takes each element α ∈ {q} in π32(S) to ε1 ∈ {δ′} in π32(tmf), shifting
Adams filtration from 6 to 7. It follows that ηα maps to ηε1 ∈ {h1δ}, which has
Adams filtration 8. Hence ηα must have Adams filtration 7 or 8. The only possible
detecting class is h1q, which therefore is not a boundary, and d4(h0h2h5) = 0.

(See Remark 11.57 concerning the proof of this fact in [22].)
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(5) We have not found an H∞-based proof of the differential d4(h3h5) = h0x, in
spite of the operation Sq0(h2h4) = h3h5, due to the intervening class x. We there-
fore reproduce, with some modifications, the argument of Mahowald and Tangora
[107, §7], who deduced this d4-differential from a comparison with the cell com-
plexes Cσ, C(2σ) and Cσ ∪2σ e16. They showed that there is a hidden σ-extension
from h2

4 to x, detecting θ4 ∈ π30(S) and σθ4 ∈ π37(S), respectively. Since 2θ4 = 0
it follows that h0x must be a boundary, and h3h5 is the only possible source of this
differential.

Let Cσ∪2σ e16 = S ∪σ e8 ∪2σ e16 be a 3-cell spectrum with nontrivial action by
Sq8 and Sq16 on the 0-th cohomology class. It can be constructed as the homotopy
cofiber of a map S8 → Cσ ∧ Cσ of degree +1 and −1, respectively, on the two
8-cells. Consider the following diagram of horizontal and vertical homotopy cofiber
sequences.

S15 = !!

""

S15

2σ

""

S
i !!

=

""

Cσ
j

!!

k

""

S8 σ !!

""

S1

=

""

S !! Cσ ∪2σ e16 4 !!

""

Σ8C(2σ) !!

""

S1

S16 = !! S16

We start with the Adams spectral sequence for Σ8C(2σ) = S8∪2σe16. The Steenrod
action on H∗(Σ8C(2σ)) is trivial, so E2(Σ8C(2σ)) = E2(S){g8, g16} is a free module
on two generators g8 = 00 and g16 = 01, in bidegrees (t − s, s) = (8, 0) and (16, 0),
respectively. Since 2σ is detected by h0h3 we have d2(g16) = h0h3 · g8, which
implies d2(h3 · g16) = h0h2

3 · g8 by h3-linearity. Furthermore, d2(h4 · g8) = h0h2
3 · g8

by naturality with respect to S8 → Σ8C(2σ). See Figure 11.17. It follows that
a′ = h4 · g8 + h3 · g16 is a d2-cycle in bidegree (t − s, s) = (23, 1) of E2(Σ8C(2σ)).
Using ext we can verify that h2a′ = 215 0= 0 and h3a′ = 216 0= 0.

Next we show that a′ lifts to a d2-cycle a in the Adams spectral sequence for
Cσ ∪2σ e16. See Figure 11.18. In view of the long exact sequence

· · · −→ E2(S) −→ E2(Cσ ∪2σ e16)
4−→ E2(Σ

8C(2σ)) −→ . . .

the map 5 of E2-terms is an isomorphism in bidegrees (23, 1), (22, 3), (26, 2) and
(30, 2), so there is a unique d2-cycle a in bidegree (23, 1) of E2(Cσ ∪2σ e16) such
that 5(a) = a′, with h2 · a = 212 0= 0 and h3 · a = 213 0= 0. We can calculate
h2 · 14 = 212 = h2 · 15, h3 · 14 = 213 and h3 · 15 = 0 using ext, and deduce that
a = 14.

Moreover, we claim that d3(a) = 0. Since d2(15) = 38, which implies d2(29) =
410, the only alternative target at the E3-term is b = 49. However, calculation with
ext shows that h1d0 · b = 54 · 49 = 924, which remains nonzero at the E3-term
by h0-linearity, while h1d0 · a = 54 · 14 = 0. It follows that d3(a) 0= b, so a is
a d3-cycle. Multiplying a by d3(h0h4) = h0d0 in E3(S) we obtain a differential
d3(h0h4 · a) = h0d0 · a in E3(Cσ ∪2σ e16). Here h0h4 · a = 27 · 14 = 325 and
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Figure 11.18. E2(Cσ ∪2σ e16) for 20 ≤ t− s ≤ 40, with some d2-
and d3-differentials

h0d0 · a = 53 · 14 = 628. The latter class cannot be a d2-boundary, by h0-linearity,
hence is nonzero at the E3-term.

We proceed to lift this nonzero d3-differential over k to the Adams spectral

sequence for Cσ. Let h2
4 = 217 denote the unique class in E2(Cσ) with j(h2

4) = h2
4

in E2(S). See Figure 11.19. Trivially d2(h2
4) = 0, so h0h2

4 = 323 survives to the
E3-term. In view of the long exact sequence

· · · −→ E2(Cσ)
k−→ E2(Cσ ∪2σ e16) −→ E2(S

16) −→ . . . ,

the latter class maps under k to h0h4 · a = 325. By naturality, d3(h0h2
4) maps

under k to d3(h0h4 · a) = h0d0 · a 0= 0, hence is itself nonzero. It follows by h0-

linearity that d3(h2
4) is nonzero, and the only possible value is i(x) = 527. Hence

d3(h2
4) = i(x) in E3(Cσ).
We now conclude the proof as in Theorem 11.54, case (8). Let S7 be a minimal

Adams resolution of S, and let S0,6 = cof(S6 → S0) be its truncation to filtrations
0 ≤ s ≤ 5. Since d3(h3h5) = 0, the class x ∈ E2(S0,6) survives to the E∞-term
and detects a nonzero homotopy class γ ∈ π37(S0,6). Since i(x) is a d3-boundary
in E2(Cσ), the image i(γ) ∈ π37(S0,6 ∧ Cσ) must be zero, meaning that γ = σ · β
for some nonzero β ∈ π30(S0,6). The only possibility is that β is detected by
h2

4 ∈ E∞(S0,6), so that β is the image of θ4 ∈ π30(S). Hence γ is the image of σθ4.
Since h3h2

4 = 0, it follows that σθ4 is detected by x ∈ E∞(S). This proves that x
is an infinite cycle, and that there is a hidden σ-extension from h2

4 to x. Finally,
2θ4 = 0 implies that 2σθ4 = 0, so h0x must be a boundary, and d4(h3h5) = h0x is
the only remaining possibility.

(6) We prove this using tmf . By Lemma 1.15 and Table 5.5 the map E4(S) →
E4(tmf) takes z to α2e0, which remains nonzero at the E4-term. On the other
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Figure 11.19. E2(Cσ) for 36 ≤ t − s ≤ 40, with some d3-differentials

hand, Ph2h5 maps to zero, since E4(tmf) is trivial in bidegree (t − s, s) = (42, 6).
Hence we cannot have d4(Ph2h5) = z, and d4(Ph2h5) = 0 is the only alternative.

(The original proof in [107, §8.5] uses Cσ.)
(7) We prove this using tmf . Multiplying d4(d0e0 + h7

0h5) = P 2d0 by d0 we
obtain d4(d2

0e0) = d0P 2d0 = (Pd0)2 0= 0. Since d4 ◦ d4 = 0 we cannot have
d4(N) = d2

0e0, and this implies d4(N) = 0. !
Remark 11.57. The claim that h2h5 is a permanent cycle, in [107, §8.3],

would have implied d4(h0h2h5) = 0. With the corrected claim about d3(h2h5) in
[22, Prop. 3.3.7], a new argument is needed for why d4(h0h2h5) vanishes. This is
implicit in [22, Cor. 3.2.3], stating that the elements of the Toda bracket 〈η, 2, η5〉
are detected by h0h2h5. Here η5 ∈ π32(S) is specified to be an element of 〈η, 2, θ4〉,
which is detected by h1h5 and satisfies νη5 = 0. To make sense of the first Toda
bracket one must know that 2η5 = 0, i.e., that there is no hidden 2-extension from
h1h5 to q, with an accompanying hidden η-extension from h1h2

4 to q. This can be
deduced from the subsequent result [22, Prop. 3.3.1], which uses the inclusions

ηκκ̄ ∈ ηκ〈κ, 2, η, ν〉 ⊂ η〈κ2, 2, η, ν〉 = 〈η,κ2, 2, η〉ν
to show that ηκκ̄, which is detected by h1d0g, has the form ν{q}, with {q} ⊂
〈η,κ2, 2, η〉. See Sections 2.2 and 2.3 of Kochman’s book [87] for a definition of
these four-fold Toda brackets and proofs of the requisite properties. Note that the
class that is now commonly referred to as η5 is denoted by η4 in [22].

Remark 11.58. According to [21, Diag. A], there are no nonzero dr-differentials
for r ≥ 4 landing in topological degree 48.
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11.7. Collapse at E5

Theorem 11.59. dr(a) = 0 for all a ∈ Es,t
r (S) with r ≥ 5 and t − s ≤ 48, so

E5(S) = E∞(S) in this range.

The Adams E5 = E∞-term is shown in Figure 11.13. The algebra generators
in Table 11.3 are thus also algebra generators for the E∞-term, in this range of
degrees.

Proof. (1) For a = h0, h2, h3, c0, Ph1, Ph2, d0, h3
0h4, Pc0, P 2h1, P 2h2, Pd0,

h4c0, h2
0i, P 2c0, P 3h1, P 3h2, h2

4, n, h10
0 h5, P 3c0, P 4h1, P 4h2, h2

2h5, x, h2
0h3h5,

h5c0, u, h2
0P

2i, P 4c0, P 5h1, P 5h2, h3
4, h5d0, w, B1, N , d05, Ph5c0, e0r, Pu, h7

0Q
and P 5c0 all dr-differentials for r ≥ 5 land in trivial groups.

(2) For a = h1 all later differentials vanish by h0-linearity.
(3) For a = h1h4, c1, g, h1h5, d1, q, t, Ph1h5 and g2 all later differentials vanish

because the possible targets are not boundaries by Maunder’s Theorem 11.39.
(We already showed in Propositions 11.34 and 11.35 that h1h4 and c1, respec-

tively, are infinite cycles, since they detect η◦ and σ◦.)
(4) We showed in Proposition 11.34 that h2h4 is an infinite cycle, since it

detects ν◦.
(Alternatively, we can argue that the remaining possible targets for a differential

on h2h4, namely h1Pc0 and P 2h1, must detect independent classes η2ρ and µ̄,
respectively, hence cannot be boundaries. This follows from Adams’ Theorem 11.40
and Theorem 11.47.)

(5) We showed in the proof of case (8) of Theorem 11.54 that p is an infinite
cycle detecting νθ4.

Alternatively, we can argue that the remaining possible target for a differential
on p, namely P 3c0, must detect a nonzero class ηρ31, hence cannot be a boundary.
We give the details, since they are useful for the next case. Let ρ31 ∈ π31(S) be
detected by h10

0 h5. Then 25ρ31 is the unique class detected by h15
0 h5, so e(25ρ31) =

25j31 is the order 2 class in π31(j) = Z/64, by our proof of case (6) of Theorem 11.54.
Hence e(ρ31)

.
= j31, meaning that these agree up to a 2-adic unit, and e(ηρ31) =

ηj31 0= 0. Since ηρ31 has Adams filtration ≥ 12, it can only be detected by P 3c0.
(6) Choosing ρ31 ∈ {h10

0 h5} as in the previous case, all later differentials on
a = h0h2h5 vanish because the possible targets h1P 3c0 and P 4h1 must detect
independent classes η2ρ31 and µ33, respectively, hence cannot be boundaries.

(7) (*) Using tmf we can show that d5(f1) 0= u, since u 2→ d0γ 0= 0 at E∞(tmf).
Then all later differentials on f1 vanish, by Theorem 11.39.

(The original proof in [107, §8.7] uses Cη.)
(8) The only possible later differential on a = z, with target P 4c0, must vanish

by h1-linearity.
Alternatively, we can argue that P 4c0 must detect a nonzero class ηρ39, hence

cannot be a boundary. We give the details, since they are useful for the next case.
By Theorem 11.47 there is a class y ∈ π39(S) of order 16 with e(y)

.
= j39 generating

π39(j) = Z/16. Let xk ∈ E∞(S) detect 2ky for 0 ≤ k ≤ 3. Then x0 must have
Adams filtration ≥ 3, x1 must have Adams filtration ≥ 5, x2 must have Adams
filtration ≥ 7, and x3 must be a nonzero h0-torsion class of Adams filtration ≥ 9,
by inspection of E5(S). If x3 were u then η · 23y = 0 would be detected by h1u,
but we now know that h1u 0= 0 in E∞(S), so this is impossible. Therefore x3 =
h5

0P
2i = P 4(h3

0h3) has Adams filtration 20, and detects the class 23y, mapping to
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Table 11.3. Algebra indecomposables in E5(S) = E∞(S) for
t − s ≤ 48

t − s s g x y ∈ {x}

0 1 0 h0 2

1 1 1 h1 η

3 1 2 h2 ν

7 1 3 h3 σ

8 3 3 c0 ε

9 5 1 Ph1 µ

11 5 2 Ph2 ζ

14 4 3 d0 κ

15 4 4 h3
0h4 ρ

16 2 8 h1h4 η∗

16 7 3 Pc0 ηρ

17 9 1 P 2h1 µ̄

18 2 9 h2h4 ν∗

19 3 9 c1 σ̄

19 9 2 P 2h2 ζ̄

20 4 8 g κ̄

22 8 3 Pd0 η2κ̄

23 4 10 h4c0 ση∗

23 9 5 h2
0i ρ̄

24 11 3 P 2c0 ηρ̄

25 13 1 P 3h1 µ25

27 13 2 P 3h2 ζ27

30 2 10 h2
4 θ4

31 5 13 n [n]

31 11 6 h10
0 h5 ρ31

32 2 12 h1h5 η5

32 4 13 d1 κ1

32 6 12 q [q]

32 15 3 P 3c0 ηρ31

33 4 14 p νθ4

t − s s g x y ∈ {x}

33 17 1 P 4h1 µ33

34 3 15 h0h2h5 α34

35 17 2 P 4h2 ζ35

36 6 14 t {t}
37 3 16 h2

2h5 α37

37 5 17 x σθ4

38 4 17 h2
0h3h5 α38

39 4 18 h5c0 α39

39 9 18 u [u]

39 17 5 h2
0P

2i ρ39

40 4 19 f1 α40

40 6 18 Ph1h5 [[Ph1h5]]

40 19 3 P 4c0 ηρ39

41 10 14 z ηκ̄2

41 21 1 P 5h1 µ41

42 6 20 Ph2h5 [[Ph2h5]]

43 21 2 P 5h2 ζ43

44 4 22 g2 κ̄2

45 3 20 h3
4

45 5 24 h5d0

45 9 20 w {w}
46 7 20 B1

46 8 20 N η2κ̄2

46 11 12 d05 η{w}
47 8 21 Ph5c0

47 10 16 e0r [e0r]

47 13 15 Pu 2[e0r]

47 20 4 h7
0Q ρ47

48 7 22 B2

48 23 3 P 5c0 ηρ47
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the element 23j39 of order 2 in π39(j). Let ρ39 ∈ π39(S) be detected by h2
0P

2i. Then
23ρ39 is the unique class 23y detected by h5

0P
2i, so e(23ρ39) = 23j39, e(ρ39)

.
= j39

and e(ηρ39) = ηj39 0= 0. Since ηρ39 has Adams filtration ≥ 18, it must be detected
by P 4c0.

(9) Choosing ρ39 ∈ {h2
0P

2i} as in the previous case, all later differentials on
a = Ph2h5 vanish because the possible targets h1P 4c0 and P 5h1 must detect
independent classes η2ρ39 and µ41, respectively, hence cannot be boundaries.

(10) To show that B2 is an infinite cycle we follow Isaksen [82, Lem. 4.93] and
use Moss’ Theorem 1.2 of [132], relating the Toda bracket 〈ν,σ, 2σθ4〉 in π∗(S)
to the Massey product 〈h2, h3, h0x〉 in E2(S). The infinite cycles h2 ∈ E1,4

2 (S),
h3 ∈ E1,8

2 (S) and h0x ∈ E6,43
2 (S) satisfy h2 · h3 = 0 and h3 · h0x = 0 in E2(S),

with h0x = d4(h3h5). They detect homotopy classes ν ∈ π3(S), σ ∈ π7(S) and
2σθ4 = 0 ∈ π37(S), respectively, which satisfy ν · σ = 0 and σ · 0 = 0 in π∗(S).
The hypotheses that must hold for Moss’ theorem to apply are that the groups
E0,11

3 (S) and En,45+n
8−n (S), for 0 ≤ n ≤ 5, consist of infinite cycles. This is readily

verified from Figures 11.11, 11.12 and 11.13. The Massey product 〈h2, h3, h0x〉
contains B2 = 722, as can be calculated with ext, and has indeterminacy spanned
by h2 · h0h5d0 = h2

0h5e0 = 723 = d2(h5f0). Moss’ theorem thus asserts that the
Toda bracket 〈ν,σ, 0〉 contains an element β48 ∈ π48(S) that is detected by B2 or
B2 +h2

0h5e0. Hence both of these elements are infinite cycles, with the same image
in E∞(S), and β48 ∈ {B2}. Since B2 cannot be a boundary, β48 0= 0. Isaksen
also notes that 〈ν,σ, 0〉 ⊂ π48(S) contains 0, hence is equal to ν · π45(S), so that
β48 = ν · β45 for some nonzero class β45 ∈ π45(S). A look at the h0-, h1- and
h2-multiplications in Figure 11.13 shows that β45 must be detected by h3

4, so there
is a hidden ν-extension from h3

4 to B2.
(See Remark 11.60 concerning the treatment in [166] and [21] of this fact.) !

Remark 11.60. We have chosen to write the element at bidegree (46, 11) as d05
rather than gj to focus on the important role of κ, detected by d0. Early work in
the subject called it gj and the following historical remark conforms to this usage.

The proof in [166, p. 583] that η{gj} 0= 0, which implies that there is a hidden η-
extension from gj to Pu, and that d6(B2) 0= Pu, is, unfortunately, circular. Tangora
assumes that η{gj} = 0 and appeals to Moss’ Theorem 1.2 of [132], relating the
Toda bracket 〈{gj}, η, ν〉 in π∗(S) to the Massey product 〈gj, h1, h2〉 = d0e0g in
E2(S), to obtain a contradiction. However, one of the hypotheses needed for this
case of Moss’ theorem is that B2 is an infinite cycle, in particular that d6(B2) = 0,
and one cannot apply the theorem before this has been established. Barratt, Jones
and Mahowald [21, Thm. 3.1] cite Tangora’s paper [166] for this result, and rely on
it for their account of the Adams differentials from topological degrees 48 and 49.
Fortunately, Isaksen’s argument reproduced above circumvents this hole in the logic.

11.8. Some homotopy groups of S

We can now calculate the graded commutative ring structure of the stable
homotopy groups of spheres, in an interesting range of degrees, using principally
the Adams spectral sequence methods that are available for the H∞ ring spectra S
and tmf . In Theorem 11.61 we calculate the additive and multiplicative structure of
π∗(S) for ∗ ≤ 44, implicitly completed at 2. To pass from E∞(S) to π∗(S) we must
solve the extension problems, i.e., identify the additive and multiplicative relations
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that are not directly visible in the associated graded of the Adams filtration. A
chart showing the hidden 2-, η- and ν-extensions for π∗(S) is given in Figure 11.14.

In Theorem 11.61, for each degree n ≤ 44 we first give the structure of πn(S)
as an abelian group. We then give the conditions defining the additive generators
that we have chosen. Thereafter we specify the products of the form a · x for a
indecomposable and x in our generating set. We omit explicit mention of products
in trivial groups, such as ην in π4(S). We also omit a · xy if the result is evident
from the values of a · x or a · y. Thus, for example, in π23(S) we do not mention
µ · σ2 = 0, because we have already stated that σ · µ = ηρ and σ · ρ = 0, so that
σ2µ = ησρ = 0. However, we do not require the reader to reverse relations from
earlier degrees to extract this information. Thus, for example, in π31(S) we do note
that ν · κ2 = 0, even though this is implied by the products ε · κ̄ = κ2 and ν · ε = 0.

In Remark 11.62 we give a quick overview of the history of stable stem calcula-
tions. We stop our detailed work at π44(S) because the group structure of π45(S)
involves a hidden 4-extension from h3

4 to h0h5d0, with a delicate proof [166, Part 2],
and relatively soon thereafter there is a d2-differential landing in degree 51 for which
the known proof [84] relies on motivic methods.

Our overall strategy is to specify classes in π∗(S) by their detecting classes
in E∞(S), together with their images under the Adams e-invariant e : π∗(S) →
π∗(j) and the tmf -Hurewicz homomorphism ι : π∗(S) → π∗(tmf), both of which
are ring homomorphisms. Table 11.3 lists representing homotopy classes in π∗(S)
for the algebra indecomposables in E∞(S), in our range. We use the customary
notation {x} to denote the set of all y ∈ π∗(S) that are detected by a given infinite
cycle x ∈ E∞(S), and refine this in two steps by setting [x] = {x} ∩ ker(e) and
[[x]] = [x] ∩ ker(ι). We write Z/n{y} for the cyclic group of order n generated by
a class y, and write y

.
= z to indicate that y is a multiple of z, and vice versa, so

that 〈y〉 = 〈z〉 as Z2-modules.

Theorem 11.61. The (implicitly 2-completed) stable homotopy groups πn(S)
for 0 ≤ n ≤ 44 have the following presentations. They satisfy the listed multiplica-
tive relations.

(0) π0(S) = Z;
2 ∈ {h0}.

(1) π1(S) = Z/2{η};
η = {h1};
e(η) = j1.

(2) π2(S) = Z/2{η2}.
(3) π3(S) = Z/8{ν};

ν ∈ {h2};
e(ν)

.
= j3, η · η2 = 4ν.

(4) π4(S) = 0.

(5) π5(S) = 0.

(6) π6(S) = Z/2{ν2}.
(7) π7(S) = Z/16{σ};

σ ∈ {h3};
e(σ)

.
= j7.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



11.8. SOME HOMOTOPY GROUPS OF S 461

(8) π8(S) = Z/2{ε} ⊕ Z/2{ησ};
ε = {c0};
e(ε) = ηj7.

(9) π9(S) = Z/2{µ} ⊕ Z/2{ηε} ⊕ Z/2{η2σ};
µ = {Ph1};
e(µ) = j9, ν · ν2 = ηε + η2σ.

(10) π10(S) = Z/2{ηµ};
η · ηε = 0, ν · σ = 0.

(11) π11(S) = Z/8{ζ};
ζ ∈ {Ph2};
e(ζ)

.
= j11, η · ηµ = 4ζ, ν · ε = 0.

(12) π12(S) = 0.

(13) π13(S) = 0.

(14) π14(S) = Z/2{κ} ⊕ Z/2{σ2};
κ = {d0};
ν · ζ = 0.

(15) π15(S) = Z/2{ηκ} ⊕ Z/32{ρ};
ρ ∈ {h3

0h4} with ερ = 0;
e(ρ)

.
= j15, η · σ2 = 0, σ · ε = 0.

(16) π16(S) = Z/2{ηρ} ⊕ Z/2{η∗};
ηρ = {Pc0}, η∗ ∈ {h1h4}, e(η∗) = 0;
η · ηκ = 0, σ · µ = ηρ, ε · ε = 0.

(17) π17(S) = Z/2{µ̄} ⊕ Z/2{η2ρ} ⊕ Z/2{νκ} ⊕ Z/2{ηη∗};
µ̄ = {P 2h1};
e(µ̄) = j17, ε · µ = η2ρ.

(18) π18(S) = Z/2{ηµ̄} ⊕ Z/8{ν∗};
ν∗ ∈ {h2h4}, e(ν∗) = 0;
η · ηη∗ = 4ν∗, ν · ρ = 0, σ · ζ = 0, µ · µ = ηµ̄.

(19) π19(S) = Z/8{ζ̄} ⊕ Z/2{σ̄};
ζ̄ ∈ {P 2h2}, σ̄ ∈ {c1}, e(σ̄) = 0;
e(ζ̄)

.
= j19, η · ηµ̄ = 4ζ̄, η · ν∗ = 0, ν · η∗ = 0, ε · ζ = 0.

(20) π20(S) = Z/8{κ̄};
κ̄ ∈ {g};
η · ζ̄ = 0, η · σ̄ = 0, ν · µ̄ = 0, ν · νκ = 4κ̄, µ · ζ = 0.

(21) π21(S) = Z/2{ηκ̄} ⊕ Z/2{νν∗};
σ · κ = 0, σ · σ2 = νν∗.

(22) π22(S) = Z/2{η2κ̄} ⊕ Z/2{νσ̄};
η2κ̄ = {Pd0};
ν · ζ̄ = 0, σ · ρ = 0, ε · κ = η2κ̄, ζ · ζ = 0.

(23) π23(S) = Z/16{ρ̄} ⊕ Z/8{νκ̄} ⊕ Z/2{ση∗};
ρ̄ ∈ {h2

0i}, 4νκ̄ ∈ {h1Pd0}, ση∗ ∈ {h4c0};
e(ρ̄)

.
= j23, ε · ρ = 0, µ · κ = 4νκ̄.
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(24) π24(S) = Z/2{ηρ̄} ⊕ Z/2{εη∗};
ηρ̄ = {P 2c0};
η · ση∗ = εη∗, ν · νν∗ = 0, σ · µ̄ = ηρ̄, µ · ρ = ηρ̄.

(25) π25(S) = Z/2{µ25} ⊕ Z/2{η2ρ̄};
µ25 = {P 3h1};
e(µ25) = j25, η · εη∗ = 0, ν · νσ̄ = 0, σ · ν∗ = 0, ε · µ̄ = η2ρ̄, µ · η∗ = 0,
ζ · κ = 0.

(26) π26(S) = Z/2{ηµ25} ⊕ Z/2{ν2κ̄};
ν · ρ̄ = 0, σ · ζ̄ = 0, σ · σ̄ = 0, ε · ν∗ = 0, µ · µ̄ = ηµ25, ζ · ρ = 0.

(27) π27(S) = Z/8{ζ27};
ζ27 ∈ {P 3h2};
e(ζ27)

.
= j27, η · ηµ25 = 4ζ27, σ · κ̄ = 0, ε · ζ̄ = 0, ε · σ̄ = 0, µ · ν∗ = 0,

ζ · η∗ = 0.

(28) π28(S) = Z/2{κ2};
η · ζ27 = 0, ν · µ25 = 0, ε · κ̄ = κ2, µ · ζ̄ = 0, µ · σ̄ = 0, ζ · µ̄ = 0.

(29) π29(S) = 0.

(30) π30(S) = Z/2{θ4};
θ4 = {h2

4};
ν · ζ27 = 0, σ · ρ̄ = 0, σ · ση∗ = 0, ζ · ζ̄ = 0, ζ · σ̄ = 0, κ · η∗ = 0, ρ · ρ = 0.

(31) π31(S) = Z/64{ρ31} ⊕ Z/2{[n]} ⊕ Z/2{ηθ4};
ρ31 ∈ {h10

0 h5}, [n] ∈ {n}, e([n]) = 0;
e(ρ31)

.
= j31, ν · κ2 = 0, ε · ρ̄ = 0, ζ · κ̄ = 0, κ · µ̄ = 0, ρ · η∗ = 0.

(32) π32(S) = Z/2{ηρ31} ⊕ Z/2{[q]} ⊕ Z/2{κ1} ⊕ Z/2{η5};
ηρ31 = {P 3c0}, [q] ∈ {q}, κ1 ∈ {d1}, η5 ∈ {h1h5}, e([q]) = e(κ1) =
e(η5) = 0, ι(κ1) = ι(η5) = 0, ν · η5 = 0;
η · [n] = 0, η · ηθ4 = 0, σ ·µ25 = ηρ31, µ · ρ̄ = ηρ31, κ · ν∗ = 0, ρ · µ̄ = ηρ31,
η∗ · η∗ = 0.

(33) π33(S) = Z/2{µ33} ⊕ Z/2{η2ρ31} ⊕ Z/2{η[q]} ⊕ Z/2{νθ4} ⊕ Z/2{ηη5};
µ33 = {P 4h1}, νθ4 ∈ {p};
e(µ33) = j33, η · κ1 = 0, ε · µ25 = η2ρ31, κ · ζ̄ = 0, κ · σ̄ = 0, ρ · ν∗ = 0,
η∗ · µ̄ = 0.

(34) π34(S) = Z/2{ηµ33} ⊕ Z/2{κκ̄} ⊕ Z/2{ν[n]} ⊕ Z/4{α34};
α34 ∈ {h0h2h5}, e(α34) = 0, η · α34 = 0;
η · η[q] = 0, η · ηη5 = 2α34, ν ·ρ31 = 0, σ · ζ27 = 0, µ ·µ25 = ηµ33, ζ · ρ̄ = 0,
ρ · ζ̄ = 0, ρ · σ̄ = 0, η∗ · ν∗ = 0, µ̄ · µ̄ = ηµ33.

(35) π35(S) = Z/8{ζ35} ⊕ Z/2{ηκκ̄} ⊕ Z/2{νκ1};
ζ35 ∈ {P 4h2};
e(ζ35)

.
= j35, η ·ηµ33 = 4ζ35, η ·α34 = 0, ν · [q] = ηκκ̄, ν ·η5 = 0, ε ·ζ27 = 0,

ρ · κ̄ = 0, η∗ · ζ̄ = 0, η∗ · σ̄ = 0, µ̄ · ν∗ = 0.

(36) π36(S) = Z/2{{t}};
η · ζ35 = 0, ν · µ33 = 0, ν · νθ4 = 0, µ · ζ27 = 0, ζ · µ25 = 0, η∗ · κ̄ = 0,
µ̄ · ζ̄ = 0, µ̄ · σ̄ = 0, ν∗ · ν∗ = 0.
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(37) π37(S) = Z/2{σθ4} ⊕ Z/2{α37};
σθ4 = {x}, α37 ∈ {h2

2h5}, η · α37 = 0;
η · {t} = 0, ν · κκ̄ = 0, ν · ν[n] = 0, ν · α34 = 0, κ · ρ̄ = 0, µ̄ · κ̄ = 0,
ν∗ · ζ̄ = 0, ν∗ · σ̄ = 0.

(38) π38(S) = Z/2{ησθ4} ⊕ Z/4{α38};
ησθ4 = {h1x}, α38 ∈ {h2

0h3h5};
η · α37 = 0, ν · ζ35 = 0, ν · νκ1 = ησθ4, σ · ρ31 = 0, σ · [n] = ησθ4,
ε · θ4 = ησθ4, ζ · ζ27 = 0, ρ · ρ̄ = 0, ν∗ · κ̄ = ησθ4, ζ̄ · ζ̄ = 0, ζ̄ · σ̄ = 0,
σ̄ · σ̄ = ησθ4.

(39) π39(S) = Z/16{ρ39} ⊕ Z/2{[u]} ⊕ Z/2{ν{t}} ⊕ Z/2{σκ1} ⊕ Z/2{α39}
⊕ Z/2{ση5};

ρ39 ∈ {h2
0P

2i}, [u] ∈ {u}, α39 ∈ {h5c0}, e([u]) = e(α39) = 0, ι(α39) = 0;
e(ρ39)

.
= j39, η ·α38 = ν{t}, σ · [q] = ν{t}, ε ·ρ31 = 0, ε · [n] = 0, µ ·θ4 = 0,

κ · µ25 = 0, η∗ · ρ̄ = 0, ζ̄ · κ̄ = 0, σ̄ · κ̄ = ν{t}.
(40) π40(S) = Z/2{ηρ39}⊕Z/4{κ̄2}⊕Z/2{[[Ph1h5]]}⊕Z/2{ηα39}⊕Z/2{α40}

⊕ Z/2{ηση5};
ηρ39 = {P 4c0}, 2κ̄2 ∈ {h1u}, [[Ph1h5]] ∈ {Ph1h5}, α40 ∈ {f1},
e([[Ph1h5]]) = e(α40) = 0, ι([[Ph1h5]]) = ι(α40) = 0, η2 · α40 = 0;
η · [u] = 2κ̄2, ν ·α37 = ηα39 + ηση5, σ · µ33 = ηρ39, ε · [q] = 2κ̄2, ε ·κ1 = 0,
ε · η5 = ηα39, µ · ρ31 = ηρ39, µ · [n] = 0, ρ · µ25 = ηρ39, µ̄ · ρ̄ = ηρ39.

(41) π41(S) = Z/2{µ41} ⊕ Z/2{η2ρ39} ⊕ Z/2{ηκ̄2} ⊕ Z/2{η[[Ph1h5]]}
⊕ Z/2{ηα40};

µ41 = {P 5h1}, ηκ̄2 ∈ {z};
e(µ41) = j41, η · ηα39 = 0, η · ηση5 = 0, ν · α38 = 0, σ · α34 = ηα40,
ε · µ33 = η2ρ39, µ · [q] = 0, µ · κ1 = 0, µ · η5 = η[[Ph1h5]], ζ · θ4 = 0,
κ · ζ27 = 0, η∗ · µ25 = 0, ν∗ · ρ̄ = 0.

(42) π42(S) = Z/2{ηµ41} ⊕ Z/2{κ3} ⊕ Z/8{[[Ph2h5]]};
[[Ph2h5]] ∈ {Ph2h5}, e([[Ph2h5]]) = 0, ι([[Ph2h5]]) = 0;
η·ηκ̄2 = κ3, η·η[[Ph1h5]] = 4[[Ph2h5]], η·ηα40 = 0, ν ·ρ39 = 0, ν ·[u] = κ3,
ν · ν{t} = 0, ν ·α39 = 0, σ · ζ35 = 0, ε ·α34 = 0, µ · µ33 = ηµ41, ζ · ρ31 = 0,
ζ · [n] = 0, ρ · ζ27 = 0, µ̄ · µ25 = ηµ41, ζ̄ · ρ̄ = 0, σ̄ · ρ̄ = 0.

(43) π43(S) = Z/8{ζ43};
ζ43 ∈ {P 5h2};
e(ζ43)

.
= j43, η · ηµ41 = 4ζ43, η · κ3 = 0, η · [[Ph2h5]] = 0, ν · κ̄2 = 0,

ν · [[Ph1h5]] = 0, ν ·α40 = 0, σ · {t} = 0, ε · ζ35 = 0, µ ·α34 = 0, ζ · [q] = 0,
ζ · κ1 = 0, ζ · η5 = 0, η∗ · ζ27 = 0, ν∗ · µ25 = 0, κ̄ · ρ̄ = 0.

(44) π44(S) = Z/8{κ̄2};
κ̄2 ∈ {g2};
η · ζ43 = 0, ν ·µ41 = 0, σ ·σθ4 = 4κ̄2, σ ·α37 = 4κ̄2, ε · {t} = 0, µ · ζ35 = 0,
ζ · µ33 = 0, κ · θ4 = 0, µ̄ · ζ27 = 0, ζ̄ · µ25 = 0, σ̄ · µ25 = 0.

Remark 11.62. Building on L.E.J. Brouwer’s notion of degree [34], Heinz
Hopf [71] showed that the homotopy classes of maps Sm → Sm are in one-to-one
correspondence with the integers, for each m ≥ 1. It follows that the homotopy
groups πn+m(Sm), as defined by Eduard Čech [48] and Witold Hurewicz [79], are
trivial for n < 0 and isomorphic to Z for n = 0. Hopf [72] also introduced his
invariant π2m−1(Sm) → Z, for even m, showing that the fibrations η : S3 → S2,
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ν : S7 → S4 and σ : S15 → S8 are essential. Hans Freudenthal [60] recognized
the role of the stable group πn(S) = colimm πn+m(Sm), known as the n-stem,
and calculated π1(S). Lev Pontryagin [140] and George Whitehead [178] deter-
mined π2(S). Hirosi Toda [168] and Jean-Pierre Serre [152], [153] calculated πn(S)
for 3 ≤ n ≤ 5, using composition methods and cohomology of Postnikov systems,
respectively, while Vladimir Rokhlin [147] obtained π3(S) by manifold-geometric
methods. Thereafter Serre [154] calculated the groups πn(S) for 6 ≤ n ≤ 8, and
Toda [169], [170] obtained the groups for 9 ≤ n ≤ 13. Toda’s results were extended
to the range n ≤ 19 in his book [171]. Mamoru Mimura and Toda [130] calculated
π20(S), and Mimura [129] then obtained π21(S) and π22(S), including the salient
fact that εκ 0= 0 in the latter group.

By this time the Adams spectral sequence [2] was available as a new tool, and
Peter May [117] calculated enough of its E2-term to obtain the correct groups for
n ≤ 28, except for n = 23. Mark Mahowald and Martin Tangora [107] showed
how Mimura’s fact implied hidden 2-, η- and ν-extensions in the range 20 ≤ n ≤
23. They proceeded to calculate the groups for n ≤ 37 and n ∈ {39, 42, 43, 44},
except that they missed the three differentials d2(c2) = h0f1, d3(h2h5) = h0p and
d3(e1) = h1t, which affected the results for n ∈ {33, 34, 37, 38, 40, 41}. The first two
of these differentials were corrected by Michael Barratt, Mahowald and Tangora
in [22, Cor. 3.3.6], and by Milgram in [122, Cor. 6.5.2], giving a calculation for
n ≤ 44, except for n ∈ {37, 38}. Tangora [166, Thm. on p. 583] determined the
group structure of π45(S), which entails a hidden 4-extension from h3

4 to h0h5d0,
cf. [21, Thm. 3.3]. The third differential was corrected by the first author in [40],
giving π37(S) and π38(S).

For odd primes p, with q = 2p − 2, Toda [172], [173] introduced extended
powers to calculate the p-primary torsion in πn(S) for n ≤ (p2 +2p)q− 4. At p = 3
these results were extended to n ≤ 103 by Osamu Nakamura [134] and Tangora
[167], and to n ≤ 108 by Douglas Ravenel [144] using the Adams–Novikov spectral
sequence, but see [28, Add. on p. 12] for a possible inconsistency. For p ≥ 5,
Marc Aubry [17] obtained a full calculation for n < (3p2 +4p)q, and Ravenel [144]
extended this range to n < 1000 for p = 5. Our odd-primary understanding of
πn(S) thus goes well beyond our 2-primary knowledge.

Stanley Kochman [87] used computer calculations with an Atiyah–Hirzebruch
spectral sequence to calculate the 2-primary part of πn(S) in the range 46 ≤ n ≤ 53,
except for n = 51, and for 58 ≤ n ≤ 60. A mistake for n = 55 was resolved with
Mahowald in [88], giving the correct groups π54(S) and π55(S). Adams differentials
d2(D1) = h2

0h3g2 and d3(Q2) = gt, landing in the 51- and 56-stems, respectively,
were established by Daniel Isaksen and Zhouli Xu in [84], and Isaksen in [82],
using the motivic weight grading as a new ingredient. Guozhen Wang and Xu
then obtained an Adams differential d3(D3) = B3 landing in the 60-stem [174],
and resolved the group structure of π51(S) in [175]. At this point, the group
structure of πn(S) was known for all n ≤ 61. Combining the motivic method with
machine calculation of the Adams–Novikov E2-term, Isaksen, Wang and Xu [83]
have recently made extensive new calculations in the range 62 ≤ n ≤ 90. This
brings them close to degree 93, where one can optimistically hope to prove that the
Toda bracket 〈θ5, 2, θ4〉 contains zero, which, according to [174, Rem. 1.11], would
suffice to prove the existence of θ6 ∈ {h2

6} ⊂ π126(S), the last potential Kervaire
invariant one element [69].
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Proof of Theorem 11.61. (0) The E∞-term for t−s = 0 is additively gener-
ated by hi

0 for i ≥ 0. Hence π0(S) ∼= Z is generated by the identity map 1: S → S,
and the stable class 2: S → S of the real Hopf fibration S1 → S1 is detected by h0.

(1) The E∞-term for t − s = 1 is generated by h1. Hence π1(S) = Z/2{η}
is generated by the stable class of the complex Hopf fibration S3 → S2, which is
detected by h1. Its e-invariant j1 generates π1(j) = Z/2. The relation h0h1 = 0
implies that 2η and 0 agree modulo Adams filtration ≥ 3, hence these classes are
equal.

(2) The E∞-term for t − s = 2 is generated by h2
1. Hence π2(S) = Z/2{η2} is

generated by η2, which is detected by h2
1. Its e-invariant ηj1 generates π2(j) = Z/2.

(3) The E∞-term for t − s = 3 is generated by h2, h0h2 and h2
0h2. Hence

π3(S) = Z/8{ν} is generated by the stable class of the quaternionic Hopf fibration
S7 → S4, which is detected by h2. Its e-invariant is an odd multiple of j3, and
generates π3(j) = Z/8. The relation h3

1 = h2
0h2 implies that η3 and 4ν agree modulo

Adams filtration ≥ 4, hence these classes are equal.
(4) The E∞-term for t − s = 4 is trivial. Hence π4(S) = 0 and ην = 0.
(5) The E∞-term for t − s = 5 is trivial. Hence π5(S) = 0.
(6) The E∞-term for t − s = 6 is generated by h2

2. Hence π6(S) = Z/2{ν2} is
generated by ν2, which is detected by h2

2. Clearly e(ν2) = 0, since π6(j) = 0.
(7) The E∞-term for t − s = 7 is generated by hk

0h3 for k ∈ {0, 1, 2, 3}. Hence
π7(S) = Z/16{σ} is generated by the stable class of the octonionic Hopf fibration
S15 → S8, which is detected by h3. Its e-invariant is an odd multiple of j7, and
generates π7(j) = Z/16. The product η · ν2 is zero, since ην = 0.

(8) The E∞-term for t − s = 8 is generated by h1h3 and c0, detecting ησ
and ε, respectively. The Adams filtration splits, since 2 · ησ = 0, so that π8(S) =
Z/2{ε} ⊕ Z/2{ησ}. Here e(ησ) = ηj7 generates π8(j) = Z/2. We postpone the
proof that e(ε) = ηj7 to the next case. Once that is established, we know that
ker(e) = Z/2{ε + ησ} ⊂ π8(S). (Toda [171] uses the notation ν̄ for ε + ησ.)

(9) The E∞-term for t − s = 9 is generated by h2
1h3, h1c0 and Ph1, detecting

η2σ, ηε and µ = µ9, respectively. Since 2 · ηε = 0 and 2 · η2σ = 0 we have π9(S) =
Z/2{µ}⊕Z/2{ηε}⊕Z/2{η2σ}. By construction e(µ) = j9, while e(η2σ) = η2j7, and
these classes generate π9(j) = Z/2{j9}⊕Z/2{η2j7}. The relation h3

2 = h2
1h3 implies

that ν3 and η2σ agree modulo Adams filtration ≥ 4, so that ν3 = xµ + yηε + η2σ,
for some x, y ∈ {0, 1}. Since e(ν3) = νe(ν2) = 0, we must have e(xµ+yηε+η2σ) =
xj9 + yηe(ε) + η2j7 = 0. It follows that x = 0, y = 1 and ηe(ε) = η2j7. Hence
e(ε) = ηj7, and ν · ν2 = ηε + η2σ.

(10) The E∞-term for t − s = 10 is generated by h1Ph1. Hence π10(S) =
Z/2{ηµ} is generated by ηµ, which is detected by h1Ph1. Its e-invariant ηj9 gener-
ates π10(j) = Z/2. Since e(η2ε) = η3j7 = 0 and e(νσ)

.
= νj7 = 0, cf. Lemma 11.46,

we must have η · ηε = 0 and ν · σ = 0.
(11) The E∞-term for t − s = 11 is generated by Ph2, h0Ph2 and h2

0Ph2,
detecting ζ, 2ζ and 4ζ, respectively. Hence π11(S) = Z/8{ζ}. This determines ζ
up to an odd multiple. Its e-invariant is j11, up to an odd multiple, and generates
π11(j) = Z/8. The relation h2

1Ph1 = h2
0Ph2 implies that η2µ and 4ζ agree modulo

Adams filtrations ≥ 8, hence are equal. It follows that ν · ε = 0, since e(νε) =
ηνj7 = 0 and e : π11(S) → π11(j) is an isomorphism.

(12) The E∞-term for t − s = 12 is trivial. Hence π12(S) = 0, so that ηζ = 0
and νµ = 0.
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(13) The E∞-term for t − s = 13 is trivial. Hence π13(S) = 0.
(14) The E∞-term for t − s = 14 is generated by h2

3 and d0, detecting σ2

and κ, respectively. Since 2σ2 = 0 by the graded commutativity of π∗(S) (a simple
consequence of its H∞ ring structure), we have π14(S) = Z/2{κ}⊕Z/2{σ2}. Clearly
e(κ) = 0, since π14(j) = 0. The product ν · ζ is detected by h2Ph2 = 0 modulo
Adams filtration ≥ 7, hence is zero.

(15) The E∞-term for t − s = 15 is generated by hk
0h4 for k ∈ {3, 4, 5, 6, 7}

and h1d0, with h3
0h4 detecting ρ and h1d0 detecting ηκ. Since 2 · ηκ = 0 we have

π15(S) = Z/2{ηκ} ⊕ Z/32{ρ}. This determines ρ modulo ηκ and even multiples
of ρ. We shall fix a more specific choice of ρ by asking that ε · ρ = 0 in π23(S), or
by asking that ι(ρ) = 0 in π15(tmf) ∼= Z/2{ηκ}. These conditions determine ρ up
to an odd multiple, and are equivalent.

To see that a choice of ρ in ker(ι) satisfies ερ = 0 (and ρκ̄ = 0), we can use the
homotopy cofiber sequence

S
ι−→ tmf

i−→ tmf/S
j−→ ΣS

and the calculation of E2(tmf/S) and E3(tmf/S) given in Figures 11.27 and 11.28.

The Adams differential d2(h4) = h0h2
3 lifts to differentials d2(hk

0 h̃4) = h1+k
0 h3h̃3

for 0 ≤ k ≤ 2, so that a generator α of π16(tmf/S) ∼= Z is detected by h3
0h̃4, with

j(α) ∈ π15(S) detected by h3
0h4. Setting ρ = j(α) we obtain ι(ρ) = 0. Furthermore,

ε · α = 0 and κ̄ · α = 0, since these products have finite order and Adams filtration
≥ 6, and E∞(tmf/S) contains no h0-power torsion in topological degrees 24 and 36
and Adams filtrations ≥ 5.

Conversely, once we know that ηεκ 0= 0 in π23(S), cf. case (23) below, it will
be clear that any choice of ρ with ερ = 0 will also satisfy ι(ρ) = 0. (Alternatively,
a specific choice can be made using the classical J-homomorphism J : π∗(SO) →
π∗(S), by declaring ρ to be the image of a generator of π15(SO). This is consistent
with the condition ε · ρ = 0, because ε can be realized unstably to act naturally on
π15 of spaces, and will then map a generator of π15(SO) to zero.)

We have e(ηκ) = ηe(κ) = 0, so by the surjectivity of the e-invariant, cf. Re-
mark 11.48, the class e(ρ) generates π15(j) = Z/32, hence is an odd multiple of j15.
We showed that η ·σ2 = 0 in Proposition 11.34, using the quadratic construction on
σ : S7 → S. From e(σε) = ησj7 = 0 in π15(j) we deduce that σ·ε ∈ ker(e) = {0, ηκ}.
One way to show that σε 0= ηκ is to use that multiplication by κ̄ ∈ {g} satisfies
κ̄ · σ = 0, since e(σκ̄) = 0, and κ̄ · ηκ ∈ {h1d0g} 0= 0. Another way is to use that
ι : π∗(S) → π∗(tmf) satisfies ι(σ) = 0 and ι(ηκ) = {h1d0} 0= 0. Either way the
conclusion is that σε = 0.

(16) The E∞-term for t− s = 16 is generated by h1h4 and Pc0. We know that
ηρ is nonzero, since e(ηρ) = ηj15 generates π16(j) = Z/2, and that it is detected
modulo Adams filtration ≥ 6 by h1 ·h3

0h4 = 0. Thus Pc0 must detect ηρ, and there
is a hidden η-extension from h3

0h4 to Pc0. The class η∗ = η4 ∈ {h1h4} is determined
modulo ηρ, and we choose η∗ so that e(η∗) = 0, cf. Remark 11.37. Since e is split
surjective, it follows that π16(S) = Z/2{ηρ} ⊕ Z/2{η∗}, with 2η∗ = 0.

The products η ·ηκ, σ ·µ and ε ·ε lie in Adams filtration ≥ 6, hence are detected
by e. We have e(η2κ) = η2e(κ) = 0, e(σµ) = j7j9 = ηj15, and e(ε2) = η2j2

7 = 0,
the latter two by Proposition 11.49. Hence η2κ = 0, σµ = ηρ and ε2 = 0.

(17) The E∞-term for t − s = 17 is generated by h2
1h4, h2d0, h1Pc0 and

P 2h1, detecting ηη∗ = ηη4, νκ, η2ρ and µ̄ = µ17, respectively. Here e(ηη∗) = 0,
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e(νκ) = 0 and e(η2ρ) = η2j15, by η- and ν-linearity of e, while e(µ̄) = j17 by
the construction of µ̄. Hence ker(e) = Z/2{νκ} ⊕ Z/2{ηη∗}, so that π17(S) =
Z/2{µ̄}⊕Z/2{η2ρ}⊕Z/2{νκ}⊕Z/2{ηη∗}. Clearly ν ·σ2 = 0, σ ·ηµ = η ·σµ = η2ρ,
ε · ηε = η · ε2 = 0 and ε · η2σ = 0. The product ε · µ in Adams filtration ≥ 8 is
detected by e, with e(ε · µ) = ηj7j9 = η2j15, hence equals η2ρ.

(18) The E∞-term for t − s = 18 is generated by h2h4, h0h2h4, h2
0h2h4 and

h1P 2h1, detecting ν∗, 2ν∗, 4ν∗ and ηµ̄, respectively. Since e(ηµ̄) = ηj17 generates
π18(j) we can and will choose ν∗ so that e(ν∗) = 0. This determines ν∗ up to an
odd multiple, ker(e) = Z/8{ν∗}, and π18(S) = Z/2{ηµ̄} ⊕ Z/8{ν∗}. The Adams
filtration ≥ 5 part of π18(S) is thus detected by e. From h3

1h4 = h2
0h2h4 we

deduce that the difference between η2η∗ and 4ν∗ is detected by e. Since e(η∗) = 0
and e(ν∗) = 0 it follows that this difference is zero. From e(ν · ρ) = νj15 = 0,
e(σ · ζ) = j7j11 = 0, e(µ2) = j2

9 = ηj17 = e(ηµ̄) and e(η · η2ρ) = η3j15 = 0, we see
that ν · ρ = σ · ζ = η · η2ρ = 0 while µ2 = ηµ̄.

(19) The E∞-term for t−s = 19 is generated by c1, P 2h2, h0P 2h2 and h2
0P

2h2.
Let ζ̄ in π19(S) be detected by P 2h2. Then 4ζ̄ is detected by h2

0P
2h2 = h2

1P
2h1,

hence is equal to η2µ̄, with e(4ζ̄) = η2j17 = 4j19 in π19(j) = Z/8. It follows
that e(ζ̄)

.
= j19, so we can and will choose σ̄ ∈ π19 to be detected by c1 and to

satisfy e(σ̄) = 0. This uniquely determines σ̄, with ker(e) = Z/2{σ̄} and π19(S) =
Z/8{ζ̄}⊕Z/2{σ̄}. The Adams filtration ≥ 4 part of π19(S) is detected by e : S → j.
Hence η · ν∗ = 0, since h1 · h2h4 = 0 and e(ν∗) = 0. Similarly, ν · η∗ = 0 because
h2 · h1h4 = 0 and e(η∗) = 0. Clearly ν · ηρ = 0. Finally, ε · ζ = 0 because
e(ε · ζ) = ηj7j11 = 0.

(20) The E∞-term for t−s = 20 is generated by g, h0g and h2
0g. Let κ̄ ∈ π20(S)

be detected by g. This determines κ̄ up to an odd multiple. Trivially e(κ̄) = 0,
since π20(j) = 0. The product η · ζ̄ lies in Adams filtration ≥ 10, hence is zero. We
showed that η · σ◦ = 0 in Proposition 11.35, using the quadratic construction on
ε : S8 → S. Both σ̄ and σ◦ are detected by c1, so σ̄ ≡ σ◦ mod ζ̄, which implies
η · σ̄ = η ·σ◦ = 0. Multiplication by ν is clearly trivial on ηη∗ and η2ρ. The relation
h2

2d0 = h2
0g in E2(S), and the fact that π20(S) is trivial in Adams filtrations ≥ 7,

imply that ν · νκ = 4κ̄. Similarly ν · µ̄ = 0 and µ · ζ = 0, because these products
land in Adams filtration ≥ 10.

(21) The E∞-term for t − s = 21 is generated by h2
2h4 and h1g, detecting νν∗

and ηκ̄, respectively. In view of the relation h3
3 = h2

2h4, this class also detects σ3,
with 2σ3 = 2σ2 ·σ = 0. Hence π21(S) = Z/2{ηκ̄}⊕Z/2{νν∗}. The product σ · κ is
detected modulo Adams filtrations ≥ 6 by h3d0 = 0. These filtrations are trivial,
so σκ = 0. We postpone the proof that σ · σ2 = νν∗ until we have established
η2κ̄ 0= 0, in the next case.

(22) The E∞-term for t − s = 22 is generated by h2c1 and Pd0, with νσ̄
detected by h2c1. By Theorem 11.71 below, due to Mimura [129] and Mahowald–
Tangora [107], the product η2κ̄ is detected by Pd0. Since 2σ̄ = 0, we must have
2 · νσ̄ = 0 and π22(S) = Z/2{η2κ̄} ⊕ Z/2{νσ̄}. There is thus a hidden η-extension
from h1g to Pd0. Clearly η · ηκ̄ = η2κ̄, η · νν∗ = 0 and ν · σ̄ = νσ̄. The products
ν · ζ̄ and ζ ·ζ lie in Adams filtration ≥ 10, hence vanish. We can prove that σ ·ρ = 0
using ι : S → tmf . The product has Adams filtration ≥ 5, hence is either 0 or η2κ̄.
The latter class remains nonzero in π22(tmf), cf. Theorem 9.16, while ι(σ) = 0.
Hence σρ cannot be η2κ̄. (Alternatively, one can prove that σ · ρ = 0 using the
J-homomorphism J : π∗(SO) → π∗(S), since σ acts naturally on πn of spaces for
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n ≥ 8 by composition with the Hopf fibration S15 → S8, J maps a generator of
π15(SO) to ρ, and π22(SO) = 0.)

We postpone the proof that ε · κ = η2κ̄, giving a hidden ε-extension from d0

to Pd0, until the next case.
Returning to π21(S), the relation h3

3 = h2
2h4 implies that the difference between

σ3 and νν∗ has Adams filtration ≥ 4, i.e., is either 0 or ηκ̄. From η ·σ2 = 0, η ·ν = 0
and η · ηκ̄ 0= 0 it follows that the difference is zero, so that σ · σ2 = νν∗.

(23) The E∞-term for t − s = 23 is generated by h4c0, h2g, h0h2g, h1Pd0 and
hk

0i for k ∈ {2, 3, 4, 5}, with h2g detecting νκ̄ and h2
0i detecting ρ̄. It follows that

2νκ̄ is detected by h0h2g. Furthermore, 4νκ̄ = η · η2κ̄ is detected by h1 · Pd0 0= 0.
Hence there is a hidden 2-extension from h0h2g to h1Pd0, and a hidden ν-extension
from h2

0g to h1Pd0.
We claim that ση∗ is detected by h4c0, so that there is a hidden σ-extension

from h1h4 to h4c0. The proof is similar to that of Theorem 11.54, case (8), using
the Adams spectral sequence for Cσ. See Figure 11.15. The Adams differen-

tial d2(h4) = h0h2
3 for S lifts to d2(h4) = h0h2

3 for Cσ. Multiplying by h1 gives

d2(h1h4) = h1h0h2
3. A calculation with ext shows that h1h0h2

3 = i(h4c0) = 413 0= 0.
We now compare with Adams filtrations ≤ 4.

E2(S)
i !!

""

E2(Cσ)

""

E2(S0,5)
i∧1 !! E2(S0,5 ∧ Cσ)

The infinite cycle h4c0 ∈ E2(S0,5) detects a nonzero class γ ∈ π23(S0,5). Since
i(h4c0) is a boundary in E2(S0,5∧Cσ), the image i(γ) ∈ π23(S0,5∧Cσ) must be zero,
so that γ = σ ·β for some nonzero class β ∈ π16(S0,5). The only possibility is that β
is the image of η∗ ∈ π16(S), detected by h1h4. Hence σ ·η∗ ∈ π23(S) maps to γ, and
must be detected by h4c0. The hidden σ-extension from h1h4 to h4c0 follows. From
2η∗ = 0 we deduce 2 · ση∗ = 0. Thus π23(S) = Z/16{ρ̄} ⊕ Z/8{νκ̄} ⊕ Z/2{ση∗}.

The class ρ̄ ∈ {h2
0i} is well-defined up to an odd multiple. (A more specific

choice can be made using the J-homomorphism, by taking ρ̄ to be the image of
a generator of π23(SO).) We have e(νκ̄) = νe(κ̄) = 0 and e(ση∗) = σe(η∗) = 0,
so by the surjectivity of e, cf. Remark 11.48, e(ρ̄) generates π23(j) = Z/16. We
chose ρ ∈ π15(S) so as to satisfy ερ = 0. The product µ ·κ is detected by Ph1 ·d0 =
h1Pd0 0= 0 (verified by ext), and e(µ · κ) = µe(κ) = 0, which together imply
µ · κ = 4νκ̄. Returning to π22(S), it follows from ν2κ = 4κ̄ that ν3 · κ = 4νκ̄
is detected by h1Pd0. Since η2σ · κ = 0, it follows from ν3 = ηε + η2σ that
ηε ·κ = 4νκ̄ 0= 0. In particular, εκ 0= 0. Since this product lives in Adams filtration
≥ 7, it can only be detected by Pd0, hence is equal to η2κ̄.

Finally, let us note that since ε · ηκ 0= 0, the condition ερ = 0 from case (15)
characterizes ρ, up to an odd multiple, in the same way as the condition ι(ρ) = 0.

(24) The E∞-term for t − s = 24 is generated by h1h4c0 and P 2c0, detecting
εη∗ and ηρ̄, respectively. The latter claim holds since e(ηρ̄) = ηj23 0= 0, and ηρ̄ has
Adams filtration ≥ 10. Thus π24(S) = Z/2{ηρ̄} ⊕ Z/2{εη∗}.

To see that η·ση∗ = εη∗ note that both homotopy classes are detected by h1h4c0

and lie in ker(e). This implies the claim, since e detects their possible difference,
ηρ̄ = {P 2c0}. We have ν · νν∗ = 0, since νν∗ = σ3 and νσ = 0. The products σ · µ̄

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



11.8. SOME HOMOTOPY GROUPS OF S 469

and µ · ρ have Adams filtration ≥ 9, hence are detected by their e-invariants. Since
e(σµ̄) = j7j17 = ηj23 and e(µρ) = j9j15 = ηj23, both of these products equal ηρ̄.

(25) The E∞-term for t − s = 25 is generated by h1P 2c0 and P 3h1, detecting
η2ρ̄ and µ25, respectively. Hence π25(S) = Z/2{µ25} ⊕ Z/2{η2ρ̄}. By construction
e(µ25) = j25, while e(η2ρ̄) = η2j23. Thus ker(e) = 0 in degree 25.

We have η · εη∗ = 0, ν · νσ̄ = 0, σ · ν∗ = 0, ε · µ̄ = ησ · µ̄ = η2ρ̄, µ · η∗ = 0 and
ζ ·κ = 0 since e(η∗) = 0, e(σ̄) = 0, e(ν∗) = 0, e(ε) = e(ησ), e(η∗) = 0 and e(κ) = 0,
respectively.

(26) The E∞-term for t−s = 26 is generated by h2
2g and h1P 3h1, detecting ν2κ̄

and ηµ25, respectively. Thus π26(S) = Z/2{ηµ25}⊕Z/2{ν2κ̄}. Here e(ηµ25) = ηj25
and e(ν2κ̄) = 0. Products in Adams filtration ≥ 7 are detected by the e-invariant.
Thus ν · ρ̄ = 0, σ · ζ̄ = 0, µ · µ̄ = ηµ25 and ζ · ρ = 0, since e(ν · ρ̄) = νj23 = 0,
e(σ · ζ̄) = j7j19 = 0, e(µ · µ̄) = j9j17 = ηj25 and e(ζ · ρ) = j11j15 = 0.

To show that the product σ · σ̄ is zero we use Toda brackets and Moss’ the-
orem. As can be verified with ext, the Massey product 〈h2, h1, h2

3〉 is c1 with no
indeterminacy. The groups Es,t

2 (S) vanish for (s, t) = (0, 5), (0, 16) and (1, 17),
so [132, Thm. 1.2] applies to show that the Toda bracket 〈ν, η,σ2〉, which has no
indeterminacy, is an element in {c1}. Since σζ̄ = 0, it follows that σσ̄ = σ〈ν, η,σ2〉.
By the shuffle relation [171, (3.6)] for Toda brackets, σ〈ν, η,σ2〉 = 〈σ, ν, η〉σ2 = 0,
since 〈σ, ν, η〉 ∈ π12(S) = 0.

We showed in Proposition 11.34 that εν◦ is an η2-multiple. Since ν∗
.
= ν◦, this

shows that ε · ν∗ ∈ η2 · π24(S) = 0, which we now know only contains zero. Hence
εν∗ = 0. (Alternatively, this can be deduced from Moss’ theorem: The Massey
product 〈h3, h2, h3〉 is h2h4 with no indeterminacy. The group E0,11

3 (S) vanishes,
so h2h4 detects an element of 〈σ, ν,σ〉. Since ε · ηµ̄ = 0 and 2ε = 0 it follows that
εν∗ = ε〈σ, ν,σ〉. The shuffle relation ε〈σ, ν,σ〉 = −〈ε,σ, ν〉σ then implies that εν∗ is
a σ-multiple, hence must be 0.)

(27) The E∞-term for t − s = 27 is generated by P 3h2, h0P 3h2 and h2
0P

3h2,
with ζ27 detected by P 3h2. Thus π27(S) = Z/8{ζ27} and e(ζ27)

.
= j27, so that

ker(e) = 0 in degree 27. It follows that η · ηµ25 = 4ζ27, σ · κ̄ = 0, ε · ζ̄ = ησ · ζ̄ = 0,
ε · σ̄ = 0, µ · ν∗ = 0 and ζ · η∗ = 0, because e(η2µ25) = η2j25 = 4j27, e(κ̄) = 0,
e(ε) = e(ησ), e(σ̄) = 0, e(ν∗) = 0 and e(η∗) = 0, respectively.

(28) The E∞-term for t − s = 28 is generated by d2
0, detecting κ2. Hence

π28(S) = Z/2{κ2}. We have η · ζ27 = 0, ν · µ25 = 0, µ · ζ̄ = 0, µ · σ̄ = 0 and ζ · µ̄ =
0, since these products have Adams filtration ≥ 9. The case of µ · σ̄ uses that
Ph1 · c1 = 0, as can be checked with ext.

On the other hand, ε · κ̄ = κ2, since εκ = η2κ̄ = {Pd0} implies εκκ̄ = η2κ̄2 ∈
{Pd0g} where Pd0 ·g = d3

0 0= 0 in E∞(S). Hence εκ̄ 0= 0, and κ2 is the only possible
value. This calculation also shows that ηκ̄2 must have Adams filtration between 9
and 11, since κ̄2 ∈ {g2}. The only possible detecting class is z, which proves that
there are hidden η-extensions from g2 to z and from z to d3

0.
(29) The E∞-term for t − s = 29 is trivial. Hence π29(S) = 0.
(30) The E∞-term for t − s = 30 is generated by h2

4, detecting the Kervaire
invariant one class θ4. Each product of lower-degree classes landing in π30(S) has
Adams filtration ≥ 3, hence is zero.

(31) The E∞-term for t − s = 31 is generated by h1h2
4, n and hk

0h5 for k ∈
{10, 11, . . . , 15}, with h1h2

4 detecting ηθ4 and h10
0 h5 detecting ρ31. The class ρ31

is determined up to an odd multiple. (A more specific choice can be made using
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the J-homomorphism, by taking ρ31 to be the image of a generator of π31(SO).)
In the proof of Theorem 11.54, case (6), we showed that {x5} = {h15

0 h5} maps to
25j31 ∈ π31(j) = Z/64, which implies that e(ρ31)

.
= j31. It follows that we can

choose an element [n] ∈ {n} with e([n]) = 0, and this uniquely determines [n] in
ker(e) ⊂ π31(S). Clearly ηθ4 and [n] have order 2, while ρ31 has order 64.

The products ν · κ2, ε · ρ̄, ζ · κ̄, κ · µ̄ and ρ · η∗ vanish because they have Adams
filtration ≥ 6, hence are detected by e. In the second case, e(ε · ρ̄) = ηj7j23 = 0,
and in the other cases the e-invariant of one of the factors is zero.

(32) The E∞-term for t − s = 32 is generated by h1h5, d1, q and P 3c0. Since
e(ηρ31) = ηj31 0= 0 in π32(j) = Z/2 we see that ηρ31 0= 0 must be detected by
a class in Adams filtration ≥ 12, and P 3c0 is the only possibility. The remaining
three generators are therefore represented by the elements of [q] = {q} ∩ ker(e),
[d1] = {d1} ∩ ker(e) and [h1h5] = {h1h5} ∩ ker(e). Here [q] consists of a single
element, with 2[q] = 0. The indeterminacy of [d1] is generated by [q], and the
indeterminacy of [h1h5] is generated by [q] and [d1]. Since h1q 0= 0 in E∞(S) we
have η[q] 0= 0, so 2[d1] 0= [q], which implies 2[d1] = 0. Similarly, 2[h1h5] 0= [q].
Furthermore, h2d1 0= 0 in E∞(S), so ν[d1] 0= 0 is detected in Adams filtration 5.
If 2[h1h5] = [d1] then ν[d1] = 2ν[h1h5], but there is no class in Adams filtration
≤ 4 that could detect ν[h1h5]. Hence 2[h1h5] = 0, so that π32(S) = Z/2{ηρ31} ⊕
Z/2{[q]} ⊕ Z/2{[d1]} ⊕ Z/2{[h1h5]}.

We will show in Proposition 11.77 that the Hurewicz homomorphism ι : π∗(S) →
π∗(tmf) takes {q} ⊂ π32(S) to ε1 ∈ {δ′} ⊂ π32(tmf), increasing Adams filtration
from 6 to 7. Here ε1 generates the 2-power torsion in π32(tmf), see Table 9.3 and
Theorem 9.26. It follows that we can make refined choices κ1 ∈ [[d1]] = [d1]∩ker(ι)
and η5 ∈ [[h1h5]] = [h1h5]∩ker(ι) of representatives for d1 and h1h5. This uniquely
determines κ1, and specifies η5 modulo κ1. Finally, νκ1 is detected by h2d1 0= 0, so
we can fix a single element η5 ∈ [[h1h5]] by insisting that νη5 = 0. (Alternatively,
one can define η5 ∈ {h1h5} to be an element of the Toda bracket 〈η, 2, θ4〉 ⊂ π32(S),
as in [22, §3.2]. The bracket has indeterminacy η · π31(S), so we can choose η5

in [h1h5] ⊂ ker(e). The image of the Toda bracket in π32(tmf) is zero, since
π30(tmf) = π31(tmf) = 0, so η5 ∈ [[h1h5]]. Furthermore, ν〈η, 2, θ4〉 = 〈ν, η, 2〉θ4 =
0, so this η5 is equal to the one we have specified above. We will use this Toda
bracket description of η5 in our discussion of π40(S).)

The product η · [n] has Adams filtration ≥ 7, since h1n = 0 at E2(S), hence
is detected by e, and e is zero on [n], so η[n] = 0. Similarly, the product η · ηθ4

has Adams filtration ≥ 5, since h1 · h1h2
4 = 0. It cannot be detected by q, because

η3θ4 = 4νθ4 would then be detected by h1q 0= 0, but νθ4 is detected in Adams
filtration at least 4, and there is no class in Es,t

∞ (S) for t − s = 33 and 5 ≤ s ≤ 6
that could detect 2νθ4. Hence η · ηθ4 is detected by e. Since e(θ4) = 0, we have
η2θ4 = 0. The products σ ·µ25, µ · ρ̄ and ρ · µ̄ all have Adams filtration ≥ 13, hence
are detected by e. Here e(σ · µ25) = j7j25, e(µ · ρ̄) = j9j23 and e(ρ · µ̄) = j15j17,
each of which equals e(ηρ31) = ηj31. The product κ · ν∗ represents d0 · h2h4 = 0
modulo Adams filtration ≥ 7, hence is detected by e, which is zero on both factors,
so that κν∗ = 0.

We use tmf to show that η∗ · η∗ = 0. This product has Adams filtration ≥ 5,
since h1h4 · h1h4 = 0. It cannot be detected by q, since η∗ 2→ 0 in π16(tmf) ∼= Z,
while [q] 2→ ε1 0= 0 in π32(tmf), by Proposition 11.77. Hence η∗ ·η∗ is detected by e,
and e(η∗) = 0, so (η∗)2 = 0.
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(33) The E∞-term for t−s = 33 is generated by h2
1h5, p, h1q, h1P 3c0 and P 4h1,

detecting ηη5, νθ4, η[q], η2ρ31 and µ33, respectively. See the proof of Theorem 11.54,
case (8) for the hidden ν-extension from h2

4 to p. Since 2η = 0 and 2θ4 = 0 it follows
that π33(S) ∼= (Z/2)5. By construction, e(µ33) = j33.

We use tmf to show that η · κ1 = 0. This product has Adams filtration ≥ 6
since h1 · d1 = 0 in E∞(S). It cannot be detected by h1q, because ι(κ1) = 0 and
ι(η[q]) = ηε1 0= 0 in π33(tmf). Hence the product is detected by e, and e(κ1) = 0,
so ηκ1 = 0. Similarly, ρ · ν∗ = 0. The product has Adams filtration ≥ 6, and
cannot be detected by h1q, because d = q0ι : S → tmf → ko maps ν∗ to zero, so
that ι(ν∗) = 0, whereas ι(η[q]) = ηε1 0= 0, as recalled above. Hence e detects ρ · ν∗,
and e(ν∗) = 0, so that ρν∗ = 0.

The products ε · µ25, κ · ζ̄, κ · σ̄ and η∗ · µ̄ have Adams filtration ≥ 8, since
d0 · c1 = 0 in E2(S), hence are detected by e. Here e(ε · µ25) = ηj7j25 = η2j31, so
that εµ25 = η2ρ31. Also e(κ · ζ̄) = 0, e(κ · σ̄) = 0 and e(η∗ · µ̄) = 0, since e(κ) = 0
and e(η∗) = 0, so that κζ̄ = 0, κσ̄ = 0 and η∗µ̄ = 0.

(34) The E∞-term for t− s = 34 is generated by h0h2h5, h2
0h2h5, h2n, d0g and

h1P 4h1, with ηµ33 detected by h1P 4h1, κκ̄ detected by d0g, ν[n] detected by h2n
and η2η5 detected by h3

1h5 = h2
0h2h5. Since e(ηµ33) = ηj33 generates π34(j) we can

represent h0h2h5 by an element α34 in [h0h2h5] = {h0h2h5} ∩ ker(e). Then ηµ33,
κκ̄ and ν[n] have order 2, and 2α34 = η2η5 modulo Adams filtration ≥ 6, so that
4α34 = 0.

The indeterminacy of [h0h2h5] is generated by κκ̄, ν[n] and 2α34. We can
remove the indeterminacy generated by κκ̄ in two equivalent ways. First, we can
insist that ηα34 = 0. Here ηα34 ∈ ker(e) cannot be detected by h2d1 since h2

2d1 0= 0
would then detect ν · ηα34 = 0, and if ηα34 is detected by h1d0g then we can
subtract κκ̄ from α34 to make ηα34 = 0. The remaining indeterminacy of α34 is
generated by ν[n] and 2α34. Second, in view of Proposition 11.82, ι maps ker(e) ⊂
π∗(S) into the B-power torsion in π∗(tmf), so ι(α34) is 0 or κκ̄, with ηκκ̄ 0= 0
in π35(tmf). See Figure 9.7. Hence, for α34 ∈ [h0h2h5] the conditions ηα34 = 0
and ι(α34) = 0 are equivalent. We set [[h0h2h5]] = [h0h2h5] ∩ ker(ι) = [h0h2h5] ∩
ker(η). Moreover, we can use a Toda bracket to remove the indeterminacy generated
by ν[n]. Following [22, §4] we may form the Toda bracket 〈η, 2, η5〉 ⊂ π34(S) with
indeterminacy η · π33(S). By Moss’ theorem and an ext-calculation the Massey
product 〈h1, h0, h1h5〉 = h0h2h5 detects one, hence each, element of this Toda
bracket, and we may choose α34 ∈ 〈η, 2, η5〉 ∩ ker(e). We will see in the next
paragraph that this reduces the indeterminacy of α34 to Z/2{η2η5} = Z/2{2α34}.
Furthermore, α34 ∈ [h0h2h5] and ι(α34) ∈ 〈η, 2, 0〉 ⊂ π34(tmf). The latter Toda
bracket contains zero, hence equals η · π33(tmf), which only contains B-periodic
classes. See Figure 9.7, again. Since ι(α34) is B-power torsion, it follows that
ι(α34) = 0, as required by the previous specification.

The product η · η[q] is detected by e, since h2
1q = 0, and e([q]) = 0, so η2[q] =

0. The third (Toda bracket) specification of α34 lets us calculate that 2α34 =
2〈η, 2, η5〉 = −〈2, η, 2〉η5 = η2η5, since 〈2, η, 2〉 = η2.

The products ν · ρ31, σ · ζ27, µ · µ25, ζ · ρ̄, ρ · ζ̄ and µ̄2 lie in Adams filtrations
detected by e. Here e(ν ·ρ31) = νj31 = 0, e(σ · ζ27) = j7j27 = 0, e(µ ·µ25) = j9j25 =
ηj33, e(ζ · ρ̄) = j11j23 = 0, e(ρ · ζ̄) = j15j19 = 0 and e(µ̄2) = j2

17 = ηj33, so νρ31 = 0,
σζ27 = 0, ζρ̄ = 0, and ρζ̄ = 0, while µµ25 = ηµ33 = µ̄2. (The products µ · µ25 and
µ̄ · µ̄ are also detected by Ph1 · P 3h1 = h1P 4h1 = h1P 2h1 · h1P 2h1.)
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We use tmf to show that ρ · σ̄ = 0. This product has Adams filtration ≥ 7. It
cannot be detected by κκ̄, since ι(σ̄) must vanish in π19(tmf) = 0, while ι(κκ̄) 0= 0
in π34(tmf). Likewise, the product cannot be detected by ηµ33, since e(σ̄) = 0.

The product η∗ · ν∗ has Adams filtration ≥ 5, since h1h4 · h2h4 = 0 in E2(S).
To eliminate the possibility that it is detected by ν[n], we use the Toda bracket pre-
sentation η∗ ∈ 〈σ, 2σ, η〉 and the relation ην∗ = 0 to see that η∗ν∗ ∈ 〈σ, 2σ, η〉ν∗ ⊂
〈σ, 2σ, ην∗〉 = σ · π27(S). Since σζ27 = 0 we must have η∗ν∗ = 0.

(35) The E∞-term for t − s = 35 is generated by h2d1, h1d0g and hk
0P 4h2 for

k ∈ {0, 1, 2}, detecting νκ1, ηκκ̄ and 2kζ35, respectively. We have 2 · νκ1 = 0 since
2κ1 = 0.

As usual, η · ηµ33 = 4ζ35 because h2
1P

4h1 = h2
0P

4h2. Hence 4e(ζ35) = η2j33 =
4j35 and e(ζ35)

.
= j35. We chose α34 so that ηα34 = 0. Similarly, we required η5

to satisfy νη5 = 0. The products ε · ζ27, η∗ · ζ̄ and µ̄ · ν∗ are detected by e, and
e(ε · ζ27) = ηj7j27 = 0, e(η∗) = 0 and e(ν∗) = 0, so εζ27 = 0, η∗ζ̄ = 0 and µ̄ν∗ = 0.
The product η∗ ·σ̄ lies in Adams filtration ≥ 6, because h1h4 ·c1 = 0 in E2(S). Since
e(η∗) = 0 and ι(η∗) = 0 the product cannot be detected by h2

0P
4h2 or by h1d0g,

which map to the nonzero elements 4j35 ∈ π35(j) and ηκκ̄ ∈ π35(tmf), respectively,
hence η∗σ̄ = 0.

Using tmf , we see that there is a hidden ν-extension from q to h1d0g, since ι
maps [q] to ε1 with ν · ε1 = ηκκ̄ 0= 0 in π35(tmf), so that ν · [q] 0= 0 in π35(S).
Since e([q]) = 0, only h1d0g can detect ν[q] = ηκκ̄. Also using tmf , we showed
in case (15) that ρ · κ̄ = 0 for our choice of ρ with ι(ρ) = 0, or equivalently, with
ερ = 0. (Alternatively, one can prove that ρκ̄ = 0 using the J-homomorphism
J : π∗(SO) → π∗(S). The class κ̄ can be realized unstably by a map κ̄7 : S27 → S7

with 8κ̄7 = 0, according to [130, Lem. 15.4]. Composition with κ̄7 acts naturally
on πn of spaces for ≥ 7, and takes the generator of π15(SO) to zero in π35(SO).
Since J maps this generator to ρ, it follows that ρκ̄ is zero.)

(36) The E∞-term for t − s = 36 is generated by t, so {t} consists of a single
element.

The products η · ζ35, ν ·µ33, µ · ζ27, ζ ·µ25, µ̄ · ζ̄ and µ̄ · σ̄ lie in Adams filtration
≥ 12, hence are zero. Furthermore, h1h4 · g = 0 in E2(S), so η∗ · κ̄ has Adams
filtration ≥ 7, and is also zero. We claim that ν · νθ4 = 0. Recall the relation
ν3 = ηε + η2σ from case (9). If ν2θ4 were detected by t, then ν3θ4 = (ηε + η2σ)θ4

would be detected by h2t 0= 0 in E∞(S). Here εθ4 and ησθ4 have Adams filtration
≥ 6, since c0 ·h2

4 = 0 in E2(S). It follows that ηεθ4 and η2σθ4 have Adams filtration
≥ 8, since h1 · h1x = 0. Hence their sum cannot be detected in Adams filtration 7,
showing that ν2θ4 = 0. Finally, if ν∗ ·ν∗ were detected by t, then ν · (ν∗)2 would be
detected by h2t, but ν · (ν∗)2 = ν∗ · σ3 = 0 because νν∗ = σ3 and σν∗ = 0. Hence
(ν∗)2 = 0.

(37) The E∞-term for t−s = 37 is generated by h2
2h5 and x. We proved that σθ4

is detected by x in Theorem 11.56, case (5). There cannot be a hidden 2-extension
from h2

2h5 to x, since h1x 0= 0 in E∞(S) detects ησθ4 0= 0 in π38(S). Following
[22, §4], we can form the Toda bracket 〈ν2, 2, θ4〉 ⊂ π37(S), with indeterminacy
〈σθ4〉. Recall that h2

2 · h0 = 0 and h0 · h2
4 = d2(h5) in E2(S). Moss’ theorem for the

E3-term applies, and shows that the E3-Massey product 〈h2
2, h0, h2

4〉 = h2
2h5 detects

one, hence both, elements in this Toda bracket, so that 〈ν2, 2, θ4〉 = {h2
2h5}. The

Toda shuffle relation η〈ν2, 2, θ4〉 = 〈η, ν2, 2〉θ4 ⊂ π8(S)·θ4, and our observation from
case (36) that εθ4 and ησθ4 both have Adams filtration ≥ 6, prove that η{h2

2h5}
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has Adams filtration at least 6. Hence there is no hidden η-extension from h2
2h5 to

h3
0h3h5. We can therefore uniquely specify an element α37 ∈ {h2

2h5} = 〈ν2, 2, θ4〉
by the condition η ·α37 = 0. (We will use this Toda bracket description of α37 when
discussing π40(S).)

The products η · {t}, ν · κκ̄, ν · ν[n], κ · ρ̄, µ̄ · κ̄, ν∗ · ζ̄ and ν∗ · σ̄ have Adams
filtration ≥ 6, since h2h4 · c1 = 0 in E2(S), hence are zero. Furthermore ν · α34

cannot be σθ4, since ησθ4 0= 0, so να34 = 0.
(38) The E∞-term for t− s = 38 is generated by h2

0h3h5, h3
0h3h5 and h1x. The

latter class detects ησθ4. Let α38 be any class detected by h2
0h3h5. Then 2α38 is

detected by h3
0h3h5, and 4α38 = 0.

We defined α37 so that ηα37 = 0. The products ν · ζ35, σ · ρ31, ζ · ζ27, ρ · ρ̄,
ζ̄ · ζ̄ and ζ̄ · σ̄ lie in Adams filtration ≥ 12, hence are zero. We have factorizations
ησθ4 = ν · νκ1 = σ · [n] = ν∗ · κ̄ = σ̄ · σ̄, since h1x = h2

2d1 = h3n = h2h4g = c2
1 in

E2(S). In particular, there is not a hidden σ-extension from h1h2
4 to h1x, in the

strict sense of Definition 9.5, though there is a hidden ησ-extension from h2
4 to h1x.

The product ε · θ4 = ησθ4 was calculated by Tangora [166, Prop. 1.3], using
four-fold Toda brackets. We are grateful to Daniel Isaksen for pointing out this
reference. Since Tangora’s paper is not easily available, we review the argument in
Remark 11.63.

(39) The E∞-term for t − s = 39 is generated by h1h3h5, h5c0, h3d1, h2t,
u and hk

0P 2i for k ∈ {2, 3, 4, 5}. Let ρ39 be detected by h2
0P

2i. We know that
h2t detects ν{t}, h3d1 detects σκ1 and h1h3h5 detects ση5. The homomorphism
e : π39(S) → π39(j) = Z/16 maps ν{t}, σκ1 and ση5 to zero, hence can only be
surjective if e(ρ39)

.
= j39. The intersection [u] = {u} ∩ ker(e) therefore consists

of a single element. The homomorphism ι : π39(S) → π39(tmf) ∼= Z/2 maps ρ39,
ν{t}, σκ1 and ση5 to zero, and sends [u] to the nonzero class η1κ detected by d0γ,
cf. Lemma 1.15 and Table 1.1. Hence we can choose α39 ∈ {h5c0}∩ ker(e)∩ ker(ι),
with indeterminacy generated by ν{t} and σκ1. We can remove the indeterminacy
in α39 by means of a Toda bracket. Following [22, Prop. 3.2.4(b)], we can form
the E3-Massey product 〈c0, h0, h2

4〉 = h5c0 with zero indeterminacy. Moss’ theorem
for the E3-term applies to show that 〈ε, 2, θ4〉 meets {h5c0}. To see that this Toda
bracket has no indeterminacy, we use the fact that Ph1 · h2

4 = 0 in E2(S), and
the discussion in case (36), to see that the products µθ4, ηεθ4, η2σθ4, ερ31 and
ε[n] have Adams filtration ≥ 8, hence are detected by e and ι, and are therefore
zero. The homomorphism e maps 〈ε, 2, θ4〉 into 〈ηj7, 2, 0〉 = ηj7 · π31(j) = 0.
The homomorphism ι maps 〈ε, 2, θ4〉 into 〈ε, 2, 0〉 = ε · π31(tmf) = 0. Hence we
can consistently refine the definition above by setting α39 = 〈ε, 2, θ4〉, with zero
indeterminacy. By Toda shuffling, 2〈ε, 2, θ4〉 = −〈2, ε, 2〉θ4, which lies in π9(S)·θ4 =
0, as we just saw. This proves that there is no hidden 2-extension from h5c0 to h2t.
Since [u], {t}, κ1 and η5 have order 2, and η[u] 0= 0 is detected by h1u, it follows
that ker(e) ∼= (Z/2)5 is elementary abelian.

The products ε · ρ31, κ · µ25, η∗ · ρ̄ and ζ̄ · κ̄ have Adams filtration ≥ 11, hence
are detected by e, and are all zero. Furthermore, ε · [n] and µ · θ4 have Adams
filtration ≥ 8, because Ph1 · h2

2 = 0 in E2(S), hence are detected by e and ι, and
must vanish because π∗(tmf) is trivial in degrees 30 and 31. On the other hand,
σ · [q] and σ̄ · κ̄ are detected by h3 · q = h2t = c1 · g, hence agree with ν{t} modulo
Adams filtration ≥ 8. The differences are detected by e and ι, and vanish because
e([q]), e(σ̄), e({t}), ι(σ), ι(σ̄) and ι({t}) are all zero. Hence σ[q] = ν{t} = σ̄κ̄.
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Figure 11.20. E2(Cη) for 36 ≤ t − s ≤ 40, with some d4-differentials

We use Cη to prove that there is a hidden η-extension from h2
0h3h5 to h2t.

This will prove that η · α38 = ν{t}, since the difference between these classes must
have Adams filtration ≥ 8, hence be detected by e and ι, and these homomorphisms
vanish on both classes.

There is a long exact sequence of Adams E2-terms

· · · −→ Es−1,t−2
2 (S)

h1−→ Es,t
2 (S)

i−→ Es,t
2 (Cη)

j−→ Es,t−2
2 (S) −→ . . . ,

where a part of E2(Cη) is shown in Figure 11.20. The infinite cycle h2t = h1y = 716

detects ν{t} ∈ π39(S). Since i(h1y) = 0 in E2(Cη), it follows that i(ν{t}) ∈ π39(Cη)

has Adams filtration ≥ 8. Consider the lift ĥ0h3h5 = 327 in E2(Cη) of h0h3h5 in

E2(S). Trivially d2(ĥ0h3h5) = 0. By naturality with respect to j we cannot have

d3(ĥ0h3h5) = ĥ0x = 626, since d3(h0h3h5) = 0, while j(ĥ0x) = h0x 0= 0 in E3(S).

Hence d3(ĥ0h3h5) = 0. On the other hand, we must have d4(ĥ0h3h5) ≡ h0ĥ0x
mod h2

2n̂ = 725 mod 724, since d4(h0h3h5) = h2
0x 0= 0 in E4(S). (This ambiguity

is indicated in blue.) Multiplying by h0 we obtain d4(h0ĥ0h3h5) = h2
0ĥ0x = 827.

Hence E∞(Cη) = 0 in bidegree (t− s, s) = (39, 8), proving that i(ν{t}) has Adams
filtration ≥ 9.

Let S7 be a minimal Adams resolution of S, and let S0,9 = cof(S9 → S0) be
its truncation to filtrations 0 ≤ s ≤ 8. The image of i(ν{t}) in π39(S0,9 ∧ Cη)
must then be zero, so the nonzero image γ of ν{t} in π39(S0,9) must be of the form
γ = η · β, with β ∈ π38(S0,9) of filtration ≤ 6. From d2(y) 0= 0, h2

1x = 0 and 2η = 0
we see that the only class in E∞(S0,9) that can detect β is h2

0h3h5. It follows that
η{h2

0h3h5} ⊂ {h2t} in π39(S).
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(40) The E∞-term for t − s = 40 is generated by f1, h2
1h3h5, h1h5c0, Ph1h5,

g2, h1u and P 4c0. Since e(ηρ39) = ηj39 0= 0 the product ηρ39 must be detected
by P 4c0. The products η[u], κ̄2, ηα39 and ηση5 are detected by h1u, g2, h1h5c0

and h2
1h3h5, respectively. The tmf -Hurewicz homomorphism takes κ̄2 ∈ π40(S) to

κ̄2 ∈ π40(tmf), with 2κ̄2 = εε1 0= 0, cf. Theorem 9.8. Here 2κ̄2 is detected by δ′w1

in Adams filtration 11, so 2κ̄2 0= 0 in π40(S) can only be detected by h1u. Hence
there is a hidden 2-extension from g2 to h1u in E∞(S). Since κ̄2 generates the
2-power torsion in π40(tmf), the intersections [[Ph1h5]] = {Ph1h5}∩ker(e)∩ker(ι)
and [[f1]] = {f1}∩ker(e)∩ker(ι) are nonempty. The first contains a single element,
while the second has indeterminacy of order four spanned by [[Ph1h5]] and ηα39.
Multiplication by η2 takes any element in [[f1]] to a 2-torsion element in ker(e) ∩
ker(ι) ⊂ π42(S), which must be 0 or detected by h2

1Ph1h5. Since η2 · [[Ph1h5]] is
detected by h2

1Ph1h5, we can choose α40 ∈ [[f1]] ∩ ker(η2), with indeterminacy of
order two. In a moment we shall see that η2·ηα39 = 0, so that the indeterminacy left
in α40 is Z/2{ηα39}. The e-invariant splits off Z/2{ηρ39} from π40(S), and ι splits
off Z/4{κ̄2} from ker(e). There can be no hidden 2-extensions within ker(e)∩ker(ι),
since h1 · Ph1h5 0= 0, meaning that ker(e) ∩ ker(ι) ∼= (Z/2)4 is elementary abelian.

The products η · [u] and 2 · κ̄2 agree modulo ηρ39, and both map to 0 under e, so
η[u] = 2κ̄2. The products σ ·µ33, µ ·ρ31, ρ ·µ25 and µ̄ · ρ̄ have Adams filtration ≥ 16,
hence are detected by e, and e(σ · µ33) = j7j33 = ηj39, e(µ · ρ31) = j9j31 = ηj39,
e(ρ · µ25) = j15j25 = ηj39 and e(µ̄ · ρ̄) = j17j23 = ηj39, so σµ33 = µρ31 = ρµ25 =
µ̄ρ̄ = ηρ39. The product ε · [q] in Adams filtration ≥ 9 has trivial e-invariant and
maps under ι to ε · ε1 = 2κ̄2 in π40(tmf), hence must be equal to 2κ̄2 in π40(S).
Similarly, ε ·κ1 and µ · [n] have Adams filtration ≥ 7, hence are detected by e and ι.
Since κ1 and [n] lie in ker(e) ∩ ker(ι), these products are zero.

The product ε · η5 is detected by c0 · h1h5 = h1 · h5c0 0= 0, hence agrees with
η · α39 modulo Adams filtration ≥ 6. Both products map to zero under e and ι,
so they are equal modulo [[Ph1h5]]. Since h2

1 · Ph1h5 0= 0, they are exactly equal
because η2 · εη5 = 0 and, as promised above, η2 · ηα39 = η3〈ε, 2, θ4〉 = 〈η3, ε, 2〉θ4 is
also 0, because π12(S) = 0.

Finally, the relation να37 = ηα39 + ηση5 is the image under the Toda bracket
〈−, 2, θ4〉 of the relation ν3 = ηε + η2σ, by virtue of the Toda brackets να37 ∈
〈ν3, 2, θ4〉, ηα39 ∈ 〈ηε, 2, θ4〉 and ηση5 ∈ 〈η2σ, 2, θ4〉, each with zero indeterminacy.

(41) The E∞-term for t − s = 41 is generated by h1f1, h1Ph1h5 z, h1P 4c0

and P 5h1, with µ41 detected by P 5h1, η2ρ39 detected by h1P 4c0, η[[Ph1h5]] de-
tected by h1Ph1h5 and ηα40 detected by h1f1. As we noted in case (28) there is
a hidden η-extension from g2 to z, so that ηκ̄2 is detected by z. By construction,
e(µ41) = j41. The e-invariant splits off Z/2{µ41} ⊕ Z/2{η2ρ39} from π41(S), and
there cannot be hidden 2-extensions from the h1-multiples h1Ph1h5 and h1f1, since
2η = 0, so ker(e) ∼= (Z/2)3.

The products η · ηα39 and η · ηση5 lie in ker(e) ∩ ker(ι). Since h1 · h2
1h3h5 = 0,

they are either zero or detected by h1Ph1h5. In the latter case, η2 · ηα39 = η2 · εη5

and η2 · ηση5 would be detected by h2
1Ph1h5 0= 0, but η2ε = η3σ = 0, so this is

impossible. Hence η · ηα39 = η · ηση5 = 0.
The product ν ·α38 lies in ker(e)∩ker(ι). Since h2 ·h2

0h3h5 = 0, it is either zero
or detected by h1Ph1h5. Since h2

1Ph1h5 0= 0 and ην = 0, the latter is impossible.
Hence να38 = 0.
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Figure 11.21. (E2(Cσ), d2) for 40 ≤ t − s ≤ 44

We show that σ · α34 = ηα40 using j : Cσ → S8. See Figure 11.21, where
a ∈ j−1(a) ⊂ Es,t

2 (Cσ) denotes a lift of a ∈ Es,t
2 (S8) = Es,t−8

2 (S). In E2(Cσ)

we have d2(h5h2) = h0h2
4h2 0= 0 and d2(h0h5h2) = h2

0h
2
4h2 0= 0, so π42(Cσ) is

concentrated in Adams filtrations ≥ 4. Hence im(j) = ker(σ) ⊂ π34(S) is also
concentrated in filtrations ≥ 4. Since α34 ∈ [[h0h2h5]] = {h0h2h5} ∩ ker(e) ∩ ker(ι)
lies in filtration s = 3, we must have σα34 0= 0, in the span of η[[Ph1h5]] and ηα40.
Since ηα34 = 0 we have ησα34 = 0, leaving σα34 = ηα40 as the only possibility.

The products ε · µ33, µ · [q], κ · ζ27, η∗ · µ25 and ν∗ · ρ̄ have Adams filtration
≥ 11 and are detected by e, with e(ε · µ33) = ηj7j33 = η2j39, e([q]) = 0, e(κ) = 0,
e(η∗) = 0 and e(ν∗) = 0, so that εµ33 = η2ρ39, µ[q] = 0, κζ27 = 0, η∗µ25 = 0 and
ν∗ρ̄ = 0.

The product µ · κ1 has Adams filtration ≥ 9 and is detected by e and ι, with
e(µ · κ1) = 0 and ι(µ · κ1) = 0, so that µκ1 = 0. Similarly, µ · η5 and η[[Ph1h5]] are
both detected by Ph1 ·h1h5 = h1 ·Ph1h5, so their difference lies in Adams filtration
≥ 8 and is detected by e and ι. Since η5 and [[Ph1h5]] lie in ker(e) ∩ ker(ι), that
difference is zero, so µη5 = η[[Ph1h5]]. Likewise, ζ · θ4 lies in Adams filtration ≥ 8,
because Ph2 ·h2

4 = 0, and is therefore detected by e and ι. Since e(θ4) and ι(θ4) lie
in trivial groups, we conclude that ζθ4 = 0.

(42) The E∞-term for t−s = 42 is generated by Ph2h5, h0Ph2h5, h2
0Ph2h5, d3

0

and h1P 5h1. Here ηµ41 is detected by h1P 5h1, κ3 is detected by d3
0, and 2k[[Ph2h5]]

is detected by hk
0Ph2h5 for k ∈ {0, 1, 2}, where [[Ph2h5]] ∈ {Ph2h5} can and will be

chosen to lie in ker(e) ∩ ker(ι). (Here we use that ι maps κ3 ∈ π42(S) to κ3 = εκκ̄,
which generates the B-power torsion in π42(tmf), and that ι([[Ph2h5]]) must be
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B-power torsion since [[Ph2h5]] ∈ ker(e), cf. Proposition 11.82.) There cannot be
a hidden 2-extension from h2

0Ph2h5 to d3
0, since h2

0Ph2h5 is an h1-multiple.
As discussed in case (28), η2κ̄2 = εκκ̄ = κ3 in ker(e) ⊂ π42(S). Hence there is a

hidden η-extension from z to d3
0, and a hidden ε-extension from d0g to d3

0. We chose
α40 ∈ [[f1]] = {f1} ∩ ker(e) ∩ ker(ι) so that η2α40 = 0. The relation h2

1 · Ph1h5 =
h2

0Ph2h5 in E2(S) implies that η2[[Ph1h5]] = 4[[Ph2h5]] modulo Adams filtration
≥ 9, but these filtrations are detected by e and ι, and both [[Ph1h5]] and [[Ph2h5]]
lie in ker(e) ∩ ker(ι), so this identity holds strictly. Similarly, ζ · [n] has Adams
filtration ≥ 10, hence is detected by e and ι. Since e([n]) = 0 and ι([n]) = 0 we
must have ζ[n] = 0.

The products ν ·ρ39, σ·ζ35, ζ ·ρ31, ρ·ζ27, ζ̄ ·ρ̄ and σ̄·ρ̄ lie in Adams filtration ≥ 13,
because c1 · h2

0i = 0 in E2(S), hence are detected by e, and e(ν · ρ39) = νj39 = 0,
e(σ·ζ35) = j7j35 = 0, e(ζ ·ρ31) = j11j31 = 0, e(ρ·ζ27) = j15j27 = 0, e(ζ̄ ·ρ̄) = j19j23 =
0 and e(σ̄) = 0, so νρ39 = 0, σζ35 = 0, ζρ31 = 0, ρζ27 = 0, ζ̄ ρ̄ = 0 and σ̄ρ̄ = 0. The
products µ ·µ33 and µ̄ ·µ25 are detected by Ph1 ·P 4h1 = P 2h1 ·P 3h1 = h1P 5h1 0= 0,
hence are both equal to ηµ41.

We use ι : S → tmf to detect a hidden ν-extension from u to d3
0. From

Lemma 1.15 and Table 1.1 we know that ι([u]) lies in {d0γ}, hence is equal to
η1κ in π39(tmf). By Theorem 9.14, ν · η1κ in π42(tmf) is detected by d0gw1 0= 0 in
filtration 12 of E∞(tmf). See Figure 9.7. It follows that ν · [u], in Adams filtration
≥ 10 of π42(S), cannot have Adams filtration ≥ 13, and must therefore be detected
by d3

0. Thus ν[u] ≡ κ3 mod ηµ41, and a comparison of e-invariants shows that
ν[u] = κ3.

The known relations ηα38 = ν{t} and ην = 0 imply ν · ν{t} = 0.
We showed in case (39) that α39 = 〈ε, 2, θ4〉. By shuffling, ν ·α39 = ν〈ε, 2, θ4〉 =

〈ν, ε, 2〉θ4 = 0, since π12(S) = 0.
To show that ε · α34 = 0 we use that ε ∈ 〈ν2, 2, η〉, by [171, Ch. XIV] or ext

and Moss’ theorem. By shuffling, εα34 ∈ 〈ν2, 2, η〉α34 = −ν2〈2, η,α34〉, which is
zero because ν2{t} = 0.

(43) The E∞-term for t − s = 43 is generated by P 5h2, h0P 5h2 and h2
0P

5h2,
detecting ζ43, 2ζ43 and 4ζ43, respectively. Hence π43(S) ∼= Z/8 maps isomorphically
by e to π43(j), and e(ζ43)

.
= j43.

The relation h2
1P

5h1 = h2
0P

5h2 shows that η ·ηµ41 = 4ζ43. The products η ·κ3,
η · [[Ph2h5]], ν · κ̄2, ν · [[Ph1h5]], ν · α40, σ · {t}, µ · α34, ζ · [q], ζ · κ1, ζ · η5, η∗ · ζ27,
ν∗ · µ25 and κ̄ · ρ̄ are zero because κ, η∗, ν∗, κ̄, [q], κ1, η5, α34, {t}, [[Ph1h5]], α40

and [[Ph2h5]] lie in ker(e). Likewise, e(ε · ζ35) = ηj7j35 = 0, so εζ35 = 0.
(44) The E∞-term for t − s = 44 is generated by g2, h0g2 and h2

0g2, detecting
κ̄2, 2κ̄2 and 4κ̄2, respectively.

The products η · ζ43, ν ·µ41, ε · {t}, µ · ζ35, ζ ·µ33, κ ·θ4, µ̄ · ζ27, ζ̄ ·µ25 and σ̄ ·µ25

lie in Adams filtration ≥ 7, since d0 ·h2
4 = 0, hence are zero. We have σ ·σθ4 = 4κ̄2,

since h3x = h2
0g2 has maximal Adams filtration in E∞(S).

Finally, σ·α37 = 4κ̄2, as we learned from Isaksen and Xu. See Lemma 11.64. !

Remark 11.63. We recall Tangora’s proof from [166, Part 1] that ν̄θ4 = 0,
where ν̄ = ε+ησ. This follows from θ4 ∈ 〈σ, 2σ,σ, 2σ〉, proved in [107, Thm. 8.1.1],
and the shuffling relation

ν̄〈σ, 2σ,σ, 2σ〉 ⊂ 〈〈ν̄,σ, 2σ〉,σ, 2σ〉 ,
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proved in [87, Thm. 2.3.6(a)], once one has shown that the latter iterated Toda
bracket only contains 0. First, 〈ν̄,σ, 2σ〉 ⊂ π23(S) is defined with indeterminacy
4νκ̄. Here 2〈ν̄,σ, 2σ〉 ⊂ π16(S) · 2σ = {0} and 〈ν̄,σ, 2σ〉η = −ν̄〈σ, 2σ, η〉 equals
ν̄η∗ = 0 with zero indeterminacy, because η∗ ∈ 〈σ, 2σ, η〉 with indeterminacy {0, ηρ}
and ν̄ · ηρ = 0. Hence 〈ν̄,σ, 2σ〉 contains either 0 or 8ρ̄, modulo 4νκ̄. Finally,
〈8ρ̄,σ, 2σ〉 and 〈4νκ̄,σ, 2σ〉 are both 0 with no indeterminacy, since they contain
8〈ρ̄,σ, 2σ〉 ⊂ 8 · π38(S) = {0} and 4〈νκ̄,σ, 2σ〉 ⊂ 4 · π38(S) = {0}, respectively, and
since 8ρ̄ · π15(S) = 4νκ̄ · π15(S) = π31(S) · 2σ = 0.

Lemma 11.64 (Isaksen–Xu). σ · α37 = 4κ̄2.

Proof. Consider the Toda bracket 〈ν, η,κ1〉 ⊂ π37(S), which has zero indeter-
minacy. On one hand, η〈ν, η,κ1〉 = 〈η, ν, η〉κ1 = ν2κ1 = ησθ4, since 〈η, ν, η〉 = ν2.
On the other hand, the differential d3(h2h5) = h0p = h1d1 and Moss’ theorem
for E4-Massey products shows that 〈ν, η,κ1〉 is detected by h2

2h5. It follows that
〈ν, η,κ1〉 = σθ4 + α37. Finally, σ〈ν, η,κ1〉 = 〈σ, ν, η〉κ1 = 0 since 〈σ, ν, η〉 = 0, so
σ · α37 = σ2θ4 = 4κ̄2. !

Remark 11.65. For ease of reference, we summarize our definitions of the
multiplicative generators for π∗(S) in degrees ∗ ≤ 44.

• η = {h1} is well-defined.
• ν ∈ {h2} is defined up to (multiplication by) a unit in Z/8. The Hopf

fibration gives a specific choice.
• σ ∈ {h3} is defined up to a unit in Z/16. The Hopf fibration gives a

specific choice.
• ε = {c0} is well-defined.
• µ = {Ph1} is well-defined.
• ζ ∈ {Ph2} is defined up to a unit in Z/8. The J-homomorphism gives a

specific choice.
• κ = {d0} is well-defined.
• ρ ∈ {h3

0h4} is defined up to a unit in Z/32 by the condition ερ = 0, or
equivalently, by ι(ρ) = 0. The J-homomorphism gives a specific choice.

• η∗ ∈ {h1h4} is well-defined by the condition e(η∗) = 0.
• µ̄ = {P 2h1} is well-defined.
• ν∗ ∈ {h2h4} is defined up to a unit in Z/8 by the condition e(ν∗) = 0.
• ζ̄ ∈ {P 2h2} is defined up to a unit in Z/8. The J-homomorphism gives a

specific choice.
• σ̄ ∈ {c1} is well-defined by the condition e(σ̄) = 0.
• κ̄ ∈ {g} is defined up to a unit in Z/8.
• ρ̄ ∈ {h2

0i} is defined up to a unit in Z/16. The J-homomorphism gives a
specific choice.

• µ25 = {P 3h1} is well-defined.
• ζ27 ∈ {P 3h2} is defined up to a unit in Z/8. The J-homomorphism gives

a specific choice.
• θ4 = {h2

4} is well-defined.
• ρ31 ∈ {h10

0 h5} is defined up to a unit in Z/64. The J-homomorphism
gives a specific choice.

• [n] ∈ {n} is well-defined by the condition e([n]) = 0.
• [q] ∈ {q} is well-defined by the condition e([q]) = 0.
• κ1 ∈ {d1} is well-defined by the conditions e(κ1) = 0 and ι(κ1) = 0.
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• η5 ∈ {h1h5} is well-defined by the conditions e(η5) = 0, ι(η5) = 0
and νη5 = 0. It is the unique element in 〈η, 2, θ4〉 = {η5, η5 + ηρ31}
satisfying e(η5) = 0.

• µ33 = {P 4h1} is well-defined.
• α34 ∈ {h0h2h5} is defined up to a unit in Z/4, as an element of 〈η, 2, η5〉

with e(α34) = 0. Less precisely, it is defined up to the same unit, mod-
ulo Z/2{ν[n]}, by the conditions e(α34) = 0 and ηα34 = 0, or equivalently,
by the conditions e(α34) = 0 and ι(α34) = 0.

• ζ35 ∈ {P 4h2} is defined up to a unit in Z/8. The J-homomorphism gives
a specific choice.

• {t} is well-defined.
• α37 ∈ {h2

2h5} = 〈ν2, 2, θ4〉 is well-defined by the condition ηα37 = 0.
• α38 ∈ {h2

0h3h5} is defined up to a unit in Z/4, modulo Z/2{ησθ4}.
• ρ39 ∈ {h2

0P
2i} is defined up to a unit in Z/16. The J-homomorphism

gives a specific choice.
• [u] ∈ {u} is well-defined by the condition e([u]) = 0.
• α39 ∈ {h5c0} is well-defined as the single element of 〈ε, 2, θ4〉. Less

precisely, it is defined modulo Z/2{ν{t}} ⊕ Z/2{σκ1} by the conditions
e(α39) = 0 and ι(α39) = 0.

• [[Ph1h5]] ∈ {Ph1h5} is well-defined by the conditions e([[Ph1h5]]) = 0
and ι([[Ph1h5]]) = 0.

• α40 ∈ {f1} is defined modulo Z/2{ηα39} by the conditions e(α40) = 0,
ι(α40) = 0 and η2α40 = 0.

• µ41 = {P 5h1} is well-defined.
• [[Ph2h5]] ∈ {Ph2h5} is defined up to a unit in Z/8 by the conditions

e([[Ph2h5]]) = 0 and ι([[Ph2h5]]) = 0.
• ζ43 ∈ {P 5h2} is defined up to a unit in Z/8. The J-homomorphism gives

a specific choice.
• κ̄2 ∈ {g2} is defined up to a unit in Z/8.

The notations η and ν were used by Toda in [168], with η being associated to Hopf.
The remaining notations in degrees ≤ 19 are those used in [171], while κ̄ is from
[130]. Several notational schemes are in use for the generators of the image of the
J-homomorphism; we continue Toda’s pattern ζ, ρ, ζ̄ with ρ̄, ζ8k+3, ρ8k−1. Adams
[8] introduced the classes µ8k+1 = {P kh1}, extending Toda’s µ and µ̄. The notation
θj ∈ {h2

j} appeared for j = 4 in Barratt–Mahowald–Tangora [22], presumably due
to the connection to the Kervaire–Milnor [86] group Θn. The notation ηj ∈ {h1hj}
is that of [101], extending Toda’s η∗. The notations [n], [q], {t}, [u], [[Ph1h5]]
and [[Ph2h5]] are inherited from the May spectral sequence calculation of E2(S)
[117], [165]. We allow ourselves to write κi ∈ {di} and κ̄i ∈ {gi}, extending
κ ∈ {d0} and κ̄ ∈ {g}, even if the Steenrod operations Sq0(d0) = d1 and Sq0(g) = g2

cannot immediately be lifted to homotopy operations. Keep in mind that g = g1 and
κ̄ = κ̄1; there is no class g0 in E2(S). The remaining ad hoc notations αn ∈ πn(S)
for n ∈ {34, 37, 38, 39, 40} are only introduced here for typesetting convenience,
and illustrate the limitations of the existing nomenclature for the stable homotopy
groups of spheres.

The following five lemmas account for the hidden 2-, η- and ν-extensions shown
in Figure 11.14, in the region where 45 ≤ t − s ≤ 48 and s ≥ 9. For the remaining
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hidden extensions, in the range 45 ≤ t−s ≤ 48 and s ≤ 8, we refer to the literature,
in particular to [166], [21] and [87].

Lemma 11.66. There is a hidden η-extension from w to d05.

Proof. This is detected by ι : S → tmf , which maps w to γg detecting η1κ̄.
Since η ·η1κ̄ = ε1κ is nonzero in π46(tmf), there must be a hidden η-extension on w,
and d05 is the only possible target. !

Lemma 11.67. There is a hidden η-extension from d05 to Pu.

Proof. We prove this using the homotopy cofiber sequence

S1 η−→ S
i−→ Cη

j−→ S2 .

The differential d2(5) = h0d0e0 for S lifts to a differential d2(5̂) = d0e0ĥ0 in the
Adams spectral sequence for Cη. Multiplying by d0 we obtain a nonzero differential
d2(d05̂) = d2

0e0ĥ0 = 1321 = i(Pu) for Cη, as verified by ext. It follows that η times

a class detected by j(d05̂) = d05 is detected by Pu. !

Lemma 11.68. There is a hidden 2-extension from e0r to Pu, and a hidden
η-extension from e0r to d2

0g.

Proof. This follows from the homotopy cofiber sequence

Σ−1tmf/S
j−→ S

ι−→ tmf
i−→ tmf/S .

See Figure 11.30 for the E∞-term of tmf/S. The differentials d2(w2) = αβg,
d3(h1w2) = g2w1 and d4(h0w2) = d0γw1 for tmf imply that j : πn(tmf/S) →
πn−1(S) maps homotopy classes detected by i(w2) = w2, i(h1w2) = h1w2 and
i(h0w2) = h0w2 to homotopy classes detected by e0r, d2

0g and Pu, respectively,
since ι(e0r) = αβg, ι(d2

0g) = g2w1 and ι(Pu) = d0γw1. Since 2 times each class
detected by w2 is detected by h0w2, it follows that 2 times a class detected by e0r
is detected by Pu. Similarly, since η times each class detected by w2 is detected by
h1w2, it follows that η times a class detected by e0r is detected by d2

0g. !

Lemma 11.69. There is a hidden ν-extension from w to d2
0g.

Proof. We prove this using the homotopy cofiber sequence

S3 ν−→ S
i−→ Cν

j−→ S4 .

The hidden ν-extension from u to d3
0 corresponds to a differential d3(u) = i(d3

0)
in the Adams spectral sequence for Cν. Multiplying by g we obtain a differential
d3(gu) = g · i(d3

0) = 1624, where g · u = 1336 = d0 · w, as can be verified with ext.
The class 1624 remains nonzero at the E3-term, by h0-linearity. Hence d0 · d3(w) =
1624 0= 0, which implies d3(w) = 1217 = i(d2

0g). In turn, this differential corresponds
to a hidden ν-extension from j(w) = w to d2

0g, as claimed. !

Lemma 11.70. There is a hidden η-extension from h7
0Q to P 5c0.

Proof. Let ρ47 be detected by h7
0Q. The only way that e : π47(S) → π47(j) =

Z/32 can be surjective is that e(ρ47)
.
= j47. Hence e(ηρ47) = ηj47 0= 0, so ηρ47 is

nonzero and must be detected by P 5c0. !
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Figure 11.22. (E2(Cη), d2) for 12 ≤ t − s ≤ 24

11.9. A hidden η-extension

Using space-level (unstable) methods, Mimura [129, Thm. B] showed that εκ
is nonzero in π22(S). This product has Adams filtration ≥ 7, hence can only be
detected by Pd0 in E∞(S). Mahowald and Tangora [107, Thm. 2.1.1] used a Toda
bracket calculation due to Barratt to deduce that η2κ̄ is also detected by Pd0, so
that there is a hidden η-extension from h1g to Pd0. Other proofs of these results
have been given by Bauer [23, p. 30], using the elliptic spectral sequence to show
that the image of η2κ̄ in π22(tmf) is nonzero, and by Daniel Dugger and Isaksen
[55, Prop. 8.9], using a hidden τ -extension in a motivic Adams spectral sequence.
We provide a classical spectrum-level (stable) proof of this hidden η-extension,
from which Mimura’s theorem follows as in cases (22) and (23) of the proof of
Theorem 11.61.

Theorem 11.71 (Mimura [129], Mahowald–Tangora [107]). The product η2κ̄
is detected by Pd0.

Proof. We argue using the maps of Adams spectral sequences induced by the
maps of spectra

S
i−→ Cη

1∧i−→ Cη ∧ Cν .
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Table 11.4. E2(S)-module generators of E2(Cη) for t − s ≤ 24

t − s s g x d2(x)

0 0 0 i(1) 0

2 1 1 ĥ0 0

5 1 3 ĥ2 0

11 4 4 ĥ1c0 0

13 5 4 P̂ h2 0

16 2 10 ĥ2
3 0

19 8 4 ĥ1Pc0 0

20 4 11 f̂0 h0e0ĥ0

21 3 14 ĉ1 0

21 9 4 P̂ 2h2 0

We start with Cη, defined by the homotopy cofiber sequence

S1 η−→ S
i−→ Cη

j−→ S2 .

The E2-term of the Adams spectral sequence for Cη is displayed for 12 ≤ t−s ≤ 24
in Figure 11.22. As a module over E2(S) it is generated in degrees t − s ≤ 24 by
the classes listed in Table 11.9. In each case x̂ denotes a lift of x, i.e., a class with
j(x̂) = x. The differential structure in this range follows by h0-linearity, naturality
with respect to j, and the fact that d2 ◦ d2 = 0.

The resulting E3-term of the Adams spectral sequence for Cη is displayed for
12 ≤ t− s ≤ 24 in Figure 11.23. As a module over E3(S) it is generated in degrees
t − s ≤ 24 by the classes listed in Table 11.9. Most of the d3-differentials follow
by h0-linearity and naturality with respect to i or j. For completeness, we show in
Lemmas 11.72 and 11.73 that d3 vanishes on i(e0) and ĉ1, but these results are not
necessary for the proof of the theorem.

The key differential, d3(h2f̂0) = i(Pd0), is established in Lemma 11.74. It
implies that Adams filtration ≥ 7 in π22(Cη) is trivial. Letting γ = {Pd0} denote
the unique class in π22(S) that is detected by Pd0, it follows that i(γ) = 0. Hence
γ = η · β for some class β ∈ π21(S) = Z/2{ηκ̄} ⊕ Z/2{νν∗}. Since η · νν∗ = 0 we
must have γ = η · ηκ̄. !

Lemma 11.72. d3(i(e0)) = 0 in E3(Cη).

Proof. (This is implicit in [107, Lem. 3.1.4].) If d3(i(e0)) = 0 then i(e0)

survives to E∞(Cη) in bidegree (t− s, s) = (17, 4), otherwise i(e0) + h2
0h4ĥ0 is the

surviving class. Let α ∈ π17(Cη) be detected in Adams filtration 4. Consider the
exact sequence

. . .
η−→ π17(S)

i−→ π17(Cη)
j−→ π15(S)

η−→ . . . .

Since i(ηη∗) = 0 the image of i lies in Adams filtration ≥ 5, hence α maps non-

trivially by j to ker(η) ⊂ π15(S). If α were detected by i(e0) + h2
0h4ĥ0 then j(α)

would be detected by h3
0h4 modulo Adams filtration ≥ 5. But then j(α) = ρ
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Figure 11.23. (E3(Cη), d3) for 12 ≤ t − s ≤ 24

modulo Adams filtration ≥ 5. Since ηρ 0= 0 and η2κ = 0, this means that j(α)
is not in ker(η), which contradicts exactness. Hence α is detected by i(e0), so
d3(i(e0)) = 0. !

Lemma 11.73. d3(ĉ1) = 0 in E3(Cη).

Proof. From ησ̄ = 0 in π20(S) we deduce that there must be a class β ∈
π21(Cη) with j(β) = σ̄ in Adams filtration 3. Any such lift β must have Adams
filtration ≤ 3, hence be detected by a nonzero element in F2{i(h2

2h4), ĉ1}. If d3(ĉ1)
were nonzero then β would have to be detected by i(h2

2h4). However, i(νν∗) is
detected by i(h2

2h4), so modifying the choice of β by i(νν∗) would give a lift of σ̄
of Adams filtration ≥ 4. This contradiction implies that d3(ĉ1) = 0. !

Lemma 11.74. d3(h2f̂0) = i(Pd0) in E3(Cη).

Proof. Suppose for a contradiction that d3(h2f̂0) = 0. Then i(Pd0) would

survive to a nonzero class in E∞(Cη), since dr(h4ĥ2) = 0 for r ∈ {4, 5}. Let
γ′ ∈ {i(Pd0)} ⊂ π22(Cη). Consider the homotopy cofiber sequence

Σ3Cη
1∧ν−→ Cη

1∧i−→ Cη ∧ Cν
1∧j−→ Σ4Cη
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Table 11.5. E3(S)-module generators of E3(Cη) for t − s ≤ 24

t − s s g x d3(x)

0 0 0 i(1) 0

2 1 1 ĥ0 0

5 1 3 ĥ2 0

11 4 4 ĥ1c0 0

13 5 4 P̂ h2 0

16 2 10 ĥ2
3 0

17 2 11 h4ĥ0 d0ĥ0

17 4 7 i(e0) 0

18 2 12 i(h2h4) 0

19 8 4 ĥ1Pc0 0

20 2 13 h4ĥ2 0

21 3 14 ĉ1 0

21 9 4 P̂ 2h2 0

23 5 14 h2f̂0 i(Pd0)

and the associated long exact sequence

· · · −→ π19(Cη)
ν−→ π22(Cη)

1∧i−→ π22(Cη ∧ Cν) −→ . . . .

We prove in Lemma 11.75 below that (1 ∧ i)(γ′) = 0 in π22(Cη ∧ Cν), so that
γ′ = ν · β′ is a ν-multiple. However, E∞(Cη) in topological degree t − s = 19 is

generated by h2ĥ2
3 = 312, d0ĥ2 = 510 and classes in Adams filtration ≥ 8. Since

h2 · h2ĥ2
3 = 413 and h2 · d0ĥ2 = 611 are linearly independent, it follows that there is

no class β′ ∈ π19(Cη) such that νβ′ is detected by i(Pd0). !

The (E2, d2)-term of the Adams spectral sequence for Cη ∧Cν is displayed for
12 ≤ t−s ≤ 24 in Figure 11.24. Most d2-differentials follow by h0- and h3-linearity,
and naturality with respect to i or j. The first nontrivial case is that handled by
the following lemma.

Lemma 11.75. (1) There is a differential d2(a) = b in E2(Cη ∧ Cν), where

a = h0e0ĥ0 = 613

has bidegree (t − s, s) = (23, 6), and

b = (1 ∧ i)i(Pd0) = 89

has bidegree (t − s, s) = (22, 8).
(2) If γ′ ∈ {i(Pd0)} ⊂ π22(Cη), then (1 ∧ i)(γ′) = 0 in π22(Cη ∧ Cν).

Proof. (1) The differential d2(f0) = h2
0e0 in E2(S) pushes forward along

i : S → Cη to give d2(i(f0)) = i(h2
0e0) in E2(Cη). See Figure 11.22. This lifts
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Figure 11.24. (E2(Cη ∧ Cν), d2) for 12 ≤ t − s ≤ 24

over 1 ∧ j : Cη ∧ Cν → Σ4Cη to give

d2(i(f0)) = i(h2
0e0)

in E2(Cη ∧ Cν). Here i(f0) = 418 maps by 1 ∧ j to i(f0) = 49, and i(h2
0e0) = 611

maps by 1 ∧ j to i(h2
0e0) = 67. See Figure 11.24, and note that, by h0-linearity,

d2(i(f0)) cannot involve 612. Next, multiply by d0e0 ∈ E2(S), with d2(d0e0) = 0,
to get

d2(d0e0 · i(f0)) = d0e0 · i(h2
0e0)

in E2(Cη ∧ Cν). Here d0e0 · i(f0) = 1234 and d0e0 · i(h2
0e0) = 1428 in the minimal

resolution calculated by ext. See Figure 11.25. There is a second generator c = 1235

in the same bidegree of E2(Cη ∧ Cν) as d0e0 · i(f0) = 1234, but d2(c) = 0 by h0-
linearity. Recall the class r = 610 in E2(S), with d2(r) = 0. The identity

r · a = 610 · 613 = 1234 + 1235 = d0e0 · i(f0) + c

can be verified with ext. It follows that

r · d2(a) = d0e0 · i(h2
0e0) + 0 0= 0 ,

so d2(a) 0= 0 in E2(Cη ∧ Cν). The only possible target is b = (1 ∧ i)i(Pd0) = 89.
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Figure 11.25. E2(Cη∧Cν) for 52 ≤ t− s ≤ 56, 8 ≤ s ≤ 16, with
one d2-differential

(2) If γ′ ∈ {i(Pd0)} then (1 ∧ i)(γ′) is detected by (1 ∧ i)i(Pd0) = 0 in
E∞(Cη∧Cν), modulo classes of higher Adams filtration. But Adams filtration ≥ 9
of π22(Cη∧Cν) is trivial, as is evident from Figure 11.24. Hence (1∧i)(γ′) = 0. !

11.10. The tmf-Hurewicz homomorphism

Consider the homotopy cofiber sequence

S
ι−→ tmf

i−→ tmf/S
j−→ ΣS

and the induced long exact sequence of Adams spectral sequence E2-terms

· · · −→ Es,t
2 (S)

ι−→ Es,t
2 (tmf)

i−→ Es,t
2 (tmf/S)

j−→ Es+1,t
2 (S) −→ . . . .

Here H∗(tmf/S) is the positive-degree part of H∗(tmf), and we can calculate

Es,t
2 (tmf/S) = Exts,t

A (H∗(tmf/S), F2)

in a finite range using ext. This requires producing module definition files for
A//A(2) and IA//A(2) = ker(A//A(2) → F2), together with map definition files
for the homomorphisms ι ∈ Ext0,0

A (A//A(2), F2) and i ∈ Ext0,0
A (IA//A(2), A//A(2))

and for the 1-cocycle j ∈ Ext1,0
A (F2, IA//A(2)), in the requisite formats. This can

be achieved with computer algebra software such as MAGMA together with a bit of
hand work.

The E2(S)-module generators of E2(tmf/S) for t − s ≤ 48 are listed in Ta-
ble 11.6. Here a = i(a) denotes the image of a class a ∈ E2(tmf), and ã ∈ j−1(a)
denotes a lift of a class a ∈ E2(S). Most of the d2-differentials in that table are
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Figure 11.26. (E2(tmf/S), d2) for 44 ≤ t − s ≤ 52, 12 ≤ s ≤ 16

determined by h0-linearity or j-naturality, or vanish because the target group is
zero. The following lemma accounts for the two remaining cases.

Lemma 11.76. d2(q̃) = δ′ = h1 · h̃0r and d2(h̃1u) = δ′w1 = Ph1 · h̃0r.

Proof. We lift d2(Q) = h0i2 in E2(S) to d2(Q̃) = h̃0i2 in E2(tmf/S). See

Figure 11.26. Multiplying by h2
1 we obtain d2(h2

1 · Q̃) = h2
1 · h̃0i2 = 1618 in

E2(tmf/S). Here h2
1 · Q̃ = 1418 = P 2h1 · q̃ = Ph1 · h̃1u, as verified by ext. Thus

P 2h1 · d2(q̃) = Ph1 · d2(h̃1u) = 1618 0= 0, which implies d2(q̃) 0= 0 and d2(h̃1u) 0= 0.

The only possible values are δ′ = h1 · h̃0r and δ′w1 = Ph1 · h̃0r, respectively. !
These differentials for tmf/S correspond to filtration shifts for ι : S → tmf .

Proposition 11.77. The homomorphism ι : π∗(S) → π∗(tmf) takes the classes
in {q} ⊂ π32(S) to ε1 ∈ {δ′} ⊂ π32(tmf), increasing Adams filtration from 6 to 7.
Similarly, it takes the classes in {h1u} ⊂ π40(S) to Bε1 ∈ {δ′w1} ⊂ π40(tmf),
increasing Adams filtration from 10 to 11. Here Bε1 = εε1 = 2κ̄2.

Proof. Let S5,3 = cof(S8 → S5), where S7 is a minimal Adams resolution of S.
Note that S7 ∧ tmf and S7 ∧ tmf/S are then (non-minimal) Adams resolutions of
tmf and tmf/S, respectively. Consider the following vertical maps of horizontal
homotopy cofiber sequences.

S
ι !! tmf

i !! tmf/S

S5
1∧ι !!

,,

""

S5 ∧ tmf
1∧i !!

,,

""

S5 ∧ tmf/S

,,

""

S5,3
1∧ι !! S5,3 ∧ tmf

1∧i !! S5,3 ∧ tmf/S

The class ε1 ∈ π32(tmf) is detected by δ′ in Adams filtration 7, hence comes from
a class ε′1 ∈ π32(S5 ∧ tmf), also detected by δ′, which maps to a well-defined class
ε′′1 = {δ′} in π32(S5,3 ∧ tmf). The latter class ε′′1 maps to zero in π32(S5,3 ∧ tmf/S)
under 1∧ i, because i(δ′) = d2(q̃) by the previous lemma, hence is the image under
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ỹ
13 1415 16 17 18 19 20

4 5 6 7

h̃0r
8 9 1011 12 13 14 15 16 17

B̃1

18

4 5 6 78 9

h̃0m
10 11 12 13

Ñ
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Figure 11.27. (E2(tmf/S), d2) for t − s ≤ 48
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ẽ1

13 14

c0h̃5

15

f̃1

16 18
g̃2

19

4

h̃2g
5 7

ñ
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Figure 11.28. (E3(tmf/S), d3) for t − s ≤ 48
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Figure 11.29. (E4(tmf/S), d4) for t − s ≤ 48

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



11.10. THE tmf-HUREWICZ HOMOMORPHISM 491

0 4 8 12 16 20 24
0

4

8

12

0 h̃3

0 1 2 4

h1h̃4

5

h2h̃4

0 1 4 5 6
c̃1

7

0 1
α

3

h3
0h̃4

4 5 6

c0h̃4

0 1 3 4

h̃2g

0 1 2 3 4

0 1 2 3 4

0 1 2 3
αw1

4

0 1 2 3 4˜h2
0i + h1Pd0

5

0 1 2 3 45

0 1 2 3 45

0 1 2 3 45

0 1 2 3 45

24 28 32 36 40 44 48
0

4

8

12

16

20

24

6

h4h̃4

8

h1h̃5

9 11 12

h0h2h̃5

13

h2
2h̃5

15 17

h2
4h̃4

6

c0h̃4

9

d̃1

10
p̃

11 13

h2
0h3h̃5

14

c0h̃5

15

f̃1

16 18
g̃2

19

4

h̃2g
5 7

ñ
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Figure 11.30. E5(tmf/S) = E∞(tmf/S) for t − s ≤ 48
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1∧ι of a class β′′ ∈ π32(S5,3). Here β′′ cannot be detected by 5, since ι(5) = αg 0= δ′

in E∞(tmf). The only alternative is that β′′ is detected by q.
Let β′ ∈ π32(S5) be detected by q. Its image in π32(S5,3) is then either β′′ or

β′′ + {5}, and its image in π32(S5,3 ∧ tmf) will be detected by δ′ or δ′ + αg = δ,
respectively. It follows that (1 ∧ ι)(β′) in π32(S5 ∧ tmf) is detected by δ′ or δ, and
that the image β ∈ π32(S) of β′ maps by ι to a class ι(β) ∈ π32(tmf) that is detected
by δ′ or δ, according to the case. Now π32(S) is finite, and {δ} ⊂ π32(tmf) only
contains classes of infinite order. Hence the second of the two cases is excluded, β′

maps to β′′, and we have shown that at least one class in {q} ⊂ π32(S) maps to a
class of finite order in {δ′} ⊂ π32(tmf), i.e., to ε1. The indeterminacy in {q} lies in
Adams filtration ≥ 8, hence every class in {q} maps to ε1.

We can give an entirely similar argument for {h1u}, using S9,3 = cof(S12 → S9)

and the differential d2(h̃1u) = i(δ′w1). However, in this case the result also follows
directly from ι(u) = d0γ and the hidden η-extension in case (39) of Theorem 9.16.

!

The Adams (E2, d2)-term for tmf/S is shown in Figure 11.27, and the E3(S)-
module generators for t − s ≤ 48 of the resulting E3-term are listed in Table 11.7.
Most of the d3-differentials in that table are determined by h0-linearity, h2-linearity
or j-naturality, or vanish because the target group is zero. The one remaining case
is covered by the following lemma.

Lemma 11.78. d3(h̃0d0e0) = 0.

Proof. The class B1 ∈ π32(tmf) is detected by αg = 711 + 712 in Adams
filtration 7, while 8B1 is detected by h0α2w1 = 1110. Using ext to calculate

i : E2(tmf) → E2(tmf/S), we see that i(αg) = 0 and i(h0α2w1) = 118 = h3
0 ·h̃0d0e0,

which must survive to E∞(tmf/S) by h0-linearity. Hence i(B1) must be detected in

Adams filtration 8, by a class b with h3
0 · b = h3

0 · h̃0d0e0. Since multiplication by h3
0

acts injectively from bidegree (t− s, s) = (32, 8), the only possibility is b = h̃0d0e0,
so this class is an infinite cycle. !

The Adams (E3, d3)-term is shown in Figure 11.28, and the E4(S)-module
generators for t−s ≤ 48 of the resulting E4-term are listed in Table 11.8. Most of the
d4-differentials in this range vanish because the target is trivial, or by h0-linearity.
The nonzero differential on h3h̃5 follows from the one in E4(S) by j-naturality. This
leads to the E5-term shown in Figure 11.30, where the E5(S)-module generators
for t − s ≤ 48 are labeled.

Proposition 11.79. E5(tmf/S) = E∞(tmf/S) for t − s ≤ 48.

Proof. Most E5(S)-module generators are infinite cycles because all later dif-
ferentials land in trivial groups, or by h0- or h1-linearity. The remaining cases are
h2h̃4, h0h2h̃5 and Ph2h̃5. By Proposition 11.82 the classes ν∗, α34 and [[Ph2h5]] in
ker(e) ⊂ π∗(S), detected by h2h4, h0h2h5 and Ph2h5, respectively, map to B-power
torsion in π∗(tmf). They can therefore be chosen so as to map to zero under ι,
as in Theorem 11.61, hence are in the image of j : π∗+1(tmf/S) → π∗(S). By the
geometric boundary theorem [38], the only classes in π∗+1(tmf/S) that can map to

ν∗, α34 and [[Ph2h5]] must be detected by h2h̃4, h0h2h̃5 and Ph2h̃5, respectively.
Hence the latter three classes are infinite cycles. !
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Theorem 11.80. The tmf -Hurewicz homomorphism ι : π∗(S) → π∗(tmf) maps
the algebra generators α in degrees ∗ ≤ 44 to ι(α), as in the following table.

α η ν σ ε µ ζ κ ρ η∗ µ̄ ν∗ ζ̄ σ̄ κ̄ ρ̄ µ25

ι(α) η ν 0 ε ηB 0 κ 0 0 ηB2 0 0 0 κ̄ 0 ηB3

α ζ27 θ4 ρ31 [n] [q] κ1 η5 µ33 α34 ζ35 {t} α37 α38

ι(α) 0 0 0 0 ε1 0 0 ηB4 0 0 0 0 0

α ρ39 [u] α39 [[Ph1h5]] α40 µ41 [[Ph2h5]] ζ43 κ̄2

ι(α) 0 η1κ 0 0 0 ηB5 0 0 0

Furthermore, ι({w}) = η1κ̄, and the remaining algebra generators in degrees 45 ≤
∗ ≤ 50 can be chosen to map to zero.

Proof. The claims for η, ν, ε, κ and κ̄ are clear from Definition 9.22.
The classes σ, ζ, η∗, ζ̄, σ̄, ρ̄, ζ27, θ4, ρ31, [n], ζ35, {t}, α37, α38, ρ39, ζ43, κ̄2, ρ47

and {e0r} map to zero, because the corresponding Adams filtration of the target
group is 2-torsion free. See Figures 9.6 and 9.7.

The classes µ, µ̄, µ25, µ33 and µ41 are detected by P kh1 for k ≥ 0, hence map
to classes detected by ι(P kh1) = h1wk

1 , which uniquely characterizes the ηBk. The
classes [u] and {w} map to classes detected by ι(u) = d0γ and γg, see Table 1.1,
which uniquely characterizes η1κ and η1κ̄, respectively.

We chose ρ to be in j({h3
0h̃4}), so that ερ = 0 and ι(ρ) = 0, cf. the proof of

cases (15) and (23) of Theorem 11.61. We chose ν∗ to be in ker(e), hence ι(ν∗) is
B-power torsion by Proposition 11.82, of which there is none in π18(tmf).

We proved that ι([q]) = ε1, with a filtration shift from 6 to 7, in Proposi-
tion 11.77.

We could, and did, choose κ1, η5, α34, α39, [[Ph1h5]], α40 and [[Ph2h5]] in
ker(e) to also lie in ker(ι), since in each case there are classes in higher Adams
filtration whose images under ι span the B-power torsion in the relevant degree of
π∗(tmf). The same argument applies to the remaining algebra generators in degree
∗ ∈ {45, 46} of filtration ≤ 8. Finally, the generators in degrees 47 ≤ ∗ ≤ 50 must
map to zero, since π∗(tmf) contains no B-power torsion in these degrees. !

Table 11.6: E2(S)-module generators of E2(tmf/S) for t− s ≤ 48

t − s s g x d2(x)

8 0 0 h̃3 0

12 3 1 α 0

16 0 1 h̃4 h0h3 · h̃3

20 2 6 c̃1 0

20 7 3 αw1 0

24 4 4 h̃2g 0

24 8 4 ˜h2
0i + h1Pd0 0
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Table 11.6: E2(S)-module generators of E2(tmf/S) for t − s ≤ 48
(cont.)

t − s s g x d2(x)

28 11 6 αw2
1 0

31 6 7 h̃0r 0

32 0 2 h̃5 h0h4 · h̃4

32 4 7 ñ 0

32 8 7 h̃0d0e0 0

33 3 9 d̃1 0

33 5 8 q̃ δ′ = h1 · h̃0r

34 3 10 p̃ 0

36 7 9 h̃0m h2 · h̃0d0e0

36 15 9 αw3
1 0

37 5 10 t̃ 0

38 4 11 x̃ 0

39 3 12 ẽ1 0

39 5 12 ỹ h3
0 · x̃

40 12 11 ˜h0Pd0e0 0

40 16 11 ˜h2
0P

2i + h1P 3d0 0

41 3 15 f̃1 0

41 9 14 h̃1u δ′w1 = Ph1 · h̃0r

42 2 16 c̃2 h0 · f̃1

44 11 13 h̃0d0k h2 · ˜h0Pd0e0

44 19 13 αw4
1 0

45 3 18 g̃2 0

47 6 17 B̃1 0

47 7 13 Ñ 0

47 14 15 h̃0i2 0

48 8 13 w2 0

48 12 14 Q̃ h̃0i2

48 16 15 + 16 ˜h0P 2d0e0 0
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Table 11.7: E3(S)-module generators of E3(tmf/S) for t− s ≤ 48

t − s s g x d3(x)

8 0 0 h̃3 0

12 3 1 α 0

16 3 3 h3
0h̃4 0

17 1 4 h1h̃4 0

19 1 5 h2h̃4 0

20 2 6 c̃1 0

20 7 3 αw1 0

24 3 6 c0h̃4 0

24 4 4 h̃2g 0

24 8 4 ˜h2
0i + h1Pd0 0

28 11 6 αw2
1 0

31 1 6 h4h̃4 0

31 6 7 h̃0r 0

32 3 8 h3
0h̃5 h̃0r

32 4 7 ñ 0

32 8 7 h̃0d0e0 0

33 1 8 h1h̃5 0

33 3 9 d̃1 0

34 3 10 p̃ 0

35 1 9 h2h̃5 h0p̃

36 10 12 h3
0h̃0m 0

36 15 9 αw3
1 0

37 5 10 t̃ 0

38 4 11 x̃ 0

39 1 10 h3h̃5 0

39 3 12 ẽ1 h1t̃

40 3 14 c0h̃5 0

40 12 11 ˜h0Pd0e0 0

40 16 11 ˜h2
0P

2i + h1P 3d0 0

41 3 15 f̃1 0

41 5 14 Ph1h̃5 0

43 5 16 Ph2h̃5 0

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



496 11. THE ADAMS SPECTRAL SEQUENCE FOR THE SPHERE

Table 11.7: E3(S)-module generators of E3(tmf/S) for t − s ≤ 48
(cont.)

t − s s g x d3(x)

44 14 14 h3
0h̃0d0k 0

44 19 13 αw4
1 0

45 3 18 g̃2 0

46 4 18 d0h̃5 0

47 6 17 B̃1 0

47 7 13 Ñ 0

48 7 14 Pc0h̃5 0

48 8 13 w2 0

48 16 15 + 16 ˜h0P 2d0e0 0

48 19 17 h7
0Q̃ 0

Table 11.8: E4(S)-module generators of E4(tmf/S) for t− s ≤ 48

t − s s g x d4(x)

8 0 0 h̃3 0

12 3 1 α 0

16 3 3 h3
0h̃4 0

17 1 4 h1h̃4 0

19 1 5 h2h̃4 0

20 2 6 c̃1 0

20 7 3 αw1 0

24 3 6 c0h̃4 0

24 4 4 h̃2g 0

24 8 4 ˜h2
0i + h1Pd0 0

28 11 6 αw2
1 0

31 1 6 h4h̃4 0

32 4 7 ñ 0

32 8 7 h̃0d0e0 0

32 10 9 h10
0 h̃5 0

33 1 8 h1h̃5 0

33 3 9 d̃1 0
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Table 11.8: E4(S)-module generators of E4(tmf/S) for t − s ≤ 48
(cont.)

t − s s g x d4(x)

34 3 10 p̃ 0

35 2 12 h0h2h̃5 0

36 10 12 h3
0h̃0m 0

36 15 9 αw3
1 0

37 5 10 t̃ 0

38 2 13 h2
2h̃5 0

38 4 11 x̃ 0

39 1 10 h3h̃5 h0x̃

40 3 14 c0h̃5 0

40 12 11 ˜h0Pd0e0 0

40 16 11 ˜h2
0P

2i + h1P 3d0 0

41 3 15 f̃1 0

41 5 14 Ph1h̃5 0

43 5 16 Ph2h̃5 0

44 14 14 h3
0h̃0d0k 0

44 19 13 αw4
1 0

45 3 18 g̃2 0

46 4 18 d0h̃5 0

47 6 17 B̃1 0

47 7 13 Ñ 0

48 7 14 Pc0h̃5 0

48 8 13 w2 0

48 16 15 + 16 ˜h0P 2d0e0 0

48 19 17 h7
0Q̃ 0

11.11. The tmf-Hurewicz image

The image of the tmf -Hurewicz homomorphism ι : π∗(S) → π∗(tmf) lies mostly
in the Pontryagin self-dual part. Working integrally, for a moment, the image con-
tains π0(tmf) ∼= Z{ι}, π3(tmf) ∼= Z/24{ν} and the groups Z/2{ηBk} ⊂ π8k+1(tmf)
and Z/2{η2Bk} ⊂ π8k+2(tmf) for k ≥ 0. The remainder of the 2-primary Hurewicz
image was conjectured by Mahowald [54, §13.5] to be equal to the part of the
B-power torsion that we refer to as Θπ∗(tmf)∧2 , cf. Chapter 10. A proof of this
conjecture was announced by Behrens (ca. 2012), in joint work with Mahowald.
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See Remark 11.84. Similarly, the remainder of the 3-primary Hurewicz image is as-
serted in [54, §13.1] to be equal to the part of the B-power torsion that we denote
Θπ∗(tmf)∧3 . In this section we outline calculations leading toward these conclusions
at p = 2. See Section 13.7 for calculations at p = 3.

Returning to the implicitly 2-complete setting, let the cokernel-of-J spectrum c
be defined by the homotopy cofiber sequence

c −→ S
e−→ j ,

where e : S → j is the unit map representing the combined Adams d- and e-
invariants. Adams [8] proved that e : π∗(S) → π∗(j) is surjective, which implies
that π∗(c) ∼= ker(e).

As a consequence of Mahowald’s work on bo-resolutions and v1-periodic ho-
motopy [102, Thm. 1.1], Bousfield [33, Thm. 4.3] deduced that the map e is a
KU -equivalence, so that c is KU -acyclic. A simpler proof of this fact can be given,
following Stephen Mitchell [131, p. 201], by noting that e induces an isomorphism
e∗ : KU∗(j) → KU∗(S). Here KU∗(KO) is Z2[[Z×

2 /〈−1〉]] for ∗ = 0 and 0 for
∗ = 1. The Adams operation ψk : KO → KO induces multiplication by k in
Z×

2 /〈−1〉, so KU∗(j) is Z2[[Z×
2 /〈−1, 3〉]] ∼= Z2 for ∗ = 0 and 0 for ∗ = 1. Since

d∗ : KU0(KO) → KU0(S) ∼= Z2 is surjective and KU1(S) = 0, it follows that e∗ is
an isomorphism, which implies that e is a KU -equivalence.

Proposition 11.81. tmf [1/B] is Bousfield KU-local.

Proof. By Bousfield’s criterion [33, Thm. 4.8] it suffices to check that

tmf [1/B] ∧ Z - ∗
for Z = M(1, 4). Here M(1, 4) = S/(2, v4

1) is the mapping cone of an Adams
map v4

1 : Σ8S/2 → S/2. By the Hopkins–Smith thick subcategory theorem [78], we
may equally well verify the condition for Z = Φ ∧ M(1, 4), since both M(1, 4) and
Φ ∧ M(1, 4) are type 2 finite CW spectra. Here Φ = ΦA(1) is as in Lemma 1.42.
In view of the equivalence tmf ∧ Φ - BP 〈2〉 from Proposition 1.44, it suffices to
prove that BP 〈2〉 ∧ M(1, 4) becomes trivial after inverting B. Here π∗(BP 〈2〉 ∧
M(1, 4)) = Z2[v1, v2]/(2, v4

1) = Z/2[v1, v2]/(v4
1), where B acts nilpotently, so this

claim is clear. !
Proposition 11.82. If x ∈ ker(e) ⊂ πn(S), then ι(x) lies in Θπn(tmf) ⊂

ΓBπn(tmf) ⊂ πn(tmf).

Proof. The composite c → S → tmf → tmf [1/B] is null-homotopic, since c
is KU -acyclic and tmf [1/B] is KU -local, so there is a commutative diagram

c !!

""

S
e !!

ι

""

j

""

Σ−1tmf/B∞ !! tmf !! tmf [1/B]

with horizontal homotopy cofiber sequences. If e(x) = 0 then x admits a lift
x̃ ∈ πn(c). Its image ỹ ∈ πn+1(tmf/B∞) must be 2-power torsion, since πn(c)
is finite. Hence its image y = ι(x) ∈ πn(tmf) lies in the image of the composite
homomorphism

Γ2πn+1(tmf/B∞) ⊂ πn+1(tmf/B∞) −→ ΓBπn(tmf) ⊂ πn(tmf) .
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By Definition 10.18, this means that ι(x) lies in Θπn(tmf). In particular, ι(x) = 0
if n ≡ 3 mod 24. !

Proposition 11.83. The tmf -Hurewicz image of ker(e) ⊂ πn(S) is equal to
Θπn(tmf) for n ≤ 101 and for n = 125. It also contains the nonzero elements
η1κ̄4, 2κ4 = η2

1κ̄
3, 2κ4κ̄ = η2

1 κ̄
4 and 4νν6 = η6

1, in degrees 105, 110, 130 and 150,
respectively. In particular, the products κ̄5, κ̄4{w} and κ̄3{w}2 are nonzero in
π∗(S).

Proof. In Table 9.4 we have listed classes α ∈ ker(e) ⊂ πn(S) with ι(α) = β,
for many B-power torsion classes β ∈ πn(tmf). We have also noted that ι(ν) = ν for
n = 3, while for the other n ≡ 3 mod 24 no spherical lift α exists, since Θπn(tmf) =
0 for these n. The values of ι on the multiplicative generators of π∗(S) in degrees
n ≤ 44 are given in Theorem 11.80, and these suffice to determine the tmf -Hurewicz
image for n ≤ 53, as well as in some higher degrees, including n = 125. We appeal to
the work of Isaksen, Wang and Xu [83] to prove Propositions 11.85, 11.86 and 11.87,
which suffice to determine the image for n ≤ 101. Granting these results it is mostly
trivial to see that a given α maps to the stated β. The following factorizations in
π∗(tmf), from Tables 9.8 and 9.9, handle the remaining cases:

• ην1 = εκ̄ = ι(εκ̄)
• ην2 = ε1κ̄ = ι(κ̄[q])
• ν2B = η1κκ̄ = ι(κ{w})
• ην2κ = ηη1κ̄2 = ι(ηκ̄{w})
• ην4 = η4

1 = κ̄5 = ι(κ̄5)
• η1κ̄4 = ι(κ̄3{w})
• 2κ4 = η2

1 κ̄
3 = ι(κ̄{w}2)

• η2ν5 = η5
1 = η1κ̄5 = ι(κ̄4{w})

• 2κ4κ̄ = η2
1 κ̄

4 = ι(κ̄2{w}2)
• 4νν6 = η6

1 = η2
1 κ̄

5 = ι(κ̄3{w}2). !

Remark 11.84. As mentioned above, Mahowald effectively conjectured that
ι(ker(e)) = Θπ∗(tmf) holds in all degrees, and a recent preprint [27] by Behrens,
Mahowald and Quigley affirms this conjecture. In outline, their proof is obtained by
first constructing enough classes in π∗(S) to generate Θπ∗(tmf) as a π∗(S)-module
in degrees 0 ≤ ∗ < 192, and then to apply a variant for M(3, 8) = S/(8, v8

1) of the
v32
2 -self map of M(1, 4) from [26] to extend this 192-periodically. Proposition 11.83

accounts for a little over half the initial range of degrees. Using Tables 9.8 and 9.9
we see that the classes νν4, ε4, κ4, κ̄D4, η4κ̄, ε5, η1κ4, νν6 and ν6κ suffice to generate
the remainder of Θπ∗(tmf), up to degree 192. These nine classes were emphasized
with question-marks in the α-column in Table 9.4, and part of the work in [27] is
to verify that these classes are in the tmf -Hurewicz image from π∗(S).

Proposition 11.85 ([82], [83]). The class h0h5i ∈ E2(S) survives to the E∞-
term. Let α54 ∈ {h0h5i}, in Adams filtration 9. Then ι(α54)

.
= νν2, in Adams

filtration 10.

Sketch proof. According to [82, Lem. 4.56], the class h0h5i = 925 in bide-
gree (t − s, s) = (54, 9) survives to the E∞-term in the Adams spectral sequence
for S, and corresponds to β10/2 in the Adams–Novikov spectral sequence for S.
The latter class maps to ∆2h2

2 in the Adams–Novikov spectral sequence for tmf ,
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which detects a generator of π54(tmf) ∼= Z/4{νν2}, with 2νν2 = κκ̄2. Hence ι maps
{h0h5i} to {h2

2w2} = {±νν2} in bidegree (54, 10). !

Isaksen’s subsequent argument for why there must be a hidden 2-extension
from h0h5i to d0g2 = e2

0g in bidegree (54, 12) of E∞(S) is incomplete, due to an
intervening class h1x′ in bidegree (54, 11). See [83, Rem. 7.11] and the recent
preprint [47] by Robert Burklund.

Proposition 11.86 ([83]). The class Ph5j ∈ E2(S) survives to the E∞-term.
We can choose α65 ∈ {Ph5j}, in Adams filtration 12, with ηα65 0= 0. Then ι(α65) =
ν2κ, in Adams filtration 13.

Proof. According to [83, Cor. 1.2] and its accompanying chart, Ph5j = 1229+
1230 in bidegree (t−s, s) = (65, 12) of E2(S) survives to the E∞-term. Furthermore,
h2·Ph5j = 1331 = d0·h0h5i is nonzero in E∞(S), of maximal filtration in topological
degree 68. Hence, letting α65 be detected by Ph5j in Adams filtration 12, we must
have να65 = κα54. Here ι(κα54) = νν2κ, so ι(α65) ≡ ν2κ mod η1κ̄2.

This suffices to prove that ι maps onto the B-power torsion in π65(tmf), but
we can refine the choice of α65 to ensure that ι(α65) = ν2κ, as follows. The class
κ̄{w} ∈ {gw} in Adams filtration 13 maps to η1κ̄2 ∈ {γg2}, with η · η1κ̄2 =
η · ν2κ ∈ {d0δ′g}. Hence ηκ̄{w} must be nonzero of Adams filtration ≥ 14, and by
[83, Cor. 1.2] the only possible detecting class is d0e0m = 1524 = g2j. If ηα65 = 0
we can therefore add κ̄{w} to the choice of α65 ∈ {Ph5j}, with no change in its
detecting class, to arrange that ηα65 = ηκ̄{w} 0= 0, with ηι(α65) = ην2κ 0= 0, and
this implies ι(α65) = ν2κ. (It might be more natural to fix a choice of α65 with
ηα65 = 0, but this is typographically less convenient in Table 9.4.) !

Proposition 11.87 ([83]). The class m2 + h1a ∈ E2(S) survives to the E∞-
term, where a = 1332 denotes the nonzero class in bidegree (t− s, s) = (69, 13). Let
α70 ∈ {m2 + h1a}. Then ι(α70) = η2

1 κ̄.

Proof. Isaksen, Wang and Xu write ∆2h1g for the class a = 1332 ∈ E2(S).
By [83, Cor. 1.2] and its accompanying chart, m2+h1a = m2+∆2h2

1g = 1429+1431

in bidegree (t − s, s) = (70, 14) survives to E∞(S). Furthermore, ext calculates
that ι : E2(S) → E2(tmf) maps m2 + h1a to 1435 = γ2g, which has maximal
filtration in its topological degree and detects η2

1 κ̄. Hence α70 ∈ {m2+h1a} satisfies
ι(α70) = η2

1 κ̄. !

In order to complete our discussion of the image of the tmf -Hurewicz homo-
morphism ι we need some information about the classes complementary to ker(e) in
π∗(S), i.e., about the image of the J-homomorphism J : π∗(SO) → π∗(S) and the
classes detected by the Adams d-invariant, represented by the unit map d : S → ko.
We recall that J is induced by a space-level map

J : SO −→ Q1S
0 - Q0S

0 ⊂ QS0 ,

obtained by stabilizing maps Jm : SO(m) → Ωm
1 Sm - Ωm

0 Sm ⊂ ΩmSm. Here
Jm takes an orientation-preserving isometry Rm → Rm to the induced degree +1
map of one-point compactifications Sm → Sm, followed by loop sum with a fixed
degree −1 map, cf. [177]. In degrees ∗ = 8k − 1 the precise Adams filtration of
the elements in the image of the J-homomorphism is determined by Davis and
Mahowald in [53, Thm. 1.1], with significant effort, but for our purposes the much
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more elementary estimate from [53, Prop. 2.5] suffices, and its proof can readily be
extended to also account for degrees of the form ∗ = 8k + 3.

Proposition 11.88 ([53, Prop. 2.5]).
(1) If n = 8k−1 < 24−1, then the image of J : πn(SO) → πn(S) lies in Adams

filtration ≥ 4k + 1 − 5.
(2) If n = 8k+3 < 24−1, then the image of J : πn(SO) → πn(S) lies in Adams

filtration ≥ 4k + 4 − 5.

Proof. Let X[n] denote the (n − 1)-connected cover of a space X. Robert
Stong [163, Thm. A] calculated the mod 2 cohomology H∗(BO[8q + 2r]) for q ≥ 0
and 0 ≤ r ≤ 3, showing, in particular, that this cohomology is polynomial and that
the projection in the homotopy fiber sequence

BO[8q + 2r + 1] −→ BO[8q + 2r] −→ K(π8q+2r(BO), 8q + 2r)

induces a surjection in cohomology in degrees ∗ < 24, where 5 = 4q+r+1. It follows
by the Eilenberg–Moore spectral sequence that the projection p in the homotopy
fiber sequence

SO[8q + 2r]
i−→ SO[8q + 2r − 1]

p−→ K(π8q+2r−1(SO), 8q + 2r − 1)

induces a surjection in cohomology in degrees ∗ < 24 − 1, so that the inclusion i
induces the zero homomorphism in reduced cohomology in the same degrees. Hence
for n < 24 − 1 each map f : Sn → SO factors as a composite

Sn → SO[n]
i→ SO[n − 1]

i→ . . .
i→ SO[8q + 2r]

i→ SO[8q + 2r − 1] → SO ,

where about half of the maps i induce the zero homomorphisms in degrees ≤ n,
and the remaining maps i are equivalences. More precisely, for n = 8k− 1 and n =
8k + 3 there are (4k − 1) − (5 − 1) and (4k + 2) − (5 − 1) maps of the first kind,
respectively. Passing to suspension spectra, each map i of the first kind induces
homomorphisms π∗(Σ∞i) that increase Adams filtration by at least 1 for ∗ ≤ n,
since Es,t

2 (i) = 0 for t − s ≤ n. The composite Jf : Sn → SO → QS0 is adjoint to
a map

Σ∞Sn Σ∞f−→ Σ∞SO
J̃−→ Σ∞S0 = S

of suspension spectra, and its homotopy class in [Σ∞Sn,Σ∞S0] ∼= πn(S) corre-
sponds to the homotopy class of Jf in πn(QS0). Since J̃ induces zero in cohomo-
logy, it follows that Jf has Adams filtration ≥ (4k − 1) − (5 − 1) + 1 (resp. ≥
(4k + 2) − (5− 1) + 1) for n = 8k − 1 (resp. n = 8k + 3), where n < 24 − 1. !

Theorem 11.89. The image of the Hurewicz homomorphism

ι : π∗(S) −→ π∗(tmf) ,

implicitly completed at p = 2, is the direct sum of the following terms:

(1) The group Z{ι} ∼= π0(tmf) and the subgroups Z/2{ηBk} ⊂ π8k+1(tmf)
and Z/2{η2Bk} ⊂ π8k+2(tmf) for k ≥ 0.

(2) The group Z/8{ν} ∼= π3(tmf).
(3) The groups Θπn(tmf) ⊂ πn(tmf) for n ≤ 101 and n = 125.
(4) A subgroup of Θπn(tmf) ⊂ πn(tmf) for the remaining n ≥ 102.

See Remark 11.84 for Mahowald’s conjecture that the subgroups in case (4) are
always the whole of Θπn(tmf).
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Proof. Let d : S → ko be the unit map representing the Adams d-invariant.
We have inclusions

ker(e) ⊂ ker(d) ⊂ πn(S) .

By Proposition 11.82 the image of ι on ker(e) is contained in Θπn(tmf), and by
Proposition 11.83 this containment is an equality for n ≤ 101 and n = 125.

The image im(J) of J : πn(SO) → πn(S) gives a complementary summand in
ker(d) to ker(e), for n ≥ 3. We claim that ι(im(J)) = 0, except when n = 3.
When n = 8k − 1 for k ≥ 1, the image lies in Adams filtration ≥ 4k + 1 − 5
by Proposition 11.88, which for k 0= 2 is strictly larger than the maximal Adams
filtration of the classes in πn(tmf). Since ι cannot decrease Adams filtration, it
follows that ι(im(J)) = 0 in degrees 8k−1 0= 15. Furthermore, ι(ρ) = 0, cf. the proof
of case (15) of Theorem 11.61, which accounts for the case k = 2. Multiplying by η
(resp. η2), it follows that ι(im(J)) = 0 in degrees n = 8k ≥ 8 (resp. n = 8k+1 ≥ 9).
When n = 8k + 3 for k ≥ 0, the image im(J) lies in Adams filtration ≥ 4k + 4 − 5.
This Adams filtration of πn(tmf) is trivial, except for k = 0, so ι(im(J)) = 0
in degrees 8k + 3 ≥ 11. On the other hand, ι maps im(J) = π3(S) = Z/8{ν}
isomorphically to π3(tmf) = Z/8{ν} in degree 3.

Finally, the groups π0(S), Z/2{µ8k+1} and Z/2{ηµ8k+1} for k ≥ 0 give comple-
mentary summands to ker(d), which ι maps isomorphically to summands π0(tmf),
Z/2{ηBk} and Z/2{η2Bk} in π∗(tmf), as in the proof of Theorem 11.80. !
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CHAPTER 12

Homotopy of some finite cell tmf-modules

In this chapter we study the homotopy groups of tmf/2 - tmf ∧ C2, tmf/η -
tmf ∧ Cη and tmf/ν - tmf ∧ Cν, whose Adams E∞-terms were determined in
Chapters 6, 7 and 8. We also study tmf/B and tmf/(B, M), where the latter is
Anderson self-dual, as well as tmf/(2, B) - tmf ∧ M(1, 4) and tmf/(2, B, M) -
tmf ∧ M(1, 4, 32), where the latter is Brown–Comenetz self-dual. Here M(1, 4) =
cof(v4

1 : Σ8S/2 → S/2) and M(1, 4, 32) = cof(v32
2 : Σ192M(1, 4) → M(1, 4)) are

type 2 and 3 finite CW spectra shown to exist in [8, §12] and [26], respectively.

12.1. Homotopy of tmf/2

We study π∗(tmf/2) using the short exact sequence

0 → π∗(tmf)/2
i−→ π∗(tmf/2)

j−→ 2π∗−1(tmf) → 0

of π∗(tmf)-modules. Here 2πn−1(tmf) = ker(2: πn−1(tmf) → πn−1(tmf)). We do
not fully describe the π∗(tmf)-module structure on π∗(tmf/2), but aim to determine
the 2-, η-, ν-, B- and M -action on this extension. As tools we use the maps

E∗,∗
∞ (tmf)

i−→ E∗,∗
∞ (tmf/2)

j−→ E∗,∗−1
∞ (tmf)

of E∞(tmf)-modules, calculated in Chapters 5 and 6, and our knowledge from
Chapter 9 of the graded ring π∗(tmf). We determine the hidden 2-, η- and ν-
extensions in E∞(tmf/2), except for some unresolved η-extensions, and show that
there are no hidden B- and M -extensions.

The E∞-term for tmf/2 is displayed in Figures 12.1 to 12.8. A label i(x) denotes
the class of an infinite cycle in the image under i : Es,t

2 (tmf) → Es,t
2 (tmf/2) of x ∈

E2(tmf). A label x̃ denotes the class of an infinite cycle mapping to x ∈ E2(tmf)
under j : Es,t

2 (tmf/2) → Es,t−1
2 (tmf). We omit to label the classes that are h0-,

h1-, h2- or w1-multiples, and this specifies the w1-action on E∞(tmf/2).

Lemma 12.1. There are no hidden B- or M -power extensions in E∞(tmf/2).

Proof. For each b ∈ E∞(tmf/2) with w1b = 0, each class in the same topo-
logical degree but in higher filtration than w1b is a w1-multiple. Hence each such b
can be represented by a homotopy class β with Bβ = 0. Similarly, for almost every
b ∈ E∞(tmf/2) with w2

1b = 0, each class in the same topological degree but in
higher filtration than w2

1b is a w2
1-multiple. Hence each such b can be represented

by a homotopy class β with B2β = 0.
There is one exceptional case, namely b = i(h2w3

2) in bidegree (t − s, s) =
(147, 25) detecting i(ν6). Here w2

1b = 0 and the class c = w1 · γw1w2
2γ̃ is not a

w2
1-multiple, so we must exclude the possibility of a hidden B2-extension from b

to c. Each class β ∈ {b} has the form i(ν6)+β′ with β′ in Adams filtration ≥ 34. It
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Figure 12.1. E∞(tmf/2) for 0 ≤ t − s ≤ 24, with all hidden 2-,
η- and ν-extensions
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Figure 12.2. E∞(tmf/2) for 24 ≤ t − s ≤ 48, with all hidden 2-,
η- and ν-extensions
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Figure 12.3. E∞(tmf/2) for 48 ≤ t− s ≤ 72, with all (potential)
hidden 2-, η- and ν-extensions
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Figure 12.4. E∞(tmf/2) for 72 ≤ t − s ≤ 96, with all hidden 2-,
η- and ν-extensions
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Figure 12.5. E∞(tmf/2) for 96 ≤ t − s ≤ 120, with all hidden
2-, η- and ν-extensions
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Figure 12.6. E∞(tmf/2) for 120 ≤ t − s ≤ 144, with all (poten-
tial) hidden 2-, η- and ν-extensions

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



12.1. HOMOTOPY OF tmf/2 507

144 148 152 156 160 164 168

24

28

32

36

40

g·i(δ′w2
2)

g·w2
2 δ̃

′

g·i(γw1w2
2)

g·w1w2
2γ̃ g·d0w2

2γ̃

g·d0w2
2 δ̃

′

i(h2w3
2)

h2
1w

3
2h̃1

i(c0w3
2)

γ2w2
2h̃

2
2

δ′w2
2γ̃

αgw2
2γ̃

i(γ2w1w2
2)

γw1w2
2γ̃

d0gw2
2β̃

2

i(h2βw3
2)

g2w2
2d̃0e0

Figure 12.7. E∞(tmf/2) for 144 ≤ t − s ≤ 168, with all (poten-
tial) hidden 2-, η- and ν-extensions
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Figure 12.8. E∞(tmf/2) for 168 ≤ t − s ≤ 192, with all hidden
2-, η- and ν-extensions
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follows from B2ν6 = 0 that B2β = B2β′ has Adams filtration ≥ 42, so this product
cannot be detected by c.

For k ≥ 3, each class b with wk
1b = 0 satisfies w2

1b = 0, so there are no hidden
Bk-extensions. There is no w4

2-torsion in E∞(tmf/2), so the claim about M -power
extensions is clear. !

Lemma 12.2. The multiplication-by-2 map 2: S/2 → S/2 factors as the com-
posite

S/2
j−→ S1 η−→ S

i−→ S/2 .

Hence 2 · ỹ = i(η · y) for ỹ ∈ π∗(tmf/2) with j(ỹ) = y.

Proof. The map 2: S/2 → S/2 is essential, because the Steenrod operation
Sq2 acts nontrivially in the cohomology of its homotopy cofiber S/2 ∧ S/2. Since
its restriction along i : S → S/2 is null-homotopic, the only possibility is that
2 = iηj. !

Theorem 12.3. In the Adams spectral sequence for tmf/2, the following hidden
2-extensions repeat w1- and w4

2-periodically:

(58) From αgγ̃ detecting η̃1B1 to w1 · i(γ2) detecting i(ηη1B1) = i(η2B2).

(82) From h1w2δ̃′ detecting η̃B3 to γ2d̃0e0 detecting i(η2B3).

(154) From αgw2
2γ̃ detecting η̃1B5 to i(γ2w1w2

2) detecting i(ηη1B5) = i(η2B6).

(178) From h1w3
2 δ̃

′ detecting η̃B7 to γ2w2
2d̃0e0 detecting i(η2B7).

The following hidden 2-extensions repeat w4
2-periodically:

(15) From i(β) detecting κ̃ to w1 · h̃2
2 detecting i(ηκ).

(22) From g · h̃1 detecting η̃κ̄ to w1 · i(d0) detecting i(η2κ̄).

(35) From g · i(β) detecting κ̃κ̄ to gw1 · h̃2
2 detecting i(ηκκ̄).

(42) From g2 · h̃1 detecting η̃κ̄2 to gw1 · i(d0) detecting i(η2κ̄2).
(46) From g · γ̃ detecting η̃1κ̄ to i(αd0g) detecting i(ηη1κ̄).

(53) From g · δ̃′ detecting η̃ν2 to gw1 · i(γ) detecting i(η2ν2).

(66) From g2 · γ̃ detecting η̃1κ̄2 to w1 · δ′γ̃ detecting i(ηη1κ̄2).

(118) From g · w2
2h̃1 detecting η̃4κ̄ to w1 · i(d0w2

2) detecting i(ηη4κ̄).

(125) From g · w2
2 c̃0 detecting η̃ν5 to w1 · d0w2

2h̃
2
2 detecting i(η2ν5).

(136) From d0w2
2γ̃ detecting η̃1κ4 to w1 · i(δ′w2

2) detecting i(ηη1κ4).

(138) From g2 · w2
2h̃1 detecting ν̃5κ to gw1 · i(d0w2

2) detecting i(ην5κ).

(149) From g · w2
2 δ̃

′ detecting η̃ν6 to g · i(γw1w2
2) detecting i(η2ν6).

(156) From g · d0w2
2γ̃ detecting ν̃6ε to gw1 · i(δ′w2

2) detecting i(ην6ε).
(162) From i(h2βw3

2) detecting ν̃6κ to w1 · δ′w2
2γ̃ detecting i(ην6κ).

There are no other hidden 2-extensions in this spectral sequence.

Proof. By Lemma 12.1 there can be no hidden 2-extensions from w1-power
torsion classes to w1-periodic classes. Furthermore, there are no hidden 2-extensions
on classes detecting elements of the form i(y) with y ∈ π∗(tmf).

By Lemma 12.2 there is a hidden 2-extension from b to c if b detects ỹ, c
detects i(η ·y) 0= 0, and there is no shorter 2-extension to c. All the nonzero hidden
2-extensions for tmf/2 arise in this way. !
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To determine the action of η on π∗(tmf/2) we sometimes compare the two short
exact sequences

0 → πn(tmf/2)/η
i−→ πn(tmf/(2, η))

j−→ ηπn−2(tmf/2) → 0

0 → πn(tmf/η)/2
i−→ πn(tmf/(2, η))

j−→ 2πn−1(tmf/η) → 0 ,

using our knowledge of E∞(tmf/η) to obtain information about πn(tmf/(2, η)).
Here tmf/(2, η) = (tmf/2)/η - (tmf/η)/2, πn(tmf/2)/η = cok(η : πn−1(tmf/2) →
πn(tmf/2)) and ηπn−2(tmf/2) = ker(η : πn−2(tmf/2) → πn−1(tmf/2)). Logically,
Theorem 12.9 precedes this result.

Theorem 12.4. In the Adams spectral sequence for tmf/2, the following hidden
η-extensions repeat w1- and w4

2-periodically:

(32) From i(αg) detecting i(B1) to w1 · i(γ) detecting i(ηB1).
(57) From h1 · i(c0w2) detecting i(ηB2) to w1 · i(γ2) detecting i(η2B2).

(58) From αgγ̃ detecting η̃1B1 to w1 · γγ̃ detecting a lift η̃2B2.

(81) From h1 · i(δw2) detecting i(ηB3) to γ2d̃0e0 detecting i(η2B3).

(83) From h1 · h1w2δ̃′ detecting η̃2B3 to w1 · γ2γ̃ detecting i(C3).
(128) From i(αgw2

2) detecting i(B5) to i(γw1w2
2) detecting i(ηB5).

(153) From h1 · i(c0w3
2) detecting i(ηB6) to i(γ2w1w2

2) detecting i(η2B6).

(154) From αgw2
2γ̃ detecting η̃1B5 to γw1w2

2γ̃ detecting a lift η̃2B6.

(177) From h1 · i(δw3
2) detecting i(ηB7) to γ2w2

2d̃0e0 detecting i(η2B7).

(179) From h1 · h1w3
2 δ̃

′ detecting η̃2B7 to γ2w1w2
2γ̃ detecting i(C7).

The following hidden η-extensions repeat w4
2-periodically:

(14) From i(d0) detecting i(κ) to w1 · h̃2
2 detecting i(ηκ).

(15) From i(β) detecting κ̃ to d0h̃1 detecting η̃κ.

(16) From d0h̃1 detecting η̃κ to w1 · c̃0 detecting i(νκ).

(21) From d0h̃2
2 detecting a lift 4̃κ̄ to w1 · i(d0) detecting i(η2κ̄).

(22) From g · h̃1 detecting η̃κ̄ to w1 · i(β) detecting η̃2κ̄.

(23) From w1 · i(β) detecting η̃2κ̄ to w1 · d0h̃1 detecting i(D1).

(27) From g · h̃2
2 detecting i(ν1) to gw1 · i(1) detecting i(ην1).

(34a) From g · i(d0) detecting i(κκ̄) to gw1 · h̃2
2 detecting i(ηκκ̄).

(35) From g · i(β) detecting κ̃κ̄ to g · d0h̃1 detecting η̃κκ̄.

(40a) From g2 · i(1) detecting i(κ̄2) to g · d0h̃2
2 detecting i(ηκ̄2).

(40b) From d0γ̃ detecting a lift η̃1κ to w1 · δ̃′ detecting a lift 2̃κ̄2.

(41) From g · d0h̃2
2 detecting i(ηκ̄2) to gw1 · i(d0) detecting i(η2κ̄2).

(42) From g2 · h̃1 detecting η̃κ̄2 to gw1 · i(β) detecting η̃2κ̄2.
(45) From g · i(γ) detecting i(η1κ̄) to i(αd0g) detecting i(ηη1κ̄).

(46) From g · γ̃ detecting η̃1κ̄ to d0δ̃′ detecting η̃η1κ̄.

(47) From d0δ̃′ detecting η̃η1κ̄ to w1 · d0γ̃ detecting i(D2).
(51) From i(h2w2) detecting i(ν2) to g · i(δ′) detecting i(ην2).

(52a) From g · i(δ′) detecting i(ην2) to gw1 · i(γ) detecting i(η2ν2).

(53) From g · δ̃′ detecting η̃ν2 to gw1 · γ̃ detecting a lift η̃2ν2.

(60) From g · d0γ̃ detecting a lift ν̃2ε to gw1 · δ̃′ detecting 2̃κ̄3.
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(65) From d0gβ̃2 detecting i(ν2κ) to w1 · δ′γ̃ detecting i(ην2κ).

(66) From g2 · γ̃ detecting η̃1κ̄2 to g · d0δ̃′ detecting η̃η1κ̄2.

(67) From g · d0δ̃′ detecting η̃η1κ̄2 to gw1 · d0γ̃ detecting i(κ̄D2).

(71) From g · γγ̃ detecting η̃2
1 κ̄ to g2d̃0e0 detecting i(D3).

(99) From i(h2w2
2) detecting i(ν4) to g5 · i(1) detecting i(ην4).

(110) From i(d0w2
2) detecting i(κ4) to w1 · w2

2h̃
2
2 detecting i(ηκ4).

(112) From d0w2
2h̃1 detecting η̃κ4 to w1 · w2

2 c̃0 detecting i(νκ4).

(117) From d0w2
2h̃

2
2 detecting a lift 2̃κ̄D4 to w1 · i(d0w2

2) detecting i(ηη4κ̄).

(118) From g · w2
2h̃1 detecting η̃4κ̄ to i(βw1w2

2) detecting η̃η4κ̄.

(119) From i(βw1w2
2) detecting η̃η4κ̄ to w1 · d0w2

2h̃1 detecting i(D5).

(123) From g · w2
2h̃

2
2 detecting i(ν5) to g · i(w1w2

2) detecting i(ην5).

(124) From g · i(w1w2
2) detecting i(ην5) to w1 · d0w2

2h̃
2
2 detecting i(η2ν5).

(125) From g · w2
2 c̃0 detecting η̃ν5 to gw1 · w2

2h̃1 detecting η̃2ν5.

(130a) From g · i(d0w2
2) detecting i(κ4κ̄) to gw1 · w2

2h̃
2
2 detecting i(ηκ4κ̄).

(135) From e0gw2
2h̃1 detecting i(η1κ4) to w1 · i(δ′w2

2) detecting i(ηη1κ4).

(136) From d0w2
2γ̃ detecting η̃1κ4 to w1 · w2

2 δ̃
′ detecting a lift η̃η1κ4.

(137) From g · d0w2
2h̃

2
2 detecting i(ν5κ) to gw1 · i(d0w2

2) detecting i(ην5κ).

(138) From g2 · w2
2h̃1 detecting ν̃5κ to g · i(βw1w2

2) detecting η̃ν5κ.

(143) From d0w2
2 δ̃

′ detecting ε̃5κ to w1 · d0w2
2γ̃ detecting i(D6).

(147) From i(h2w3
2) detecting i(ν6) to g · i(δ′w2

2) detecting i(ην6).
(148a) From g · i(δ′w2

2) detecting i(ην6) to g · i(γw1w2
2) detecting i(η2ν6).

(149) From g · w2
2 δ̃

′ detecting η̃ν6 to g · w1w2
2γ̃ detecting a lift η̃2ν6.

(150) From g · w1w2
2γ̃ detecting a lift η̃2ν6 to w1 · d0w2

2 δ̃
′ detecting 4̃νν6.

(155) From h1 · δ′w2
2γ̃ detecting i(ν6ε) to gw1 · i(δ′w2

2) detecting i(ην6ε).

(156) From g · d0w2
2γ̃ detecting ν̃6ε to gw1 · w2

2 δ̃
′ detecting η̃ν6ε.

(161) From d0gw2
2β̃

2 detecting i(ν6κ) to w1 · δ′w2
2γ̃ detecting i(ην6κ).

(162) From i(h2βw3
2) detecting ν̃6κ to g · d0w2

2 δ̃
′ detecting η̃ν6κ.

(163) From g · d0w2
2 δ̃

′ detecting η̃ν6κ to gw1 · d0w2
2γ̃ detecting i(κ̄D6).

The following potential hidden η-extensions repeat w4
2-periodically, but remain to be

precisely determined.

(34b) From h1δ̃′ detecting a lift η̃ε1 to zero, or to gw1 · h̃2
2 detecting i(ηκκ̄). (We

prove in Lemma 12.26 that this η-multiple is zero.)

(52b) From h1 · γγ̃ detecting a lift ηη̃2
1 to zero, or to gw1 · i(γ) detecting i(η2ν2).

(130b) From h1 · w2
2 δ̃

′ detecting a lift η̃ε5 to g4 · γγ̃ or to g4 · γγ̃ + gw1 · w2
2h̃

2
2,

detecting a lift 2̃κ4κ̄.
(148b) From h2

1w
3
2h̃1 detecting a lift 4̃ν6 to zero, or to g · i(γw1w2

2) detecting
i(η2ν6).

There are no other hidden η-extensions in this spectral sequence.

Proof. By Lemma 12.1 there can be no hidden η-extensions from w1-power
torsion classes to w1-periodic classes.

By naturality with respect to i there is a hidden η-extension from b to c if b
detects i(y), h1b = 0, c detects i(ηy) 0= 0, and there is no shorter η-extension to c.
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By naturality with respect to j there is also a hidden η-extension from b to c if
b detects a lift ỹ of y, h1b = 0, c detects ηỹ 0= 0, and there is no shorter η-extension
to c.

(16) From E∞(tmf/η) we see that π17(tmf/(2, η)) has order 2. Since the η-

torsion subgroup ηπ15(tmf/2) contains i(ηκ) detected by w1 · h̃2
2, it follows that

π17(tmf/2)/η = 0. Hence i(νκ) detected by w1 · c̃0 must be η times some class in

π16(tmf/2), and η̃κ detected by d0h̃1 is the only possibility.

(21) We know that η times ν̃2 detected by h̃2
2 is i(ε) detected by i(c0). Mul-

tiplying by κ we find that η times κν̃2 = 4̃κ̄ detected by d0h̃2
2 is i(εκ) = i(η2κ̄)

detected by w1 · i(d0).
(23) We multiply the hidden η-extension from case (15) by B to obtain this

hidden η-extension.
(65) Since i(ν2) is detected by i(h2w2), and d0 · i(h2w2) = 0 in E2(tmf/2), we

see that i(ν2κ) must be detected in Adams filtration ≥ 14, i.e., by d0gβ̃2. Hence
i(ην2κ) must be detected in Adams filtration ≥ 15, i.e., by w1 · δ′γ̃.

(67) From E∞(tmf/η) we see that π69(tmf/(2, η)) has order 2. Since π69(tmf/2)

contains ˜̄κD2 detected by h2 · i(h2βw2), which cannot be an η-multiple, it follows

that η acts injectively on π67(tmf/2). Hence η · η̃η1κ̄2 is nonzero, and must be
detected by gw1 · d0γ̃.

(47) We divide the hidden η-extension from case (67) by κ̄ to obtain this hidden
η-extension.

(83) From E∞(tmf/η) we see that π85(tmf/(2, η)) has order 2. Since π85(tmf/2)
contains i(η1κ̄3) detected by g3 · i(γ), which cannot be an η-multiple, we must have

that η acts injectively on π83(tmf/2). Hence η · η̃2B3 is nonzero, and must be
detected by w1 · γ2γ̃.

(110) To see that i(ηκ4) is detected by w1 ·w2
2h̃

2
2, we note that j maps w1 ·w2

2h̃
2
2

to h2
2w1w2

2 = 0 in E∞(tmf), while it maps g3 · γγ̃ to γ2g3 0= 0. The conclusion
follows, since ji = 0.

(117) We know that η times ν̃ν4 detected by w2
2h̃

2
2 is i(ε4) detected by i(c0w2

2).

Multiplying by κ we find that η times κν̃ν4 = 2̃κ̄D4 detected by d0w2
2h̃

2
2 is i(ε4κ) =

i(ηη4κ̄) detected by w1 · i(d0w2
2).

(130a) The product η · κ4κ̄ is detected by w1 · αβw2
2, which maps by i to

gw1 · w2
2h̃

2
2. Hence this is the class detecting i(ηκ4κ̄).

(163) From E∞(tmf/η) we see that π165(tmf/(2, η)) has order 2. Furthermore,

π165(tmf/2) contains ˜̄κD6 detected by h2 ·i(h2βw3
2), which cannot be an η-multiple.

It follows that η acts injectively on π163(tmf/2). Hence η · η̃ν6κ is nonzero, and
must be detected by gw1 · d0w2

2γ̃.
(143) We divide the hidden η-extension from case (163) by κ̄ to obtain this

hidden η-extension.
(179) From E∞(tmf/η) we see that π181(tmf/(2, η)) is trivial, which implies

that η acts injectively on π179(tmf/2). Hence η·η̃2B7 must be detected by γ2w1w2
2γ̃,

which also detects i(C7).
For the next three cases, we will make use of the knowledge established in

Theorem 12.9 of the hidden 2-extensions in degrees 72, 112 and 120 in the Adams
spectral sequence for tmf/η. The proofs of these 2-extensions do not rely on the
results of the present section, so there is no circularity.
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(71) From E∞(tmf/η) and case (32) of Theorem 12.9, we see that 2π72(tmf/η) =
0 and π73(tmf/η)/2 = 0, so that π73(tmf/(2, η)) = 0. Hence ηπ71(tmf/2) = 0, so

η times the class η̃2
1 κ̄ detected by g · γγ̃ must be nonzero. Since it is a B-torsion

class in π72(tmf/2), it can only be detected by the w1-torsion class g2d̃0e0, and be
equal to i(D3), which establishes the asserted hidden η-extension.

(112) From E∞(tmf/η) and cases (32) and (80) of Theorem 12.9, we see that

2π112(tmf/η) = Z/2 and π113(tmf/η)/2 = Z/2, so π113(tmf/(2, η)) has order 22 =
4. Since ηπ111(tmf/2) = (Z/2)2, it follows that π113(tmf/2)/η = 0. In particular,
i(νκ4) detected by w1 ·w2

2 c̃0 must be an η-multiple, and the only possible source of

this η-extension is d0w2
2h̃1, detecting η̃κ4.

(119) From E∞(tmf/η) and cases (32) and (80) of Theorem 12.9, we see that

2π120(tmf/η) and π121(tmf/η)/2 are trivial, so that π121(tmf/(2, η)) = 0. Hence

ηπ119(tmf/2) = 0. In particular, η times η̃η4κ̄ must be nonzero, and the only

possible value is i(D5) detected by w1 · d0w2
2h̃1. !

To determine the action of ν on π∗(tmf/2) we sometimes compare the two short
exact sequences

0 → πn(tmf/2)/ν
i−→ πn(tmf/(2, ν))

j−→ νπn−4(tmf/2) → 0

0 → πn(tmf/ν)/2
i−→ πn(tmf/(2, ν))

j−→ 2πn−1(tmf/ν) → 0 ,

using our knowledge of E∞(tmf/ν) to obtain information about πn(tmf/(2, ν)).
Here tmf/(2, ν) = (tmf/2)/ν - (tmf/ν)/2, πn(tmf/2)/ν = cok(ν : πn−3(tmf/2) →
πn(tmf/2)) and νπn−4(tmf/2) = ker(ν : πn−4(tmf/2) → πn−1(tmf/2)). Logically,
Theorem 12.15 precedes this result.

Theorem 12.5. In the Adams spectral sequence for tmf/2, the following hidden
ν-extensions repeat w4

2-periodically:

(6) From h2
2 · i(1) detecting i(ν2) to h0 · c̃0 detecting i(ηε).

(7) From h̃2
2 detecting ν̃2 to h1 · c̃0 detecting η̃ε.

(14) From i(d0) detecting i(κ) to w1 · c̃0 detecting i(νκ).

(21) From d0h̃2
2 detecting a lift 4̃κ̄ to w1 · d0h̃1 detecting i(D1).

(25) From i(γ) detecting i(η1) to gw1 · i(1) detecting i(ην1).
(26) From γ̃ detecting η̃1 to g · c̃0 detecting η̃ν1.

(32a) From i(δ′) detecting i(ε1) to gw1 · h̃2
2 detecting i(ηκκ̄).

(32b) From i(αg) detecting i(B1) to gw1 · h̃2
2 detecting i(ηκκ̄).

(33) From δ̃′ detecting ε̃1 to g · d0h̃1 detecting η̃κκ̄.

(39) From e0gh̃1 detecting i(η1κ) to gw1 · i(d0) detecting i(η2κ̄2).

(40) From d0γ̃ detecting a lift η̃1κ to gw1 · i(β) detecting η̃2κ̄2.
(50) From i(γ2) detecting i(η2

1) to gw1 · i(γ) detecting i(η2ν2).

(51) From γγ̃ detecting a lift η̃2
1 to gw1 · γ̃ detecting a lift η̃2ν2.

(54) From h2 · i(h2w2) detecting i(νν2) to γ2h̃2
2 detecting i(ν2ν2).

(58a) From δ′γ̃ detecting ν̃2ν2 to gw1 · δ̃′ detecting 2̃κ̄3.

(58b) From αgγ̃ detecting η̃1B1 to gw1 · δ̃′ detecting 2̃κ̄3.

(65) From d0gβ̃2 detecting i(ν2κ) to gw1 · d0γ̃ detecting i(κ̄D2).

(69) From h2 · i(h2βw2) detecting ˜̄κD2 to g2d̃0e0 detecting i(D3).
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(97) From i(h1w2
2) detecting i(η4) to g5 · i(1) detecting i(ην4).

(98) From w2
2h̃1 detecting η̃4 to g · γ2β̃2 detecting η̃ν4.

(102) From h2 · i(h2w2
2) detecting i(νν4) to h0 · w2

2 c̃0 detecting i(ηε4).

(103) From w2
2h̃

2
2 detecting ν̃ν4 to h1 · w2

2 c̃0 detecting η̃ε4.
(110) From i(d0w2

2) detecting i(κ4) to w1 · w2
2 c̃0 detecting i(νκ4).

(117) From d0w2
2h̃

2
2 detecting a lift 2̃κ̄D4 to w1 · d0w2

2h̃1 detecting i(D5).

(122) From i(h1γw2
2) detecting i(η1η4) to w1 · d0w2

2h̃
2
2 detecting i(η2ν5).

(123) From h1w2
2γ̃ detecting η̃1η4 to gw1 · w2

2h̃1 detecting η̃2ν5.

(128a) From i(δ′w2
2) detecting i(ε5) to gw1 · w2

2h̃
2
2 detecting i(ηκ4κ̄).

(128b) From i(αgw2
2) detecting i(B5) to gw1 · w2

2h̃
2
2 detecting i(ηκ4κ̄).

(129) From w2
2 δ̃

′ detecting ε̃5 to g · d0w2
2h̃1 detecting η̃κ4κ̄.

(135) From e0gw2
2h̃1 detecting i(η1κ4) to gw1 · i(d0w2

2) detecting i(ην5κ).
(136) From d0w2

2γ̃ detecting η̃1κ4 to g · i(βw1w2
2) detecting η̃ν5κ.

(148) From h2
1w

3
2h̃1 detecting 4̃ν6 to w1 · d0w2

2 δ̃
′ detecting 4̃νν6.

(150) From h2 · i(h2w3
2) detecting i(νν6) to γ2w2

2h̃
2
2 detecting i(ν2ν6).

(153) From γ2w2
2h̃

2
2 detecting i(ν2ν6) to gw1 · i(δ′w2

2) detecting i(ην6ε).

(154a) From δ′w2
2γ̃ detecting ν̃2ν6 to gw1 · w2

2 δ̃
′ detecting η̃ν6ε.

(154b) From αgw2
2γ̃ detecting η̃1B5 to gw1 · w2

2 δ̃
′ detecting η̃ν6ε.

(161) From d0gw2
2β̃

2 detecting i(ν6κ) to gw1 · d0w2
2γ̃ detecting i(κ̄D6).

(165) From h2 · i(h2βw3
2) detecting ˜̄κD6 to g2w2

2d̃0e0 detecting i(D7).

There are no other hidden ν-extensions in this spectral sequence. In particular,

there is no hidden ν-extension on g · w2
2h̃

2
2.

Proof. Most cases are readily deduced from the known action of ν on π∗(tmf),
and naturality with respect to i : tmf → tmf/2 and j : tmf/2 → Σtmf . The follow-
ing notes account for the remaining cases.

(21) Multiplying the ν-extension in case (7) by κ shows that ν times κν̃2 is ηκ

times ε̃, which is η times ε̃κ = η̃2κ̄. We saw in Theorem 12.4 that this equals i(D1).
(Alternatively, use E∞(tmf/ν) to see that π24(tmf/(2, ν)) = (Z/2)3, so i(D1) must
be a ν-multiple.)

(65) See case (65) of Theorem 12.4 for why i(ν2κ) is detected by d0gβ̃2.
(102) The product ν · i(νν4) equals i(ηε4)+ i(η1κ̄4), but is detected by the same

class as i(ηε4).
(103) The product ν · ν̃ν4 is a lift of ηε4 + η1κ̄4, but is detected by the same

class as η̃ε4.
(117) Multiplying the ν-extension in case (103) by κ (and noting that d0 ·g4 ·γ̃ =

0 implies κ · η̃1κ̄4 = 0) shows that ν times κν̃ν4 is ηκ times ε̃4, which is η times
ε̃4κ = η̃η4κ̄. We saw in Theorem 12.4 that this equals i(D5).

For the last two cases, we will make use of the hidden 2-extensions in degrees 72
and 168 in the Adams spectral sequence for tmf/ν, which we establish in Theo-
rem 12.15. The proofs of these 2-extensions do not rely on the results of the present
or next section, so there is no circularity.

(69) From E∞(tmf/ν) calculated in Section 8.5, and case (56) of Theorem 12.15,
we see that 2π72(tmf/ν) = 0 and π73(tmf/ν)/2 = (Z/2)3, so that π73(tmf/(2, ν)) =
(Z/2)3. Furthermore, π73(tmf/2)/ν = (Z/2)3, since ν acts trivially on the class
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i(η2
1κ̄) detected by g · i(γ2). Hence νπ69(tmf/2) = 0, so that ν times ˜̄κD2 is

nonzero. The only possible value is i(D3) detected by g2d̃0e0.
(165) From E∞(tmf/ν) and cases (56), (80) and (152) of Theorem 12.15 we see

that 2π168(tmf/ν) = 0 and π169(tmf/ν) has order 27. Furthermore, π169(tmf/2) ∼=
π169(tmf/2)/ν has order equal to 27, which implies that π169(tmf/(2, ν)) = (Z/2)7

and νπ165(tmf/2) = 0, so that ν times ˜̄κD6 is nonzero. The only possible value is

i(D7) detected by g2w2
2d̃0e0. !

Definition 12.6. We fix representatives y in π∗(tmf/2) of the twelve genera-
tors x, listed in Table 6.12, of E∞(tmf/2) as a module over E∞(tmf).

y i(1) η̃ ν̃2 ε̃ κ̃ η̃1 ε̃1 ˜̄κ4 η̃4 ν̃ν4 ε̃4 ε̃5

n 0 2 7 9 15 26 33 81 98 103 105 129

x i(1) h̃1 h̃2
2 c̃0 i(β) γ̃ δ̃′ γ2β̃2 w2

2h̃1 w2
2h̃

2
2 w2

2 c̃0 w2
2 δ̃

′

We may assume that the representatives of the w1-power torsion classes are chosen
as B-power torsion classes. Moreover, we may assume that each representative of
the form y = z̃ in πn(tmf/2) maps under j to z ∈ πn−1(tmf). (This involves a

shift in Adams filtration only for z = κ.) Then i(1), ν̃2, ˜̄κ4, ν̃ν4 are well-defined,
and η̃, ε̃, κ̃, ε̃1 and ε̃5 are defined up to sign, whereas ε̃4 is defined modulo a sign
and i(η1κ̄4). Having chosen η̃, we can fix η̃1 and η̃4 by demanding that B · η̃1 = B1η̃
and B · η̃4 = B4η̃.

It is immediate from Proposition 6.11 that the twelve classes in Definition 12.6
generate π∗(tmf/2) as a module over π∗(tmf). Let (N/2)∗ ⊂ π∗(tmf/2) denote
the Z[B]-submodule generated by all classes in degrees 0 ≤ ∗ < 192. There is an
isomorphism

(N/2)∗ ⊗ Z[M ] ∼= π∗(tmf/2)

of Z[B, M ]-modules. The submodule (N/2)∗ is preserved by the action of η, ν, ε,
κ and κ̄ (since κ̄ · i(B7) = 0), and the isomorphism respects these actions.

In most degrees it is straightforward to read off the group structure of (N/2)∗,
together with its η- and ν-action, from E∞(tmf/2) with the hidden 2-, η- and ν-
extensions, keeping in mind that the w1-power torsion classes form the associated
graded of the restriction to ΓB(N/2)∗ of the Adams filtration, cf. the discussion
before Proposition 9.10. The next result summarizes what we know about the less
obvious cases.

Proposition 12.7.

(21) π21(tmf/2) ∼= (Z/2)2 is generated by κν̃2 and i(ηκ̄), which are detected

by d0h̃2
2 and h1g · i(1), respectively. The relations ν2 · κ̃ = κν̃2 + i(ηκ̄),

η · i(κ̄) = i(ηκ̄), η · i(ηκ̄) = i(η2κ̄) and ν · i(ηκ̄) = 0 hold. Hence ν3 · κ̃ =
i(D1).

(35) The product η · ηε̃1 is zero.
(40) ΓBπ40(tmf/2) ∼= (Z/2)2 is generated by κη̃1 and i(κ̄2), which are detected

by d0γ̃ and g2 · i(1), respectively. The product ν · i(κ̄2) is zero.
(53) The product of η with ηη1η̃1, detected by h1 · γγ̃, is zero or i(η2ν2).
(60) ΓBπ60(tmf/2) ∼= (Z/2)2 is generated by ν2ε̃ and i(κ̄3), which are detected

by g · d0γ̃ and g3 · i(1), respectively. The product η · i(κ̄3) is zero.
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(65) ΓBπ65(tmf/2) ∼= (Z/2)2 is generated by i(ν2κ) and i(η1κ̄2), which are

detected by d0gβ̃2 and g2 · i(γ), respectively. The relations η · i(η1κ̄2) =
i(ην2κ) and ν · i(η1κ̄2) = 0 hold.

(66) ΓBπ66(tmf/2) ∼= Z/4⊕Z/2 is generated by κ̄2η̃1 of order 4 and ν2κ̃+ κ̄2η̃1

of order 2, which are detected by g2 · γ̃ and i(h2βw2), respectively. The
product η · (ν2κ̃ + κ̄2η̃1) is zero.

(105) ΓBπ105(tmf/2) ∼= Z/2 ⊕ Z/4 is generated by i(η1κ̄4) of order 2 and ε̃4
of order 4, detected by g4 · i(γ) and w2

2 c̃0, respectively. The relations
η · i(ε4) = 2ε̃4 and ν2 · i(ν4) = 2ε̃4 + i(η1κ̄4) hold.

(106) ΓBπ106(tmf/2) ∼= (Z/2)2 is generated by κ̄4η̃1 and ηε̃4, which are detected
by g4 · γ̃ and h1 ·w2

2 c̃0, respectively. The relation ν · ν̃ν4 = ηε̃4 + κ̄4η̃1 holds.

(117) π117(tmf/2) ∼= (Z/2)2 is generated by κ4ν̃2 and i(η4κ̄), which are detected

by d0w2
2h̃

2
2 and h2 · i(h2βw2

2), respectively. The relations ν · ν4κ̃ = κ4ν̃2 +
i(η4κ̄), η ·i(η4κ̄) = i(ηη4κ̄) and ν ·i(η4κ̄) = 0 hold. Hence ν2 ·ν4κ̃ = i(D5).

(125) The product of η with ηη4η̃1, detected by h1 · h1w2
2γ̃, is zero or i(η2ν5).

(131) The product of η with ηε̃5, detected by h1 · w2
2 δ̃

′, is η1κ̄4η̃1 or η1κ̄4η̃1 +
i(ηκ4κ̄).

(149) The product of η with η1η4η̃1, detected by h2
1w

3
2h̃1, is zero or i(η2ν6).

Proof. (21) We know that η · i(ηκ̄) = i(η2κ̄) is detected by w1 · i(d0), and
ην = 0. Hence ν2κ̃ is detected by h1g · i(1), but is not equal to i(ηκ̄). Their

difference must be the higher-filtration class κν̃2.
(35) We prove this in Lemma 12.26.
(40) This is clear from νκ̄ = 0.
(60) The product ν2ε̃ must be detected by g · d0γ̃, because h2w2 · c̃0 = 0. The

η-product vanishes because ηκ̄3 = 0.

(65) As previously noted, i(ν2κ) must be detected by d0gβ̃2 because i(h2w2 ·
d0) = 0. The relations already hold before applying i.

(66) The classes κ̄2η̃1 and ν2κ̃ are detected by g2 ·γ̃ and i(h2βw2), with 2·κ̄2η̃1 =
i(ηη1κ̄2) = i(ην2κ) = 2 · ν2κ̃. Furthermore η · κ̄2η̃1 and η · ν2κ̃ are both lifts of
ηη1κ̄2 = ην2κ, hence they are equal.

(105) This follows from Lemma 12.2 and Proposition 9.17.
(106) The relation lifts that of Proposition 9.17.
(117) We know that η · i(η4κ̄) = i(ηη4κ̄) is detected by w1 · i(d0w2

2), and ην = 0.
Hence νν4κ̃ is detected by h2 · i(h2βw2

2), but is not equal to i(η4κ̄). Their difference

must be κ4ν̃2. !

12.2. Homotopy of tmf/η

We describe π∗(tmf/η) using the short exact sequence

0 → π∗(tmf)/η
i−→ π∗(tmf/η)

j−→ ηπ∗−2(tmf) → 0

of π∗(tmf)-modules, where

πn(tmf)/η = cok(η : πn−1(tmf) → πn(tmf))

ηπn−2(tmf) = ker(η : πn−2(tmf) → πn−1(tmf)) .

To achieve this we use the maps

E∗,∗
∞ (tmf)

i−→ E∗,∗
∞ (tmf/η)

j−→ E∗,∗−2
∞ (tmf)
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Figure 12.9. E∞(tmf/η) for 0 ≤ t − s ≤ 24, with all hidden 2-,
η- and ν-extensions
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Figure 12.10. E∞(tmf/η) for 24 ≤ t − s ≤ 48, with all hidden
2-, η- and ν-extensions
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Figure 12.11. E∞(tmf/η) for 48 ≤ t − s ≤ 72, with all hidden
2-, η- and ν-extensions
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Figure 12.12. E∞(tmf/η) for 72 ≤ t − s ≤ 96, with all hidden
2-, η- and ν-extensions
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2ĥ0

i(h2w2
2)

h2w2
2ĥ2
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Figure 12.13. E∞(tmf/η) for 96 ≤ t − s ≤ 120, with all hidden
2-, η- and ν-extensions
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Figure 12.14. E∞(tmf/η) for 120 ≤ t− s ≤ 144, with all hidden
2-, η- and ν-extensions
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2ĥ0

i(h2w3
2)

h0w3
2ĥ2
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Figure 12.15. E∞(tmf/η) for 144 ≤ t− s ≤ 168, with all hidden
2-, η- and ν-extensions
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Figure 12.16. E∞(tmf/η) for 168 ≤ t− s ≤ 192, with all hidden
2-, η- and ν-extensions
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of E∞(tmf)-modules, calculated in Chapters 5 and 7. We determine the hidden
2-, η- and ν-extensions in E∞(tmf/η), and show that there are no hidden B- and
M -extensions.

The E∞-term for tmf/η is displayed in Figures 12.9 to 12.16. A label i(x)
denotes the class of an infinite cycle in the image under i : Es,t

2 (tmf) → Es,t
2 (tmf/η)

of x ∈ E2(tmf). A label x̂ denotes the class of an infinite cycle mapping to x ∈
E2(tmf) under j : Es,t

2 (tmf/η) → Es,t−2
2 (tmf). We omit to label the classes that

are h0-, h1-, h2- or w1-multiples, and this specifies the w1-action on E∞(tmf/η).

Lemma 12.8. There are no hidden B- or M -power extensions in E∞(tmf/η).

Proof. The proof is similar to that of Lemma 12.1. The following classes
require an additional argument. For b = h1 · ĥ2, i(β2), g2 · i(1), g2 · ĥ0, h2 · i(h2w2),

g2 ·i(d0), h2 ·i(h2w2
2), g2 ·(γgβ̂+i(d0w2)), g2 ·(βg2β̂+i(α2w2)), g2 ·w2

2ĥ0, h2 ·i(h2w3
2)

and g2 · i(d0w2
2) the part of E∞(tmf/η) above the bidegree of w1b = 0 consists of

w1-multiples and h0-torsion free towers, but there are no possible 2-extensions on
these classes b that would be compatible with a hidden B-extension from b into
these h0-towers. !

Theorem 12.9. In the Adams spectral sequence for tmf/η, the following hidden
2-extensions repeat w1- and w4

2-periodically:

(32) From h0 · i(δ) detecting i(2B1) to w1 · i(α2) detecting i(4B1).

(34) From h0 · h0gα̂ detecting a lift 4̂B1 to w1 · α2ĥ0 detecting a lift 8̂B1.

(80) From h0 ·i(δw2) detecting i(2B3) to w1 ·(βg2β̂+i(α2w2)) detecting i(4B3).

(82) From h0 · h0gw2α̂ detecting 4̂B3 to w1 · (g3α̂ + α2w2ĥ0) detecting 8̂B3.
(128) From h0 · i(δw2

2) detecting i(2B5) to w1 · i(α2w2
2) detecting i(4B5).

(130) From h0 · h0gw2
2α̂ detecting a lift 4̂B5 to w1 · α2w2

2ĥ0 detecting a lift 8̂B5.

(176) From h0 · i(δw3
2) detecting i(2B7) to βg2w1w2

2β̂ + i(α2w1w3
2) detecting

i(4B7).

(178) From h0 · h0gw3
2α̂ detecting 4̂B7 to w1 · (g3w2

2α̂+ α2w3
2ĥ0) detecting 8̂B7.

The following hidden 2-extensions repeat w4
2-periodically:

(54) From h2 · i(h2w2) detecting i(νν2) to g2 · i(d0) detecting i(2νν2).
(110) From i(d0w2

2) detecting i(κ4) to g4 · i(β2) detecting i(2κ4).

(147) From h0 · i(h2w3
2) detecting i(2ν6) to g4 · (β2gβ̂+d0w2ĥ2) detecting i(4ν6).

(150) From h2 · i(h2w3
2) detecting i(νν6) to g2 · i(d0w2

2) detecting i(2νν6).

(152) From h0 · h2w3
2ĥ2 detecting 2̂νν6 to g4 · (βg2β̂ + i(α2w2)) detecting a lift

4̂νν6.

There are no other hidden 2-extensions in this spectral sequence.

Proof. (32) Since i(2B1) is detected by h0 · i(δ) and i(8B1) is detected by
h0w1 · i(α2), there must be a hidden 2-extension from h0 · i(δ) to w1 · i(α2).

(34) Because h0 · h0gα̂ detects a lift 4̂B1, and 2 times that lift lies in 8̂B1 and

is detected by w1 · α2ĥ0, there must be a hidden 2-extension between these two
classes in E∞(tmf/ν).

(80) Since i(2B3) is detected by h0 · i(δw2) and i(8B3) is detected by h0w1 ·
(βg2β̂+i(α2w2)), there must be a hidden 2-extension from h0 ·i(δw2) to w1 ·(βg2β̂+
i(α2w2)).
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(82) Because h0 · h0gw2α̂ detects 4̂B3, and 2 times that lift lies in 8̂B3 and is

detected by w1 · (g3α̂+α2w2ĥ0), there must be a hidden 2-extension between these
two classes.

(128) Since i(2B5) is detected by h0 · i(δw2
2) and i(8B5) is detected by h0w1 ·

i(α2w2
2), there must be a hidden 2-extension from h0 · i(δw2

2) to w1 · i(α2w2
2).

(130) Because h0 · h0gw2
2α̂ detects a lift 4̂B5, and 2 times that lift lies in 8̂B5

and is detected by w1 · α2w2
2ĥ0, there must be a hidden 2-extension between these

two classes in E∞(tmf/ν).
(176) Since i(2B7) is detected by h0 · i(δw3

2) and i(8B7) is detected by h0 ·
(βg2w1w2

2β̂ + i(α2w1w3
2)), there must be a hidden 2-extension from h0 · i(δw3

2) to

βg2w1w2
2β̂ + i(α2w1w3

2).

(178) Because h0 · h0gw3
2α̂ detects 4̂B7, and 2 times that lift lies in 8̂B7 and

is detected by w1 · (g3w2
2α̂+ α2w3

2ĥ0), there must be a hidden 2-extension between
these two classes. !

Lemma 12.10. The multiplication-by-η map η : ΣS/η → S/η factors as the
composite

ΣS/η
j−→ S3 ν−→ S

i−→ S/η .

Hence η · ŷ = i(ν · y) for ŷ ∈ π∗(tmf/η) with j(ŷ) = y.

Proof. The map η : ΣS/η → S/η is essential, because Sq4 acts nontrivially in
the cohomology of its homotopy cofiber S/η ∧ S/η, and iνj is the only nontrivial
such map. !

Theorem 12.11. In the Adams spectral sequence for tmf/η, the following hid-
den η-extensions repeat w4

2-periodically:

(53) From h0w2ĥ2 detecting 2̂ν2 to g2 · i(d0) detecting i(2νν2).

(56) From h2w2ĥ2 detecting ν̂ν2 to g2 · i(e0) detecting i(ν2ν2).

(104) From h2w2
2ĥ2 detecting ν̂ν4 to g5 · ĥ2 detecting i(ν2ν4) = i(η1κ̄4).

(146) From h0w3
2ĥ0 detecting D̂6 to g4 · (β2gβ̂ + d0w2ĥ2) detecting i(4ν6).

(149) From h0w3
2ĥ2 detecting 2̂ν6 to g2 · i(d0w2

2) detecting i(2νν6).

(152) From h2w3
2ĥ2 detecting ν̂ν6 to g2 · i(e0w2

2) detecting i(ν2ν6).

There are no other hidden η-extensions in this spectral sequence.

Proof. This follows directly from Lemma 12.10, using the known action of ν
on π∗(tmf). !

Logically, Theorem 12.16 precedes the following result.

Theorem 12.12. In the Adams spectral sequence for tmf/η, the following hid-
den ν-extensions repeat w4

2-periodically:

(8) From h2 · ĥ2 detecting ν̂2 to ĥ1c0 detecting η̂ε.
(51) From h0 · i(h2w2) detecting i(2ν2) to g2 · i(d0) detecting i(2νν2).
(54) From h2 · i(h2w2) detecting i(νν2) to g2 · i(e0) detecting i(ν2ν2).

(56) From h2w2ĥ2 detecting ν̂ν2 to γgα̂ + w2ĥ1c0 detecting ν̂2ν2.

(102) From h2 · i(h2w2
2) detecting i(νν4) to g5 · ĥ2 detecting i(ν2ν4) = i(η1κ̄4).

(104) From h2w2
2ĥ2 detecting ν̂ν4 to w2

2ĥ1c0 detecting ν̂2ν4.

(107) From w2
2ĥ1c0 detecting ν̂2ν4 to g4 · i(β2) detecting i(2κ4).
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(144) From h0 · i(h0w3
2) detecting i(D6) to g4 · (β2gβ̂+d0w2ĥ2) detecting i(4ν6).

(147) From h0 · i(h2w3
2) detecting i(2ν6) to g2 · i(d0w2

2) detecting i(2νν6).

(149) From h0 · h0w2
2ĥ2 detecting 4̂ν6 to g4 · (βg2β̂ + i(α2w2)) detecting 4̂νν6.

(150) From h2 · i(h2w3
2) detecting i(νν6) to g2 · i(e0w2

2) detecting i(ν2ν6).

(152) From h2w3
2ĥ2 detecting ν̂ν6 to γgw2

2α̂ + w3
2ĥ1c0 detecting ν̂2ν6.

There are no other hidden ν-extensions in this spectral sequence.

Proof. The following case relies on a hidden η-extension for tmf/ν, deter-
mined in Theorem 12.16. The remaining cases are routine.

(107) From E∞(tmf/ν) and case (109) of Theorem 12.16 we see that i(2κ4)
in π110(tmf/ν), which is detected by g4 · γh1, is an η-multiple and therefore maps
to zero in π110(tmf/(η, ν)). Hence i(2κ4) in π110(tmf/η), which is detected by

g4 · i(β2), must be a ν-multiple. Since h2 acts trivially on g2 · (β2gβ̂ + d0w2ĥ2), it

follows that i(2κ4) equals ν times the class ν̂2ν4 detected by w2
2ĥ1c0. !

It follows from Proposition 7.7 that π∗(tmf/η) is generated as a π∗(tmf)-module
by elements detected by the classes listed in Table 7.7, where we may assume that
the w1-power torsion classes are represented by B-power torsion elements. We omit
to enumerate 45 such elements.

Let (N/η)∗ ⊂ π∗(tmf/η) denote the Z[B]-submodule generated by all classes
in degrees 0 ≤ ∗ < 192. There is an isomorphism

(N/η)∗ ⊗ Z[M ] ∼= π∗(tmf/η)

of Z[B, M ]-modules. The submodule (N/η)∗ is preserved by the action of η, ν, ε, κ
and κ̄ (since κ- and κ̄-multiples are 2-power torsion), and the isomorphism respects
these actions.

In most degrees it is straightforward to read off the group structure of (N/η)∗,
together with its η- and ν-action, from E∞(tmf/η) with the hidden 2-, η- and ν-
extensions, keeping in mind that the w1-power torsion classes form the associated
graded of the restriction to ΓB(N/η)∗ of the Adams filtration. The next result
summarizes some not quite obvious cases.

Proposition 12.13.

(5) π2(tmf/η) ∼= Z is generated by 2̂ detected by ĥ0, and π5(tmf/η) ∼= Z/8 is

generated by ν̂ detected by ĥ2. The relation ν · 2̂ = 2 · ν̂ holds.
(20) π17(tmf/η) ∼= Z/4 is generated by η̂κ detected by i(e0), and the B-power

torsion ΓBπ20(tmf/η) ∼= Z/8 is generated by i(κ̄) detected by g · i(1). We
can choose η̂κ so that ν · η̂κ = 2 · i(κ̄).

(59) The B-power torsion ΓBπ56(tmf/η) ∼= Z/4 is generated by ν̂ν2 detected

by h2w2ĥ2, and π59(tmf/η) ∼= Z/4 is generated by ν̂2ν2 detected by γgα̂+

w2ĥ1c0. The relation ν · 2ν̂ν2 = 2 · ν̂2ν2 holds.
(107) π107(tmf/η) ∼= (Z/2)2 is generated by η̂1κ̄4 and η̂ε4, which are detected

by g2 · (β2gβ̂ + d0w2ĥ2) and w2
2ĥ1c0, respectively. The relation ν · ν̂ν4 =

η̂ε4 + η̂1κ̄4 holds.
(147) π144(tmf/η) ∼= Z7 has one generator ε̂5κ detected by i(h0w3

2) and six oth-
ers, and π147(tmf/η) ∼= Z/8 is generated by i(ν6) detected by i(h2w3

2). We
can choose ε̂5κ so that ν · ε̂5κ = 2 · i(ν6).
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(152) π149(tmf/η) ∼= Z/4 is generated by 2̂ν6 detected by h0w3
2ĥ2, and the

B-power torsion ΓBπ152(tmf/η) ∼= Z/8 is generated by ν̂ν6 detected by

h2w3
2ĥ2. The relation ν · 2̂ν6 = 2 · ν̂ν6 holds.

(155) π155(tmf/η) ∼= Z/4 is generated by ν̂2ν6 detected by γgw2
2α̂+w3

2ĥ1c0, and

ν · 2ν̂ν6 = 2 · ν̂2ν6.

Proof. (5) The two lifts of ν2 = 2ν must agree, because π5(tmf)/η = 0.
(20) Adding i(νκ) to η̂κ changes the sign in ν · η̂κ = ±2 · i(κ̄).

(59) This expresses how the ν-extension from h0 ·h2w2ĥ2 to h0 · (γgα̂+w2ĥ1c0)

is eclipsed by the h2-multiplication from gd̂0g + i(w1w2).
(107) This lifts the relation ν2ν4 = ηε4 + η1κ̄4 in π105(tmf).
(147) Adding i(D6) to ε̂5κ changes the sign in ν · ε̂5κ = ±2 · i(ν6).
(152) The two lifts of 2νν6 must agree, because j maps the B-power torsion in

π152(tmf/η) isomorphically to π150(tmf).

(155) The ν-extension from h0 · h2w3
2ĥ2 to h0 · (γgw2

2α̂+ w3
2ĥ1c0) is eclipsed by

the h2-multiplication from gw2
2d̂0g + i(w1w3

2). !

12.3. Homotopy of tmf/ν

We describe π∗(tmf/ν) using the short exact sequence

0 → π∗(tmf)/ν
i−→ π∗(tmf/ν)

j−→ νπ∗−4(tmf) → 0

of π∗(tmf)-modules, where

πn(tmf)/ν = cok(ν : πn−3(tmf) → πn(tmf))

νπn−4(tmf) = ker(ν : πn−4(tmf) → πn−1(tmf)) .

To achieve this we use the maps

E∗,∗
∞ (tmf)

i−→ E∗,∗
∞ (tmf/ν)

j−→ E∗,∗−4
∞ (tmf)

of E∞(tmf)-modules, calculated in Chapters 5 and 8. We determine the hidden
2- and η-extensions in E∞(tmf/ν), and show that there are no hidden B- and
M -extensions.

The E∞-term for tmf/ν is displayed in Figures 12.17 to 12.24. A label i(x)
denotes the class of an infinite cycle in the image under i : Es,t

2 (tmf) → Es,t
2 (tmf/ν)

of x ∈ E2(tmf). A label x denotes the class of an infinite cycle mapping to x ∈
E2(tmf) under j : Es,t

2 (tmf/ν) → Es,t−4
2 (tmf). (This may look peculiar when x

involves κ̄, but no real ambiguity should occur.) We omit to label the classes that
are h0-, h1-, h2- or w1-multiples, and this specifies the w1-action on E∞(tmf/ν).

Lemma 12.14. There are no hidden B- or M -power extensions in E∞(tmf/ν).

Proof. The proof is similar to that of Lemma 12.1. Again, several classes
require an additional argument. For b = h1 · h0h2, c0 + i(α), g · i(1), h1 · αβ,
g · (c0 + i(α)), g2 · i(1), g · g, i(α2g), h1 · g ·αβ, δ′g, g2 · g, g4 · i(1), h1 ·w2

2h0h2, g4 · g,
w2

2c0 + i(αw2
2), h1 · d0w2

2h1, g5 · g, h1 · w2
2αβ, g · (w2

2c0 + i(αw2
2)), h1 · g · d0w2

2h1,
g · w1w2

2g, δ′w2
2g and h1 · d0gw2

2γ the part of E∞(tmf/ν) above the bidegree of
w1b = 0 (or w2

1b = 0) consists of w1-multiples (or w2
1-multiples) and h0-torsion

free towers, and no possible 2-extension on b would be compatible with a hidden
B-extension (or B2-extension) from b into these h0-towers. !
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Figure 12.17. E∞(tmf/ν) for 0 ≤ t − s ≤ 24, with all hidden 2-
and η-extensions
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Figure 12.18. E∞(tmf/ν) for 24 ≤ t − s ≤ 48, with all hidden
2- and η-extensions
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Figure 12.19. E∞(tmf/ν) for 48 ≤ t − s ≤ 72, with all hidden
2- and η-extensions
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Figure 12.20. E∞(tmf/ν) for 72 ≤ t − s ≤ 96, with all hidden
2- and η-extensions
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Figure 12.21. E∞(tmf/ν) for 96 ≤ t − s ≤ 120, with all hidden
2- and η-extensions

120 124 128 132 136 140 144

20

24

28

32

36

g5·g

g4·γg

g3·γ2g

g·w2
2h0h2

g·(w2
2c0 + i(αw2

2))

g·w1w2
2h1

g·i(d0w2
2)

g·d0w2
2h1

g·d0w2
2h0h2

h0w2
2g h1w2

2g

i(αd0w2
2)

g·i(αd0w2
2)

w2
2h0α2

w2
2αβ

w1w2
2g

w2
2δ

δ′w2
2h1

d0w2
2g

γ2g3g + γw1w2
2h1

h0w2
2α

3 i(α2gw2
2) d0w2

2αβ i(h2
0w

3
2)

Figure 12.22. E∞(tmf/ν) for 120 ≤ t− s ≤ 144, with all hidden
2- and η-extensions
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Figure 12.23. E∞(tmf/ν) for 144 ≤ t− s ≤ 168, with all hidden
2- and η-extensions
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Figure 12.24. E∞(tmf/ν) for 168 ≤ t− s ≤ 192, with all hidden
2- and η-extensions
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Theorem 12.15. In the Adams spectral sequence for tmf/ν, the following hid-
den 2-extensions repeat w1- and w4

2-periodically:

(56) From αgg detecting i(B2) + ε1κ̄ to i(α3g + h0w1w2) detecting i(2B2).
(80) From i(δw2) detecting i(B3) to (α3g + h0w1w2)g detecting i(2B3).

(152) From αgw2
2g detecting i(B6)+ε5κ̄ to i(α3gw2

2 +h0w1w3
2) detecting i(2B6).

(176) From i(δw3
2) detecting i(B7) to (α3gw2

2 + h0w1w3
2)g detecting i(2B7).

The following hidden 2-extensions repeat w4
2-periodically:

(20) From g · i(1) detecting i(κ̄) to w1 · (c0 + i(α)) detecting i(2κ̄).
(27) From g · h0h2 detecting i(ν1) to w1 · d0h1 detecting i(2ν1).
(40) From g2 · i(1) detecting i(κ̄2) to gw1 · (c0 + i(α)) detecting i(2κ̄2).
(44) From g · g detecting κ̄2 to i(α2g) detecting 2κ̄2.
(51) From g · αβ detecting i(ν2) to i(d0e0g) detecting i(2ν2).
(64) From g2 · g detecting κ̄3 to w1 · δ′g detecting a lift 2κ̄3.

(110) From i(d0w2
2) detecting i(κ4) to g4 · γh1 detecting i(2κ̄4).

(123) From g · w2
2h0h2 detecting i(ν5) to w1 · d0w2

2h1 detecting i(2ν5).
(130) From g · i(d0w2

2) detecting i(κ4κ̄) to w1 · i(αd0w2
2) detecting i(2κ4κ̄).

(134) From d0w2
2g detecting κ4κ̄ to g3 · γ2g detecting 2κ4κ̄.

(147) From g · w2
2αβ detecting i(ν6) to i(d0e0gw2

2) detecting i(2ν6).
(154) From g · d0w2

2g detecting 2νν6 to g4 · γ2g detecting a lift 4νν6.

There are no other hidden 2-extensions in this spectral sequence.

Proof. (56) The image under i of c0w2 = 1124 detecting B2 is δg = 1140,
which is the sum of the classes αgg and δ′g, with the latter detecting ε1κ̄.

(80) Since i(B3) is detected by i(δw2) and i(8B3) is detected by h2
0 · (α3g +

h0w1w2)g there must be a hidden 2-extension from the former class to (α3g +
h0w1w2)g.

(152) The image under i of c0w3
2 = 27116 detecting B6 is δw2

2g = 27212, which
is the sum of the classes αgw2

2g and δ′w2
2g, with the latter detecting ε5κ̄.

(176) Since i(B7) is detected by i(δw3
2) and i(8B7) is detected by h2

0 · (α3gw2
2 +

h0w1w3
2)g there must be a hidden 2-extension from the former class to (α3gw2

2 +
h0w1w3

2)g. !

Theorem 12.16. In the Adams spectral sequence for tmf/ν, the following hid-
den η-extensions repeat w1- and w4

2-periodically:

(12) From i(α) detecting B to w1 · h1 detecting ηB.
(37) From h1 · δ detecting η(B1 + ε1) to w1 · γh1 detecting η2B1.
(56) From αgg detecting a lift ην2 to w1 · γg detecting a lift η2ν2.
(81) From h1 · i(δw2) detecting i(ηB3) to w1 · γ2g detecting i(η2B3).

(108) From i(αw2
2) detecting B4 to w1w2

2h1 detecting ηB4.
(133b) From h1 ·w2

2δ detecting ηB5 + ε5 to γ2g3g+γw1w2
2h1 detecting η2B5 + ε5.

(152) From αgw2
2g detecting a lift ην6 to γw1w2

2g detecting a lift η2ν6.
(177) From h1 · i(δw3

2) detecting i(ηB7) to γ2w1w2
2g detecting i(η2B7).

The following hidden η-extensions repeat w4
2-periodically:

(14) From i(d0) detecting i(κ) to w1 · h0h2 detecting i(ηκ).
(19) From d0h1 detecting ηκ to w1 · (c0 + i(α)) detecting i(2κ̄).
(20) From g · i(1) detecting i(κ̄) to d0h0h2 detecting i(ηκ̄).
(21) From d0h0h2 detecting i(ηκ̄) to w1 · i(d0) detecting i(η2κ̄).
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(25) From g · h1 detecting a lift ηκ̄ to i(αd0) detecting a lift η2κ̄.
(26) From i(αd0) detecting a lift η2κ̄ to w1 · d0h1 detecting i(2ν1).
(32) From g · (c0 + i(α)) detecting y32 = i(B1) + Bκ̄ to gw1 · h1 detecting ηy32.
(38) From d0g detecting κκ̄ to w1 · αβ detecting ηκκ̄.
(39) From g · d0h1 detecting i(η1κ) to gw1 · (c0 + i(α)) detecting i(2κ̄2).
(40) From g2 · i(1) detecting i(κ̄2) to g · d0h0h2 detecting i(ηκ̄2).
(44) From g · g detecting κ̄2 to d0αβ detecting a lift ηκ̄2.

(45a) From g2 · h1 detecting i(η1κ̄) to g · i(αd0) detecting i(ηη1κ̄).
(45b) From d0αβ detecting a lift ηκ̄2 to w1 · d0g detecting a lift η2κ̄2.
(50a) From g · γh1 detecting κ̄ηη1 to i(d0e0g) detecting i(2ν2).
(50b) From h1 · γg detecting ηη1κ̄ to i(d0e0g) detecting i(2ν2).
(51) From g · αβ detecting i(ν2) to gw1 · g detecting i(ην2).
(58) From g · d0g detecting 2νν2 to gw1 · αβ detecting i(ν2ε).
(63) From d0gγ detecting ν2ε to w1 · δ′g detecting 2κ̄3.
(64) From g2 · g detecting κ̄3 to g · d0αβ detecting i(ν2κ).
(65) From g · d0αβ detecting i(ν2κ) to gw1 · d0g detecting i(ην2κ).
(69) From g · γg detecting η1κ̄2 to αd0gg detecting a lift ηη1κ̄2.

(104) From h1 · w2
2h0h2 detecting i(ε4) to g5 · h1 detecting i(ηε4) = i(η1κ̄4).

(109) From h1 · (w2
2c0 + i(αw2

2)) detecting ηε4 to g4 · γh1 detecting i(2κ4).
(110) From i(d0w2

2) detecting i(κ4) to w1 · w2
2h0h2 detecting i(ηκ4).

(115) From d0w2
2h1 detecting ηκ4 to w1 · (w2

2c0 + i(αw2
2)) detecting i(κ̄D4).

(117) From d0w2
2h0h2 detecting i(η4κ̄) to w1 · i(d0w2

2) detecting i(ηη4κ̄).
(122) From i(αd0w2

2) detecting a lift ηη4κ̄ to w1 · d0w2
2h1 detecting i(2ν5).

(123) From g · w2
2h0h2 detecting i(ν5) to g5 · g detecting i(ην5).

(128a) From g · (w2
2c0 + i(αw2

2)) detecting y128 = i(B5) + B4κ̄ to g · w1w2
2h1

detecting ηy128.
(128b) From h1 · w2

2αβ detecting ην5 to g4 · γg detecting η2ν5.
(129) From g · w1w2

2h1 detecting ηy128 to w1 · i(αd0w2
2) detecting i(2κ4κ̄).

(133a) From δ′w2
2h1 detecting ηε5 to g3 · γ2g detecting 2κ4κ̄.

(134) From d0w2
2g detecting κ4κ̄ to w1 · w2

2αβ detecting a lift ηκ4κ̄.
(135) From g·d0w2

2h1 detecting i(η1κ4) to gw1·(w2
2c0+i(αw2

2)) detecting i(ηη1κ4).
(141) From d0w2

2αβ detecting ν5κ to w1 · d0w2
2g detecting a lift ην5κ.

(146) From i(h2
1w

3
2) detecting ε5κ to i(d0e0gw2

2) detecting i(2ν6).
(147) From g · w2

2αβ detecting i(ν6) to g · w1w2
2g detecting i(ην6).

(148) From g · w1w2
2g detecting i(ην6) to w1 · d0w2

2αβ detecting i(η2ν6).
(153) From h1 · δ′w2

2g detecting η2ν6 to g4 · γ2g detecting a lift 4νν6.
(154) From g · d0w2

2g detecting 2νν6 to gw1 · w2
2αβ detecting i(ν6ε).

(159) From d0gw2
2γ detecting ν6ε to w1 · δ′w2

2g detecting ην6ε.
(161) From g · d0w2

2αβ detecting i(ν6κ) to gw1 · d0w2
2g detecting i(ην6κ).

There are no other hidden η-extensions in this spectral sequence. In particular,
there are no hidden η-extensions on h1 · αβ or on g4 · γg.

Proof. (12) To see that i(α) detects B we can use that d2(α) = h2 · w1 in
E2(tmf), or note that j maps c0 and c0 + i(α) to c0, so only i(α) can detect a class
mapping to B.

(19) From E∞(tmf/η) we see that π21(tmf/(η, ν)) = 0, so that η acts injectively
on π19(tmf/ν). Hence η · ηκ is nonzero, and must be equal to i(2κ̄).
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(25) Since h1 times g · h1 is zero, η times the lift of ηκ̄ detected by this class
has Adams filtration 7 or 8, hence must be detected by i(αd0).

(26) We multiply case (12) by κ to deduce this extension.
(32) The class B1 detected by αg = 711 + 712 maps to i(B1) in π32(tmf/ν)

detected by i(αg) = 716 = g · (c0 + i(α)) in Adams filtration 7. Its η-multiple
i(ηB1) = Bi(η1) is detected by w1 · i(γ) = 917 + 918 = gw1 · h1 + h1w1 · g. The
filtration 8 class Bκ̄ is detected by w1 · g, and ηBκ̄ is detected by h1w1 · g = 918.
The sum y32 = i(B1) + Bκ̄ is also detected by g · (c0 + i(α)), with ηy32 detected by
gw1 · h1 = 917. Hence there is a hidden η-extension from g · (c0 + i(α)) to gw1 · h1.

Furthermore, the class ε1 detected by δ′ = 712 maps to i(ε1) in π32(tmf/ν)
detected by i(δ′) = 716 + 717 = g · (c0 + i(α)) + h1 · αβ. Its η-multiple i(ηε1)
is nonzero and B-power torsion, hence must be detected by gw1 · h1 = 917 in
E∞(tmf/ν). It follows that there is no hidden η-extension from h1 · αβ.

(50a) Multiplying the relation η · ηη1 = 2 · ν1 in π31(tmf/ν) by κ̄, we see that η
times the class κ̄ηη1 detected by g · γh1 is 2 times the class κ̄ν1 detected by g · αβ.
This common value must be equal to i(2ν2) detected by i(d0e0g).

(50b) The class η2
1 detected by γ2 = 1020 + 1021 maps to i(η2

1) in π50(tmf/ν)
detected by i(γ2) = 1032 + 1033 = g · γh1 + h1 · γg. The η-multiple η · η2

1 = νD2

maps to zero in π51(tmf/ν). Hence η times ηη1κ̄ detected by h1 · γg is equal to η
times κ̄ηη1 detected by g · γh1, i.e., i(2ν2) detected by i(d0e0g).

(56) The class B2 detected by c0w2 = 1124 maps to i(B2) in π56(tmf/ν) de-
tected by i(c0w2) = 1140 = δg. Hence αgg and δ′g both detect lifts of ην2 in

νπ52(tmf). Since η · ην2 is nonzero of Adams filtration 13, η times the lift detected
by αgg is nonzero of Adams filtration exactly 13, hence is detected by w1 · γg.

(58) We multiply case (38) by κ̄ to deduce this extension.
(64) We multiply case (44) by κ̄ to deduce that there is a hidden η-extension

from g2 · g detecting κ̄3 to g · d0αβ. The latter is the class that detects i(ν2κ)
because i(h2w2 · d0) = 0.

(108) To see that i(αw2
2) detects B4 we can use that d2(αw2

2) = h2 · w1w2
2 in

E2(tmf), or note that j maps w2
2c0 and w2

2c0 + i(αw2
2) to c0w2

2, so only i(αw2
2) can

detect a class mapping to B4.
(115) From E∞(tmf/η) we see that π117(tmf/(η, ν)) = Z/2. Since d0w2

2h0h2

detects a class in π117(tmf/ν) that cannot be an η-multiple, we see that η acts
injectively on π115(tmf/ν). Hence η · ηκ4 is nonzero, and must be equal to i(κ̄D4).

(122) We multiply case (108) by κ to deduce this extension.
(128a) The class B5 detected by αgw2

2 = 2387 + 2388 maps by i to i(B5)
in π128(tmf/ν) detected by i(αgw2

2) = 23156 = g · (w2
2c0 + i(αw2

2)) in Adams
filtration 23. Its η-multiple i(ηB5) is detected by i(γw1w2

2) = 25168 + 25169 =
g · w1w2

2h1 + h1 · w1w2
2g. The filtration 24 class B4κ̄ is detected by w1w2

2g, and
ηB4κ̄ is detected by h1 · w1w2

2g = 25169. The sum y128 = i(B5) + B4κ̄ is also
detected by g · (w2

2c0 + i(αw2
2)), with ηy128 detected by g · w1w2

2h1. Hence there is
a hidden η-extension from g · (w2

2c0 + i(αw2
2)) to g · w1w2

2h1.
(128b) From E∞(tmf/η) we see that π129(tmf/(η, ν)) = Z/2, and η acts triv-

ially on 2ν5 in π127(tmf/ν) detected by h0 · w2
2αβ, so each class in π129(tmf/ν) is

an η-multiple. By the previous case ηB4κ̄ is detected by h1 · w1w2
2g and ηy128 is

detected by g · w1w2
2h1. Hence η2ν5 must be detected by g4 · γg, modulo these two

classes. Since η2ν5 is B-power torsion and a lift of η2ν5, and j maps g ·w1w2
2h1 and
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g4 · γg to h1gw1w2
2 = γg5 in E∞(tmf) detecting η2ν5, it follows that η2ν5 must be

detected by precisely g4 · γg.
(129) There is no hidden η-extension on g4 ·γg, because ν ·ν5 must have Adams

filtration ≥ 24, so that 2ν · ν5 must have Adams filtration ≥ 27, and there is no
w1-power torsion class in Adams filtration ≥ 28 that can detect η3 = 4ν times ν5.
Alternatively, we can use that there is no visible or hidden η-multiplication on
g3 · γg, and multiply by κ̄.

Furthermore, from E∞(tmf/η) we see that π131(tmf/(η, ν)) = Z/2, while
π131(tmf/ν) = 0, so ηπ129(tmf/ν) = Z/2. It follows that η times ηy128 is nonzero,
so that there is a hidden η-extension from g · w1w2

2h1 to w1 · i(αd0w2
2).

(109) The class w2
2c0+i(αw2

2) detects a B2-torsion lift y108 in π108(tmf/ν) of ε4,
and g · (w2

2c0 + i(αw2
2)) detects κ̄ · y108. By cases (128a) and (129) there is a hidden

η2-extension from g · (w2c0 + i(αw2
2)) to w1 · i(αd0w2

2). Since η2κ̄ · y108 is nonzero,
it follows that η2 · y108 is nonzero, and only g4 · γh1 can detect this product. Hence
there is also a hidden η-extension from h1 · (w2

2c0 + i(αw2
2)) to g4 · γh1.

(133b) The class w2
2δ detects B5 + ε5 in π132(tmf/ν), so h1·w2

2δ detects ηB5 + ε5
and η2 · B5 + ε5 must be detected by a lift over j of h1γw1w2

2 + γ2g4, i.e., by
γ2g3g + γw1w2

2h1.
(146) From E∞(tmf/η) and case (147) of Theorem 12.15 we can read off that

π147(tmf/(η, ν)) = Z/2. Since η acts injectively on π145(tmf/ν), by case (81) above,
it follows that i(d0e0gw2

2) must detect an η-multiple. The only possible source of
this multiplication is ε5κ detected by i(h2

1w
3
2).

(152) The class B6 detected by c0w3
2 = 27116 maps to i(B6) in π152(tmf/ν)

detected by i(c0w3
2) = 27212 = δw2

2g. Hence αgw2
2g and δ′w2

2g both detect lifts of
ην6 in νπ148(tmf). Since η · ην6 is nonzero of Adams filtration 29, η times the lift
detected by αgw2

2g is nonzero of Adams filtration exactly 29, hence is detected by
γw1w2

2g.
(154) We multiply case (134) by κ̄ to deduce this extension. !

It follows from Proposition 8.10 that π∗(tmf/ν) is generated as a π∗(tmf)-
module by elements detected by the classes listed in Table 8.10, where we may
assume that the w1-power torsion classes are represented by B-power torsion ele-
ments. We omit to enumerate 34 such elements.

Let (N/ν)∗ ⊂ π∗(tmf/ν) denote the Z[B]-submodule generated by all classes
in degrees 0 ≤ ∗ < 192. There is an isomorphism

(N/ν)∗ ⊗ Z[M ] ∼= π∗(tmf/ν)

of Z[B, M ]-modules. The submodule (N/ν)∗ is preserved by the action of η, ν, ε,
κ and κ̄ (because κ̄ · B7 = 0, which follows from g · w3

2δ = 0 in E∞(tmf/ν)), and
the isomorphism respects these actions.

In most degrees it is straightforward to read off the group structure of (N/ν)∗,
together with its η-action, from E∞(tmf/ν) with the hidden 2- and η-extensions,
keeping in mind that the w1-power torsion classes form the associated graded of
the restriction to ΓB(N/ν)∗ of the Adams filtration. The next result summarizes
some less obvious cases.

Proposition 12.17.

(27) The product of η with η2κ̄, detected by h2
1 · g, is zero.
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(66) The product of η with i(η1κ̄2), detected by g3 · h1, is i(ην2κ) detected by
gw1 · d0g.

(123) The product of η with ηη4κ̄, detected by h1 · h1w2
2g, is zero.

(149) A lift 2D6, detected by w3
2h

3
0, can be chosen so that η · 2D6 is zero.

Proof. (27) Four times νκ̄ is zero in π27(tmf/ν).
(66) The detection follows from i(γg2) = g3 · h1.
(123) Using [171, Prop. 1.8], η2 · η4κ̄ = ±i(z) where z ∈ 〈η2, η4κ̄, ν〉. By Moss’

theorem [132, Thm. 1.2], this Toda bracket is weakly detected by the Massey
product 〈h2

1, h1gw2
2, h2〉, which ext calculates is zero. It follows that z = 0.

(149) There are two lifts of 2D6 over j, differing by i(ην6), and multiplication
by η annihilates precisely one of them. !

12.4. Homotopy of tmf/B

We study π∗(tmf/B) using the short exact sequence

(12.1) 0 → π∗(tmf)/B
i−→ π∗(tmf/B)

j−→ Bπ∗−9(tmf) → 0

of π∗(tmf)-modules, where

πn(tmf)/B = cok(B : πn−8(tmf) → πn(tmf))

Bπn−9(tmf) = ker(B : πn−9(tmf) → πn−1(tmf)) .

Since B : Σ8tmf → tmf has Adams filtration 4, there is a split extension of
Adams E2-terms

0 → E∗,∗
2 (tmf)

i−→ E∗,∗
2 (tmf/B)

j−→ E∗,∗−9
2 (tmf) → 0

which persists to the E4-term. However, at this stage the differentials in E4(tmf)
and the action of B will interact. To avoid this interference, we instead consider the
delayed Adams spectral sequence (Er(Z7), dr) of the tmf -module tower Z7 given
by

tmf/B
i←− tmf ←− ∗ .

See [45, §VI.6] and Definition 11.10. We set Zk = ∗ for k ≥ 2, Z1 = tmf and
Z0 = tmf/B. The nontrivial filtration quotients are then Z1,1 - tmf and Z0,1 -
Σ9tmf . Letting (S7,α) be an Adams resolution for S, the delayed Adams spectral
sequence (Er(Z7), dr) is associated to the convolved filtration (S ∧ Z)7. There is a
homotopy cofiber sequence

Ss ∧ Σ8tmf
α∧B−→ Ss−1 ∧ tmf −→ (S ∧ Z)s −→ Ss ∧ Σ9tmf

of filtered spectra, where the structure map α : Ss → Ss−1 has Adams filtration 1.
The associated homotopy cofiber sequence of filtration quotients induces a long
exact sequence in homotopy, which breaks up into split short exact sequences

(12.2) 0 → E∗−1,∗−1
r (tmf) −→ E∗,∗

r (Z7) −→ E∗,∗−9
r (tmf) → 0

for r = 1 and r = 2, as in [45, Thm. VI.6.1(i)] and Theorem 11.11. Furthermore,
the connecting map

ᾱ ∧ B : Ss,r ∧ Σ8tmf −→ Ss−1,r ∧ tmf

induces zero in homotopy for r ≤ 5, which by the proof of Proposition 5.4 of [148]
implies that (12.2) remains short exact for r ≤ 5. The module structure over
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Er(tmf) ensures that the sequence remains split, and that the d5-differential is
given by multiplication with w1 detecting B. Hence we have a short exact sequence

0 → E∗−1,∗−1
∞ (tmf)/w1 −→ E∗,∗

6 (Z7) −→ w1E
∗,∗−9
∞ (tmf) → 0

of E∞(tmf)-modules, where E5(tmf) = E∞(tmf). The resulting E6-term is dis-
played in Figures 12.25 to 12.32, and it follows by inspection that there is no room
for any further differentials, so that E6(Z7) = E∞(Z7) in the delayed Adams spec-
tral sequence converging to π∗(tmf/B) (implicitly 2-completed).

In these charts, the filled (black) circles show the image of the cokernel of w1,
offset by (t− s, s) = (0, 1) bidegrees, while the open (white) circles show lifts of the
kernel of w1, offset by (9, 0) bidegrees. Hence the class labeled c0 in bidegree (8, 4)
is the image of c0 in E∞(tmf)/w1, while the class labeled c0 in bidegree (17, 3) is
the unique lift of c0 in w1E∞(tmf). The black lines (solid, dashed or dotted) show
2-, η- and ν-extensions within the image of E∞(tmf)/w1 and the lift of w1E∞(tmf).

Hidden extensions from the lift to the image are shown in red (dashed or dot-
ted). These will be determined in Theorems 12.19, 12.20 and 12.21. Using these,
we can specify

(51) the lift of d0gw1 to detect η2 times a class detected by the lift of g2,
(99) the lift of γ2g2 to detect κ̄ times the class detected by the lift of γ2g, and

(147) the lift of d0gw1w2
2 to detect η times the class detected by the lift of αβd0w2

2.

Let (N/B)∗ ⊂ π∗(tmf/B) denote the graded subgroup of classes in degrees 0 ≤
∗ < 192. Since w4

2 acts freely on the delayed E∞(tmf/B), we have an isomorphism

(N/B)∗ ⊗ Z[M ] ∼= π∗(tmf/B)

of Z[M ]-modules. The subgroup (N/B)∗ is preserved by the action of η, ν, ε, κ, κ̄
and B, and the isomorphism respects these actions. We have isomorphisms

(N/B)∗ ∼= π∗(tmf/B)/M ∼= π∗(tmf/(B, M))

and a short exact sequence

0 → N∗/B
i−→ (N/B)∗

j−→ BN∗−9 → 0 ,

where N∗ is as in Definition 9.25. Recall the Anderson duality functor IZ from
Section 10.4.

Proposition 12.18. The spectrum tmf/(B, M) is Anderson self-dual, in the
sense that there is an equivalence of tmf -modules

tmf/(B, M) - Σ180IZ(tmf/(B, M)) .

Hence there is a short exact sequence

0 → Ext((N/B)n−1, Z) −→ (N/B)180−n −→ Hom((N/B)n, Z) → 0

for each integer n.

Proof. By Proposition 10.12 we have an equivalence

Σ20tmf - IZ(tmf/(B∞, M∞)) .

The homotopy cofiber sequences

tmf/(B, M∞) −→ Σ8tmf/(B∞, M∞)
B−→ tmf/(B∞, M∞)

tmf/(B, M) −→ Σ192tmf/(B, M∞)
M−→ tmf/(B, M∞)
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Figure 12.25. Delayed E∞(tmf/(B, M)) for 0 ≤ t−s ≤ 24, with
all hidden 2-, η- and ν-extensions
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Figure 12.26. Delayed E∞(tmf/(B, M)) for 24 ≤ t − s ≤ 48,
with all hidden 2-, η- and ν-extensions

from (10.2) dualize to homotopy cofiber sequences

IZ(tmf/(B∞, M∞))
B−→ Σ−8IZ(tmf/(B∞, M∞)) −→ IZ(tmf/(B, M∞))

IZ(tmf/(B, M∞))
M−→ Σ−192IZ(tmf/(B, M∞)) −→ IZ(tmf/(B, M)) ,

which translate to equivalences

Σ12tmf/B - IZ(tmf/(B, M∞)

Σ−180tmf/(B, M) - IZ(tmf/(B, M)) .
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Figure 12.27. Delayed E∞(tmf/(B, M)) for 48 ≤ t − s ≤ 72,
with all hidden 2-, η- and ν-extensions
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Figure 12.28. Delayed E∞(tmf/(B, M)) for 72 ≤ t − s ≤ 96,
with all hidden 2-, η- and ν-extensions

The short exact sequence is a special case of (10.3). !
Theorem 12.19. In the delayed Adams spectral sequence for tmf/B, the fol-

lowing hidden 2-extensions repeat w4
2-periodically:

(12) From the lift of h2
0h2 to the image of h3

0α.
(15) From the lift of h2

2 to the image of h1d0.
(17) From the lift of c0 to the image of h2d0.
(24) From the lift of h1d0 to the image of h0α2.
(36) From the lift of h0αβ to the image of h0α3.
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Figure 12.29. Delayed E∞(tmf/(B, M)) for 96 ≤ t − s ≤ 120,
with all hidden 2-, η- and ν-extensions
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Figure 12.30. Delayed E∞(tmf/(B, M)) for 120 ≤ t − s ≤ 144,
with all hidden 2-, η- and ν-extensions

(48) From the lift of d0γ to the image of h2
0w2.

(49) From the lift of g2 to the lift of δ′w1.
(54) From the image of h2

2w2 to the image of d0g2.
(56) From the image of c0w2 to the image of α3g + h0w1w2.
(60) From the lift of h2

0h2w2 to the image of h3
0αw2.

(63) From the lift of h2
2w2 to the lift of d0g2.

(66) From the lift of γδ′ to the image of d0δ′g.
(68) From the lift of h2w1w2 to the image of h2

0gw2.
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Figure 12.31. Delayed E∞(tmf/(B, M)) for 144 ≤ t − s ≤ 168,
with all hidden 2-, η- and ν-extensions
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Figure 12.32. Delayed E∞(tmf/(B, M)) for 168 ≤ t − s ≤ 192,
with all hidden 2-, η- and ν-extensions

(69) From the lift of g3 to the lift of δ′gw1.
(84) From the lift of γ3 to the image of h0α3w2.

(108) From the lift of h2
0h2w2

2 to the image of h3
0αw2

2.
(110) From the image of d0w2

2 to the image of γ2g3.
(111) From the lift of h2

2w
2
2 to the image of h1d0w2

2.
(113) From the lift of c0w2

2 to the image of h2d0w2
2.

(120) From the lift of h1d0w2
2 to the image of h0α2w2

2.
(130) From the image of d0gw2

2 to the image of γ2g4.
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(132) From the lift of h0αβw2
2 to the image of h0α3w2

2.
(144) From the lift of d0γw2

2 to the image of h2
0w

3
2.

(150) From the image of h2
2w

3
2 to the image of d0g2w2

2.
(152) From the image of c0w3

2 to the image of α3gw2
2 + h0w1w3

2.
(156) From the lift of h2

0h2w3
2 to the image of h3

0αw3
2.

(159a) From the lift of h2
2w

3
2 to the lift of d0g2w2

2.
(159b) From the lift of d0g2w2

2 to the lift of d0δ′w1w2
2.

(162) From the lift of γδ′w2
2 to the image of d0δ′gw2

2.
(164) From the lift of h2w1w3

2 to the image of h2
2d0w3

2.

There are no other hidden 2-extensions in this spectral sequence.

Proof. The hidden 2-extensions in degrees 54, 56, 110, 130, 150 and 152 are
images under E∞(tmf)/w1 → E∞(tmf/B) of hidden 2-extensions in E∞(tmf).

The hidden 2-extensions in degrees 49, 63, 69 and 159 (two instances) are lifts
of hidden 2-extensions in E∞(tmf) along E∞(tmf/B) → w1E∞(tmf).

For n = 12, 24, 36, 48, 84, 108, 120, 132, 144 and 156 we see from E∞(tmf/B)
that π179−n(tmf/B) = 0. By Anderson duality it follows that πn(tmf/B) is 2-
torsion free. This implies that there must be a hidden 2-extension from the h0-
torsion class to the beginning of the h0-tower in each of these degrees.

(15) From the w1-action on E∞(tmf/2) we see that π15(tmf/(2, B)) has order
22 = 4. Since 2π14(tmf/B) = Z/2 it follows that π15(tmf/B)/2 = Z/2, implying a
hidden 2-extension in this degree.

(17) From the w1-action on E∞(tmf/2) we see that π17(tmf/(2, B)) = Z/2,
implying π17(tmf/B)/2 = Z/2.

(60) Since π119(tmf/B) = Z/2, it follows by Anderson duality that the 2-power
torsion in π60(tmf/B) is Z/2, which necessarily must be generated by i(κ̄3) detected
by the image of g3.

(66) From the w1-action on E∞(tmf/2) we see that π66(tmf/(2, B)) has or-
der 23 = 8, so π66(tmf/B)/2 = Z/2.

(68) From the w1-action on E∞(tmf/2) we see that π68(tmf/(2, B)) = Z/2, so
π68(tmf/B)/2 = Z/2.

(99) There cannot be a 2-extension on the lift of γ2g2, since this class detects
κ̄ times the generator of π79(tmf/B) = Z/2.

(122) There is no 2-extension on the lift of h2d0w2
2, since Anderson duality

implies that π122(tmf/B) ∼= π57(tmf/B) ∼= (Z/2)2.
The hidden 2-extensions in degrees n = 111, 113, 162 and 164 follow from those

in degree 179 − n by Anderson duality. !

Theorem 12.20. In the delayed Adams spectral sequence for tmf/B, the fol-
lowing hidden η-extensions repeat w4

2-periodically:

(30) From the lift of h1g to the lift of d0w1.
(31) From the lift of d0w1 to the image of h2

0αg.
(40) From the image of g2 to the image of αβd0.
(45) From the image of γg to the image of d0δ′.
(48) From the lift of d0γ to the lift of δ′w1.
(49) From the lift of g2 to the lift of αβd0.
(50) From the lift of αβd0 to the specified lift of d0gw1.
(51) From the image of h2w2 to the image of δ′g.
(55) From the lift of d0δ′ to the image of α3g + h0w1w2.
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(65a) From the image of h2d0w2 to the image of d0δ′g.
(65b) From the image of γg2 to the image of d0δ′g.
(68) From the lift of h2w1w2 to the lift of δ′gw1.

(74a) From the lift of h2d0w2 to the lift of d0δ′g.
(74b) From the lift of γg2 to the lift of d0δ′g.
(79) From the lift of γ2g to the image of h2

0δw2.
(99a) From the image of h2w2

2 to the image of g5.
(108) From the lift of h2w2

2 to the lift of g5.
(123) From the image of αβw2

2 to the image of gw1w2
2.

(127) From the lift of d0w1w2
2 to the image of h2

0αgw2
2.

(128) From the image of αgw2
2 to the image of γw1w2

2.
(129) From the image of h1δ′w2

2 to the image of γ2g4.
(138) From the lift of h1δ′w2

2 to the lift of γ2g4.
(144) From the lift of d0γw2

2 to the lift of δ′w1w2
2.

(146) From the lift of αβd0w2
2 to the specified lift of d0gw1w2

2.
(147) From the image of h2w3

2 to the image of δ′gw2
2.

(148) From the image of δ′gw2
2 to the image of γgw1w2

2.
(153) From the image of h1c0w3

2 to the image of γ2w1w2
2.

(158) From the lift of γgw1w2
2 to the lift of d0δ′w1w2

2.
(161) From the image of h2d0w3

2 to the image of d0δ′gw2
2.

(164) From the lift of h2w1w3
2 to the lift of δ′gw1w2

2.
(170) From the lift of h2d0w3

2 to the lift of d0δ′gw2
2.

There are no other hidden η-extensions in this spectral sequence. In particular,
there is no hidden η-extension on the lift of h2d0w2 + γg2 or on the specified lift
of γ2g2.

Proof. The hidden η-extensions from degrees 40, 45, 51, 65 (two cases), 99,
123, 128, 129, 147, 148, 153 and 161 are images under E∞(tmf)/w1 → E∞(tmf/B)
of hidden η-extensions in E∞(tmf).

The hidden η-extensions from degrees 30, 48, 49, 50, 68, 74 (two cases), 108,
138, 144, 146, 158, 164 and 170 are lifts of hidden η-extensions in E∞(tmf) along
E∞(tmf/B) → w1E∞(tmf). In cases (50) and (146) the target classes are the
preferred lifts of d0gw1 and d0gw1w2

2, respectively, by how those lifts were specified.
(69) There is no hidden η-extension from the lift of g3 to the image of γ2g.

We use the w1-action on E∞(tmf/η) to see that π70(tmf/(η, B)) = (Z/2)2. Since

ηπ68(tmf/B) = Z/2 it follows that π70(tmf/B)/η = Z/2, generated by i(η2
1 κ̄)

detected by the image of γ2g.
(74) There is no hidden η-extension from the lift of h2d0w2 + γg2 to the image

of γ3. This follows by Anderson duality, since multiplication by η from π104(tmf/B)
is not surjective.

(84) There is no hidden η-extension from the lift of γ3 to the image of γg3.
We use the w1-action on E∞(tmf/η) to see that π85(tmf/(η, B)) = Z/2. Since
π83(tmf/B) = 0 we must have π85(tmf/B)/η = Z/2, generated by i(η1κ̄3) detected
by the image of γg3.

(89) We multiply case (69) by κ̄ to see that there is no hidden η-extension from
the lift of g4 to the image of γ2g2.

(79) By Anderson duality from case (99a) there is a hidden η-extension on the
lift of γ2g. Let y79 ∈ π79(tmf/B) be the class detected by this lift. If ηy79 were
detected by the image of g4 then ηη1y79 would be detected by the image of γg4, i.e.,
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be equal to i(η1κ̄4). However, i(η1κ̄4) is not an η-multiple, so this is impossible.
Therefore ηy79 is detected by h2

0δw2.
(99b) We multiply case (79) by κ̄ to see that there is no hidden η-extension on

the lift of γ2g2 given by g times the lift of γ2g. (The other lift is given by adding
the image of h2w2

2, and does support a nontrivial η-extension by case (99a).)
(109) We multiply case (89) by κ̄ to see that there is no hidden η-extension

from the lift of g5 to the image of γ2g3.
(134) There is no η-extension from the lift of h1gw1w2

2 to the image of d0γw2
2,

by Anderson duality.
The hidden η-extensions from degrees n = 31, 55 and 127 follow by Anderson

duality from those from degree 178 − n. !

Theorem 12.21. In the delayed Adams spectral sequence for tmf/B, the fol-
lowing hidden ν-extensions repeat w4

2-periodically:

(6) From the image of h2
2 to the image of h1c0.

(12) From the lift of h0h2 to the image of h1d0.
(15) From the lift of h2

2 to the lift of h1c0.
(17) From the lift of c0 to the image of h0g.
(24) From the lift of h1d0 to the image of h0αβ.

(29a) From the lift of h0g to the image of h0αg.
(29b) From the lift of h2

0g to the image of h2
0αg.

(30) From the lift of h1g to the image of h1δ′.
(48) From the lift of d0γ to the image of h0h2w2.
(49) From the lift of g2 to the image of δ′g.
(51) From the image of h0h2w2 to the image of d0g2.
(54) From the image of h2

2w2 to the image of γδ′.
(60) From the lift of h0h2w2 to the lift of d0g2.

(63a) From the lift of h2
2w2 to the lift of γδ′.

(63b) From the lift of d0g2 to the image of d0δ′g.
(65) From the image of h2d0w2 to the image of h2

0gw2.
(66) From the lift of γδ′ to the lift of δ′gw1.
(74) From the lift of h2d0w2 to the lift of h2

0gw2.
(77) From the lift of h2

0gw2 to the image of h2
0δw2.

(79) From the lift of γ2g to the image of h2
1δw2.

(97) From the image of h1w2
2 to the image of g5.

(102) From the image of h2
2w

2
2 to the image of h1c0w2

2.
(108) From the lift of h0h2w2

2 to the image of h1d0w2
2.

(111) From the lift of h2
2w

2
2 to the lift of h1c0w2

2.
(113) From the lift of c0w2

2 to the image of h0gw2
2.

(120) From the lift of h1d0w2
2 to the image of h0αβw2

2.
(125a) From the lift of h0gw2

2 to the image of h0αgw2
2.

(125b) From the lift of h2
0gw2

2 to the image of h2
0αgw2

2.
(127) From the lift of d0w1w2

2 to the image of γ2g4.
(144) From the lift of d0γw2

2 to the image of h0h2w3
2.

(146) From the lift of αβd0w2
2 to the image of γgw1w2

2.
(147) From the image of h0h2w3

2 to the image of d0g2w2
2.

(150) From the image of h2
2w

3
2 to the image of γδ′w2

2.
(156a) From the lift of h0h2w3

2 to the lift of d0g2w2
2.

(156b) From the lift of h2
0h2w3

2 to the lift of d0δ′w1w2
2.
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(159a) From the lift of h2
2w

3
2 to the lift of γδ′w2

2.
(159b) From the lift of d0g2w2

2 to the image of d0δ′gw2
2.

(162) From the lift of γδ′w2
2 to the lift of δ′gw1w2

2.
(173) From the lift of h2

2d0w3
2 to the image of h2

0δw
3
2.

There are no other hidden ν-extensions in this spectral sequence.

Proof. The hidden ν-extensions from degrees 6, 51, 54, 65, 97, 102, 147
and 150 are images under E∞(tmf)/w1 → E∞(tmf/B) of hidden ν-extensions
in E∞(tmf).

The hidden ν-extensions from degrees 15, 60, 63 (case (a)), 66, 74, 111, 156
(two cases), 159 (case (a)) and 162 are lifts of hidden ν-extensions in E∞(tmf)
along E∞(tmf/B) → w1E∞(tmf).

The hidden ν-extensions from degrees n = 12, 17, 48, 63 (case (b)), 108, 113,
144 and 159 (case (b)) follow from the relation 2ν = ν2, previously known ν-
multiplications from degree n to degree n + 3, and hidden 2-extensions established
in Theorem 12.19 in one or both of these degrees. In cases (48) and (144) these
hidden ν-extensions eclipse lifts of hidden ν-extension from d0γ to d0gw1, and from
d0γw2

2 to d0gw1w2
2, respectively.

(24) From the w1-action on E∞(tmf/ν) we see that π27(tmf/(ν, B)) = Z/2, so
π27(tmf/B)/ν = Z/2 and the image of h0αβ must detect a ν-multiple.

(29a, 29b, 30) From the w1-action on E∞(tmf/ν) we see that π33(tmf/(ν, B)) =
0, so that ν acts injectively on π29(tmf/B) and maps onto π33(tmf/B). Since
ην = 0, this implies the asserted hidden ν-extensions.

(36) From the w1-action on E∞(tmf/ν) we see that π39(tmf/(ν, B)) = Z/2, so
ν acts trivially on π36(tmf/B).

(49) From the w1-action on E∞(tmf/ν) we see that π53(tmf/(ν, B)) = Z/2, so

νπ49(tmf/B) = Z/2. Hence the lift of g2 must support a hidden ν-extension.
(62) From the w1-action on E∞(tmf/ν) we see that π65(tmf/(ν, B)) = (Z/2)2,

so ν acts trivially on π62(tmf/B).
(77) From the w1-action on E∞(tmf/ν) we see that π80(tmf/(ν, B)) = Z/4 ⊕

Z/2, generated by the images of B3 and κ̄4 in π80(tmf), with 4B3 mapping to zero.
Hence i(4B3) in π80(tmf/B), detected by h2

0δw2, is a ν-multiple. This implies that
there is a hidden ν-extension from the lift of h2

0gw2 to the image of h2
0δw2.

(79) This follows by Anderson duality from case (97).
(99) Multiplying case (79) by κ̄ confirms that there is no (hidden) ν-extension

on the specified lift of γ2g2.
(114) There are no hidden ν-extensions on the lifts of h1c0w2

2 and γg4, e.g. by
Anderson duality from case (62) of the proof.

(119) There is no hidden ν-extension on the lift of γ2g3, because ην = 0.
(120) From the w1-action on E∞(tmf/ν) we see that π123(tmf/(ν, B)) has

order 22 = 4. From case (119) it follows that π123(tmf/B)/ν = Z/2, so that the
image of h0αβw2

2 detects a ν-multiple.
(125a, 125b) These follow by Anderson duality from case (51), since ην = 0.
(127) This follows by Anderson duality from case (49).
(132) From the w1-action on E∞(tmf/ν) we see that π135(tmf/(ν, B)) = Z/2,

so ν acts trivially on π132(tmf/B).
(146) This follows by Anderson duality from case (30).
(173) This follows by Anderson duality from the nontrivial ν-multiplication on

π3(tmf/B). !
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In most degrees it is straightforward to read off the group structure of (N/B)∗,
together with its η- and ν-actions, from the delayed E∞(tmf/B) with its hidden
2-, η- and ν-extensions. The next result summarizes some less obvious cases. We
write y ∈ πn(tmf/B) for the image of y ∈ πn(tmf), and ỹ ∈ πn(tmf/B) for lifts
of y ∈ πn−9(tmf), with respect to the maps i and j in (12.1).

Proposition 12.22.

(20) π20(tmf/B) ∼= Z/8 is generated by κ̄, which is detected by the image of g.
There is a lift ε̃, detected by the lift of c0, with ν · ε̃ = 2κ̄.

(32) π32(tmf/B) ∼= Z/8⊕Z/2 is generated by B1 of order 8 and ε1 of order 2,
detected by the images of αg and δ′, respectively. A relation ν · 2̃κ̄ = ±2B1

holds, but we have not determined the sign.

(51) π51(tmf/B) ∼= Z/8⊕Z/2 is generated by ν2 of order 8 and η2·˜̄κ2 of order 2,
detected by the image of h2w2 and the specified lift of d0gw1, respectively.

A relation ν · η̃1κ = ±2ν2 + η2˜̄κ2 holds, but we have not determined the
sign.

(66) π66(tmf/B) ∼= Z/4 is generated by η̃1ε1 = ν · ν̃ν2, which is detected by the
lift of γδ′. Here the lift ν̃ν2 is detected by the lift of h2

2w2.

(75) π75(tmf/B) ∼= (Z/2)2 is generated by η3
1 and ην̃2κ, which are detected by

the image of γ3 and the lift of d0δ′g. The relation η · η̃1κ̄2 = ην̃2κ holds.

(99) π99(tmf/B) ∼= Z/8⊕Z/2 is generated by ν4 of order 8 and κ̄η̃2
1 κ̄ of order 2,

detected by the image of h2w2
2 and the specified lift of γ2g2.

(105) π105(tmf/B) ∼= (Z/2)2 is generated by η1κ̄4 and ηε4, which are detected
by the images of γg4 and h1c0w2

2, respectively. The relation ν2 · ν4 =
ηε4 + η1κ̄4 holds.

(114) π114(tmf/B) ∼= (Z/2)2 is generated by η̃1κ̄4 and ηε̃4, which are detected by

the lifts of γg4 and h1c0w2
2, respectively. The relation ν2 · ν̃4 = ηε̃4 + η̃1κ̄4

holds.
(116) π116(tmf/B) ∼= Z/4 is generated by κ̄D4, which is detected by the image

of h0gw2
2. There is a lift ε̃4, detected by the lift of c0w2

2, with ν · ε̃4 = κ̄D4.
(122) π122(tmf/B) ∼= (Z/2)2 is generated by η1η4 and a lift ν̃κ4, which are

detected by the image of h1γw2
2 and the lift of h2d0w2

2, respectively. The
lift can be chosen so that η · ν̃κ4 = 0.

(128) π128(tmf/B) ∼= Z/8⊕Z/2 is generated by B5 of order 8 and ε5 of order 2,

detected by the images of αgw2
2 and δ′w2

2, respectively. A relation ν · ˜̄κD4 =
±2B5 holds, but we have not determined the sign.

(147) π147(tmf/B) ∼= Z/8 ⊕ Z/2 is generated by ν6 of order 8 and η · ν̃5κ of
order 2, detected by the image of h2w3

2 and the specified lift of d0gw1w2
2,

respectively. A relation ν · η̃1κ4 = ±2ν6 + ην̃5κ holds, but we have not
determined the sign.

(162) π162(tmf/B) ∼= Z/4 is generated by η̃1ε5 = ν · ν̃ν6, which is detected by
the lift of γδ′w2

2. Here the lift ν̃ν6 is detected by the lift of h2
2w

3
2.

Proof. (20) Adding νκ to a choice of ε̃ changes the sign of ν · ε̃.
(32) Recall that B1 is detected by αg and satisfies 8B1 = BD1, while ε1 is

detected by δ′ and satisfies 2ε1 = 0.
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(51) The hidden ν-extension on the lift of d0γ implies that ν · η̃1κ ≡ 2ν2 modulo

4ν2 and η2˜̄κ2. Since ν · η1κ = η2κ̄2 in π42(tmf), a summand η2˜̄κ2 must be present
in ν · η̃1κ.

(66) We choose the lift η̃1ε1 to be the given ν-multiple.
(75) The relation η · η1κ̄2 = η · ν2κ in π66(tmf) lifts to the stated relation

in π75(tmf/B) because η : π74(tmf/B) → π75(tmf/B) is not surjective, e.g. by
Anderson duality.

(99) The lift η̃2
1 κ̄ has order 2, hence so does its κ̄-multiple.

(105) This is the image of the relation in Proposition 9.17.
(114) This is the lift of the relation in Proposition 9.17.
(116) Adding νκ4 to a choice of ε̃4 changes the sign of ν · ε̃4.
(122) Adding η1η4 to a lift ν̃κ4 changes η · ν̃κ4 by ηη1η4 = 2ν5.
(128) This is similar to case (32).
(147) The hidden ν-extension on the lift of d0γw2

2 implies that ν · η̃1κ4 ≡ 2ν6

modulo 4ν6 and ην̃5κ. Since ν · η1κ4 = ην5κ in π138(tmf), a summand ην̃5κ must
be present in ν · η̃1κ4.

(162) This is similar to case (66). !

There are additive extensions C
.
= 8ν̃ in π12(tmf/B), D1

.
= 2η̃κ in π24(tmf/B),

and so on. We have not determined the 2-adic units implicit in these identities.

12.5. Homotopy of tmf/(2, B)

We study π∗(tmf/(2, B)) using the short exact sequence

(12.3) 0 → π∗(tmf/2)/B
i−→ π∗(tmf/(2, B))

j−→ Bπ∗−9(tmf/2) → 0

of π∗(tmf)-modules, where

πn(tmf/2)/B = cok(B : πn−8(tmf/2) → πn(tmf/2))

Bπn−9(tmf/2) = ker(B : πn−9(tmf/2) → πn−1(tmf/2)) .

Let (Er(Z7), dr) denote the delayed Adams spectral sequence for the tmf -module
tower Z7 given by

tmf/(2, B)
i←− tmf/2 ←− ∗ .

Here Zk = ∗ for k ≥ 2, Z1 = tmf/2 and Z0 = tmf/(2, B). The nontrivial filtration
quotients are Z1,1 - tmf/2 and Z0,1 - Σ9tmf/2. The delayed Adams spectral
sequence (Er(Z7), dr) is associated to the convolved filtration (S ∧ Z)7, and there
is a homotopy cofiber sequence

Ss ∧ Σ8tmf/2
α∧B−→ Ss−1 ∧ tmf/2 −→ (S ∧ Z)s −→ Ss ∧ Σ9tmf/2

of filtered spectra. Since α∧B has Adams filtration 5 we have short exact sequences

0 → E∗−1,∗−1
r (tmf/2) −→ E∗,∗

r (Z7) −→ E∗,∗−9
r (tmf/2) → 0

for r ≤ 5, as in [45, Thm. VI.6.1(i)], Theorem 11.11 and [148, Prop. 5.4]. The d5-
differential is given by multiplication by w1 detecting B, as can be checked case-by-
case for the twelve E5(tmf)-module generators of the quotient copy of E5(tmf/2),
cf. Table 6.12. Hence we have a short exact sequence

0 → E∗−1,∗−1
∞ (tmf/2)/w1 −→ E∗,∗

6 (Z7) −→ w1E
∗,∗−9
∞ (tmf/2) → 0
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Figure 12.33. Delayed E∞(tmf/(2, B, M)) for 0 ≤ t − s ≤ 24,
with all hidden 2-, η- and ν-extensions
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Figure 12.34. Delayed E∞(tmf/(2, B, M)) for 24 ≤ t − s ≤ 48,
with all (potential) hidden 2-, η- and ν-extensions

of E∞(tmf)-modules. The resulting E6-term is displayed in Figures 12.33 to 12.40.
There is no room for any further differentials, and therefore E6(Z7) = E∞(Z7) in
the delayed Adams spectral sequence converging to π∗(tmf/(2, B)).

In these charts, the filled (black) circles show the image of the cokernel of w1,
offset by (t− s, s) = (0, 1) bidegrees, while the open (white) circles show lifts of the
kernel of w1, offset by (9, 0) bidegrees. The black lines (solid, dashed or dotted)
show 2-, η- and ν-extensions within the image of E∞(tmf/2)/w1 and the lift of

w1E∞(tmf/2). Hidden extensions from the lift to the image are shown in red
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Figure 12.35. Delayed E∞(tmf/(2, B, M)) for 48 ≤ t − s ≤ 72,
with all hidden 2-, η- and ν-extensions
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Figure 12.36. Delayed E∞(tmf/(2, B, M)) for 72 ≤ t − s ≤ 96,
with all hidden 2-, η- and ν-extensions

(dashed or dotted). These will be determined in Theorems 12.24, 12.25 and 12.27.
Using these, we can specify

(26) the lift of w1c̃0 to detect κ times the class detected by the lift of i(h2),

(33) the lift of d0w1h̃1 to detect η2 times a class detected by the lift of gh̃1,

(50) the lift of w1δ̃′ to detect a class annihilated by κ̄2,
(57) the lift of d0w1γ̃ (modulo the image of h1 · i(c0w2)) to detect η times a

class detected by the lift of d0δ̃′,
(70) the lift of gw1δ̃′ to detect a class annihilated by κ̄,
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Figure 12.37. Delayed E∞(tmf/(2, B, M)) for 96 ≤ t− s ≤ 120,
with all hidden 2-, η- and ν-extensions
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Figure 12.38. Delayed E∞(tmf/(2, B, M)) for 120 ≤ t−s ≤ 144,
with all (potential) hidden 2-, η- and ν-extensions

(75) the lift of δ′w1γ̃ to detect η times the class detected by the lift of d0gβ̃2,
(99) the lift of i(γ2g2) to detect κ̄ times the class detected by the lift of i(γ2g),

(114) the lift of i(γg4) to detect κ̄ times the class detected by the lift of i(γg3),
(122) the lift of w1w2

2 c̃0 to detect κ times the class detected by the lift of i(h2w2
2),

(129) the lift of d0w1w2
2h̃1 to detect ν times the class detected by the lift of

i(h2
2βw2

2), and
(153) the lift of d0w1w2

2γ̃ to detect a class that is annihilated by η.
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Figure 12.39. Delayed E∞(tmf/(2, B, M)) for 144 ≤ t−s ≤ 168,
with all (potential) hidden 2-, η- and ν-extensions
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Figure 12.40. Delayed E∞(tmf/(2, B, M)) for 168 ≤ t−s ≤ 192,
with all hidden 2-, η- and ν-extensions

Let N/(2, B)∗ ⊂ π∗(tmf/(2, B)) denote the graded subgroup of classes in de-
grees 0 ≤ ∗ < 192. Since w4

2 acts freely on the delayed E∞(tmf/(2, B)), we have
an isomorphism

N/(2, B)∗ ⊗ Z[M ] ∼= π∗(tmf/(2, B))

of Z[M ]-modules. The subgroup N/(2, B)∗ is preserved by the action of η, ν, ε, κ,
κ̄ (since κ̄ · i(B7) = 0 in π∗(tmf/2)) and B, and the isomorphism respects these
actions. We have isomorphisms

N/(2, B)∗ ∼= π∗(tmf/(2, B))/M ∼= π∗(tmf/(2, B, M))
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and a short exact sequence

0 → (N/2)∗/B
i−→ N/(2, B)∗

j−→ B(N/2)∗−9 → 0 ,

where (N/2)∗ is as in Section 12.1. Recall the Brown–Comenetz duality functor I
from Section 10.3.

Proposition 12.23. The spectrum tmf/(2, B, M) is Brown–Comenetz self-
dual, in the sense that there is an equivalence of tmf -modules

tmf/(2, B, M) - Σ180I(tmf/(2, B, M)) .

Hence there is an isomorphism

N/(2, B)180−n
∼= Hom(N/(2, B)n, Q/Z)

for each integer n.

Proof. By Theorem 10.6 we have an equivalence

Σ20tmf - I(tmf/(2∞, B∞, M∞)) .

The homotopy cofiber sequences

tmf/(2, B∞, M∞) −→ tmf/(2∞, B∞, M∞)
2−→ tmf/(2∞, B∞, M∞)

tmf/(2, B, M∞) −→ Σ8tmf/(2, B∞, M∞)
B−→ tmf/(2, B∞, M∞)

tmf/(2, B, M) −→ Σ192tmf/(2, B, M∞)
M−→ tmf/(2, B, M∞)

from (10.2) dualize to homotopy cofiber sequences that translate to equivalences

Σ20tmf/2 - I(tmf/(2, B∞, M∞))

Σ12tmf/(2, B) - I(tmf/(2, B, M∞))

Σ−180tmf/(2, B, M) - I(tmf/(2, B, M)) .

!

Theorem 12.24. In the delayed Adams spectral sequence for tmf/(2, B), the
following hidden 2-extensions repeat w4

2-periodically:

(31) From the lift of gh̃1 to the lift of i(d0w1).

(41) From the lift of i(δ′) to the image of d0gh̃2
2.

(46) From the image of gγ̃ to the image of i(αd0g).

(51) From the lift of g2h̃1 to the lift of i(d0gw1).
(75) From the lift of g2γ̃ to the specified lift of δ′w1γ̃.

(82) From the image of h1w2δ̃′ to the image of γ2d̃0e0.

(134) From the lift of gw2
2 c̃0 to the lift of d0w1w2

2h̃
2
2.

(139) From the lift of h1w2
2 δ̃

′ to the image of i(βgw1w2
2).

(147) From the lift of g2w2
2h̃1 to the lift of i(d0gw1w2

2).

(149) From the image of gw2
2 δ̃

′ to the image of i(γgw1w2
2).

(154) From the image of αgw2
2γ̃ to the image of i(γ2w1w2

2).
(171) From the lift of i(h2βw3

2) to the lift of δ′w1w2
2γ̃.

(178) From the image of h1w3
2 δ̃

′ to the image of γ2w2
2d̃0e0.

There are no other hidden 2-extensions in this spectral sequence.
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Proof. The hidden 2-extensions in degrees 46, 82, 149, 154 and 178 are images
of known hidden 2-extensions in E∞(tmf/2)/w1, and the hidden 2-extensions in
degrees 31, 134 and 171 are lifts of known hidden 2-extensions in w1E∞(tmf/2).
The ambiguous lifts in degrees 51, 75 and 147 are treated separately below.

(41) The hidden 2-extension from the lift of i(δ′) to the image of d0gh̃2
2 follows

as in Lemma 12.2 from the hidden η-extension in E∞(tmf/B) from the image of g2

to the image of αβd0. In more detail, a class ỹ ∈ π41(tmf/(2, B)) detected by the
lift of i(δ′) is mapped by j to y ∈ π40(tmf/B) detected by the image of g2, so that

2 · ỹ = i(ηy) = η · i(y) is detected by the image of i(αβd0) = d0gh̃2
2.

(51) There is no 2-extension from the lift of g2h̃1 to the image of i(h2w2) or
the image of γγ̃, because η acts nontrivially on these potential targets. Hence
the hidden 2-extension from g2h̃1 to i(d0gw1) in E∞(tmf/2) lifts to the delayed
E∞(tmf/(2, B)).

(75) There is a nontrivial hidden 2-extension in degree 75. The lift of g2γ̃ detects
a class ỹ ∈ π75(tmf/(2, B)) mapping by j to a class y ∈ π74(tmf/B) detected by
the lift of γg2. By Theorem 12.20, case (74b), the product ηy is detected by the lift
of d0δ′g. We know that d0δ′g detects ην2κ in π66(tmf), which maps by i to ηi(ν2κ)
detected by δ′w1γ̃. Hence the lift of d0δ′g maps by i to 2 · ỹ = i(ηy) = η · i(y) in
π75(tmf/(2, B)), which must be detected by the specified lift of δ′w1γ̃.

(139) There is a hidden 2-extension from the lift of h1w2
2 δ̃

′ to the image of
i(βgw1w2

2), either because of the hidden η-extension from the lift of h1δ′w2
2 to

the lift of γ2g4 in the delayed E∞(tmf/B), or by Brown–Comenetz duality from
case (41).

(147) There is no 2-extension from the lift of g2w2
2h̃1 to the image of i(h2w3

2),
because of the hidden η-extension on the latter class. Hence the hidden 2-extension
from g2w2

2h̃1 to i(d0gw1w2
2) in E∞(tmf/2) lifts to the delayed E∞(tmf/(2, B)).

There are no hidden 2-extensions in degrees 15, 45, 56, 123, 128, 138, 162
or 177, because η acts nontrivially on the possible targets and η2 = 0.

Similarly, there are no hidden 2-extensions in degrees 18, 32, 42, 50, 52, 76, 81,
114, 129, 135 or 148, because the possible sources detect η-multiples and 2η = 0.

Using Lemma 12.2, there are no 2-extensions in degrees n = 27, 55, 66, 69, 80,
90, 99, 110, 111 or 125 because the η-multiples in πn(tmf/B) are divisible by 2,
hence map to zero under i.

(100) There is no hidden 2-extension in degree 100 by Brown–Comenetz duality
from case (80).

(105) Finally, there is no hidden 2-extension on the lift of γ2gγ̃, since i maps the

η-multiple in π105(tmf/B) to a class detected by the image of h2
1w

2
2h̃

2
2 = h0w2

2 c̃0,
which is already an h0-multiple. !

To determine the η- and ν-action on π∗(tmf/(2, B)) we shall make use of the
evident morphisms

i : Er(tmf/B) −→ Er(tmf/(2, B))

j : Er(tmf/(2, B)) −→ Er(Σtmf/B)

of delayed Adams spectral sequences. We shall also make use of another variant of
the Adams spectral sequence, which we call the hastened Adams spectral sequence,
and which we discuss in Section 12.6. See in particular Proposition 12.38 and the
accompanying figures, which do not depend on the work in the present section.
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Theorem 12.25. In the delayed Adams spectral sequence for tmf/(2, B), the
following hidden η-extensions repeat w4

2-periodically:

(15) From the image of i(β) to the image of d0h̃1.

(30) From the lift of d0h̃2
2 to the lift of i(d0w1).

(31) From the lift of gh̃1 to the lift of i(βw1).

(32) From the lift of i(βw1) to the specified lift of d0w1h̃1.

(35) From the image of i(βg) to the image of d0gh̃1.

(40) From the image of i(g2) to the image of d0gh̃2
2.

(45) From the image of i(γg) to the image of i(αd0g).

(46) From the image of gγ̃ to the image of d0δ̃′.

(49) From the lift of i(g2) to the lift of d0gh̃2
2.

(50) From the lift of d0gh̃2
2 to the lift of i(d0gw1).

(51a) From the lift of g2h̃1 to the lift of i(βgw1).
(51b) From the image of i(h2w2) to the image of i(δ′g).

(56) From the lift of d0δ̃′ to the specified lift of d0w1γ̃.
(61) From the lift of i(δ′g) to the lift of i(gw1γ).

(66) From the image of g2γ̃ to the image of d0gδ̃′.

(71) From the image of γgγ̃ to the image of g2d̃0e0.

(74) From the lift of d0gβ̃2 to the specified lift of δ′w1γ̃.

(75) From the lift of g2γ̃ to the lift of d0gδ̃′.

(76) From the lift of d0gδ̃′ to the lift of d0gw1γ̃.

(80) From the lift of γgγ̃ to the lift of g2d̃0e0.

(81) From the image of i(h1δw2) to the image of γ2d̃0e0.
(99) From the image of i(h2w2

2) to the image of i(g5).
(108) From the lift of i(h2w2

2) to the lift of i(g5).

(118) From the image of gw2
2h̃1 to the image of i(βw1w2

2).

(123) From the image of gw2
2h̃

2
2 to the image of i(gw1w2

2).

(128a) From the lift of i(βw1w2
2) to the specified lift of d0w1w2

2h̃1.
(128b) From the image of i(αgw2

2) to the image of i(γw1w2
2).

(130) From the image of h1w2
2 δ̃

′ to the image of γg4γ̃.

(133) From the lift of i(gw1w2
2) to the lift of d0w1w2

2h̃
2
2.

(134) From the lift of gw2
2 c̃0 to the lift of gw1w2

2h̃1.

(138) From the image of g2w2
2h̃1 to the image of i(βgw1w2

2).

(144) From the lift of e0gw2
2h̃1 to the lift of i(δ′w1w2

2).

(146) From the lift of d0gw2
2h̃

2
2 to the lift of i(d0gw1w2

2).

(147a) From the lift of g2w2
2h̃1 to the lift of i(βgw1w2

2).
(147b) From the image of i(h2w3

2) to the image of i(δ′gw2
2).

(148a) From the image of i(δ′gw2
2) to the image of i(γgw1w2

2).

(149) From the image of gw2
2 δ̃

′ to the image of gw1w2
2γ̃.

(153) From the image of i(h1c0w3
2) to the image of i(γ2w1w2

2).
(154) From the image of αgw2

2γ̃ to the image of γw1w2
2γ̃.

(159) From the lift of gw1w2
2γ̃ to the lift of d0w1w2

2 δ̃
′.

(162) From the image of i(h2βw3
2) to the image of d0gw2

2 δ̃
′.
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(164) From the lift of h1δ′w2
2γ̃ to the lift of i(δ′gw1w2

2).

(170) From the lift of d0gw2
2β̃

2 to the lift of δ′w1w2
2γ̃.

(171) From the lift of i(h2βw3
2) to the lift of d0gw2

2 δ̃
′.

(172) From the lift of d0gw2
2 δ̃

′ to the lift of d0gw1w2
2γ̃.

(177) From the image of i(h1δw3
2) to the image of γ2w2

2d̃0e0.

(179) From the image of h2
1w

3
2 δ̃

′ to the image of γ2w1w2
2γ̃.

The following potential hidden η-extensions repeat w4
2-periodically, but remain to be

precisely determined.

(139) From the lift of h1w2
2 δ̃

′ to the lift of γg4γ̃, or to the lift of γg4γ̃+gw1w2
2h̃

2
2.

(148b) From the image of h2
1w

3
2h̃1 to zero, or to the image of i(γgw1w2

2).

There are no other hidden η-extensions in this spectral sequence.

Proof. The hidden η-extensions between pairs of image classes are images
of known or potential hidden η-extensions in E∞(tmf/2)/w1, and the hidden η-
extensions between pairs of lifted classes are lifts of known or potential hidden
η-extensions in w1E∞(tmf/2). The lifted η-extension targets in degrees 33, 57, 75

and 129 are ambiguous, but we have specified the lifts of d0w1h̃1, d0w1γ̃ and δ′w1γ̃
to detect the appropriate η-multiples. There is no early η-extension from the lift

of d0gh̃2
2 to the image of γγ̃ in degree 51, because η3 = 4ν must act trivially

on π49(tmf/(2, B)). In degree 129 the ambiguity in the lift of d0w1w2
2h̃1 is an

h1-multiple (the image of i(h1δ′w2
2)), and does therefore not affect the presence

of a hidden η-extension. We still have to argue that there are no other hidden
η-extensions.

There is no η-extension from the class in degree 15 that detects a ν-multiple,
because ην = 0.

There are no η-extensions from the classes in degrees 32, 45, and 128 to classes
with nonzero 2-multiples, since 2η = 0.

There are no η-extensions from the classes in degrees 68 and 164 to classes
supporting nonzero ν-multiplications, because νη = 0.

(38) There is no hidden η-extension from the lift of gc̃0 to the image of e0gh̃1, by
comparison with the hastened Adams spectral sequence for tmf/(2, B), where h1-
multiplication is trivial from degree 38 and there is no room for hidden η-extensions.
See Section 12.6, and Figure 12.50 in particular.

(64) There is no hidden η-extension from the lift of i(βg2) to the image of

i(γg2), nor to the image of d0gβ̃2, by comparison with the hastened Adams spectral
sequence, see Figure 12.51, where h1-multiplication is trivial from degree 65 and
there is no room for hidden η-extensions.

(69) A class in π69(tmf/B) detected by the lift of g3 maps by i to a class in
π69(tmf/(2, B)) detected by the lift of i(g3). Since η acts trivially on π69(tmf/B), it
also acts trivially on this class in π69(tmf/(2, B)), so there is no hidden η-extension
from the lift of i(g3).

(74) There is no hidden η-extension from the lift of i(γg2) to the image of i(βg3),
because multiplication by η does not act injectively on π74(tmf/B) ∼= (Z/2)2, hence
it also does not act injectively on π74(tmf/(2, B)).

(75) There is no hidden η-extension from the lift of i(h2βw2) to the image of
γ2γ̃, because multiplication by η does not map surjectively to π75(tmf/B) ∼= (Z/2)2,
hence it also does not map surjectively to π76(tmf/(2, B)).
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(79) The class y79 in π79(tmf/B) detected by the lift of γ2g maps by i to the
class i(y79) in π79(tmf/(2, B)) detected by the lift of i(γ2g). Since ηy79 is divisible
by 2, it maps trivially under i. Hence multiplication by η acts trivially on i(y79).

(84) A class y84 in π84(tmf/B) detected by the lift of γ3 maps by i to the class
i(y84) in π84(tmf/(2, B)) detected by the lift of i(βg3). Since η acts trivially on
π84(tmf/B), it also acts trivially on i(y84), so there is no hidden η-extension on the
lift of i(βg3).

(89) A class y89 in π89(tmf/B) detected by the lift of g4 maps by i to the
class i(y89) in π89(tmf/(2, B)) detected by the lift of i(g4). Since η acts trivially
on π89(tmf/B), it also acts trivially on i(y89), so there is no hidden η-extension on
the lift of i(g4).

(90) The class in π91(tmf/(2, B)) detected by the image of γg2γ̃ maps by j to
the class in π90(tmf/B) detected by the image of γ2g2. Since the latter is not an
η-multiple, the η-multiplication on π90(tmf/(2, B)) must be trivial.

(99) Since η acts trivially on the class detected by the lift of i(γ2g), it also acts
trivially on κ̄ times this class, which is detected by our specified lift of i(γ2g2).

(105) Multiplication by η does not map surjectively to π105(tmf/B) ∼= (Z/2)2,
hence it also does not map surjectively to π106(tmf/(2, B)). It follows that there is
no room for a hidden η-extension on the lift of γ2gγ̃ to the image of g4γ̃.

(153) We have specified the lift of d0w1w2
2γ̃ to detect a class that is annihilated

by η.
There are no η-extensions from degree n to n+1 for n = 19, 43, 52, 55, 95, 100,

109, 110, 111, 115, 141 or 151, by Brown–Comenetz duality and the vanishing of η-
multiplication from degree 179−n to 180−n. See also Lemma 12.26 for more detail
on the case n = 43, which resolves a case that was left open in Theorem 12.4. !

Lemma 12.26. There is no hidden η-extension on h1δ̃′ in E∞(tmf/2), nor on

the lift of h1δ̃′ in the delayed E∞(tmf/(2, B)).

Proof. Multiplication by η is trivial from degree 136 in π∗(tmf/2)/B and
π∗(tmf/(2, B)). Hence, by Brown–Comenetz duality, it is trivial from degree 43 in
π∗(tmf/(2, B)) and from degree 34 in Bπ∗(tmf/2). !

Theorem 12.27. In the delayed Adams spectral sequence for tmf/(2, B), the
following hidden ν-extensions repeat w4

2-periodically:

(6) From the image of i(h2
2) to the image of h0c̃0.

(7) From the image of h̃2
2 to the image of h1c̃0.

(15) From the lift of i(h2
2) to the lift of i(h1c0).

(26) From the image of γ̃ to the image of gc̃0.

(30a) From the lift of i(h2
2β) to the image of h0δ̃′.

(30b) From the lift of d0h̃2
2 to the specified lift of d0w1h̃1.

(33) From the image of δ̃′ to the image of d0gh̃1.

(41) From the lift of i(δ′) to the lift of gw1h̃2
2.

(48) From the lift of e0gh̃1 to the lift of i(d0gw1).
(49) From the lift of i(g2) to the image of i(δ′g).

(54) From the image of i(h2
2w2) to the image of γ2h̃2

2.

(63) From the lift of i(h2
2w2) to the lift of γ2h̃2

2.

(64) From the lift of i(βg2) to the image of d0gδ̃′.
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(69) From the image of i(h2
2βw2) to the image of g2d̃0e0.

(74) From the lift of d0gβ̃2 to the lift of d0gw1γ̃.

(78) From the lift of i(h2
2βw2) to the lift of g2d̃0e0.

(79) From the lift of i(γ2g) to the image of γ2d̃0e0.

(80) From the lift of γgγ̃ to the image of h2
1w2δ̃′.

(97) From the image of i(h1w2
2) to the image of i(g5).

(98) From the image of w2
2h̃1 to the image of γ2gβ̃2.

(102) From the image of i(h2
2w

2
2) to the image of h0w2

2 c̃0.

(103) From the image of w2
2h̃

2
2 to the image of h1w2

2 c̃0.

(111) From the lift of i(h2
2w

2
2) to the lift of h2

1w
2
2h̃

2
2.

(113) From the lift of h1w2
2h̃

2
2 to the image of γ2g2γ̃.

(126) From the lift of i(h2
2βw2

2) to the specified lift of d0w1w2
2h̃1.

(128) From the lift of i(βw1w2
2) to the image of γg4γ̃.

(129) From the image of w2
2 δ̃

′ to the image of d0gw2
2h̃1.

(136) From the image of d0w2
2γ̃ to the image of i(βgw1w2

2).

(144) From the lift of e0gw2
2h̃1 to the lift of i(d0gw1w2

2).

(147) From the lift of g2w2
2h̃1 to the image of gw1w2

2γ̃.

(150) From the image of i(h2
2w

3
2) to the image of γ2w2

2h̃
2
2.

(151) From the lift of i(αd0gw2
2) to the image of i(γ2w1w2

2).

(159) From the lift of i(h2
2w

3
2) to the lift of γ2w2

2h̃
2
2.

(162) From the lift of γ2w2
2h̃

2
2 to the lift of i(δ′gw1w2

2).

(165) From the image of i(h2
2βw3

2) to the image of g2w2
2d̃0e0.

(170) From the lift of d0gw2
2β̃

2 to the lift of d0gw1w2
2γ̃.

(174) From the lift of i(h2
2βw3

2) to the lift of g2w2
2d̃0e0.

(177) From the lift of g2w2
2d̃0e0 to the image of γ2w1w2

2γ̃.

The following potential hidden ν-extensions repeat w4
2-periodically, but remain to be

precisely determined.

(31) From the lift of gh̃1 to the image of h1δ̃′, or to the image of i(d0g)+h1δ̃′.

(38) From the lift of gc̃0 to zero, or to the image of d0gh̃2
2.

(43) From the lift of h1δ̃′ to zero, or to the image of i(αd0g).

(134) From the lift of gw2
2 c̃0 to zero, or to the image of d0gw2

2h̃
2
2.

(139) From the lift of h1w2
2 δ̃

′ to zero, or to the image of i(αd0gw2
2).

(146a) From the lift of d0gw2
2h̃

2
2 to the image of i(γgw1w2

2). (This ν-extension
may be eclipsed by case (146b).)

(146b) From the lift of w1w2
2 δ̃

′ to zero, or to the image of i(γgw1w2
2).

There are no other hidden ν-extensions in this spectral sequence.

Proof. The hidden ν-extensions between pairs of image classes are images of
known hidden ν-extensions in E∞(tmf/2)/w1, and the hidden ν-extensions between
pairs of lifted classes are mostly lifts of known hidden ν-extensions in w1E∞(tmf/2).
The following two cases are exceptional.

(30b-1) The hidden ν-extension in E∞(tmf/2) from d0h̃2
2 to d0w1h̃1 lifts to the

delayed E∞(tmf/(2, B)), but it is ambiguous whether ν times the class detected by

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



554 12. HOMOTOPY OF SOME FINITE CELL tmf-MODULES

the lift of d0h̃2
2 is detected by the specified lift of d0w1h̃1 or its sum with the image

of h0δ̃′. We continue this case in (30b-2) below.

(126) The hidden ν-extension for tmf/2 from d0w2
2h̃

2
2 to d0w1w2

2h̃1 does not

lift to tmf/(2, B), because d0w2
2h̃

2
2 is not w1-torsion. This allows the nontrivial ν2-

extension from i(h2βw2
2) to d0w1w2

2h̃1 to lift to a hidden ν2-extension from the lift of

i(h2βw2
2) to a lift of d0w1w2

2h̃1, which in turn contributes a hidden ν-extension from
the lift of i(h2

2βw2
2), with the same target. This hidden ν-extension corresponds to a

primary h2-multiplication in the hastened Adams spectral sequence for tmf/(2, B),

cf. Figure 12.54. We have specified the lift of d0w1w2
2h̃1 to be the class detecting

this ν-multiple.
Next we use the morphisms i and j of delayed Adams spectral sequences.
(30a) The hidden ν-extension from the lift of h1g to the image of h1δ′ in the

delayed E∞(tmf/B) maps by i to a hidden ν-extension from the lift of i(h1g) =

i(h2
2β) to the image of i(h1δ′) = i(h0δ̃′) in the delayed E∞(tmf/(2, B)).

(31) Multiplication by ν on a class detected by the lift of gh̃1 maps by j
to the hidden ν-extension from the lift of h1g to the image of h1δ′ in the de-
layed E∞(Σtmf/B), hence there must be a hidden ν-extension in the delayed

E∞(tmf/(2, B)) from the lift of gh̃1 to the image of h1δ̃′ modulo i(d0g).
(49) The hidden ν-extension from the lift of g2 to the image of δ′g in the delayed

E∞(tmf/B) maps by i to a hidden ν-extension from the lift of i(g2) to the image
of i(δ′g) in the delayed E∞(tmf/(2, B)).

(64) Multiplication by ν on the class detected by the lift of i(βg2) maps
by j to the hidden ν-extension from the lift of d0g2 to the image of d0δ′g in the
delayed E∞(tmf/B), hence there must be a hidden ν-extension in the delayed

E∞(tmf/(2, B)) from the lift of i(βg2) to the image of d0gδ̃′.
In some cases we can use our known results about the B-action on π∗(tmf/ν)

from Section 12.3, and the long exact sequences

· · · −→ πn−3(tmf/(2, B))
ν−→ πn(tmf/(2, B))

i−→ πn(tmf/(2, ν, B))

j−→ πn−4(tmf/(2, B))
ν−→ πn−1(tmf/(2, B)) −→ . . .

and

· · · −→ πn(tmf/(ν, B))
2−→ πn(tmf/(ν, B))

i−→ πn(tmf/(2, ν, B))

j−→ πn−1(tmf/(ν, B))
2−→ πn−1(tmf/(ν, B)) −→ . . . ,

with the group πn(tmf/(2, ν, B)) in common, to deduce information about the ν-
action on π∗(tmf/(2, B)).

(30b-2) We see from Figures 12.17 and 12.18 that π32(tmf/(ν, B)) = (Z/2)2

and π33(tmf/(ν, B)) = 0, so that π33(tmf/(2, ν, B)) = (Z/2)2. From Figure 12.34
we see that ν acts trivially on π29(tmf/(2, B)) = Z/2 for filtration reasons. Hence
the cokernel of ν : π30(tmf/(2, B)) = (Z/2)2 → π33(tmf/(2, B)) = Z/4 ⊕ Z/2 is
Z/2, which implies that ν acts monomorphically on π30(tmf/(2, B)). We finish this
case in (30b-3) below.

(147) We showed in case (30b-2) that ν acts injectively from π30(tmf/(2, B)).
Hence, by Brown–Comenetz duality it must map surjectively to π150(tmf/(2, B)).
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It follows that there must be a hidden ν-extension from the lift of g2w2
2h̃1 to the

image of gw1w2
2γ̃.

We also deduce from Brown–Comenetz duality that ν must act nontrivially
from degree n to n+3, for n = 79, 80, 113, 128, 151 and 177, since ν acts nontrivially
from degree 177−n to 180−n by our other results. Since ην = 0, there is only one
possible source and target for the corresponding hidden ν-extensions.

(30b-3) We see from Figure 12.34 that the nonzero 2-multiple and the nonzero
η2-multiple in π33(tmf/(2, B)) are not equal. By comparison with Figure 12.50,
it follows that this difference is a ν2-multiple. In other words, the 2-, η2- and ν2-
multiples give the three nonzero 2-torsion elements in π33(tmf/(2, B)), and their
sum is zero. Let y27 ∈ π27(tmf/(2, B)) be any class detected by the lift of i(h2β).

Then ν2y27 is detected by the sum of the specified lift of d0w1h̃1 and the image of
h0δ̃′. It follows that νy27 ∈ π30(tmf/(2, B)) is not the image i(y30) of the generator

y30 ∈ π30(tmf/B), but differs from it by the class detected by the lift of d0h̃2
2. By

case (30a) the product ν · i(y30) is detected by the image of h0δ̃′. Hence the hidden

ν-extension on the lift of d0h̃2
2 must map to the specified lift of d0w1h̃1.

It remains to argue that there are no other hidden ν-extensions.
There are no hidden ν-extensions from degrees 17, 18, 32, 42, 52, 57, 62, 68,

100, 109, 115, 120, 125, 135, 145 or 160, because ην = 0. For the same reason there
is no early ν-extension from the lift of d0w1h̃1 in degree 33, no early ν-extension
from degree 48 to the images of i(h2w2) or i(γγ̃), no ν-extension on the lift of gw1γ̃

in degree 63, no early ν-extension from the lift of d0w1w2
2h̃1 in degree 129, no early

ν-extension from degree 144 to the image of i(h2w3
2), and no early ν-extension from

the lift of i(δ′gw1w2
2) in degree 165.

There are no hidden ν-extensions from degrees 19, 24, 37, 44, 50, 55, 94, 95,
133, 140, 153 or 158, by filtration considerations in the hastened Adams spectral
sequence for tmf/(2, B), cf. Figures 12.49 to 12.56.

(26) By the hastened spectral sequence for tmf/(2, B), see Figure 12.50, we
have ker(η2) ⊂ ker(ν) inside π26(tmf/(2, B)). Since the lift of w1c̃0 detects a class
in ker(η2), there cannot be a nonzero ν-extension from it.

(99) There is no ν-extension on the specified lift of i(γ2g2), which detects a
κ̄-multiple, since νκ̄ = 0.

(114) There is no ν-extension on the lift of h2
1w

2
2h̃

2
2 since ην = 0, and no ν-

extension on the specified lift of i(γg4), since νκ̄ = 0.
Finally, there is no ν-extension from degree 122 by Brown–Comenetz duality

from case (55), and no ν-extension from degree 127 by Brown–Comenetz duality
from case (50). !

Remark 12.28. In view of the self-duality of tmf/(2, B, M), the ν-extensions
from degree 38 and degree 139 are either both zero or both nonzero. Likewise, the
ν-extensions from degree 43 and degree 134 are either both zero or both nonzero.
The hidden ν-extension from degree 31 maps to the image of h1δ̃′ if and only if the
extension in case (146b) is zero, so that the hidden ν-extension in case (146a) is
present.

In most degrees it is straightforward to read off the group structure of N/(2, B)∗,
together with its η- and ν-actions, from the delayed E∞(tmf/(2, B)) with its hidden
2-, η- and ν-extensions. The next result summarizes some less obvious cases. We
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write y ∈ πn(tmf/(2, B)) for the image of y ∈ πn(tmf/2), and ỹ ∈ πn(tmf/(2, B))
for lifts of y ∈ πn−9(tmf/2), with respect to the maps i and j in (12.3).

Proposition 12.29.

(18) π18(tmf/(2, B)) ∼= (Z/2)2 is generated by νκ̃ and ηĩ(ε), which are detected
by the image of i(h2β) and the lift of i(h1c0), respectively. The relation

ν2 · ĩ(ν) = ηĩ(ε) holds.

(21) π21(tmf/(2, B)) ∼= (Z/2)2 is generated by κν̃2 and ηi(κ̄), which are de-

tected by the image of d0h̃2
2 and the image of i(h1g), respectively. The

relation ν2 · κ̃ = κν̃2 + ηi(κ̄) holds.

(81) π81(tmf/(2, B)) ∼= (Z/2)3 is generated by ηi(B3), ˜̄κ4 and a lift ĩ(D3),

which are detected by the image of i(h1δw2), the image of γ2β̃2, and the

lift of g2d̃0e0, respectively. We can choose ĩ(D3) to be equal to η · η̃1κ̄η̃1 =

ν · ν̃ν2κ̃, for a choice of η̃1κ̄η̃1 detected by the lift of γgγ̃.
(105) π105(tmf/(2, B)) ∼= Z/4⊕ (Z/2)2 is generated by i(η1κ̄4) of order 2, ε̃4 of

order 4, and a lift η̃2
1 κ̄η̃1 of order 2, detected by the image of i(γg4), the

image of w2
2 c̃0 and the lift of γ2gγ̃, respectively. The relations η·i(ε4) = 2ε̃4

and ν2 · i(ν4) = 2ε̃4 + i(η1κ̄4) hold.
(106) π106(tmf/(2, B)) ∼= (Z/2)2 is generated by κ̄4η̃1 and ηε̃4, which are de-

tected by the image of g4γ̃ and the image of h1w2
2 c̃0, respectively. The

relation ν · ν̃ν4 = ηε̃4 + κ̄4η̃1 holds.

(114) π114(tmf/(2, B)) ∼= (Z/2)3 is generated by ν4κ̃, κ̄ ˜i(η1κ̄3) and ηĩ(ε4), which
are detected by the image of i(h2βw2

2), the specified lift of i(γg4) and the

lift of h2
1w

2
2h̃

2
2, respectively. The relation ν2 · ĩ(ν4) = ηĩ(ε4) + κ̄ ˜i(η1κ̄3)

holds.
(129) π129(tmf/(2, B)) ∼= Z/4⊕ (Z/2)2 is generated by ηi(B5) of order 2, ν2ν̃4κ̃

of order 2, and ε̃5 of order 4, detected by the image of i(γw1w2
2), the spec-

ified lift of d0w1w2
2h̃1 and the image of w2

2 δ̃
′, respectively. The relations

η · i(ε5) = 2ε̃5 and η · η̃κ̄η̃4 = ν2ν̃4κ̃ hold, for one choice of class η̃κ̄η̃4

detected by the lift of i(βw1w2
2).

Proof. (18) The relation holds modulo νκ̃, by the delayed Adams spectral
sequence for tmf/(2, B, M). To see that the error term is zero, we can compare with
the hastened Adams spectral sequence with the same abutment, see Figure 12.49.
In this case both products must be detected by the same class in maximal filtration,
hence they are equal.

Cases (21), (105) and (106) follow from the corresponding cases of Proposi-
tion 12.7, by applying the map i : tmf/2 → tmf/(2, B).

(81) For any choice of lift η̃1κ̄η̃1 we can set ĩ(D3) = η·η̃1κ̄η̃1. The classes η·η̃1κ̄η̃1

and ν · ν̃4κ̃ have the same image under j in π80(tmf/B), cf. Figure 12.28. Hence
they differ at most by the class detected by the image of i(h1δw2). If necessary, we

can add a class detected by the image of i(δw2) to the chosen lift η̃1κ̄η̃1 to make
this difference vanish.

(114) The relation holds modulo ν4κ̃, by case (105) of Proposition 12.7. Fur-
thermore, ν annihilates the right hand side of the relation, because ην = 0 and
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νκ̄ = 0. Since ν · ν4κ̃ is detected by the image of i(h2
2βw2

2), hence is nonzero, it

suffices to argue that ν3 · ĩ(ν4) vanishes. However, ν3 = ηε in π9(tmf), and η acts
trivially on π116(tmf/(2, B)), which implies this fact.

(129) We can (uniquely) modify the class detected by the lift of i(βw1w2
2) to

make its η-multiple equal to the nonzero ν-multiple in π129(tmf/(2, B)), due to the
independent η-extensions on the images of i(δ′w2

2) and i(αgw2
2). !

12.6. Modified Adams spectral sequences

Let f : X → Y be a map of spectra, and consider the homotopy cofiber sequence

X
f−→ Y

i−→ Cf
j−→ ΣX .

Also fix a homotopy cofiber sequence

Σ−1H̄
α−→ S

β−→ H
γ−→ H̄

and form the canonical Adams resolution

S

β

""

S1
αBB

β

""

S2
αBB

β

""

. . .
αBB

H ∧ S H ∧ S1 H ∧ S2

of S = S0, with Ss = (Σ−1H̄)∧s and Ss,1 = H ∧ (Σ−1H̄)∧s. There are several
ways to combine the canonical Adams resolutions X7 = S7 ∧ X and Y7 = S7 ∧ Y
into a tower ending at Cf . The resulting spectral sequences are often referred to
as “modified Adams spectral sequences”, but as we shall clarify below there are
a couple of different modifications involved. We therefore begin by reviewing the
“ordinary” and “delayed” approaches that we have already made use of in this
work, and then discuss a “hastened” modification of the Adams resolution.

First, the canonical Adams resolution (Cf)7 = S7 ∧ Cf sits in a diagram

(12.4) X

f

""

X1
αBB

f1

""

X2
αBB

f2

""

. . .
αBB

Y

i

""

Y1
αBB

i1
""

Y2
αBB

i2
""

. . .
αBB

Cf

j

""

(Cf)1
αBB

j1
""

(Cf)2
αBB

j2
""

. . .
αBB

ΣX ΣX1
αBB ΣX2

αBB . . .
αBB

with vertical homotopy cofiber sequences, where fs = Ss ∧ f and (Cf)s = C(fs).
If f∗ = H∗(f) = 0, so that f has Adams filtration ≥ 1, then the associated Adams
E1-terms for Y , Cf and ΣX form a short exact sequence

0 → C∗
A∗(F2, H∗(Y ))

i−→ C∗
A∗(F2, H∗(Cf))

j−→ C∗
A∗(F2,ΣH∗(X)) → 0

of cobar complexes, as in Definition 2.12. (Strictly speaking, each (E1, d1)-term is
most directly identified with the A∗-comodule primitives in the version for left A∗-
comodules of the canonical injective resolution of [45, Def. IV.1.1], but the latter
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is isomorphic to the cobar resolution, with primitives given by the cobar complex.)
The associated long exact sequence of E2-terms takes the form

· · · −→ Exts−1
A∗

(F2,ΣH∗(X))
δ−→ Exts

A∗(F2, H∗(Y ))

i−→ Exts
A∗(F2, H∗(Cf))

j−→ Exts
A∗(F2,ΣH∗(X)) −→ . . . ,

where the connecting homomorphism δ is given by Yoneda composition with the
class in Ext1A∗(ΣH∗(X), H∗(Y )) of the extension H∗(Y ) → H∗(Cf) → ΣH∗(X).
Similar considerations apply (under the usual finite type hypotheses) (a) for the
opposite variance, replacing homology and A∗-comodules with cohomology and
A-modules, (b) for maps of tmf -modules, replacing A∗ with A(2)∗, and (c) at
other primes, replacing F2 with Fp. We leave to the reader to make the notational
substitutions needed in these cases. We made use of this long exact sequence of
E2-terms in Chapters 4, 6, 7, 8 and 11. If f has Adams filtration σ ≥ 2, then

0 → Er(Y )
i−→ Er(Cf)

j−→ Er(ΣX) → 0

remains short exact up to and including the case r = σ, so that the dr-differentials
for Cf are more-or-less determined by those for X and Y when r < σ, and only
the differentials with r ≥ σ are directly affected by f .

Second, we have seen in Chapter 11, cf. Definition 11.10, and in Sections 12.4
and 12.5, that we can delay the effect of f on the differentials in the spectral
sequence by d ≥ 1 terms, by the device of replacing the canonical Adams resolution
of Cf with the convolution product (S ∧ Z)7 of S7 and Z7, where now Z7 is the
tower

Cf
i←− Y

=←− . . .
=←− Y ←− ∗

with Z0 = Cf , Zk = Y for 1 ≤ k ≤ d, and Zk = ∗ for k > d. We then have a
diagram

(12.5) X

f

""

. . .
αBB Xd

αBB

fαd

""

Xd+1
αBB

f1α
d

""

. . .
αBB

Y

i

""

. . .
=BB Y

=BB

i′

""

Y1
αBB

i′1
""

. . .
αBB

(S ∧ Z)0

j

""

. . .
αBB (S ∧ Z)d

αBB

j′

""

(S ∧ Z)d+1
αBB

j′
1

""

. . .
αBB

ΣX . . .
αBB ΣXd

αBB ΣXd+1
αBB . . .

αBB

with vertical homotopy cofiber sequences, so that (S ∧Z)s = C(fαs) for 0 ≤ s ≤ d
and (S ∧ Z)s = C(fs−dαd) for s ≥ d. The associated E1-terms form a short exact
sequence

0 → C∗−d
A∗

(F2,Σ
dH∗(Y ))

i′−→ E∗
1 ((S ∧ Z)7)

j′

−→ C∗
A∗(F2,ΣH∗(X)) → 0 .

If f has Adams filtration σ ≥ 1, then the associated long exact sequence of E2-terms
splits into short exact sequences

0 → Exts−d
A∗

(F2,Σ
dH∗(Y ))

i′−→ Es
2((S ∧ Z)7)

j′

−→ Exts
A∗(F2,ΣH∗(X)) → 0 ,
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and

0 → Es−d
r (ΣdY )

i′−→ Es
r ((S ∧ Z)7)

j′

−→ Es
r(ΣX) → 0

remains short exact as long as r ≤ σ + d, so that only the dr-differentials with
r ≥ σ + d are directly affected by f . In this sense, the interaction between f
and the differentials internal to Er(X) and Er(Y ) is delayed to only influence the
differentials in Er((S ∧Z)7) for r ≥ σ+d. This can be advantageous if one already
has a good understanding of the differential structure and hidden extensions in the
ordinary Adams spectral sequences for X and Y .

Lemma 12.30. The maps αd : Ys → Ys−d induce a morphism from the ordinary
Adams spectral sequence for Cf to the delayed one.

Proof. This is the morphism of spectral sequences induced by the following
map of towers, where the top row is the canonical Adams resolution of Cf .

Cf

=

""

C(f1)
αBB

""

. . .
αBB C(fd)

αBB

""

C(fd+1)
αBB

""

. . .
αBB

Cf C(fα)
αBB . . .

αBB C(fαd)
αBB C(f1αd)

αBB . . .
αBB

!

Third, we come to a modification of the Adams spectral sequence for Cf where
the effect of f on the differentials is hastened by e ≥ 1 terms. This is the “modified
Adams spectral sequence” of Behrens, Hill, Hopkins and Mahowald [26]. Suppose
that we have factored f = αeg for some map g : X → Ye = Se ∧ Y , and that e = σ
equals the Adams filtration of f . This implies that the composite βg : X → H ∧Ye

is essential, so that g∗ : H∗(X) → H∗(Ye) is nonzero. We extend g to a map of
canonical Adams resolutions with gs = Ss ∧ g, and obtain the diagram

(12.6) X

f

""

. . .
=BB X

=BB

g

""

X1
αBB

g1

""

. . .
αBB

Y

i

""

. . .
αBB Ye

αBB

i′′

""

Ye+1
αBB

i′′1
""

. . .
αBB

Cf

j

""

. . .
αBB Cg

αBB

j′′

""

(Cg)1
αBB

j′′
1

""

. . .
αBB

ΣX . . .
=BB ΣX

=BB ΣX1
αBB . . .

αBB

with vertical homotopy cofiber sequences.

Definition 12.31. Let W7 denote the tower ending at Cf , displayed above,
with Ws = C(αe−sg) for 0 ≤ s ≤ e and Ws = Ss−e ∧ Cg for s ≥ e. We call
the spectral sequence obtained by applying π∗(−) the hastened Adams spectral
sequence for Cf .

Lemma 12.32. The maps αe : Xs → Xs−e induce a morphism from the ordinary
Adams spectral sequence for Cf to the hastened one.
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Proof. This is the morphism of spectral sequences induced by the following
map of towers.

Cf

=

""

C(αe−1gα)
αBB

""

. . .
αBB C(gαe)

αBB

""

C(g1αe)
αBB

""

. . .
αBB

Cf C(αe−1g)
αBB . . .

αBB Cg
αBB C(g1)

αBB . . .
αBB

The top row is an Adams resolution of Cf , but not the canonical one. Its associated
spectral sequence therefore agrees with the ordinary Adams spectral sequence from
the E2-term and onward. !

In general there is no direct connection between the delayed and hastened
Adams spectral sequences. Returning to diagram (12.6), the associated E1-terms
fit into vertical long exact sequences, as in the following diagram.

"" "" ""

0
= !!

f∗

""

. . . !! ΣeH∗(X)
d0
1 !!

g∗

""

Ā∗ ⊗ ΣeH∗(X)
d1
1 !!

Ā⊗g∗

""

. . .

H∗(Y )
d0
1 !!

i∗

""

. . .
de−1
1 !! Ā⊗e

∗ ⊗ H∗(Y )
de
1 !!

i′′∗
""

Ā⊗e+1
∗ ⊗ H∗(Y )

de+1
1 !!

Ā∗⊗i′′∗
""

. . .

E0
1(W7)

d0
1 !!

j∗

""

. . .
de−1
1 !! Ee

1(W7)
de
1 !!

j′′
∗
""

Ee+1
1 (W7)

de+1
1 !!

Ā∗⊗j′′
∗
""

. . .

0
= !!

""

. . . !! Σe+1H∗(X)
d0
1 !!

""

Ā∗ ⊗ Σe+1H∗(X)
d1
1 !!

""

. . .

We now make the additional assumption that g∗ : H∗(X) → H∗(Ye) is a mono-
morphism. This ensures that the vertical long exact sequences break up into a short
exact sequence

0 → C∗−e
A∗

(F2,Σ
eH∗(X))

g−→ C∗
A∗(F2, H∗(Y ))

i′′−→ E∗
1(W7) → 0

of cochain complexes. In the induced long exact sequence of E2-terms

· · · −→ Exts−e
A∗

(F2,Σ
eH∗(X))

g−→ Exts
A∗(F2, H∗(Y ))

i′′−→ Es
2(W7)

δ−→ Exts+1−e
A∗

(F2,Σ
eH∗(X)) −→ . . .

the homomorphism g is given by Yoneda composition with the infinite cycle in
Exte,e

A∗
(H∗(X), H∗(Y )) detecting the lift g of f . In the spectral sequence Er(W7),

the role of the map f of Adams filtration e has thus been hastened to have a direct
effect on the E1-term, rather than affecting the de-differential and Ee+1-term, as
for the ordinary Adams spectral sequence Er(Cf). This has the advantage that
information about f enters at a stage where the determination of the Er-term is
still a purely algebraic problem.
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This algebraic connection can be made more explicit. The homotopy cofiber
Ws,1 = cof(Ws+1 → Ws) has the form H ∧ Ys for 0 ≤ s < e, and the form H ∧ Ws

for s ≥ e, so that its homotopy

Es
1(W7) = π∗−s(Ws,1) ∼= HomA∗(F2, H∗−s(Ws,1))

is given by the A∗-comodule primitives in its homology. Our assumption that
g∗ : H∗(X) → H∗(Ye) is a monomorphism implies that the homologies of Xs−e,1,
Ys,1 and Ws,1 form a short exact sequence

0 → C∗−e
A∗

(A∗,Σ
eH∗(X))

g−→ C∗
A∗(A∗, H∗(Y ))

i′′−→ Q∗ → 0

of A∗-comodule cochain complexes, where Qs = H∗−s(Ws,1) is extended, hence
injective, and δ : Qs → Qs+1 is the usual composite homomorphism H∗−s(Ws,1) →
H∗−s−1(Ws+1) → H∗−s−1(Ws+1,1). Furthermore, η : H∗(Y ) → C∗

A∗
(A∗, H∗(Y ))

is an injective resolution of the A∗-comodule H∗(Y ), whereas η : ΣeH∗(X)[−e] →
C∗−e

A∗
(A∗,ΣeH∗(X)) is an injective resolution of ΣeH∗(X) shifted to cohomolog-

ical degree e. In the derived category D(A∗) of A∗-comodules, we thus have a
distinguished triangle

ΣeH∗(X)[−e]
g−→ H∗(Y )

i′′−→ Q∗ j′′

−→ ΣeH∗(X)[1 − e] .

Proposition 12.33 ([26, §3]). Let f = αeg : X → Ye → Y , and assume that
g∗ : H∗(X) → H∗(Ye) is a monomorphism. The hastened Adams spectral sequence
for Cf has E2-term

Es
2(W7) ∼= Exts

D(A∗)(F2, Q
∗) ,

where Q∗ is the homotopy cofiber in D(A∗) of the morphism g : ΣeH∗(X)[−e] →
H∗(Y ) corresponding to the class in Exte,e

A∗
(H∗(X), H∗(Y )) that detects the lift g

of f .

Proof. We have arranged that Q∗ is injective in each cohomological degree.
Therefore the hastened E2-term

Es
2(W7) ∼= Hs(HomA∗(F2, Q

∗))

calculates, by definition, the hyper-Ext groups

Exts
D(A∗)(F2, Q

∗) = D(A∗)(F2, Q
∗[s])

of the A∗-comodule complex Q∗. !
It follows that we can calculate the hastened E2-term as the hyper-Ext of

any other A∗-comodule complex that is isomorphic in D(A∗) to Q∗. Thus, let
η : H∗(Y ) → P ∗ be any injective A∗-comodule resolution of H∗(Y ), pick a chain
equivalence θ : C∗

A∗
(A∗, H∗(Y )) → P ∗ under H∗(Y ), and suppose that the compos-

ite e-cocycle

h = θgη : ΣeH∗(X) −→ C0
A∗(A∗,Σ

eH∗(X)) −→ Ce
A∗(A∗, H∗(Y )) −→ P e

in HomA∗(Σ
eH∗(X), P ∗) is also a monomorphism. Clearly h represents the same

class in Exte,e
A∗

(H∗(X), H∗(Y )) as gη. Let

h̃ : ΣeH∗(X) −→ Je = im(δ : P e−1 → P e) = ker(δ : P e → P e+1)

be the unique lift of h through the e-coboundaries in P ∗, and form the short exact
sequence

0 → ΣeH∗(X)
h̃−→ Je −→ J̄e −→ 0 .
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We then have a zig-zag of quasi-isomorphisms connecting Q∗ to the A∗-comodule
complex

0 → P 0 δ−→ P 1 δ−→ . . .
δ−→ P e−1 −→ J̄e → 0

with cohomology concentrated in degrees 0 and e − 1. If η : J̄e → P̄ ∗+e is another
injective A∗-comodule resolution, then we can form an injective complex P̄ ∗ by
splicing P ∗<e with P̄ ∗≥e, using the composite

P e−1 −→ Je −→ J̄e −→ P̄ e

to connect the two parts of the complex. Then Q∗ and P̄ ∗ are isomorphic in the
derived category, and we can calculate the hastened E2-term as

Es
2(W7) ∼= Exts

D(A∗)(F2, Q
∗) ∼= Exts

D(A∗)(F2, P̄
∗) = Hs(HomA∗(F2, P̄

∗)) .

In particular, if P ∗ and P̄ ∗+e were chosen as minimal resolutions, then P̄ ∗ is also
a minimal complex, which makes it trivial to pass to cohomology in the right hand
term above.

We illustrate this method by two examples, working in cohomology and in the
context of tmf -modules. In each case we use a method discovered by Mahowald,
which tricks ext into calculating a minimal complex P̃∗ by carefully interrupting
the machine computation of a minimal free A(2)-module resolution ε : P∗ → H∗(Y )
and adjusting the boundary homomorphism ∂ : Pe → Pe−1 to have image J̃e =
ker(h̄ : Je → ΣeH∗(X)) in place of Je = im(∂ : Pe → Pe−1) ∼= cok(∂ : Pe+1 → Pe).

Example 12.34. Let f = B : Σ8tmf → tmf be given by multiplication with the
Bott element B ∈ π8(tmf). This map has Adams filtration e = 4, and we can pick
a lift g : Σ8tmf → tmf4 with B - α4g, which is detected by w1 ∈ Ext4,12

A(2)(F2, F2).

The hastened Adams spectral sequence for Cf = tmf/B has E2-term

Es
2(W7) = Exts

D(A(2))(Q∗, F2) ,

where Q∗ is the homotopy fiber in D(A(2)) of the morphism g : F2 → Σ12F2[4]
corresponding to w1. The inclusion i′′ : Y7 = tmf7 → W7 induces a map of spec-
tral sequences from the Adams spectral sequence for tmf to the hastened spectral
sequence for tmf/B, which appears in the long exact sequence of E2-terms

· · · −→ Exts−4,t−12
A(2) (F2, F2)

w1−→ Exts,t
A(2)(F2, F2)

i′′−→ Es,t
2 (W7)

j′′

−→ Exts−3,t−12
A(2) (F2, F2) −→ . . . .

In this case we know that w1 acts injectively on E2(tmf) = ExtA(2)(F2, F2), so that
j′′ = 0 and ExtA(2)(F2, F2)/w1

∼= E2(W7).

To use ext to calculate a minimal free complex P̃∗ that is derived isomorphic
to Q∗, we work in the context of Remark 1.9, call on newmodule tmfmodB tmf.def
in the directory A2, and execute dims 0 12 in A2/tmfmodB to compute a minimal
free A(2)-module resolution P∗ → F2 in internal degrees t ≤ 12. At this point the
file Diff.4 specifies ∂(4∗g) ∈ P3 for the generators 4∗g ∈ P4 in these degrees, in a
machine readable format. To explain the method we display this data file in its
“humanly readable” form hDiff.4, which is obtained from Diff.4 by means of the
command convert Diff.4 hDiff.4 2 1 1 i. It appears as follows:
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2 12
4

1
0 1 1 i(1).

12

2
0 9 4 i(6,1).
1 6 3 i(3,1).

This tells us that P4 has two generators in this range, namely 4∗0 and 4∗1 in internal
degrees 4 and 12, respectively. Furthermore, ∂(4∗0) = Sq13∗0 and ∂(4∗1) = Sq(6,1)3∗0+
Sq(3,1)3∗1, where 3∗0 and 3∗1 are generators of P3, and the coefficients in A(2) written
in terms of the Milnor basis. It follows that only the A(2)-linear 4-cocycle h =
41 : P4 → Σ12F2 represents w1. It is clear that h is an epimorphism. We let

h̄ : J4 = im(∂ : P4 → P3) −→ Σ12F2

be its unique factorization through the 3-boundaries in P∗, and form the short exact
sequence

0 → J̃4 −→ J4
h̄−→ Σ12F2 → 0 .

We get an isomorphism in D(A(2)) between the homotopy fiber Q∗ and the minimal
complex

0 ← P0
∂←− P1

∂←− P2
∂←− P3 ←− J̃4 ← 0 .

Following Mahowald, we now edit the file Diff.4, changing ∂ : P4 → P3 to ∂ : P̃4 →
P3 in degree 12 so that im(∂ : P̃4 → P3) = J̃4. In this case, ∂ already maps the
A(2)-module generated by 4∗0 to J̃4, while h̄∂ is nonzero on 4∗1, so we obtain the
desired modification by removing the generator 4∗1, together with the value of ∂(4∗1),
and adjusting the total number of generators. The resulting file appears as follows:

1 12
4

1
0 1 1 i(1).

The change in degree 12 from P4 to P̃4 is the only difference between P∗ and P̃∗ in
this range of degrees. Running dims 13 240 now has the effect of calculating the
rest of P∗<4, and simultaneously to extend P̃∗+4 to a minimal free resolution of J̃4,
in degrees 13 and above. Since the resulting complex P̃∗ is minimal, we can call on
report and

chart 0 40 0 200 Shape himults E2-tmfmodB.tex E2-tmfmodB
pdflatex E2-tmfmodB.tex

to obtain the hastened E2-term for tmf/B, as shown in Figures 12.41 to 12.48.

Proposition 12.35. The differential structure in the hastened Adams spec-
tral sequence E2(W7) =⇒ π∗(tmf/B)∧2 is as displayed in Figures 12.41 to 12.48,
repeated w4

2-periodically.
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Figure 12.41. Hastened (Er(tmf/B), dr) for 0 ≤ t − s ≤ 24
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Figure 12.42. Hastened (Er(tmf/B), dr) for 24 ≤ t − s ≤ 48
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48 52 56 60 64 68 72

8

12

16

20

10

9 10 11

7 8
9 10 11

5 6 7 8 9 10 11 12

4 5 6 7
8

9
10 11 12 13 14 15

4 5 6 7 8
9 10 11

12 13 14 15

4 5 6 7 8 9 10 11 12

4 5 6 7 8
9

4 5 6 7

4 5 6

4 5 6

4 5 6

4 5 6

Figure 12.43. Hastened (Er(tmf/B), dr) for 48 ≤ t − s ≤ 72
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Figure 12.44. Hastened (Er(tmf/B), dr) for 72 ≤ t − s ≤ 96
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Figure 12.45. Hastened (Er(tmf/B), dr) for 96 ≤ t − s ≤ 120
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Figure 12.46. Hastened (Er(tmf/B), dr) for 120 ≤ t − s ≤ 144
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Figure 12.47. Hastened (Er(tmf/B), dr) for 144 ≤ t − s ≤ 168
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Figure 12.48. Hastened (Er(tmf/B), dr) for 168 ≤ t − s ≤ 192
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Proof. The d2-differentials all follow by compatibility with the morphism i′′

from the Adams spectral sequence for tmf , using Table 5.1. The d3-differentials
follow from the action of w2

2 in E3(tmf) on this spectral sequence, using the Leibniz
rule with d3(w2

2) = βg4. The final d4-differentials, on the images of h1w3
2 and h1gw3

2,
follow from the known group structure of the abutment, obtained in Section 12.4.

!
Remark 12.36. The Anderson self-duality of tmf/(B, M) is visible in the

hastened E∞-term for tmf/B. Likewise, the Brown–Comenetz self-duality for
tmf/(2, B, M) is visible in the hastened E∞-term for tmf/(2, B), which we will
now discuss. The E2-term and differential structure of the latter spectral sequence
were calculated in [26, §8]. However, some of the h1-multiplications shown in Fig-
ures 8.1 and 8.2 of that paper were based on incorrect arguments, and do not agree
with our automated calculations. Nonetheless, the additive rank of each differ-
ential shown, and the order of the resulting homotopy groups, all agree with our
results. Hence these mistakes have no consequences for the later results of [26].
On the other hand, for our proof of Theorem 12.25, concerning the action of η on
π∗(tmf/(2, B)), it is crucial to work with the correct h1-multiplications.

Example 12.37. Let f = B : Σ8tmf/2 → tmf/2 be given by multiplication
by B. We pick a lift g : Σ8tmf → (tmf/2)4, which is detected by the nonzero
class v4

1 in

Ext4,12
A(2)(M1, M1)

∼=−→ Ext4,12
A(2)(M1, F2) = F2{i(w1)} .

The hastened Adams spectral sequence for Cf = tmf/(2, B) has E2-term Es
2(W7) =

Exts
D(A(2))(Q∗, F2), where Q∗ is the homotopy fiber of the corresponding morphism

v4
1 : M1 → Σ12M1[4]. There is a map i′′ from the Adams spectral sequence for

tmf/2 to the hastened spectral sequence for tmf/(2, B), and a long exact sequence
of E2-terms

· · · −→ Exts−4,t−12
A(2) (M1, F2)

v4
1−→ Exts,t

A(2)(M1, F2)

i′′−→ Es,t
2 (W7)

j′′

−→ Exts−3,t−12
A(2) (M1, F2) −→ . . . ,

where v4
1 acts as multiplication by w1. To calculate a minimal free complex P̃∗

that is derived isomorphic to Q∗ we work in the context of Remark 1.26. Those
calculations show that in the minimal free A(2)-module resolution P∗ of M1, the
file Diff.4 begins as follows:

7 240
12

1
0 5 2 i(2,1).

13

3
0 6 3 i(6)(0,2).
1 2 1 i(2).
2 1 1 i(1).

[...]
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This means that P4 in internal degrees t ≤ 13 has two free A(2)-module gen-
erators 4∗0 and 4∗1, in degrees 12 and 13, respectively. Furthermore, in these de-
grees J4 = im(∂ : P4 → P3) is generated by ∂(4∗0) = Sq(2,1)3∗0 in degree 12 and
∂(4∗1) = (Sq6 + Sq(0,2))3∗0 + Sq23∗1 + Sq13∗2 in degree 13. To obtain an F2-basis for
J4 in this range of degrees we must adjoin Sq1∂(4∗0) = Sq1Sq(2,1)3∗0 = Sq(3,1)3∗0.

Let h : P4 → Σ12M1 be a 4-cocycle representing v4
1 . The composite P4 →

Σ12M1 → Σ12F2 must then be the cocycle 40 representing i(w1), meaning that h(4∗0)
is nonzero in degree 12. It follows that h(Sq14∗0) is nonzero in degree 13, so that h is
an epimorphism. We can choose whether h(4∗1) is to be zero or nonzero, but the two
choices give cohomologous 4-cocycles, and therefore give equivalent resolutions. For
convenience we choose h so that h(4∗1) = 0. We let h̄ : J4 → Σ12M1 be the unique
factorization of h through the 3-boundaries in P∗, and define J̃4 = ker(h̄) ⊂ J̃4. It
follows that ∂(4∗1) gives an F2-basis for J̃4 in degrees ≤ 13.

We now want to use Mahowald’s trick to modify P∗ to a complex P̃∗, such
that Ps = P̃s for 0 ≤ s ≤ 3, with im(∂ : P̃4 → P3) = J̃4, and such that P̃∗+4 is
a minimal free resolution of J̃4. This requires altering the image of ∂ : P4 → P3

both in degree 12 and in degree 13, and must therefore be performed in two steps.
To start we call on newmodule tmfC2modB tmfC2.def and execute dims 0 12, to
calculate a minimal free A(2)-module resolution P∗ → M1 in degrees t ≤ 12. The
file Diff.4 then has the following content:

1 12
12

1
0 5 2 i(2,1).

Since J̃4 is trivial in degree 12, the first modification we must make is to delete the
generator 4∗0 from Diff.4, leaving the following result:

0 12

Let P̂∗ denote the resulting subcomplex of P∗, in degrees t ≤ 12. We now run dims

13 13 to extend P̂∗ to internal degree 13. Thereafter, Diff.4 appears as follows:

2 13
13

1
0 6 3 i(3,1).

13

3
0 6 3 i(6)(0,2).
1 2 1 i(2).
2 1 1 i(1).

This means that P̂4 has two generators 4̂∗0 and 4̂∗1 in degree 13, with ∂(4̂∗0) =
Sq(3,1)3∗0 = Sq1∂(4∗0) and ∂(4̂∗1) = (Sq6 + Sq(0,2))3∗0 + Sq23∗1 + Sq13∗2 = ∂(4∗1). The
second of these gives an F2-basis for J̃4 in this degree, so as the second modification
we delete the generator 4̂∗0 from P̂4, leaving the following file Diff.4:
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Figure 12.49. Hastened (Er(tmf/(2, B)), dr) for 0 ≤ t − s ≤ 24
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Figure 12.50. Hastened (Er(tmf/(2, B)), dr) for 24 ≤ t − s ≤ 48
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Figure 12.51. Hastened (Er(tmf/(2, B)), dr) for 48 ≤ t − s ≤ 72
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Figure 12.52. Hastened (Er(tmf/(2, B)), dr) for 72 ≤ t − s ≤ 96
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Figure 12.53. Hastened (Er(tmf/(2, B)), dr) for 96 ≤ t − s ≤ 120
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Figure 12.54. Hastened (Er(tmf/(2, B)), dr) for 120 ≤ t − s ≤
144
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Figure 12.55. Hastened (Er(tmf/(2, B)), dr) for 144 ≤ t − s ≤ 168
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Figure 12.56. Hastened (Er(tmf/(2, B)), dr) for 168 ≤ t − s ≤
192
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1 13
13

3
0 6 3 i(6)(0,2).
1 2 1 i(2).
2 1 1 i(1).

Letting P̃∗ be the remaining subcomplex of P̂∗, we have achieved that im(∂ : P̃4 →
P3) = J̃4. We can therefore run dims 14 240 to calculate P∗<4 and P̃∗+4 in
degrees 14 and above. Calling on report and

chart 0 40 0 200 Shape himults E2-tmfC2modB.tex E2-tmfC2modB
pdflatex E2-tmfC2modB.tex

we obtain the hastened E2-term for tmf/(2, B), as shown in Figures 12.49 to 12.56.

Proposition 12.38. The differential structure in the hastened Adams spectral
sequence E2(W7) =⇒ π∗(tmf/(2, B)) is as displayed in Figures 12.49 to 12.56,
repeated w4

2-periodically.

Proof. The d2-differentials all follow by compatibility with the morphism i′′

from the Adams spectral sequence for tmf/2, using Table 6.2. Most d3-differentials
also follow this way, using Table 6.4. The remaining possible d3-differentials are
defined on classes of the form w2

2 · x, where x is an E3-cycle for bidegree reasons.
In these cases we calculate d3(w2

2 · x) = βg4 · x, using the Leibniz rule for the
E3(tmf)-module structure.

For example, the image in E2(W7) of d0w3
2h̃1 in bidegree (t − s, s) = (160, 29)

survives to E3, since d2(d0w3
2h̃1) = g2w1w2

2i(β) in E2(tmf/2), which maps to zero

in E2(W7). The image x = 137 of d0w2h̃1 in bidegree (64, 13) cannot support a

differential, as is visible in Figure 12.51. Hence d3 on the image of d0w3
2h̃1 is βg4

times the image of d0w2h̃1, which we calculate with ext in A2/tmfC2modB to be the
nonzero class 1956 · 137 = 326 in bidegree (159, 32).

At this point the only remaining possible hastened differential is d4 on the
image of i(h1w3

2) in bidegree (145, 25). This must be nonzero by the known order
of π∗(tmf/(2, B)) in degree 144 (or degree 145), which we can read off from the
known B-action in π∗(tmf/2) given in Section 12.1, or from the delayed Adams
spectral sequence shown in Figure 12.39. !
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CHAPTER 13

Odd primes

After inverting 2 ·3 = 6, the edge homomorphism e from connective topological
modular forms to integral modular forms becomes an isomorphism

e : π∗(tmf)[1/6]
∼=−→ mf∗/2[1/6] = Z[1/6][c4, c6] ,

with ∆ = (c3
4 − c2

6)/1728, and the spectral enrichment from algebra to topology
carries little new information. At primes p ≥ 5 the Hurewicz image of π∗(S)(p) in
π∗(tmf)(p) is necessarily trivial in positive degrees. The main interest in the study
of topological modular forms at odd primes is therefore concentrated at p = 3.
At this prime, the homotopy of tmf (in its K(2)-localized form EOp−1) was first
calculated by Hopkins and Miller, cf. [64, Thm. 3.7] and [137, Thm. 2.1].

We shall follow Hill [68] and study π∗(tmf)∧3 by means of the Baker–Lazarev
[20] mod 3 Adams spectral sequence built in the category of tmf -modules, as op-
posed to the classical Adams spectral sequence built in the category of spectra (=
S-modules). Its E2-term

Es,t
2 = Exts,t

Atmf
∗

(F3, F3) =⇒s πt−s(tmf)∧3

is given by the comodule Ext-groups for the tmf -module analogue

Atmf
∗ = Htmf

∗ (H) = π∗(H ∧tmf H)

of the dual Steenrod algebra, with coefficients in the tmf -module mod 3 homology
groups

Htmf
∗ (tmf) = π∗(H ∧tmf tmf) = F3

of tmf . Here H = HF3 denotes the mod 3 Eilenberg–Mac Lane spectrum, with
its unique commutative tmf -algebra structure. Our first task is to determine the
structure of Atmf

∗ . Next, we shall use the Davis–Mahowald spectral sequence to
calculate the tmf -module Adams E2-term above. Thereafter, we use the H∞ ring
structure on tmf to determine the differential structure in this Adams spectral
sequence. Finally, we shall resolve the extension questions to pass from E∞(tmf)
to π∗(tmf), implicitly completed at p = 3.

The calculation of Γ∗ = Atmf
∗ is due to Henriques and Hill, using results of

Hopkins–Mahowald (unpublished) and Behrens [25]. We supplement these argu-
ments with later work of Hill and Lawson [70], and Mathew [114]. The calculation
of ExtΓ∗(F3, F3) was done by Hill using the May spectral sequence. We offer an
alternative argument using the Davis–Mahowald spectral sequence of Chapter 2,
based on a surjection Γ∗ → Λ∗ of commutative Hopf algebras, with Λ∗ = F3[ξ1]/(ξ3

1)
dual to the subalgebra Λ = 〈P 1〉 ⊂ A of the mod 3 Steenrod algebra. Hill deter-
mined the differentials in the tmf -module Adams spectral sequence for tmf at p = 3
by a comparison with the calculation of the corresponding Adams–Novikov spectral

575
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sequence made by Bauer [23]. We instead give direct arguments for these differen-
tials in the style of our discussion at p = 2, starting from the H∞ ring structure
on tmf . Bauer determined the hidden ν-extensions in the Adams–Novikov spectral
sequence by Toda bracket arguments. We shall give a different argument for these
hidden extensions, based on our understanding of tmf ∧Ψ, where Ψ = S∪ν e4∪ν e8

is a 3-local CW spectrum with cohomology realizing the subalgebra Λ = 〈P 1〉
mentioned above.

We conclude in Section 13.4 that π∗(tmf)∧3 is generated as a Z3-algebra by the
three 3-torsion classes

x ν ν1 β

n 3 27 10

E∞(tmf) h0 h0∆ b0

and the following nine 3-torsion free classes.

x B B1 B2 C C1 C2 D1 D2 H

n 8 32 56 12 36 60 24 48 72

E∞(tmf) c4 c4∆ c4∆2 c6 c6∆ c6∆2 a0∆ a0∆2 ∆3

mf∗/2 c4 c4∆ c4∆2 c6 c6∆ c6∆2 3∆ 3∆2 ∆3

The 3-torsion is equal to the B-torsion, where B is the Bott element, and
the (Hopkins–Miller) element H acts freely, so that π∗(tmf) ∼= N∗ ⊗ Z[H], where
N∗ ⊂ π∗(tmf) is the Z[B]-submodule generated by the classes in degrees 0 ≤ ∗ < 72.
We express N∗ as a Z[B]-module, hence also π∗(tmf) as a Z[B, H]-module, in
Theorem 13.18, and evaluate the product in π∗(tmf) in Theorem 13.19. Only one
product remains uncertain: we know that

B2
2 = BB1H + tβ4H

for some number t ∈ Z/3, but we do not know this coefficient. If t = 0 then the
surjection π∗(tmf) → im(e) admits a multiplicative section, otherwise it does not.

We also show that tmf satisfies duality at p = 3: there are equivalences of
3-completed tmf -modules

a : Σ20tmf
(−→ I(tmf/(3∞, B∞, H∞))

and Σ21Tmf - IZ(Tmf), where the latter was proved earlier by Stojanoska. In
particular, the B-torsion in degrees ∗ 0≡ 3 mod 24 in N∗ is

ΘN∗ = Z/3{β, νβ,β2,β3, ν1β,β4}

and a induces a perfect pairing

ΘN50−n ⊗ΘNn −→ Q/Z

for all n. Finally we show in Theorem 13.32 that for ∗ > 3 the Hurewicz image
of π∗(S) in π∗(tmf) is contained in Θπ∗(tmf) = ΘN∗ ⊗ Z[H], and that this upper
bound is achieved at least up to degree 154.

Remark 13.1. At the prime p = 2, the tmf -module mod 2 Adams spectral
sequence for tmf agrees with the classical mod 2 Adams spectral sequence, since
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H∗(tmf) = A∗ !A(2)∗ F2 and Atmf
∗ = π∗(H ∧tmf H) ∼= A(2)∗ at p = 2, so that the

natural map

Exts,t
A∗

(F2, H∗(tmf))
∼=−→ Exts,t

Atmf
∗

(F2, F2)

is equal to the coalgebra version of the change-of-rings isomorphism along A(2) ⊂ A.
Hence our discussion in the previous chapters can be interpreted to be all about
the Baker–Lazarev tmf -module Adams spectral sequence for tmf , also for p = 2.

Remark 13.2. The classical mod 3 Adams spectral sequence for tmf has E2-
term

Es,t
2 = Exts,t

A∗
(F3, H∗(tmf)) =⇒s πt−s(tmf)∧3 .

Dominic Culver [49] has worked out the rather elaborate structure of this spectral
sequence, deducing several differentials and extensions from the known structure of
the abutment. This approach does not seem to determine the unknown coefficient
t ∈ Z/3, since β4H has higher classical Adams filtration than B2

2 and BB1H.

13.1. The tmf-module Steenrod algebra and its dual

We implicitly localize all spectra, abelian groups and stacks at 3 in this section.
Hence S, Z and Mell denote S(3), Z(3) and (Mell)(3), respectively. In particular,
3ν = 0 and ν2 = 0 in π∗(S), where ν is the stable homotopy class of the quaternionic
Hopf fibration.

Definition 13.3. Let P (0) = 〈P 1〉, E(1) = 〈β, Q1〉 and A(1) = 〈β, P 1〉 be
sub Hopf algebras of the mod 3 Steenrod algebra A, each generated by the listed
elements. As usual, Q1 = [P 1,β]. These are dual to the quotient Hopf algebras
P (0)∗ = F3[ξ1]/(ξ3

1), E(1)∗ = E(τ0, τ1) and A(1)∗ = F3[ξ1]/(ξ3
1)⊗E(τ0, τ1), respec-

tively, of the mod 3 dual Steenrod algebra A∗. Let

Ψ = S ∪ν e4 ∪ν e8

be a 3-cell CW spectrum with H∗(Ψ) = P (0) and H∗(Ψ) = P (0)∗, and let

V (1) = cof(Σ4S/3
v1−→ S/3) = S ∪3 e1 ∪ν e5 ∪3 e6

be a type 2 Smith–Toda complex with H∗(V (1)) = E(1) and H∗(V (1)) = E(1)∗.
The smash product V (1) ∧Ψ has cohomology E(1) ⊗ P (0), which is free of rank 1
as an A(1)-module.

Hill [68, Prop. 2.3] credits the following result to Hopkins–Mahowald and
Behrens [25]. Our outline of proof also relies on later work by Hill–Lawson [70]
and Mathew [114].

Theorem 13.4. There is a map tmf → tmf0(2) = tmf1(2) of connective E∞
ring spectra, with π∗(tmf0(2)) ∼= Z[a2, a4], and an equivalence of tmf -modules

tmf ∧Ψ - tmf0(2) .

The complex orientation associated to the Weierstrass curve y2 = x3 + a2x2 + a4x
induces v1 2→ a2 mod 3 and v2 2→ 2a2

4 mod (3, a2).

Sketch proof. Following Behrens [25, §1.2.1] and Mahowald–Rezk [105], we
first consider the moduli stack M0(2) of elliptic curves with level structure of type
Γ0(2) = Γ1(2), i.e., with a chosen subgroup of order 2. There is an étale map
M0(2) → Mell that represents forgetting the level structure, and the Goerss–
Hopkins–Miller sheaf of E∞ ring spectra over Mell pulls back to a similar sheaf
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over M0(2). We let TMF0(2) = TMF1(2) be the global sections (= homotopy
limit) of this sheaf, so that there is a canonical map TMF → TMF0(2) of E∞ ring
spectra.

Since we are working locally at 3, each elliptic curve with Γ0(2) structure is
uniquely strictly isomorphic to a non-singular Weierstrass curve of the form

y2 = x3 + a2x
2 + a4x

with a1 = a3 = a6 = 0. This defines an elliptic curve with a vertical tangent at
(x, y) = (0, 0), which gives the point of order 2. The classical modular invariants
are c4 = 16(a2

2 − 3a4), c6 = 32a2(9a4 − 2a2
2) and ∆ = 16a2

4(a
2
2 − 4a4). Hence

π∗(TMF0(2)) ∼= MF0(2)∗/2 = Z[a2, a4][1/∆].
The 3-series of the associated formal group law begins

[3](z) = 3z − 8a2z
3 + (24a2

2 − 96a4)z
5 − (72a3

2 − 288a2a4)z
7

+ (216a4
2 − 1472a2

2a4 + 2432a2
4)z

9 + . . .

as can be verified with a computer algebra system such as sage, so that v1 2→
−8a2 ≡ a2 mod 3 and v2 2→ 216a4

2−1472a2
2a4+2432a2

4 ≡ 2a2
4 mod (3, a2). Here we

use that vn maps to the coefficient of z3n
in the 3-series, modulo (3, . . . , vn−1), both

for the Araki and the Hazewinkel generators [144, A2.2.4 and p. 371]. In particular,
π∗(TMF0(2) ∧ V (1)) ∼= Z/3[a±1

4 ] is a quadratic extension of π∗(K(2)) = Z/3[v±1
2 ].

The unit map S → TMF0(2) extends over Ψ, since π∗(TMF0(2)) is concen-
trated in even degrees, so we obtain a TMF -module map

TMF ∧Ψ
(−→ TMF0(2) .

The descent spectral sequence for π∗(TMF ∧Ψ) based on the étale cover TMF →
TMF0(2) collapses at the E2-term, which is concentrated on the 0-line, and implies
that the map above is an equivalence. See [23, §5] and [25, p. 383].

Next, we follow Hill and Lawson [70, Thm. 5.17], who show that the Goerss–
Hopkins–Miller étale sheaf over Mell extends to a log-étale sheaf over the compact-
ification Mell. The direct image log structure from Mell gives Mell the structure
of a (Deligne–Mumford) log stack [70, Def. 3.1], and the extended sheaf can be
pulled back along any log-étale cover of Mell.

In particular, there is a compactification M0(2) of M0(2) classifying gener-
alized elliptic curves with Γ0(2) level structure. When the compactification is
equipped with the direct image log structure, the forgetful map M0(2) → Mell is
log-étale. Passing to global sections, Hill and Lawson obtain a map Tmf → Tmf0(2)
of E∞ ring spectra. Its localization away from (a power of) ∆ is the map TMF →
TMF0(2) discussed above. The log stack M0(2) is equivalent to the subscheme of
Spec Z[a2, a4] given by the union of the two open subschemes SpecZ[a2, a4][1/c4]
and Spec Z[a2, a4][1/∆], equipped with the direct image log structure from the latter
subscheme. Since the radical of (c4,∆) is (a2, a4), the associated descent spectral
sequence collapses at the E2-term, which is concentrated along the 0- and 1-lines,
and π∗(Tmf0(2)) agrees with Z[a2, a4] in non-negative degrees.

By definition, tmf0(2) is the connective cover of Tmf0(2). Hence π∗(tmf0(2)) ∼=
mf0(2)∗/2 = Z[a2, a4], and it follows that π∗(tmf0(2)∧V (1)) ∼= Z/3[a4] is a quadratic
extension of π∗(k(2)) = Z/3[v2]. The unit maps S → tmf0(2) → Tmf0(2) also
extend over Ψ, and Mathew [114, §4.6] shows that the equivalence TMF ∧ Ψ -
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TMF0(2) globalizes to an equivalence

Tmf ∧Ψ
(−→ Tmf0(2)

of Tmf -modules. By the Gap Theorem for π∗(Tmf), it follows that there is also an
equivalence

tmf ∧Ψ
(−→ tmf0(2)

of tmf -modules. !

The following two results are very similar to [68, Thm. 2.2]. Our proofs are
perhaps a little more direct.

Lemma 13.5. The unit map ι : S → tmf is 7-connected, and π7(tmf) = 0.

Proof. The v1-map Σ4S/3 → S/3 acts on π∗(tmf0(2) ∧ S/3) = Z/3[a2, a4] as
multiplication by a2, so π∗(tmf0(2) ∧ V (1)) = Z/3[a4]. Hence multiplication by a4

induces a homotopy cofiber sequence of tmf0(2)-modules

(13.1) Σ8tmf0(2) ∧ V (1)
a4−→ tmf0(2) ∧ V (1)

i−→ H
j−→ Σ9tmf0(2) ∧ V (1) ,

where tmf0(2)/a4 ∧ V (1) - H is characterized by its single nontrivial homotopy
group. Note that i∗ : Z/3[a4] → Z/3 ∼= F3 is 8-connected.

Smashing the unit map ι : S → tmf with Ψ ∧ V (1) yields the left hand map in
the following diagram:

Ψ ∧ V (1)
ι∧id−→ tmf ∧Ψ ∧ V (1) - tmf0(2) ∧ V (1)

i−→ H .

The composite i ◦ (ι ∧ id) induces the monomorphism A(1)∗ ∼= H∗(Ψ ∧ V (1)) →
H∗(H) = A∗ in homology, which is 11-connected since the lowest-degree class in
its cokernel is ξ3

1 . Hence ι ∧ id must be 7-connected. It follows that ι : S → tmf is
7-connected, as a map of 3-local connective spectra of finite type.

We take as known that

π∗(S) = (Z, 0, 0, Z/3{α1}, 0, 0, 0, Z/3{α2}, 0, 0, Z/3{β1}, . . . )

with α1α2 = 0, see e.g. [144, Fig. 1.2.15]. It remains to prove that the surjection
π7(ι) : π7(S) → π7(tmf) maps α2 to zero. Consider the Atiyah–Hirzebruch spectral
sequence

E2
s,t = Hs(Ψ;πt(tmf)) ∼= Hs(Ψ; Z) ⊗ πt(tmf)

=⇒s πs+t(tmf ∧Ψ) ∼= πs+t(tmf0(2)) .

Here H∗(Ψ; Z) = Z{g0, g4, g8} with |gs| = s. We have d2 = d3 = 0 and

d4(gs ⊗ x) = gs−4 ⊗ α1 · x

for s ∈ {4, 8}, since the 4- and 8-cells are attached by ν = α1 to the 0- and 4-cells,
respectively. Since the abutment π∗(tmf0(2)) ∼= Z[a2, a4] is concentrated in degrees
∗ ≡ 0 mod 4, the E∞-term must be trivial in the remaining total degrees. Hence,
if ι(α2) 0= 0 then g4 ⊗ ι(α2) ∈ E2

4,7 must either support a nonzero differential, or
be hit by a nonzero differential. The latter is impossible, since E4

8,4 = 0. Thus
d4(g4 ⊗ ι(α2)) = g0 ⊗ α1 · ι(α2) must be nonzero in E4

0,10. This contradicts the
relation α1α2 = 0, so we can deduce that ι(α2) = 0. !
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Theorem 13.6 (Henriques–Hill). The tmf -module dual Steenrod algebra Atmf
∗ =

π∗(H ∧tmf H) is isomorphic to the commutative Hopf algebra

F3[ξ1]/(ξ3
1) ⊗ E(τ0, τ1, θ2)

with coproducts

ψ(ξ1) = 1 ⊗ ξ1 + ξ1 ⊗ 1

ψ(τ0) = 1 ⊗ τ0 + τ0 ⊗ 1

ψ(τ1) = 1 ⊗ τ1 + ξ1 ⊗ τ0 + τ1 ⊗ 1

ψ(θ2) = 1 ⊗ θ2 + ξ1 ⊗ τ1 − ξ2
1 ⊗ τ0 + θ2 ⊗ 1 .

Here |ξ1| = 4, |τ0| = 1, |τ1| = 5 and |θ2| = 9. The unit map ι : S → tmf induces an
8-connected Hopf algebra homomorphism

k∗ : A∗ = π∗(H ∧ H) −→ π∗(H ∧tmf H) = Atmf
∗

taking ξ1, τ0 and τ1 ∈ A∗ to the classes with the same names in Atmf
∗ , and sending ξi

and τi to zero for each i ≥ 2. Hence the image of k∗ is the sub Hopf algebra
A(1)∗ = F3[ξ1]/(ξ3

1) ⊗ E(τ0, τ1) of Atmf
∗ .

Proof. Lemma 13.5 implies that

k = id ∧ι id : H ∧ H = H ∧S H −→ H ∧tmf H

is at least 8-connected, since the homotopy type of H ∧tmf H can be calculated
using the 2-sided bar construction B•(H, tmf, H). The induced Hopf algebra ho-
momorphism k∗ : A∗ → Atmf

∗ therefore maps the classes τ0, ξ1 and τ1 in A∗ to
indecomposable classes in Atmf

∗ , with coproducts given by the usual formulas.
Applying H ∧tmf (−) to (13.1) we obtain a homotopy cofiber sequence

Σ8H ∧Ψ ∧ V (1)
a4−→ H ∧Ψ ∧ V (1)

i−→ H ∧tmf H
j−→ Σ9H ∧Ψ ∧ V (1)

in the category of module spectra over the E∞ ring spectrum H ∧tmf tmf0(2) -
H ∧Ψ. We claim that a4∗ = 0 in the associated long exact sequence

· · · −→ Σ8H∗(Ψ∧V (1))
a4∗−→ H∗(Ψ∧V (1))

i∗−→ Atmf
∗

j∗−→ Σ9H∗(Ψ∧V (1)) −→ . . . .

To see this, note that H∗(Ψ∧V (1)) ∼= P (0)∗⊗E(1)∗ has dimension 12, and degree
considerations show that a4∗ has rank ≤ 4. Hence Atmf

∗ is a commutative Hopf
algebra over F3, of dimension between 16 and 24, with indecomposable classes in
degrees 1, 4 and 5. By Armand Borel’s classification [32, §6] it follows that the
dimension is 24, the rank of a4∗ is 0, and there is one more indecomposable class
in degree 9. Thus

Atmf
∗

∼= F3[ξ1]/(ξ3
1) ⊗ E(τ0, τ1, θ2)

as an algebra, with θ2 in degree 9 defined modulo the image of k∗, i.e., modulo
F3{ξ1τ1, ξ2

1τ0}. (Hill writes a2 for the class we denote θ2.)
To show that we can choose θ2 so that

ψ(θ2) = 1 ⊗ θ2 + ξ1 ⊗ τ1 − ξ2
1 ⊗ τ0 + θ2 ⊗ 1

we use the fact that ι : S → tmf maps α2 ∈ π7(S) to zero in π7(tmf). Here
α2 = 〈α1,α1, 3〉 is detected in the classical Adams spectral sequence for S by
Π0a0 = 〈h0, h0, a0〉 ∈ Ext2,9

A∗
(F3, F3) [95, Table 1], [144, Thm. 3.4.2]. Recall that
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d1([γ]) = −
∑

[γ′|γ′′] in the cobar complex, where ψ(γ) = 1⊗γ+
∑

γ′⊗γ′′ +γ⊗1.
Hence Π0a0 is represented by the 2-cocycle

y = [ξ2
1 |τ0] − [ξ1|τ1]

in the cobar complex for A∗. Applying base change along ι : S → tmf , it follows
that k∗(y) detects zero in π7(tmf) in the tmf -module Adams spectral sequence for
tmf , meaning that it is a coboundary in the cobar complex for Atmf

∗ . Hence there
is a class x ∈ Atmf

∗ with d1([x]) = k∗(y) = [ξ2
1 |τ0] − [ξ1|τ1], and we let θ2 = x.

For degree reasons the Hopf algebra homomorphism k∗ : A∗ → Atmf
∗ maps ξi

and τi to zero for i ≥ 2, with the possible exception of τ2, which maps to a multiple
of ξ2

1θ2. In A∗ we have

ψ(τ2) = 1 ⊗ τ2 + ξ3
1 ⊗ τ1 + ξ2 ⊗ τ0 + τ2 ⊗ 1 .

Since ξ3
1 and ξ2 map to zero in Atmf

∗ this implies that k∗(τ2) must be primitive,
which eliminates the nonzero multiples of ξ2

1θ2. !

Corollary 13.7 ([54, §13.3]). The tmf -module Steenrod algebra Atmf is gen-
erated by classes β and P 1 in degrees 1 and 4, respectively, subject to the relations

β2 = 0

β(P 1)2β = (βP 1)2 + (P 1β)2

(P 1)3 = 0 .

The image of k∗ : Atmf = H∗
tmf (H) → H∗(H) = A is A(1). The surjection Atmf →

A(1) introduces the Adem relation

β(P 1)2 + P 1βP 1 + (P 1)2β = 0

for P 1βP 1, which implies and replaces the relation for β(P 1)2β.

Proof. By dualization, the Hopf algebra homomorphism k∗ : Atmf → A has
image A(1), and Atmf → A(1) is an isomorphism in degrees ∗ ≤ 8. Let β and
P 1 in Atmf map to the classes with the same names in A(1). Then β2 = 0 and

(P 1)3 = 0, since Atmf
∗ , hence also Atmf , is trivial in degrees 2 and 12. A calculation

with the coproduct in Atmf
∗ shows that (βP 1)2 + (P 1β)2 − β(P 1)2β evaluates to

zero on ξ1τ0τ1 and τ0θ2, hence is zero in Atmf . It is then elementary to verify that
these two generators and three relations give a presentation of Atmf . The Adem
relation is of course known to hold in A(1) ⊂ A. !

One can check that β(P 1)2 + P 1βP 1 + (P 1)2β evaluates nontrivially on θ2. It
squares to zero in Atmf , so Atmf → A(1) is a square-zero extension.

13.2. The Adams E2-term

For brevity, let Γ∗ = Atmf
∗ . We use the Davis–Mahowald spectral sequence from

Chapter 2 to calculate the E2-term of the tmf -module Adams spectral sequence

Es,t
2 (tmf) = Exts,t

Γ∗
(F3, F3) =⇒s πt−s(tmf) ,

where tmf is now implicitly completed at p = 3.
Let

Λ∗ = P (0)∗ = F3[ξ1]/(ξ3
1) .
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There is an evident surjection Γ∗ → Λ∗ of commutative Hopf algebras, and

Ω∗ = Γ∗ !Λ∗ F3 = E(τ0, τ1, θ2)

is a Γ∗-comodule subalgebra of Γ∗. There is a Γ∗-comodule algebra resolution

F3
(−→ (Ω∗ ⊗ R∗, d) ,

where R∗ = F3[x1, x5, x9] with |x1| = 1, |x5| = 5, |x9| = 9 has Γ∗-coaction

ν(x1) = 1 ⊗ x1

ν(x5) = 1 ⊗ x5 + ξ1 ⊗ x1

ν(x9) = 1 ⊗ x9 + ξ1 ⊗ x5 − ξ2
1 ⊗ x1

and differential d(τ0) = x1, d(τ1) = x5, d(θ2) = x9. The associated Davis–
Mahowald spectral sequence is

Eσ,s,t
1 = Exts−σ,t

Λ∗
(F3, R

σ) =⇒σ Exts,t
Γ∗

(F3, F3) ,

cf. Definition 2.15. To analyze this E1-term we note that ∆ = x3
9 is Γ∗-comodule

primitive, and let
R̄∗ = R∗/(x3

9) = F3[x1, x5, x9]/(x3
9) .

There is then a Γ∗-comodule algebra extension

F3[∆] −→ E∗
1 −→ Ē∗

1 ,

where Ēσ,s,t
1 = Exts−σ,t

Λ∗
(F3, R̄σ).

Here R0 = R̄0 = F3 with

Ē0
1 = ExtΛ∗(F3, R̄

0) = E(h0) ⊗ F3[b0] ,

where h0 = [ξ1] lies in bidegree (t − s, s) = (3, 1) and b0 = [ξ1|ξ2
1 ] + [ξ2

1 |ξ1] lies in
bidegree (t − s, s) = (10, 2); see [144, Lem. 3.2.4] for these cobar representatives.
The Massey products and Steenrod operations in Ext relate these two generators,
so that 〈h0, h0, h0〉 = b0 and βP 2(h0) = −b0, with the sign conventions of [118,
Rem. 11.11].

On the other hand,

R1 = R̄1 ∼= ΣΛ∗

R2 = R̄2 ∼= Σ2Λ∗ ⊕ Σ10Λ∗

R̄3 ∼= Σ3Λ∗ ⊕ Σ11Λ∗ ⊕ Σ15Λ∗

are dual to free modules, with

ExtΛ∗(F3, R̄
1) = F3{x1}

ExtΛ∗(F3, R̄
2) = F3{x2

1, x
2
5 + x1x9}

ExtΛ∗(F3, R̄
3) = F3{x3

1, x1x
2
5 + x2

1x9, x
3
5}

all concentrated in Ext0. Letting a0 = x1, c4 = x2
5 + x1x9, c6 = x3

5 the pattern
continues a0- and c4-periodically, as one can prove by filtering each R̄σ by the
powers of x1 present. It follows that

Ē∗
1 = ExtΛ∗(F3, R̄

∗) ≡ F3[a0, c4, c6]/(c3
4 = c2

6)

modulo the term with σ = 0. The relation c3
4 = c2

6 in Ē∗
1 lifts to c3

4 = c2
6 + a3

0∆
in E∗

1 , since (x2
5 + x1x9)3 = (x3

5)
2 + x3

1x
3
9 in R∗. The Davis–Mahowald spectral
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sequence collapses at E1 = E∞ for degree reasons, leading to the Adams E2-term
shown in Figure 13.1.

Proposition 13.8. E2(tmf) = ExtΓ∗(F3, F3) is generated by h0 ∈ E1,4
2 , b0 ∈

E2,12
2 , a0 ∈ E1,1

2 , c4 ∈ E2,10
2 , c6 ∈ E3,15

2 and ∆ ∈ E3,27
2 , subject to the relations

h2
0 = 0, yz = 0 for y ∈ {h0, b0} and z ∈ {a0, c4, c6}, and c3

4 − c2
6 = a3

0∆.

13.3. The Adams differentials

Definition 13.9. Let ν ∈ π3(tmf) ∼= Z/3 and β ∈ π10(tmf) ∼= Z/3 be the
classes detected by h0 and b0, respectively.

These are the images of the classes ν = α1 and β1 in π∗(S), as can be checked
by a comparison of cobar representatives for E2(S) and E2(tmf).

Proposition 13.10. d2(∆) = ±h0b2
0.

Proof. This follows from the H∞ ring structure on tmf . Since 3 · β = 0
it follows as in [173, Thm. 3] or [45, Cor. V.1.15] that νβ3 = 0. Hence h0b3

0 is a
boundary in Er(tmf), and for bidegree reasons (see Figure 13.1) the only possibility
is d2(b0∆) = ±h0b3

0. Since d2(b0) = 0 it follows that d2(∆) = ±h0b2
0. !

Proposition 13.11. d3(h0∆2) = ±b5
0.

Proof. This also follows from the H∞ ring structure on tmf . Since ν · β2 = 0
(by the previous proposition) it follows as in [173, Thm. 4] or [45, Cor. V.1.15]
that β(β2)3 = 0. Hence b7

0 is a boundary in Er(tmf), and for bidegree reasons the
only possibility is d3(h0b2

0∆
2) = ±b7

0. Since d3(b0) = 0 it follows that d3(h0∆2) =
±b5

0. !
Proposition 13.12. E4(tmf) = E∞(tmf) is generated as an algebra by a0, h0,

c4, b0, c6, a0∆, h0∆, c4∆, c6∆, a0∆2, c4∆2, c6∆2 and ∆3.

Proof. There is no room for further differentials, as can be seen by inspection
of Figure 13.1. !

13.4. The graded ring π∗(tmf)

We can now specify the remaining algebra generators for π∗(tmf), implicitly
completed at 3. As at the prime 2, they occur in families whose members are
formally related by scalar multiples of the discriminant.

ν β B C H

ν1 B1 C1 D1

B2 C2 D2

Definition 13.13.

(1) Let ν1 ∈ π3+24(tmf) ∼= Z/3 be the class detected by h0∆ in E∞(tmf).
(2) Let Bk ∈ π8+24k(tmf) for k ∈ {0, 1, 2} be the classes detected by c4∆k

in E∞(tmf) and mapping to c4∆k in mf∗/2. We call B = B0 the Bott
element.

(3) Let Ck ∈ π12+24k(tmf) for k ∈ {0, 1, 2} be the classes detected by c6∆k

in E∞(tmf) and mapping to c6∆k in mf∗/2.
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Figure 13.1. Es,t
2 (tmf) =⇒s πt−s(tmf) at p = 3 for 0 ≤ t − s ≤ 72
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Figure 13.2. πn(tmf) at p = 3 for 0 ≤ n ≤ 72
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Table 13.1. Algebra generators of E∞(tmf) and π∗(tmf) at p = 3

t − s s E∞(tmf) π∗(tmf) mf∗/2

0 1 a0 3 3

3 1 h0 ν 0

8 2 c4 B c4

10 2 b0 β 0

12 3 c6 C c6

24 4 a0∆ D1 3∆

27 4 h0∆ ν1 0

32 5 c4∆ B1 c4∆

36 6 c6∆ C1 c6∆

48 7 a0∆2 D2 3∆2

56 8 c4∆2 B2 c4∆2

60 9 c6∆2 C2 c6∆2

72 9 ∆3 H ∆3

(4) Let Dk ∈ π24k(tmf) for k ∈ {1, 2} be the classes detected by a0∆k in
E∞(tmf) and mapping to 3∆k in mf∗/2. In particular, B · Dk = 3Bk for
k ∈ {1, 2}.

(5) Let H ∈ π72(tmf) be the class detected by ∆3 in E∞(tmf) and mapping
to ∆3 in mf∗/2. We call H the Hopkins–Miller element .

These properties uniquely characterize these classes, since there are no classes
of higher Adams filtration in the degrees containing the 3-torsion classes, and the
edge homomorphism to modular forms is injective in the degrees containing the 3-
torsion free classes. The 3-primary part of (9.3) ensures that classes satisfying these
properties do exist. We collect the key information about the algebra generators of
E∞(tmf) and their representing classes in π∗(tmf) in Table 13.1.

Proposition 13.14. There are hidden ν-extensions from h0∆ to ±b3
0 and from

h0b0∆ to ±b4
0, which propagate ∆3-periodically.

Proof. The three-column Atiyah–Hirzebruch spectral sequence

E2
∗,∗ = H∗(Ψ;π∗(tmf)) =⇒ π∗(tmf ∧Ψ) ∼= π∗(tmf0(2))

has d4-differentials d4
4,t : πt(tmf) → πt+3(tmf) and d4

8,t : πt(tmf) → πt+3(tmf) given
by multiplication by ν. The abutment is concentrated in degrees ∗ ≡ 0 mod 4, so
β3 ∈ E2

0,30
∼= π30(tmf) must be a boundary. Since E2

4,27
∼= π27(tmf) ∼= Z/3

is generated by ν1 = {h0∆}, and E2
8,23

∼= π23(tmf) = 0, the only possibility is
d4(ν1) = ±β3, which implies ν · ν1 = ±β3 in π∗(tmf). It follows by β-linearity that
ν · ν1β = ±β4 in π∗(tmf).

By inspection of bidegrees, there is no room for any other hidden ν-extensions.
The extensions we have found propagate ∆3-periodically, since this class detects H
and acts freely on the E∞-term. !
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Definition 13.15. Let N∗ ⊂ π∗(tmf) be the Z[B]-submodule generated by the
classes in degrees 0 ≤ ∗ < 72.

Lemma 13.16. π∗(tmf) ∼= N∗ ⊗ Z[H] as a Z[B, H]-module.

Proof. This follows since ∆3 detects H and acts freely on E∞(tmf), with
basis the classes detecting N∗. !

Lemma 13.17. The 3-power torsion and B-power torsion in π∗(tmf) are both
equal to the ideal

Γ3π∗(tmf) = ΓBπ∗(tmf) = (ν,β, ν1) .

Proof. It is clear from E∞(tmf) in degrees 0 ≤ ∗ < 72 that

Γ3N∗ = ΓBN∗ = Z/3{ν,β, νβ,β2, ν1,β
3, ν1β,β4} .

This uses the fact that there are no hidden 3-extensions in π∗(tmf), which follows
easily from the multiplicative structure. It also uses the fact that B · Dk = 3Bk

for k ∈ {1, 2}, which follows from the observation that the edge homomorphism
π∗(tmf) → mf∗/2 is injective in these degrees. Hence Γ3π∗(tmf) = Γ3N∗ ⊗ Z[H]
and ΓBπ∗(tmf) = ΓBN∗⊗Z[H] are both equal to the ideal (ν,β, ν1) in π∗(tmf). !

Theorem 13.18. There is a split extension

0 → ΓBN∗ −→ N∗ −→ N∗/ΓBN∗ → 0

of Z[B]-modules, where

N∗/ΓBN∗ = ko[0] ⊕ ko[1] ⊕ ko[2]

is the direct sum of the following three torsion-free Z[B]-modules:

ko[0] = Z[B]{1, C}
ko[1] = Z{D1} ⊕ Z[B]{B1, C1}
ko[2] = Z{D2} ⊕ Z[B]{B2, C2} .

The Z[B]-module structures are such that B · D1 = 3B1 and B · D2 = 3B2.

Proof. This is now clear by inspection. !

Theorem 13.19. The products xy in π∗(tmf) (implicitly completed at 3) of the
Z[B, H]-module generators

x ∈ {ν,β, C, νβ,β2, D1, ν1,β
3, B1, C1, ν1β,β4, D2, B2, C2}

(omitting 1) and ring generators

y ∈ {ν,β, C, D1, ν1, B1, C1, D2, B2, C2}

(omitting B and H) are given in Table 13.2, except for the products Ci · Cj, which
are

(13.2)

C · C = B3 − 576D1

C · C1 = C1 · C = B2B1 − 576D2

C · C2 = C1 · C1 = C2 · C = B2B2 − 1728H

C1 · C2 = C2 · C1 = B3H − 576D1H

C2 · C2 = B2B1H − 576D2H ,
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and the product

(13.3) B2 · B2 = BB1H + tβ4H ,

where we have not determined the coefficient t ∈ {0, 1, 2}.

Proof. Many products are zero because they land in trivial groups. Many
other products are determined by their image in mf∗/2, because the edge homo-
morphism π∗(tmf) → mf∗/2 is injective in their degree. The product ν · D1 is zero
because it has higher Adams filtration than ν1, and ν1 · D2 is zero because it has
higher Adams filtration than νH. The products B1 · C2 = B2 · C1 = BCH have
no contribution from β2H, because they have higher Adams filtration than that
class. The relation c3

4 − c2
6 = 1728∆ in mf∗/2 implies C · C = B3 − 576D1, and the

other products Ci · Cj are treated similarly. The only difficult product is B2 · B2

in π112(tmf), which is detected by c2
4∆

4 in Adams filtration 16. The class β4H
in the same degree has Adams filtration 17, so these methods do not determine
whether B2

2 = BB1H or B2
2 = BB1H ± β4H. In the former case, the surjection

π∗(tmf) → im(e) admits a multiplicative section, but not in the latter case. !
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13.5. Brown–Comenetz and Anderson duality

Theorem 13.20. There is an (implicitly 3-complete) equivalence of tmf -modules

Σ20tmf - I(tmf/(3∞, B∞, H∞)) .

Hence there is a perfect Brown–Comenetz duality pairing

Σ20tmf ∧ tmf/(3∞, B∞, H∞) −→ I .

Proof. The proof is, of course, similar to that of Theorem 10.6. The B-power
torsion ΓBN∗ is finite and concentrated in degrees 3 ≤ ∗ ≤ 40. The B-divisible
quotient N∗/B∞ is the direct sum of

ko[0]/B∞ = Z[B−1]{1/B, C/B}
ko[1]/B∞ = Z[B−1]{B1/B, C1/B}/(3B1/B)

ko[2]/B∞ = Z[B−1]{B2/B, C2/B}/(3B2/B)

and is concentrated in degrees ∗ ≤ 52. The group in degree 52 is a copy of Z
generated by C2/B, and the group in degree 51 is trivial. Hence the homotopy
groups of tmf/(3∞, B∞, H∞) are concentrated in degrees ∗ ≤ −20, with the
group in degree −20 being a copy of Z/3∞. Passing to Brown–Comenetz du-
als, I(tmf/(3∞, B∞, H∞)) is a 19-connected tmf -module with homotopy group in
degree 20 isomorphic to Hom(Z/3∞, Q/Z) = Z3. We represent a generator of this
group by a tmf -module map

a : Σ20tmf −→ I(tmf/(3∞, B∞, H∞)) .

We show that a is an equivalence, by first showing that the coinduced tmf0(2)-
module map

b = Ftmf (tmf0(2), a) : Ftmf (tmf0(2),Σ20tmf)

−→ Ftmf (tmf0(2), I(tmf/(3∞, B∞, H∞)))

is an equivalence. The target of b is equivalent to

I(tmf0(2) ∧tmf tmf/(3∞, B∞, H∞)) - I(tmf0(2)/(3∞, B∞, H∞))

- I(tmf0(2)/(3∞, a∞
2 , a∞

4 )) ,

where we use that the ideal J = (3, c4,∆8) generated by the images of 3, B and H
in π∗(tmf0(2)) ∼= Z[a2, a4] has the same radical as (3, a2, a4). The homotopy groups
of tmf0(2)/(3∞, a∞

2 , a∞
4 ) are

Z[a2, a4]/(3∞, a∞
2 , a∞

4 ) = Z/3∞[a−1
2 , a−1

4 ]{1/a2a4}
with 1/a2a4 in degree −12, so

π∗I(tmf0(2)/(3∞, a∞
2 , a∞

4 )) ∼= Σ12π∗(tmf0(2))

is a free module over π∗(tmf0(2)) on one generator in degree 12. The source of b is
equivalent as a tmf -module to

Ftmf (tmf ∧Ψ,Σ20tmf) - F (Ψ,Σ20tmf) - Σ12Ψ ∧ tmf - Σ12tmf0(2) ,

where the finite 3-local CW spectrum Ψ = S ∪ν e4 ∪ν e8 is Spanier–Whitehead
self-dual in the sense that F (Ψ, S) = DΨ - Σ−8Ψ. Hence π∗(b) is a surjective
π∗(tmf0(2))-module homomorphism, with abstractly isomorphic source and target
(as graded abelian groups). It follows that b is an equivalence. Since b is obtained
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by smashing a with DΨ, with lowest homology group H−8(DΨ) ∼= H8(Ψ) ∼= Z, it
follows that a is an equivalence. !

As in the case p = 2 we can rewrite the duality theorem in terms of local
cohomology spectra and/or Anderson duality. Let tmf ′ = tmf/(B∞, H∞).

Proposition 13.21. There are equivalences of tmf -modules

Σ20tmf - IZ(tmf/(B∞, H∞)) = IZ(tmf ′)

Σ22tmf - IZ(Γ(B,H)tmf)

Σ23tmf - I(Γ(3,B,H)tmf) .

Proof. This follows from I(tmf ′/3∞) - IZ(tmf ′)∧3 , tmf ′ = tmf/(B∞, H∞) -
Σ2Γ(B,H)tmf and tmf/(3∞, B∞, H∞) - Σ3Γ(3,B,H)tmf . !

The proof of Theorem 10.13 carries over with minor adjustments, replacing
M , 192 and 2-completion by H, 72 and 3-completion, respectively, to recover the
following 3-complete version of the theorem of Stojanoska [161, Thm. 13.1].

Theorem 13.22. There is a duality equivalence of (implicitly 3-completed) tmf -
modules

Σ21Tmf - IZ(Tmf) .

13.6. Explicit formulas

Lemma 13.23. The Z[B, H]-module extension

0 → π∗(tmf)/B∞ −→ π∗(tmf/B∞) −→ ΓBπ∗−1(tmf) → 0

is induced up from a unique Z[B]-module extension

0 → N∗/B∞ −→ N ′
∗ −→ ΓBN∗−1 → 0 .

Proof. The induction homomorphism

Ext1Z[B](ΓBN∗−1, N∗/B∞) −→ Ext1Z[B,H](ΓBN∗−1 ⊗ Z[H], N∗/B∞ ⊗ Z[H])

∼= Ext1Z[B](ΓBN∗−1, N∗/B∞ ⊗ Z[H])

is bijective, because Exts
Z[B](ΓBN∗−1, N∗/B∞ ⊗ (Z[H]/Z)) = 0 for s ∈ {0, 1}. This

follows because ΓBN∗−1 is concentrated in degrees ∗ ≤ 41 and N∗/B∞ ⊗ (Z[H]/Z)
agrees with N∗[1/B] ⊗ (Z[H]/Z) in degrees ∗ < 72. !

Definition 13.24. Let the π∗(tmf)-module Θπ∗−1(tmf) be the image of the
composite homomorphism

Γ3π∗(tmf/B∞) −→ π∗(tmf/B∞) −→ ΓBπ∗−1(tmf)

and let the Z[B]-module ΘN∗−1 be the image of the composite

Γ3N
′
∗ −→ N ′

∗ −→ ΓBN∗−1 ,

so that Θπ∗(tmf) ∼= ΘN∗ ⊗ Z[H] as Z[B, H]-modules.

The proof of Theorem 10.26 carries over to give the following algebraic conse-
quences of the spectrum level duality equivalence Σ20tmf - I(tmf/(3∞, B∞, H∞)).
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Theorem 13.25. (1) The graded ring π∗(tmf) is filtered by a sequence of ideals

0 ⊂ Θπ∗(tmf) ⊂ ΓBπ∗(tmf) ⊂ π∗(tmf) ,

where Θπ∗(tmf) equals the part of ΓBπ∗(tmf) in degrees ∗ 0≡ 3 mod 24.
(2) The underlying sequence of Z[B, H]-modules is induced up from the sequence

of Z[B]-modules
0 ⊂ ΘN∗ ⊂ ΓBN∗ ⊂ N∗ .

The submodule
ΘN∗ = Z/3{β, νβ,β2,β3, ν1β,β4}

is the part of ΓBN∗ in degrees ∗ 0≡ 3 mod 24, and is concentrated in degrees 10 ≤
∗ ≤ 40.

(3) The duality equivalence specializes to a Pontryagin self-duality

ΘN50−∗ ∼= Hom(ΘN∗, Q/Z)

of part of the B-power torsion.
(4) The remaining B-power torsion

ΓBN51−∗

ΘN51−∗
∼= Z/3{ν, ν1}

is Pontryagin dual to

Γ3(N∗/B∞)

(Γ3N∗)/B∞
∼= Z/3{B1/B, B2/B} .

(5) The B-torsion free quotient

N∗
ΓBN∗

= ko[0] ⊕ ko[1] ⊕ ko[2]

participates in a short exact sequence

0 → N52−∗
ΓBN52−∗

−→ Hom(
( N∗
ΓBN∗

)
/B∞, Z3) −→ Hom(

ΓBN∗−1

ΘN∗−1
, Q/Z) → 0 .

Proposition 13.26. (1) The π∗(tmf)-module isomorphism

Θπ−∗(Σ
20tmf)

∼=−→ Hom(Θπ∗−2(tmf)/H∞, Q/Z)

is adjoint to a perfect pairing

〈−,−〉 : Θπ−∗(Σ
20tmf) ×Θπ∗−2(tmf)/H∞ −→ Q/Z .

(2) The Z[B]-module isomorphism

ΘN50−∗
∼=−→ Hom(ΘN∗, Q/Z)

is adjoint to a perfect pairing

(−,−) : ΘN50−∗ ×ΘN∗ −→ Q/Z .

Under the isomorphisms Θπ∗(tmf) ∼= ΘN∗ ⊗ Z[H] and Θπ∗(tmf)/H∞ ∼= ΘN∗ ⊗
Z[H]/H∞, these pairings are related by

〈xH4, y/H1+4〉 = (x, y)

for 5 ≥ 0 and |x| + |y| = 50.
(3) The perfect pairing (−,−) is given by

(β,β4) = ±1/3

(νβ, ν1β) = ±1/3

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



13.7. THE tmf-HUREWICZ IMAGE 593

(β2,β3) = ±1/3 .

In other words, (x, y) = ±1/3 if x and y formally multiply to β5.

Remark 13.27. Here is how Pontryagin self-duality of ΘN∗ at p = 3 arises from
Theorem 13.20. Let N = tmf/H be the homotopy cofiber of H : Σ72tmf → tmf , so
that the composite homomorphism N∗ ⊂ π∗(tmf) → π∗(N) is an isomorphism of
Z[B]-modules. Substituting a : Σ20tmf - I(tmf/(3∞, B∞, H∞)) in the homotopy
cofiber sequence

Σ92tmf
H−→ Σ20tmf −→ Σ20N

and applying Brown–Comenetz duality, we obtain a homotopy cofiber sequence

I(Σ20N) −→ tmf/(3∞, B∞, H∞)
H−→ Σ−72tmf/(3∞, B∞, H∞) .

The homotopy fiber of the right hand map is Σ−72N/(3∞, B∞), so we get an
equivalence

Σ52I(N) - N/(3∞, B∞)

of tmf -modules. We can view each homomorphism φ : πk(N) → Q/Z as a homo-
topy class φ ∈ π−kI(N), and Σ52φ then corresponds under the equivalence above
to a class ψ ∈ π52−k(N/(3∞, B∞)). Its image ∂2(ψ) under the two connecting
homomorphisms

π52−k(N/(3∞, B∞))
∂−→ π51−k(N/B∞)

∂−→ π50−k(N)

lies in ΘN50−k. As for p = 2, ∂2(ψ) only depends on the restriction φ| : ΘNk →
Q/Z, and the correspondence φ| ↔ ∂2(ψ) defines an isomorphism

Hom(ΘNk, Q/Z) ∼= ΘN50−k .

13.7. The tmf-Hurewicz image

The image of the Hurewicz homomorphism ι : π∗(S) → π∗(tmf) lies mostly in
the Pontryagin self-dual part. Integrally, it contains π0(tmf) ∼= Z{ι} and π3(tmf) ∼=
Z/24{ν}. The remainder of the 3-primary Hurewicz image is asserted in [54, §13.1]
to be equal to the part of the B-power torsion that we denote Θπ∗(tmf)∧3 . In this
section we show that the former is contained in the latter, and that the two agree in
degrees ∗ < 154. See Remark 13.33 for a discussion of what remains to be proved.

We proceed in the 3-complete setting. Let j be the connective image-of-J
spectrum, which can be defined as the homotopy fiber of a lift ψ̃ : ku → bu of
ψr − 1: ku → ku, where r is any topological generator of the 3-adic units. Let
e : S → j be the unit map representing the Adams e-invariant, and let the cokernel-
of-J spectrum c be defined as its homotopy fiber. Adams [8, Thm. 7.16] proved
that e : π∗(S) → π∗(j) is surjective, so that π∗(c) ∼= ker(e). As a consequence of a
theorem of Miller [124, Thm. 4.11], Bousfield [33, Thm. 4.3] showed that the map e
is a KU -equivalence, so c is KU -acyclic. As for p = 2, a simpler proof can be given
by calculating that e∗ : KU∗(j) → KU∗(S) is an isomorphism [131, p. 201]. The
3-primary analogue of Proposition 11.81 is also true, with a similar proof.

Proposition 13.28. tmf [1/B] is Bousfield KU-local.

Proof. Recall our notations from Definition 13.3. By Bousfield’s criterion
[33, Thm. 4.8] it suffices to check that

tmf [1/B] ∧ Z - ∗
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for Z = V (1). By the Hopkins–Smith thick subcategory theorem [78], this is
equivalent to verifying the condition for Z = Ψ∧V (1), since both V (1) and Ψ∧V (1)
are type 2 finite CW spectra. In view of the equivalence tmf ∧ Ψ - tmf0(2)
from Theorem 13.4, it suffices to prove that tmf0(2) ∧ V (1) becomes trivial after
inverting B. Here π∗(tmf0(2) ∧ V (1)) = Z[a2, a4]/(3, a2) ∼= Z/3[a4] with B acting
as multiplication by c4 ≡ 0 mod (3, a2), so this is clear. !

Proposition 11.82 is also valid as stated for p = 3, replacing 2-power torsion
and Γ2 by 3-power torsion and Γ3, respectively, in its proof.

Proposition 13.29. For 0 ≤ n < 154, the tmf -Hurewicz image of ker(e) ⊂
πn(S) is equal to Θπn(tmf).

Proof. Since ι : π∗(S) → π∗(tmf) is a graded ring homomorphism, mapping
ν = α1 to ν and β1 to β, it is clear that νβ, β2, β3 and β4 are also in the Hurewicz
image.

According to the 3-primary version of Proposition 11.82, ν1 ∈ π27(tmf) is not
in the Hurewicz image of ker(e), since any lift of it in π28(tmf/B∞) has infinite
order. Similarly, νH ∈ π75(tmf), ν1H ∈ π99(tmf) and νH2 ∈ π147(tmf) are not in
the Hurewicz image.

By [144, §4.4, §7.4, A3.4], there is a 3-primary homotopy class traditionally
denoted ε′ = 〈α1,α1,β3

1〉 ∈ π37(S), with

α1ε
′ = α1〈α1,α1,β

3
1〉 = 〈α1,α1,α1〉β3

1 = β4
1

by the shuffling formula [171, (3.6)]. The Toda bracket for ε′ is well defined, since
α1β3

1 = 0 in π∗(S). Hence νι(ε′) = β4, meaning that ι(ε′) must be ±ν1β.
By the same calculations, there is a class in π82(S) detected by β6/3 ∈ E2,84

∞ in
the Adams–Novikov spectral sequence

E2(S) = ExtBP∗BP (BP∗, BP∗) =⇒ π∗(S)(p)

for p = 3. We claim that ι(β6/3) = ±βH is nonzero in π82(tmf). Granting this, it
is clear that ι maps νβ6/3 and βiβ6/3 to ±νβH and ±βi+1H for i ∈ {1, 2, 3}.

Furthermore, by [144, A3.4] the product α1 · β2
1β6/3 ∈ π105(S) lies in a trivial

group, so the Toda bracket ε′′ = 〈α1,α1,β2
1β6/3〉 is well-defined in π109(S), and

α1ε
′′ = α1〈α1,α1,β

2
1β6/3〉 = 〈α1,α1,α1〉β2

1β6/3 = β3
1β6/3 .

Hence νι(ε′′) = ±β4H, which proves that ι(ε′′) = ±ν1βH. It follows that all of
Θπ∗(tmf) for 0 ≤ ∗ < 154 is in the image of ι on ker(e) ⊂ π∗(S).

It remains to verify the claim that β6/3 ∈ π82(S) has nontrivial Hurewicz
image in π82(tmf). This can be deduced from calculations of Katsumi Shimomura
[156, Lem. 2.4], showing that the image of β6/3 is detected by a class −v3

2b11

in the Adams–Novikov spectral sequence for L2V (1), combined with calculations
of Goerss, Henn and Mahowald [63, Thm. 9, Pf. of Lem. 17, Cor. 19], showing

that v3
2b11 maps to ±v9/2

2 β in their spectral sequence for π∗(EhN
2 ∧ V (1)), which

remains nonzero in their spectral sequence for π∗(EO2 ∧ V (1)). Since the map
S → EO2∧V (1) factors through ι : S → tmf , it follows that β6/3 is also detected in
π∗(tmf). We refer to these papers for further explanation of the notations used. !

Remark 13.30. We are grateful to Paul Goerss, Hans–Werner Henn, Mike
Hill and Guozhen Wang for near-simultaneous help with finding a reference for
the proof that ι(β6/3) = ±βH. A more direct proof may be possible, tracing
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the Miller–Ravenel–Wilson [126, Thm. 1.1], [125, Thm. 2.6] construction of β6/3

in Ext2BP∗BP (BP∗, BP∗) via Ext2MU∗MU (MU∗, MU∗) to Ext2Γ(A, A), where (A,Γ)
denotes the Weierstrass curve Hopf algebroid of [23, §3].

Let U be the infinite unitary group. Localized at an odd prime p, the real-
ification map r : U → SO induces an isomorphism π∗(U) → π∗(SO) in degrees
∗ = 4k − 1, so the image of the J-homomorphism is equal to the image of the
complex J-homomorphism Jr : π∗(U) → π∗(S) in these degrees.

Proposition 13.31. If n ≥ 2(p − 1)k − 1 = |αk| and n < 2p4 − 1 then the
image of Jr : πn(U) → πn(S) lies in Adams filtration ≥ k + 1 − 5.

Proof. Let X[n] denote the (n − 1)-connected cover of a space X. William
Singer [158, Thm. 4.1] calculated the mod p cohomology of each U [2m+1], showing
that the (p − 1)-fold fiber inclusion

ip−1 : U [2(p − 1)(5 + 1) − 1] −→ U [2(p − 1)5− 1]

induces the zero homomorphism in reduced cohomology in all degrees ∗ < 2p4 − 1.
Hence, for integers k and 5 such that n ≥ 2(p− 1)k − 1 and n < 2p4 − 1, each map
f : Sn → U factors as a composite

Sn −→ U [n] −→ U [2(p − 1)k − 1]
ip−1

−→ . . .

. . .
ip−1

−→ U [2(p − 1)(5 + 1) − 1]
ip−1

−→ U [2(p − 1)5− 1] −→ U ,

where each map ip−1 induces the zero homomorphism in degrees ≤ n. There are
k − 5 such maps, and each induced homomorphism π∗(Σ∞ip−1) increases Adams
filtration by at least 1 in degrees ≤ n. The composite Jrf : Sn → U → SO → QS0

is adjoint to

Σ∞Sn Σ∞f−→ Σ∞U
Σ∞r−→ Σ∞SO

J̃−→ S ,

and J̃ has Adams filtration 1. It follows that Jrf has Adams filtration at least
k + 1 − 5. !

Theorem 13.32. The image of the Hurewicz homomorphism

ι : π∗(S) −→ π∗(tmf) ,

implicitly completed at p = 3, is the direct sum of the following terms:

(1) The group Z{ι} ∼= π0(tmf).
(2) The group Z/3{ν} ∼= π3(tmf).
(3) The groups Θπn(tmf) ⊂ πn(tmf) for n < 154.
(4) A subgroup of Θπn(tmf) ⊂ πn(tmf) for the remaining n ≥ 154.

Proof. Let h : S → HZ be the unit map. We have inclusions

ker(e) ⊂ ker(h) ⊂ πn(S) .

By the 3-primary version of Proposition 11.82 the image of ι on ker(e) is contained
in Θπn(tmf), and by Proposition 13.29 this containment is an equality for n < 154.
The image of J : πn(SO) → πn(S) gives a complementary summand im(J) in ker(h)
to ker(e). We claim that ι(im(J)) = 0, except when n = 3. When n = 4k − 1 and
n < 2 · 34 − 1 the image of J lies in Adams filtration ≥ k + 1 − 5 in πn(S), by
Proposition 13.31. Hence this is also a lower bound on the filtration of ι(im(J))
in the classical (S-module) Adams spectral sequence for tmf , as well as in the
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tmf -module Adams spectral sequence calculated in Figure 13.2. Since there are no
infinite cycles in topological degree n and filtration ≥ k + 1 − 5, except for n = 3,
the conclusion follows. !

Remark 13.33. In [54, §13.1 (2)] it is stated that the 3-primary Hurewicz
image of π∗(S) in π∗(tmf) is equal to Z{ι}⊕Z/3{ν}⊕Θπ∗(tmf) (using our notation
for the 3- and B-power torsion in degrees ∗ 0= 3 mod 24). Our Theorem 13.32
confirms that this is an upper bound for the Hurewicz image, and shows that the
bound is attained in the first 154 degrees. In order to extend this to all degrees, it is
tempting to appeal to the self-map v9

2 : Σ144V (1) → V (1) constructed by Behrens
and Pemmaraju [28], where V (1) = S/(3, v1) as above. To show that a class
x : Sn → S with nontrivial tmf -Hurewicz image repeats periodically, one would
like to extend x over ΣnV (1), and then compose with iterates of v9

2 . Each of the
key classes β1, ε′, β6/3 and ε′′ has additive order 3, hence extends over S → S/3, but
in the case of β6/3 there is no further extension over S/3 → V (1), essentially because
β6/2 ∈ π86(S) is nonzero. In order to propagate β6/3 periodically, it would therefore
seem necessary to extend the work of Behrens and Pemmaraju to construct a v9

2

self-map of S/(3, v3
1), i.e., the mapping cone of v3

1 : Σ12S/3 → S/3. This appears to
be an open problem.
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APPENDIX A

Calculation of Er(tmf) for r = 3, 4, 5

Recall from Definition 5.1 that R0 = F2[g, w1, w2], R1 = F2[g, w1, w2
2] and

R2 = F2[g, w1, w4
2]. Our calculations show that E2(tmf) is a complex of R1-modules

with d2(w2) = αβg, E3(tmf) is a complex of R2-modules with d3(w2
2) = βg4, and

E4(tmf) is a complex of R2-modules with d4(w4
2) = 0.

A.1. Calculation of E3(tmf) = H(E2(tmf), d2)

The (E2, d2)-term of the Adams spectral sequence for tmf splits as a direct sum
of 26 R1-module complexes of length two or three, labeled (A) to (Z), plus a large
summand with trivial differential, labeled 0. The Type-columns in Table A.1 give
the labels of the complexes containing the R1-module generators x and xw2. For
each complex we discuss the passage to homology with respect to the d2-differential,
giving the transition from the E2-term to the E3-term.

Table A.1: Summands in (E2(tmf), d2)

t − s s g x Ann(x) Type(x) Type(xw2)

0 0 0 1 (0) (A) (O)

0 1 0 h0 (g2) (B) (P)

0 2 0 h2
0 (g2) (C) (V)

0 3 + i 0 h3+i
0 (g) 0 0

1 1 1 h1 (g2) 0 0

2 2 1 h2
1 (g) 0 0

3 1 2 h2 (g) (D) (S)

3 2 2 h0h2 (g) (E) (W)

3 3 1 h2
0h2 (g) (F) (X)

6 2 3 h2
2 (g) (G) (Y)

8 3 2 c0 (g) 0 0

9 4 2 h1c0 (g) 0 0

12 3 3 α (0) (D) (S)

12 4 3 h0α (g2) (E) (W)

12 5 4 h2
0α (g2) (F) (X)

12 6 + i 4 h3+i
0 α (g) 0 0

597
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Table A.1: Summands in (E2(tmf), d2) (cont.)

t − s s g x Ann(x) Type(x) Type(xw2)

14 4 4 d0 (0) (H) (T)

14 5 5 h0d0 (g2) (I) (U)

15 3 4 β (0) (I) (U)

15 4 5 h0β (g) (G) (Y)

15 5 6 h1d0 (g) 0 0

17 4 6 e0 (0) (J) (M)

17 5 7 h0e0 (g) (K) (N)

17 6 6 h2
0e0 (g) (L) (Z)

18 4 7 h2β (g) (L) (Z)

18 5 8 h1e0 (g) 0 0

24 6 8 α2 (0) (M) (R)

24 7 + i 7 h1+i
0 α2 (g) 0 0

25 5 11 γ (0) (N) (D)

26 6 9 h1γ (g) 0 0

26 7 8 αd0 (0) (K) (N)

27 6 10 αβ (0) (O) (H)

27 7 9 h2
1γ (g) (P) (I)

29 7 10 αe0 (0) (B) (P)

29 8 12 h0αe0 (g) (C) (V)

30 6 11 β2 (0) (Q) (J)

31 8 13 d0e0 (0) (R) (Q)

32 7 11 δ (g) 0 0

33 8 15 h1δ (g) 0 0

36 9 17 α3 (0) (P) (I)

36 10 + i 14 h1+i
0 α3 (g) 0 0

39 9 18 d0γ (0) (S) (K)

41 10 16 α2e0 (0) (T) (A)

42 9 19 e0γ (0) (U) (B)

Complex (A) is

〈α2e0w2〉
g4w1

!! 〈1〉

R1 R1
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(implicitly extended with trivial groups at both sides). The class α2e0w2 does not
survive (is not a d2-cycle), leaving the cyclic module

〈1〉 ∼= R1/(g4w1)

at E3. Complex (B) is

〈e0γw2〉
g3

!! 〈αe0〉
gw1

!! 〈h0〉

R1 R1 R1/(g2)

The class e0γw2 does not survive, and αe0 is replaced by αe0g, leaving the direct
sum of the cyclic modules

〈h0〉 ∼= R1/(g2, gw1)

〈αe0g〉 ∼= R1/(g2)

at E3. (More precisely, 〈h0〉 ∼= Σ1,1R1/(g2, gw1), but we will omit the (s, t)-bidegree
shifts in these formulas.) Complex (C) is

〈h0αe0〉
gw1

!! 〈h2
0〉

R1/(g) R1/(g2)

The class h0αe0 does not survive, leaving

〈h2
0〉 ∼= R1/(g2, gw1)

at E3. Complex (D) is

〈γw2〉
g3

!! 〈α〉 w1 !! 〈h2〉

R1 R1 R1/(g)

The class γw2 does not survive, and α is replaced by αg, leaving

〈h2〉 ∼= R1/(g, w1)

〈αg〉 ∼= R1/(g2) .

Complex (E) is

〈h0α〉
w1 !! 〈h0h2〉

R1/(g2) R1/(g)

The class h0α is replaced by h0αg, leaving

〈h0h2〉 ∼= R1/(g, w1)

〈h0αg〉 ∼= R1/(g) .

Complex (F) is

〈h2
0α〉

w1 !! 〈h2
0h2〉

R1/(g2) R1/(g)
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The class h2
0α is replaced by h2

0αg, leaving

〈h2
0h2〉 ∼= R1/(g, w1)

〈h2
0αg〉 ∼= R1/(g) .

Complex (G) is

〈h0β〉
w1 !! 〈h2

2〉

R1/(g) R1/(g)

The class h0β does not survive, leaving

〈h2
2〉 ∼= R1/(g, w1) .

Complex (H) is

〈αβw2〉
g3

!! 〈d0〉

R1 R1

The class αβw2 does not survive, leaving

〈d0〉 ∼= R1/(g3) .

Complex (I) is

〈α3w2〉

(
g3w1
w1

)

!! 〈β〉 ⊕ 〈h2
1γw2〉

( 1 0 )
!! 〈h0d0〉

R1 R1 ⊕ R1/(g) R1/(g2)

The class α3w2 does not survive, β is replaced by βg2, and h0d0 becomes zero,
leaving the non-cyclic module

〈βg2, h2
1γw2〉 ∼=

R1 ⊕ R1

〈(gw1, w1), (0, g)〉 .

(For typographical reasons, we write the elements of R1 ⊕R1 as pairs (x, y) rather
than as column vectors.) Complex (J) is

〈β2w2〉
g3

!! 〈e0〉

R1 R1

The class β2w2 does not survive, leaving

〈e0〉 ∼= R1/(g3) .

Complex (K) is

〈d0γw2〉
g3

!! 〈αd0〉
w1 !! 〈h0e0〉

R1 R1 R1/(g)

The class d0γw2 does not survive, and αd0 is replaced by αd0g, leaving

〈h0e0〉 ∼= R1/(g, w1)

〈αd0g〉 ∼= R1/(g2) .
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Complex (L) is

〈h2β〉
1 !! 〈h2

0e0〉

R1/(g) R1/(g)

The class h2β does not survive, and h2
0e0 becomes zero. Complex (M) is

〈e0w2〉
g2

!! 〈α2〉

R1 R1

The class e0w2 does not survive, leaving

〈α2〉 ∼= R1/(g2) .

Complex (N) is

〈αd0w2〉

(
g2w1
w1

)

!! 〈γ〉 ⊕ 〈h0e0w2〉

R1 R1 ⊕ R1/(g)

The class αd0w2 does not survive, leaving the non-cyclic module

〈γ, h0e0w2〉 ∼=
R1 ⊕ R1

〈(g2w1, w1), (0, g)〉 .

Complex (O) is

〈w2〉
g

!! 〈αβ〉

R1 R1

The class w2 does not survive, leaving

〈αβ〉 ∼= R1/(g) .

Complex (P) is

〈αe0w2〉

(
g2

gw1

)

!! 〈α3〉 ⊕ 〈h0w2〉
( w1 0 )

!! 〈h2
1γ〉

R1 R1 ⊕ R1/(g2) R1/(g)

The class αe0w2 does not survive, and α3 is replaced by α3g + h0w1w2, leaving

〈h2
1γ〉 ∼= R1/(g, w1)

〈h0w2〉 ∼= R1/(g2)

〈α3g + h0w1w2〉 ∼= R1/(g) .

(We choose this replacement of α3 in order to present the R1-module generated by
α3g and h0w2 as a direct sum of cyclic modules.) Complex (Q) is

〈d0e0w2〉
g2w1

!! 〈β2〉

R1 R1
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The class d0e0w2 does not survive, leaving

〈β2〉 ∼= R1/(g2w1) .

Complex (R) is

〈α2w2〉
g2

!! 〈d0e0〉

R1 R1

The class α2w2 does not survive, leaving

〈d0e0〉 ∼= R1/(g2) .

Complex (S) is

〈αw2〉
( g

w1 )
!! 〈d0γ〉 ⊕ 〈h2w2〉

R1 R1 ⊕ R1/(g)

The class αw2 does not survive, leaving the non-cyclic module

〈d0γ, h2w2〉 ∼=
R1 ⊕ R1

〈(g, w1), (0, g)〉 .

Complex (T) is

〈d0w2〉
g

!! 〈α2e0〉

R1 R1

The class d0w2 does not survive, leaving

〈α2e0〉 ∼= R1/(g) .

Complex (U) is

〈βw2〉
( g
1 )

!! 〈e0γ〉 ⊕ 〈h0d0w2〉

R1 R1 ⊕ R1/(g2)

The class βw2 does not survive, and h0d0w2 becomes equal to g · e0γ, leaving

〈e0γ〉 ∼= R1/(g3) .

Complex (V) is

〈h0αe0w2〉
gw1

!! 〈h2
0w2〉

R1/(g) R1/(g2)

The class h0αe0w2 does not survive, leaving

〈h2
0w2〉 ∼= R1/(g2, gw1) .

Complex (W) is

〈h0αw2〉
w1 !! 〈h0h2w2〉

R1/(g2) R1/(g)
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The class h0αw2 is replaced by h0αgw2, leaving

〈h0h2w2〉 ∼= R1/(g, w1)

〈h0αgw2〉 ∼= R1/(g) .

Complex (X) is

〈h2
0αw2〉

w1 !! 〈h2
0h2w2〉

R1/(g2) R1/(g)

The class h2
0αw2 is replaced by h2

0αgw2, leaving

〈h2
0h2w2〉 ∼= R1/(g, w1)

〈h2
0αgw2〉 ∼= R1/(g) .

Complex (Y) is

〈h0βw2〉
w1 !! 〈h2

2w2〉

R1/(g) R1/(g)

The class h0βw2 does not survive, leaving

〈h2
2w2〉 ∼= R1/(g, w1) .

Complex (Z) is

〈h2βw2〉
1 !! 〈h2

0e0w2〉

R1/(g) R1/(g)

The class h2βw2 does not survive, and h2
0e0w2 becomes zero at the E3-term.

A.2. Calculation of E4(tmf) = H(E3(tmf), d3)

The (E3, d3)-term of the Adams spectral sequence for tmf splits as a direct
sum of 14 R2-module complexes of length two or three, labeled (A) to (N), plus a
large summand with trivial differential. The Type-columns in Table A.2 give the
labels of the complexes containing the R2-module generators x and xw2

2.

Table A.2: Summands in (E3(tmf), d3)

t − s s g x Ann(x) Type(x) Type(xw2
2)

0 0 0 1 (g4w1) (A) (I)

0 1 0 h0 (g2, gw1) 0 0

0 2 0 h2
0 (g2, gw1) 0 0

0 3 + i 0 h3+i
0 (g) 0 0

1 1 1 h1 (g2) (B) (G)

2 2 1 h2
1 (g) 0 0

3 1 2 h2 (g, w1) 0 0

3 2 2 h0h2 (g, w1) 0 0
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Table A.2: Summands in (E3(tmf), d3) (cont.)

t − s s g x Ann(x) Type(x) Type(xw2
2)

3 3 1 h2
0h2 (g, w1) 0 0

6 2 3 h2
2 (g, w1) 0 0

8 3 2 c0 (g) (C) (J)

9 4 2 h1c0 (g) (D) (K)

12 6 + i 4 h3+i
0 α (g) 0 0

14 4 4 d0 (g3) (E) (L)

15 5 6 h1d0 (g) (F) (M)

17 4 6 e0 (g3) (C) (J)

17 5 7 h0e0 (g, w1) 0 0

18 5 8 h1e0 (g) (D) (K)

24 6 8 α2 (g2) (F) (M)

24 7 + i 7 h1+i
0 α2 (g) 0 0

25 5 11 γ − (G) (A)

26 6 9 h1γ (g) 0 0

27 6 10 αβ (g) 0 0

27 7 9 h2
1γ (g, w1) 0 0

30 6 11 β2 (g2w1) (B) (G)

31 8 13 d0e0 (g2) 0 0

32 7 11 δ (g) 0 0

32 7 11 + 12 αg (g2) 0 0

32 8 14 h0αg (g) 0 0

32 9 14 h2
0αg (g) 0 0

33 8 15 h1δ (g) (H) (N)

36 10 + i 14 h1+i
0 α3 (g) 0 0

39 9 18 d0γ − 0 0

41 10 16 α2e0 (g) 0 0

42 9 19 e0γ (g3) (H) (N)

46 11 18 αd0g (g2) 0 0

48 9 21 h0w2 (g2) 0 0

48 10 19 h2
0w2 (g2, gw1) 0 0

48 11 + i 19 h3+i
0 w2 (g) 0 0

49 9 22 h1w2 (g2) (A) (I)
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Table A.2: Summands in (E3(tmf), d3) (cont.)

t − s s g x Ann(x) Type(x) Type(xw2
2)

49 11 20 αe0g (g2) 0 0

50 10 21 h2
1w2 (g) 0 0

51 9 23 h2w2 − 0 0

51 10 22 h0h2w2 (g, w1) 0 0

51 11 21 h2
0h2w2 (g, w1) 0 0

54 10 23 h2
2w2 (g, w1) 0 0

55 11 23 βg2 − (I) (B)

56 11 24 c0w2 (g) 0 0

56 13 26 + 27 α3g + h0w1w2 (g) 0 0

57 12 28 h1c0w2 (g) (C) (J)

60 14 + i 28 h3+i
0 αw2 (g) 0 0

63 13 34 h1d0w2 (g) (E) (L)

65 13 36 h0e0w2 − (G) (A)

66 13 37 h1e0w2 (g) (C) (J)

72 15 + i 36 h1+i
0 α2w2 (g) 0 0

74 14 37 h1γw2 (g) (G) (A)

75 15 39 h2
1γw2 − (I) (B)

80 15 41 δw2 (g) 0 0

80 16 49 h0αgw2 (g) 0 0

80 17 49 h2
0αgw2 (g) 0 0

81 16 50 h1δw2 (g) 0 0

84 18 + i 48 h1+i
0 α3w2 (g) 0 0

Complex (A) is

〈h1γw3
2〉

(
0

g2w1
0

)

!! 〈h1w2〉 ⊕ 〈γw2
2, h0e0w3

2〉
( g2w1 g6 0 )

!! 〈1〉

R2/(g) R2/(g2) ⊕ R2 ⊕ R2

〈(g2w1, w1), (0, g)〉 R2/(g4w1)

The classes h1γw3
2 and h1w2 do not survive, and γw2

2 is replaced by γw1w2
2, leaving

〈1〉 ∼= R2/(g6, g2w1)

〈γw1w
2
2〉 ∼= R2/(g2)

〈h0e0w
3
2〉 ∼= R2/(g, w1)
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at E4. Complex (B) is

〈βg2w2
2, h

2
1γw3

2〉
( g6 0 )

!! 〈β2〉 gw1
!! 〈h1〉

R2 ⊕ R2

〈(gw1, w1), (0, g)〉 R2/(g2w1) R2/(g2)

The classes β2 and βg2w2
2 are replaced by β2g and βg2w1w2

2, respectively, leaving

〈h1〉 ∼= R2/(g2, gw1)

〈β2g〉 ∼= R2/(g5, gw1)

and

〈βg2w1w
2
2, h

2
1γw3

2〉 ∼=
R2 ⊕ R2

〈(g, w1), (0, g)〉
at E4. Complex (C) is

〈h1e0w2〉

(
g2w1
w1

)

!! 〈e0〉 ⊕ 〈h1c0w2〉
( w1 0 )

!! 〈c0〉

R2/(g) R2/(g3) ⊕ R2/(g) R2/(g)

The class h1e0w2 does not survive, and e0 and h1c0w2 are replaced by e0g and

γδ′ = 1227 + 1228 = e0g
2 + h1c0w2 ,

respectively, leaving

〈c0〉 ∼= R2/(g, w1)

〈e0g〉 ∼= R2/(g2)

〈γδ′〉 ∼= R2/(g, w1)

at E4. Complex (D) is

〈h1e0〉
w1 !! 〈h1c0〉

R2/(g) R2/(g)

The class h1e0 does not survive, leaving

〈h1c0〉 ∼= R2/(g, w1) .

Complex (E) is

〈h1d0w2〉
g2w1

!! 〈d0〉

R2/(g) R2/(g3)

The class h1d0w2 does not survive, leaving

〈d0〉 ∼= R2/(g3, g2w1) .
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Complex (F) is

〈α2〉 w1 !! 〈h1d0〉

R2/(g2) R2/(g)

The class α2 is replaced by α2g, leaving

〈h1d0〉 ∼= R2/(g, w1)

〈α2g〉 ∼= R2/(g) .

Complex (G) is

〈h1γw2〉 ⊕ 〈β2w2
2〉

(
g2w1 g5

0 0
0 gw1

)

!! 〈γ, h0e0w2〉 ⊕ 〈h1w2
2〉

R2/(g) ⊕ R2/(g2w1)
R2 ⊕ R2

〈(g2w1, w1), (0, g)〉 ⊕ R2/(g2)

The class h1γw2 does not survive, and β2w2
2 is replaced by β2gw1w2

2, leaving

〈γ, h1w
2
2〉 ∼=

R2 ⊕ R2

〈(g2w1, 0), (g5, gw1), (0, g2)〉
and

〈h0e0w2〉 ∼= R2/(g, w1)

〈β2gw1w
2
2〉 ∼= R2/(g) .

Complex (H) is

〈e0γ〉
w1 !! 〈h1δ〉

R2/(g3) R2/(g)

The class e0γ is replaced by e0γg, leaving

〈h1δ〉 ∼= R2/(g, w1)

〈e0γg〉 ∼= R2/(g2) .

Complex (I) is

〈h1w3
2〉

g2w1
!! 〈w2

2〉

(
g2

0

)

!! 〈βg2, h2
1γw2〉

R2/(g2) R2/(g4w1)
R2 ⊕ R2

〈(gw1, w1), (0, g)〉

The class h1w3
2 does not survive, and w2

2 and h2
1γw2 are replaced by w1w2

2 and

γ3 = 1538 + 1539 = βg3 + h2
1γw2 ,

respectively, leaving

〈βg2〉 ∼= R2/(g2)

〈γ3〉 ∼= R2/(g, w1)
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〈w1w
2
2〉 ∼= R2/(g2) .

Complex (J) is w2
2 times complex (C). (We omit to display it.) The class h1e0w3

2

does not survive, and e0w2
2 and h1c0w3

2 are replaced by e0gw2
2 and

γδ′w2
2 = 28129 + 28130 = e0g

2w2
2 + h1c0w

3
2 ,

respectively, leaving

〈c0w
2
2〉 ∼= R2/(g, w1)

〈e0gw2
2〉 ∼= R2/(g2)

〈γδ′w2
2〉 ∼= R2/(g, w1) .

Complex (K) is w2
2 times complex (D). The class h1e0w2

2 does not survive, leaving

〈h1c0w
2
2〉 ∼= R2/(g, w1) .

Complex (L) is w2
2 times complex (E). The class h1d0w3

2 does not survive, leaving

〈d0w
2
2〉 ∼= R2/(g3, g2w1) .

Complex (M) is w2
2 times complex (F). The class α2w2

2 is replaced by α2gw2
2, leaving

〈h1d0w
2
2〉 ∼= R2/(g, w1)

〈α2gw2
2〉 ∼= R2/(g) .

Complex (N) is w2
2 times complex (H). The class e0γw2

2 is replaced by e0γgw2
2,

leaving

〈h1δw
2
2〉 ∼= R2/(g, w1)

〈e0γgw2
2〉 ∼= R2/(g2)

at the E4-term.

A.3. Calculation of E5(tmf) = H(E4(tmf), d4)

The (E4, d4)-term of the Adams spectral sequence for tmf splits as a direct
sum of 16 R2-module complexes of length two, labeled (A) to (P), plus a large
summand with trivial differential. The Type-column in Table A.3 gives the label
of the complex containing the R2-module generator x.

Table A.3: Summands in (E4(tmf), d4)

t − s s g x Ann(x) Type(x)

0 0 0 1 (g6, g2w1) (A)

0 1 0 h0 (g2, gw1) 0

0 2 0 h2
0 (g2, gw1) 0

0 3 + i 0 h3+i
0 (g) 0

1 1 1 h1 (g2, gw1) 0

2 2 1 h2
1 (g) 0

3 1 2 h2 (g, w1) 0

3 2 2 h0h2 (g, w1) 0
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Table A.3: Summands in (E4(tmf), d4) (cont.)

t − s s g x Ann(x) Type(x)

3 3 1 h2
0h2 (g, w1) 0

6 2 3 h2
2 (g, w1) 0

8 3 2 c0 (g, w1) 0

9 4 2 h1c0 (g, w1) 0

12 6 + i 4 h3+i
0 α (g) 0

14 4 4 d0 (g3, g2w1) (B)

15 5 6 h1d0 (g, w1) 0

17 5 7 h0e0 (g, w1) 0

24 7 + i 7 h1+i
0 α2 (g) 0

25 5 11 γ − (C)

26 6 9 h1γ (g) 0

27 6 10 αβ (g) (D)

27 7 9 h2
1γ (g, w1) 0

31 8 13 d0e0 (g2) (B)

32 7 11 δ (g) (E)

32 7 11 + 12 αg (g2) (E)

32 8 14 h0αg (g) 0

32 9 14 h2
0αg (g) 0

33 8 15 h1δ (g, w1) 0

36 10 + i 14 h1+i
0 α3 (g) 0

37 8 17 e0g (g2) (A)

39 9 18 d0γ − (F)

41 10 16 α2e0 (g) (G)

44 10 17 α2g (g) (D)

46 11 18 αd0g (g2) (H)

48 9 21 h0w2 (g2) (F)

48 10 19 h2
0w2 (g2, gw1) 0

48 11 + i 19 h3+i
0 w2 (g) 0

49 11 20 αe0g (g2) (E)

50 10 20 β2g (g5, gw1) (G)

50 10 21 h2
1w2 (g) (G)

51 9 23 h2w2 − (F)
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Table A.3: Summands in (E4(tmf), d4) (cont.)

t − s s g x Ann(x) Type(x)

51 10 22 h0h2w2 (g, w1) 0

51 11 21 h2
0h2w2 (g, w1) 0

54 10 23 h2
2w2 (g, w1) 0

55 11 23 βg2 (g2) (H)

56 11 24 c0w2 (g) 0

56 13 26 + 27 α3g + h0w1w2 (g) 0

57 12 27 + 28 γδ′ (g, w1) 0

60 14 + i 28 h3+i
0 αw2 (g) 0

62 13 32 e0γg (g2) (C)

65 13 36 h0e0w2 (g, w1) 0

72 15 + i 36 h1+i
0 α2w2 (g) 0

75 15 38 + 39 γ3 (g, w1) 0

80 15 41 δw2 (g) 0

80 16 49 h0αgw2 (g) 0

80 17 49 h2
0αgw2 (g) 0

81 16 50 h1δw2 (g) 0

84 18 + i 48 h1+i
0 α3w2 (g) 0

96 17 58 h0w2
2 (g2, gw1) 0

96 18 55 h2
0w

2
2 (g2, gw1) 0

96 19 + i 57 h3+i
0 w2

2 (g) 0

97 17 59 h1w2
2 − (C)

98 18 57 h2
1w

2
2 (g) 0

99 17 60 h2w2
2 (g, w1) 0

99 18 58 h0h2w2
2 (g, w1) 0

99 19 59 h2
0h2w2

2 (g, w1) 0

102 18 59 h2
2w

2
2 (g, w1) 0

104 19 62 c0w2
2 (g, w1) 0

104 20 69 w1w2
2 (g2) (I)

105 20 71 h1c0w2
2 (g, w1) 0

108 22 + i 71 h3+i
0 αw2

2 (g) 0

110 20 74 d0w2
2 (g3, g2w1) (J)

111 21 79 h1d0w2
2 (g, w1) 0
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Table A.3: Summands in (E4(tmf), d4) (cont.)

t − s s g x Ann(x) Type(x)

113 21 81 h0e0w2
2 (g, w1) 0

120 23 + i 82 h1+i
0 α2w2

2 (g) 0

122 22 81 h1γw2
2 (g) 0

123 22 82 αβw2
2 (g) (K)

123 23 85 h2
1γw2

2 (g, w1) 0

127 24 98 d0e0w2
2 (g2) (J)

128 23 87 δw2
2 (g) (L)

128 23 87 + 88 αgw2
2 (g2) (L)

128 24 100 h0αgw2
2 (g) 0

128 25 102 h2
0αgw2

2 (g) 0

129 24 101 h1δw2
2 (g, w1) 0

129 25 103 γw1w2
2 (g2) (M)

132 26 + i 100 h1+i
0 α3w2

2 (g) 0

133 24 103 e0gw2
2 (g2) (I)

135 25 108 d0γw2
2 − (N)

137 26 103 α2e0w2
2 (g) (O)

140 26 105 α2gw2
2 (g) (K)

142 27 109 αd0gw2
2 (g2) (P)

144 25 111 h0w3
2 (g2) (N)

144 26 107 h2
0w

3
2 (g2, gw1) 0

144 27 + i 111 h3+i
0 w3

2 (g) 0

145 27 112 αe0gw2
2 (g2) (L)

146 26 109 h2
1w

3
2 (g) (O)

147 25 113 h2w3
2 − (N)

147 26 110 h0h2w3
2 (g, w1) 0

147 27 113 h2
0h2w3

2 (g, w1) 0

150 26 111 h2
2w

3
2 (g, w1) 0

152 27 116 c0w3
2 (g) 0

152 29 131 + 132 α3gw2
2 + h0w1w3

2 (g) 0

153 28 129 + 130 γδ′w2
2 (g, w1) 0

154 30 127 β2gw1w2
2 (g) (O)

156 30 + i 131 h3+i
0 αw3

2 (g) 0
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Table A.3: Summands in (E4(tmf), d4) (cont.)

t − s s g x Ann(x) Type(x)

158 29 138 e0γgw2
2 (g2) (M)

159 31 135 βg2w1w2
2 − (P)

161 29 142 h0e0w3
2 (g, w1) 0

168 31 + i 144 h1+i
0 α2w3

2 (g) 0

171 31 147 h2
1γw3

2 − (P)

176 31 149 δw3
2 (g) 0

176 32 167 h0αgw3
2 (g) 0

176 33 171 h2
0αgw3

2 (g) 0

177 32 168 h1δw3
2 (g) 0

180 34 + i 168 h1+i
0 α3w3

2 (g) 0

Complex (A) is

〈e0g〉
gw2

1 !! 〈1〉

R2/(g2) R2/(g6, g2w1)

The class e0g is replaced by e0g2, leaving

〈1〉 ∼= R2/(g6, g2w1, gw2
1)

〈e0g
2〉 ∼= R2/(g)

at E5. Complex (B) is

〈d0e0〉
w2

1 !! 〈d0〉

R2/(g2) R2/(g3, g2w1)

The class d0e0 does not survive, leaving

〈d0〉 ∼= R2/(g3, g2w1, w
2
1)

at E5. Complex (C) is

〈e0γg〉

(
gw2

1
0

)

!! 〈γ, h1w2
2〉

R2/(g2)
R2 ⊕ R2

〈(g2w1, 0), (g5, gw1), (0, g2)〉

The class e0γg is replaced by e0γg2, leaving

〈γ, h1w
2
2〉 ∼=

R2 ⊕ R2

〈(g2w1, 0), (gw2
1, 0), (g5, gw1), (0, g2)〉
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and
〈e0γg2〉 ∼= R2/(g)

at E5. Complex (D) is

〈α2g〉
w2

1 !! 〈αβ〉

R2/(g) R2/(g)

The class α2g does not survive, leaving

〈αβ〉 ∼= R2/(g, w2
1) .

Complex (E) is

〈αe0g〉

(
w2

1

w2
1

)

!! 〈δ〉 ⊕ 〈αg〉

R2/(g2) R2/(g) ⊕ R2/(g2)

The class αe0g does not survive, and αg is replaced by δ′ = δ + αg, leaving

〈δ〉 ∼= R2/(g)

〈δ′〉 ∼= R2/(g2, w2
1) .

Complex (F) is

〈h0w2〉
( w1

0 )
!! 〈d0γ, h2w2〉

R2/(g2)
R2 ⊕ R2

〈(g, w1), (0, g)〉
The class h0w2 does not survive, leaving

〈d0γ, h2w2〉 ∼=
R2 ⊕ R2

〈(w1, 0), (g, w1), (0, g)〉 .

Complex (G) is

〈β2g〉 ⊕ 〈h2
1w2〉

( w1 w1 )
!! 〈α2e0〉

R2/(g5, gw1) ⊕ R2/(g) R2/(g)

The classes β2g and h2
1w2 are replaced by

γ2 = 1020 + 1021 = β2g + h2
1w2 ,

leaving

〈α2e0〉 ∼= R2/(g, w1)

〈γ2〉 ∼= R2/(g5, gw1) .

Complex (H) is

〈βg2〉 w1 !! 〈αd0g〉

R2/(g2) R2/(g2)
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The class βg2 does not survive, leaving

〈αd0g〉 ∼= R2/(g2, w1) .

Complex (I) is

〈e0gw2
2〉

gw1
!! 〈w1w2

2〉

R2/(g2) R2/(g2)

The class e0gw2
2 is replaced by e0g2w2

2, leaving

〈w1w
2
2〉 ∼= R2/(g2, gw1)

〈e0g
2w2

2〉 ∼= R2/(g) .

Complex (J) is w2
2 times complex (B). The class d0e0w2

2 does not survive, leaving

〈d0w
2
2〉 ∼= R2/(g3, g2w1, w

2
1) .

Complex (K) is w2
2 times complex (D). The class α2gw2

2 does not survive, leaving

〈αβw2
2〉 ∼= R2/(g, w2

1) .

Complex (L) is w2
2 times complex (E). The class αe0gw2

2 does not survive, and
αgw2

2 is replaced by δ′w2
2 = δw2

2 + αgw2
2, leaving

〈δw2
2〉 ∼= R2/(g)

〈δ′w2
2〉 ∼= R2/(g2, w2

1) .

Complex (M) is γ times complex (I). The class e0γgw2
2 is replaced by e0γg2w2

2,
leaving

〈γw1w
2
2〉 ∼= R2/(g2, gw1)

〈e0γg2w2
2〉 ∼= R2/(g) .

Complex (N) is w2
2 times complex (F). The class h0w3

2 does not survive, leaving

〈d0γw2
2, h2w

3
2〉 ∼=

R2 ⊕ R2

〈(w1, 0), (g, w1), (0, g)〉 .

Complex (O) is

〈β2gw1w2
2〉 ⊕ 〈h2

1w
3
2〉

(w2
1 w1 )

!! 〈α2e0w2
2〉

R2/(g) ⊕ R2/(g) R2/(g)

The classes β2gw1w2
2 and h2

1w
3
2 are replaced by

γ2w1w
2
2 = 30127 + 30128 = β2gw1w

2
2 + h2

1w1w
3
2 ,

leaving

〈α2e0w
2
2〉 ∼= R2/(g, w1)

〈γ2w1w
2
2〉 ∼= R2/(g) .
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Complex (P) is

〈βg2w1w2
2, h

2
1γw3

2〉
(w2

1 gw1 )
!! 〈αd0gw2

2〉

R2 ⊕ R2

〈(g, w1), (0, g)〉 R2/(g2)

The classes βg2w1w2
2 and h2

1γw3
2 do not survive, leaving

〈αd0gw2
2〉 ∼= R2/(g2, gw1, w

2
1)

at the E5-term.
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APPENDIX B

Calculation of Er(tmf/2) for r = 3, 4, 5

Recall from Definition 5.1 that R0 = F2[g, w1, w2], R1 = F2[g, w1, w2
2] and

R2 = F2[g, w1, w4
2]. Our calculations show that E2(tmf/2) is a complex of R1-

modules, while E3(tmf/2) and E4(tmf/2) are complexes of R2-modules.

B.1. Calculation of E3(tmf/2) = H(E2(tmf/2), d2)

When regarded as a complex of R1-modules, the (E2, d2)-term of the Adams
spectral sequence for tmf/2 splits as a direct sum of 24 two-term complexes of the
form

R1{x} a−→ R1{y} ,

eight other complexes labeled (A) to (H), and a large summand with trivial differen-
tial. Table B.1 gives, for each R0-module generator x of E2(tmf/2), the summands
to which x and xw2 belong. Table B.2 describes the two-term complexes, num-
bered n = 1 to 24. In each case, R1{x} does not survive to E3, while 〈y〉 = R1/(a)
in E3. The remaining complexes and their homology are described individually
following these tables.

Table B.1: Summands in (E2(tmf/2), d2)

t − s s g x Ann(x) Type(x) Type(xw2)

0 0 0 i(1) (0) 1 3

1 1 0 i(h1) (g2, gw1) 0 0

2 1 1 h̃1 (0) 2 4

2 2 0 i(h2
1) (g) 0 0

3 1 2 i(h2) (g) (A) (D)

3 2 1 h1h̃1 (g) 0 0

4 3 0 h2
1h̃1 (g) 0 0

6 2 2 i(h2
2) (g, w1) 0 0

7 2 3 h̃2
2 (0) 3 5

8 3 1 i(c0) (g) 0 0

9 3 2 c̃0 (0) 4 7

9 4 1 i(h1c0) (g) (B) (C)

10 4 2 h1c̃0 (g) 0 0

12 3 3 i(α) (0) (A) (D)

617
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Table B.1: Summands in (E2(tmf/2), d2) (cont.)

t − s s g x Ann(x) Type(x) Type(xw2)

14 4 3 i(d0) (0) 5 8

15 3 4 i(β) (0) 6 2

16 5 3 d0h̃1 (0) 7 6

17 4 4 i(e0) (0) (C) 9

18 4 5 i(h2β) (g, w1) 0 0

18 6 3 h̃2
0e0 − (B) (C)

19 5 4 e0h̃1 (0) (D) 12

21 6 4 d0h̃2
2 (0) 8 1

24 6 5 i(α2) (0) 9 14

25 5 7 i(γ) (0) 10 (A)

26 5 8 γ̃ (0) 11 16

26 6 6 i(h1γ) (g) 0 0

26 7 5 i(αd0) (0) 12 10

27 6 8 h1γ̃ (g) 0 0

28 7 6 h2
1γ̃ (g) 0 0

30 6 9 i(β2) − (B) (C)

31 6 10 β̃2 (0) 13 17

31 8 6 i(d0e0) (0) 14 (B)

32 7 9 i(δ) (g) 0 0

32 8 7 d̃0e0 (0) 15 13

33 7 10 δ̃′ (0) 16 18

33 8 8 i(h1δ) (g) (E) (G)

33 9 7 h1d̃0e0 (g) 0 0

34 8 10 h1δ̃′ (g) 0 0

35 9 9 h2
1δ̃

′ (g) (F) (H)

36 7 12 β̃g (0) (F) (H)

38 8 12 αγ̃ (0) 17 19

40 9 12 d0γ̃ (0) 18 20

41 8 14 βγ̃ (0) (G) 21

42 10 12 α̃2e0 (0) (E) (G)

43 9 14 e0γ̃ (0) (H) 22

45 10 14 d0β̃2 (0) 19 15
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Table B.1: Summands in (E2(tmf/2), d2) (cont.)

t − s s g x Ann(x) Type(x) Type(xw2)

47 11 14 d0δ̃′ (0) 20 11

48 10 16 e0β̃2 (0) 21 23

50 11 16 d0β̃g (0) 22 24

55 12 18 α2β̃2 (0) 23 (E)

57 13 18 d0e0γ̃ (0) 24 (F)

Table B.2: Two-term complexes a : R1{x} → R1{y} in E2(tmf/2)

n x a y

1 d0w2h̃2
2 g3w1 i(1)

2 i(βw2) g3 h̃1

3 i(w2) g2 h̃2
2

4 w2h̃1 g2 c̃0

5 w2h̃2
2 g2 i(d0)

6 d0w2h̃1 g2w1 i(β)

7 w2c̃0 g2 d0h̃1

8 i(d0w2) g2 d0h̃2
2

9 i(e0w2) g2 i(α2)

10 i(αd0w2) g2w1 i(γ)

11 d0w2δ̃′ g3w1 γ̃

12 e0w2h̃1 g2 i(αd0)

13 w2d̃0e0 g2w1 β̃2

14 i(α2w2) g2 i(d0e0)

15 d0w2β̃2 g3 d̃0e0

16 w2γ̃ g2 δ̃′

17 w2β̃2 g2 αγ̃

18 w2δ̃′ g2 d0γ̃

19 αw2γ̃ g2 d0β̃2

20 d0w2γ̃ g2 d0δ̃′

21 βw2γ̃ g2 e0β̃2

22 e0w2γ̃ g2 d0β̃g

23 e0w2β̃2 g2 α2β̃2

24 d0w2β̃g g2 d0e0γ̃
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We treat the remaining eight complexes individually. Complex (A) is

〈i(γw2)〉
g3

!! 〈i(α)〉 w1 !! 〈h2〉

R1 R1 R1/(g)

The class i(γw2) does not survive to E3, while i(α) is replaced by i(αg), leaving

〈i(h2)〉 ∼= R1/(g, w1)

〈i(αg)〉 ∼= R1/(g2)

at E3. Complex (B) is

〈i(d0e0w2)〉

( 0
g2w1

)

!! 〈h̃2
0e0, i(β2)〉

( w1 0 )
!! 〈i(h1c0)〉

R1
R1 ⊕ R1

〈(g, w1)〉
R1/(g)

The classes h̃2
0e0 and i(d0e0w2) do not survive to E3, leaving

〈i(h1c0)〉 ∼= R1/(g, w1)

〈i(β2)〉 ∼= R1/(g2w1)

at E3. Complex (C) is

〈w2h̃2
0e0, i(β2w2)〉

(
g2w1 g3

w1 0

)

!! 〈i(e0)〉 ⊕ 〈i(h1c0w2)〉

R1 ⊕ R1

〈(g, w1)〉
R1 ⊕ R1/(g)

The classes i(β2w2) and w2h̃2
0e0 do not survive to E3, while i(e0) and i(h1c0w2) do.

Replacing i(h1c0w2) by the sum i(h1c0w2+e0g2) gives a description of the result at

E3 as a sum of cyclic modules. We then use the relations i(e0g2) = 1220 = β2gh̃2
2,

i(h1c0w2) = 1221 = h2
1w2h̃2

2 and γ2 = β2g + h2
1w2 to shorten the name of this

second generator from i(h1c0w2 + e0g2) to γ2h̃2
2. This gives the summands

〈i(e0)〉 ∼= R1/(g3)

〈γ2h̃2
2〉 ∼= R1/(g, w1)

at E3. Complex (D) is

〈i(αw2)〉

(
g2

w1

)

!! 〈e0h̃1〉 ⊕ 〈i(h2w2)〉

R1 R1 ⊕ R1/(g)
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The class i(αw2) does not survive to E3, while e0h̃1 and i(h2w2) generate the
non-cyclic summand

〈e0h̃1, i(h2w2)〉 ∼=
R1 ⊕ R1

〈(g2, w1), (0, g)〉 .

Complex (E) is

〈α2w2β̃2〉 g3

!! 〈α̃2e0〉
w1 !! 〈i(h1δ)〉

R1 R1 R1/(g)

The class α2w2β̃2 does not survive to E3, while α̃2e0 is replaced by gα̃2e0, leaving

〈i(h1δ)〉 ∼= R1/(g, w1)

〈gα̃2e0〉 ∼= R1/(g2) .

Complex (F) is

〈d0e0w2γ̃〉
g3w1

!! 〈β̃g〉 1 !! 〈h2
1δ̃

′〉

R1 R1 R1/(g)

The class d0e0w2γ̃ does not survive to E3, while β̃g is replaced by gβ̃g and h2
1δ̃

′

becomes 0. We use the identity gβ̃g = 1121 = β2γ̃ to rewrite the element gβ̃g as β2γ̃
henceforth, to simplify the rest of the calculation. This leaves only the summand

〈β2γ̃〉 ∼= R1/(g2w1) .

Complex (G) is

〈w2α̃2e0〉

(
g2w1
w1

)

!! 〈βγ̃〉 ⊕ 〈i(h1δw2)〉

R1 R1 ⊕ R1/(g)

The class w2α̃2e0 does not survive to E3, while βγ̃ and i(h1δw2) generate the
non-cyclic summand

〈βγ̃, i(h1δw2)〉 ∼=
R1 ⊕ R1

〈(g2w1, w1), (0, g)〉 .

Complex (H) is

〈w2β̃g〉

(
g2

1

)

!! 〈e0γ̃〉 ⊕ 〈h2
1w2δ̃′〉

R1 R1 ⊕ R1/(g)

The class w2β̃g does not survive to E3, while h2
1w2δ̃′ becomes equal to g2 · e0γ̃,

leaving only the summand

〈e0γ̃〉 ∼= R1/(g3)

at E3.
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B.2. Calculation of E4(tmf/2) = H(E3(tmf/2), d3)

When regarded as a complex of R2-modules, the (E3, d3)-term of the Adams
spectral sequence for tmf/2 splits as a direct sum of six two-term complexes of the
form

R2/(g2){x} gw1−→ R2/(g2){y} ,

14 other complexes labeled (A) to (N), and a large summand with trivial differen-
tial. Table B.3 gives, for each R1-module generator x of E3(tmf/2), the summands
to which x and xw2

2 belong. Table B.4 describes the two-term complexes, num-
bered n = 1 to 6. In these, x does not survive to E4, but gx and y do, and generate
R2-summands

〈gx〉 = R2/(g)

〈y〉 = R2/(g2, gw1) .

The remaining complexes and their homology are described individually following
these tables.

Note that we replace i(αg) in Table 6.4 by i(δ′) = i(δ + αg) here, since this
simplifies d3.

Table B.3: Summands in (E3(tmf/2), d3)

t − s s g x Ann(x) Type(x) Type(xw2
2)

0 0 0 i(1) (g3w1) (A) (G)

1 1 0 i(h1) (g2, gw1) 0 0

2 1 1 h̃1 (g3) (B) (J)

2 2 0 i(h2
1) (g) 0 0

3 1 2 i(h2) (g, w1) 0 0

3 2 1 h1h̃1 (g) 0 0

4 3 0 h2
1h̃1 (g) 0 0

6 2 2 i(h2
2) (g, w1) 0 0

7 2 3 h̃2
2 (g2) 0 0

8 3 1 i(c0) (g) (C) (D)

9 3 2 c̃0 (g2) 1 2

9 4 1 i(h1c0) (g, w1) 0 0

10 4 2 h1c̃0 (g) (E) (F)

14 4 3 i(d0) (g2) 0 0

15 3 4 i(β) (g2w1) (G) (H)

16 5 3 d0h̃1 (g2) 3 4

17 4 4 i(e0) (g3) (C) (D)

18 4 5 i(h2β) (g, w1) 0 0

19 5 4 e0h̃1 − (E) (F)
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Table B.3: Summands in (E3(tmf/2), d3) (cont.)

t − s s g x Ann(x) Type(x) Type(xw2
2)

21 6 4 d0h̃2
2 (g2) 0 0

24 6 5 i(α2) (g2) 0 0

25 5 7 i(γ) (g2w1) (I) (A)

26 5 8 γ̃ (g3w1) (J) (K)

26 6 6 i(h1γ) (g) 0 0

26 7 5 i(αd0) (g2) 5 6

27 6 8 h1γ̃ (g) 0 0

28 7 6 h2
1γ̃ (g) 0 0

30 6 9 i(β2) (g2w1) (H) (I)

31 6 10 β̃2 (g2w1) (B) (J)

31 8 6 i(d0e0) (g2) 0 0

32 7 8 + 9 i(δ′) (g2) (K) (N)

32 7 9 i(δ) (g) 0 0

32 8 7 d̃0e0 (g3) (G) (H)

33 7 10 δ̃′ (g2) 0 0

33 8 8 i(h1δ) (g, w1) 0 0

33 9 7 h1d̃0e0 (g) 0 0

34 8 10 h1δ̃′ (g) (L) (M)

38 8 12 αγ̃ (g2) 1 2

40 9 12 d0γ̃ (g2) 0 0

41 8 14 βγ̃ − (K) (N)

43 9 14 e0γ̃ (g3) (L) (M)

45 10 14 d0β̃2 (g2) 3 4

47 11 14 d0δ̃′ (g2) 0 0

48 10 16 e0β̃2 (g2) (E) (F)

49 9 17 i(h1w2) (g2, gw1) (A) (G)

50 10 18 i(h2
1w2) (g) 0 0

50 11 16 d0β̃g (g2) 0 0

51 9 19 i(h2w2) − (E) (F)

51 10 20 h1w2h̃1 (g) (B) (J)

52 11 18 h2
1w2h̃1 (g) 0 0

54 10 21 i(h2
2w2) (g, w1) 0 0
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Table B.3: Summands in (E3(tmf/2), d3) (cont.)

t − s s g x Ann(x) Type(x) Type(xw2
2)

55 12 18 α2β̃2 (g2) 5 6

56 11 21 β2γ̃ (g2w1) (N) (B)

56 11 22 i(c0w2) (g) 0 0

57 12 20 + 21 γ2h̃2
2 (g, w1) 0 0

57 13 18 d0e0γ̃ (g2) 0 0

58 12 23 h1w2c̃0 (g) 0 0

62 14 22 gα̃2e0 (g2) (I) (A)

66 12 28 i(h2βw2) (g, w1) 0 0

74 14 33 i(h1γw2) (g) 0 0

75 14 35 h1w2γ̃ (g) (J) (K)

76 15 35 h2
1w2γ̃ (g) 0 0

80 15 38 i(δw2) (g) 0 0

81 16 39 i(h1δw2) − (K) (N)

81 17 36 h1w2d̃0e0 (g) (G) (H)

82 16 41 h1w2δ̃′ (g) 0 0

Table B.4: Two-term complexes gw1 : R2/(g2){x} → R2/(g2){y}
in E3(tmf/2)

n x y

1 αγ̃ c̃0

2 αw2
2γ̃ w2

2 c̃0

3 d0β̃2 d0h̃1

4 d0w2
2β̃

2 d0w2
2h̃1

5 α2β̃2 i(αd0)

6 α2w2
2β̃

2 i(αd0w2
2)

We treat the remaining 14 complexes individually. Complex (A) is

〈gw2
2α̃

2e0〉

(
0

gw2
1

)

!! 〈i(h1w2)〉 ⊕ 〈i(γw2
2)〉

( g2w1 g6 )
!! 〈i(1)〉

R2/(g2) R2/(g2, gw1) ⊕ R2/(g2w1) R2/(g3w1)
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The classes gw2
2α̃

2e0, i(h1w2) and i(γw2
2) are replaced by g2w2

2α̃
2e0, i(h1gw2) and

i(γw1w2
2), respectively, leaving

〈i(1)〉 ∼= R2/(g6, g2w1)

〈i(h1gw2)〉 ∼= R2/(g, w1)

〈i(γw1w
2
2)〉 ∼= R2/(g2, gw1)

〈g2w2
2α̃

2e0〉 ∼= R2/(g)

at E4. Complex (B) is

〈β2w2
2γ̃〉

(
g6

0

)

!! 〈β̃2〉 ⊕ 〈h1w2h̃1〉
( gw1 g2w1 )

!! 〈h̃1〉

R2/(g2w1) R2/(g2w1) ⊕ R2/(g) R2/(g3)

The classes β2w2
2γ̃, β̃2 and h1w2h̃1 do not individually survive to E4, being replaced

by β2w1w2
2γ̃ and γγ̃ = 1019 + 1020 = gβ̃2 + h1w2h̃1, leaving

〈h̃1〉 ∼= R2/(g3, gw1)

〈γγ̃〉 ∼= R2/(g5, gw1)

〈β2w1w
2
2γ̃〉 ∼= R2/(g2)

at E4. Complex (C) is

〈i(e0)〉
w1 !! 〈i(c0)〉

R2/(g3) R2/(g)

The class i(e0) does not survive to E4, being replaced by i(e0g), leaving

〈i(c0)〉 ∼= R2/(g, w1)

〈i(e0g)〉 ∼= R2/(g2)

at E4. Complex (D) is isomorphic to complex (C) under multiplication by w2
2.

Therefore, the class i(e0w2
2) does not survive to E4, being replaced by i(e0gw2

2),
leaving

〈i(c0w
2
2)〉 ∼= R2/(g, w1)

〈i(e0gw2
2)〉 ∼= R2/(g2) .

Complex (E) is

〈e0β̃2〉
( gw1

0 )
!! 〈e0h̃1, i(h2w2)〉

( w1 0 )
!! 〈h1c̃0〉

R2/(g2)
R2 ⊕ R2

〈(g2, w1), (0, g)〉 R2/(g)

The class e0β̃2 does not survive to E4, while e0h̃1 is replaced by e0gh̃1, leaving

〈h1c̃0〉 ∼= R2/(g, w1)
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and

〈e0gh̃1, i(h2w2)〉 ∼=
R2 ⊕ R2

〈(w1, 0), (g, w1), (0, g)〉 .

Complex (F) is isomorphic to complex (E) under multiplication by w2
2. Therefore,

the class e0w2
2β̃

2 does not survive to E4, while e0w2
2h̃1 is replaced by e0gw2

2h̃1,
leaving

〈h1w
2
2 c̃0〉 ∼= R2/(g, w1)

and

〈e0gw2
2h̃1, i(h2w

3
2)〉 ∼=

R2 ⊕ R2

〈(w1, 0), (g, w1), (0, g)〉 .

Complex (G) is

〈h1w2d̃0e0〉 ⊕ 〈i(h1w3
2)〉

(
g2w1 0

0 g2w1

)

!! 〈d̃0e0〉 ⊕ 〈i(w2
2)〉

(w2
1 g4 )

!! 〈i(β)〉

R2/(g) ⊕ R2/(g2, gw1) R2/(g3) ⊕ R2/(g3w1) R2/(g2w1)

The class h1w2d̃0e0 does not survive to E4, while i(h1w3
2), d̃0e0 and i(w2

2) are

replaced by i(h1gw3
2), g2d̃0e0, and i(w1w2

2), respectively, leaving

〈i(β)〉 ∼= R2/(g4, g2w1, w
2
1)

〈g2d̃0e0〉 ∼= R2/(g, w1)

〈i(w1w
2
2)〉 ∼= R2/(g2)

〈i(h1gw3
2)〉 ∼= R2/(g, w1) .

Complex (H) is

〈h1w3
2d̃0e0〉

g2w1
!! 〈w2

2d̃0e0〉
w2

1 !! 〈i(βw2
2)〉

g4

!! 〈i(β2)〉

R2/(g) R2/(g3) R2/(g2w1) R2/(g2w1)

The class h1w3
2d̃0e0 does not survive to E4, while w2

2d̃0e0 is replaced by g2w2
2d̃0e0

and i(βw2
2) is replaced by i(βw1w2

2), leaving

〈i(β2)〉 ∼= R2/(g4, g2w1)

〈i(βw1w
2
2)〉 ∼= R2/(g2, w1)

〈g2w2
2d̃0e0〉 ∼= R2/(g, w1) .

Complex (I) is

〈gα̃2e0〉 ⊕ 〈i(β2w2
2)〉

( gw2
1 g5 )

!! 〈i(γ)〉

R2/(g2) ⊕ R2/(g2w1) R2/(g2w1)

The classes gα̃2e0 and i(β2w2
2) are replaced by g2α̃2e0 and i(β2w1w2

2), respectively,
leaving

〈i(γ)〉 ∼= R2/(g5, g2w1, gw2
1)
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〈g2α̃2e0〉 ∼= R2/(g)

〈i(β2w1w
2
2)〉 ∼= R2/(g2) .

Complex (J) is

〈h1w2γ̃〉 ⊕ 〈w2
2β̃

2〉 ⊕ 〈h1w3
2h̃1〉

(
g2w1 g5 0

0 gw1 g2w1

)

!! 〈γ̃〉 ⊕ 〈w2
2h̃1〉

R2/(g) ⊕ R2/(g2w1) ⊕ R2/(g) R2/(g3w1) ⊕ R2/(g3)

The class h1w2γ̃ does not survive to E4, while w2
2β̃

2 and h1w3
2h̃1 are replaced by

gw1w2
2β̃

2 + h1w1w3
2h̃1. As in complex (B), we use the relation γγ̃ = gβ̃2 + h1w2h̃1

to rewrite this sum as γw1w2
2γ̃ = gw1w2

2β̃
2 + h1w1w3

2h̃1. The homology is then the
sum of the non-cyclic summand

〈γ̃, w2
2h̃1〉 ∼=

R2 ⊕ R2

〈(g2w1, 0), (g5, gw1), (0, g3), (0, g2w1)〉
and

〈γw1w
2
2γ̃〉 ∼= R2/(g) .

Complex (K) is

〈h1w3
2γ̃〉

g2w1
!! 〈w2

2γ̃〉

(
g4

0

)

!! 〈βγ̃, i(h1δw2)〉
( w1 0 )

!! 〈i(δ′)〉

R2/(g) R2/(g3w1)
R2 ⊕ R2

〈(g2w1, w1), (0, g)〉 R2/(g2)

The class h1w3
2γ̃ does not survive to E4, while βγ̃ and w2

2γ̃ are replaced by βg2γ̃
and w1w2

2γ̃, respectively, leaving

〈i(δ′)〉 ∼= R2/(g2, w1)

〈w1w
2
2γ̃〉 ∼= R2/(g2)

and

〈βg2γ̃, i(h1δw2)〉 ∼=
R2 ⊕ R2

〈(g2, 0), (w1, w1), (0, g)〉 .

Changing generators and using the relation γ2β̃2 = 1638 +1639 = βg2γ̃ + i(h1δw2),
the apparently non-cyclic module is the direct sum of

〈γ2β̃2〉 ∼= R2/(g2, w1)

and
〈i(h1δw2)〉 ∼= R2/(g) .

Complex (L) is

〈e0γ̃〉
w1 !! 〈h1δ̃′〉

R2/(g3) R2/(g)

The class e0γ̃ is replaced by e0gγ̃, leaving

〈h1δ̃′〉 ∼= R2/(g, w1)
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〈e0gγ̃〉 ∼= R2/(g2) .

Complex (M) is isomorphic to complex (L) under multiplication by w2
2. Therefore,

the class e0w2
2γ̃ is replaced by e0gw2

2γ̃, leaving

〈h1w
2
2 δ̃

′〉 ∼= R2/(g, w1)

〈e0gw2
2γ̃〉 ∼= R2/(g2) .

Complex (N) is

〈βw2
2γ̃, i(h1δw3

2)〉

(
g4 0
w1 0

)

!! 〈β2γ̃〉 ⊕ 〈i(δ′w2
2)〉

R2 ⊕ R2

〈(g2w1, w1), (0, g)〉 R2/(g2w1) ⊕ R2/(g2)

The class βw2
2γ̃ does not survive to E4, though g2w1 · βw2

2γ̃ = w1 · i(h1δw3
2) does,

leaving the non-cyclic summand

〈β2γ̃, i(δ′w2
2)〉 ∼=

R2 ⊕ R2

〈(g2w1, 0), (g4, w1), (0, g2)〉
and

〈i(h1δw
3
2)〉 ∼= R2/(g)

at E4.

B.3. Calculation of E5(tmf/2) = H(E4(tmf/2), d4)

The (E4, d4)-term of the Adams spectral sequence for tmf/2 splits as a direct
sum of 24 R2-module complexes of length two, plus a large summand with trivial
differential. The length two complexes are of 11 types labeled (A) to (K), and the
Type-column in Table B.5 gives the label of the complex containing the R2-module
generator x. If there is more than one complex of a given type, indices are added to
distinguish them, as in (B1), . . . , (B8) for the 8 complexes of isomorphism type (B).

Table B.5: Summands in (E4(tmf/2), d4)

t − s s g x Ann(x) Type(x)

0 0 0 i(1) (g6, g2w1) (A)

1 1 0 i(h1) (g2, gw1) 0

2 1 1 h̃1 (g3, gw1) 0

2 2 0 i(h2
1) (g) 0

3 1 2 i(h2) (g, w1) 0

3 2 1 h1h̃1 (g) 0

4 3 0 h2
1h̃1 (g) 0

6 2 2 i(h2
2) (g, w1) 0

7 2 3 h̃2
2 (g2) (B1)

8 3 1 i(c0) (g, w1) 0
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Table B.5: Summands in (E4(tmf/2), d4) (cont.)

t − s s g x Ann(x) Type(x)

9 3 2 c̃0 (g2, gw1) (C1)

9 4 1 i(h1c0) (g, w1) 0

10 4 2 h1c̃0 (g, w1) 0

14 4 3 i(d0) (g2) (B2)

15 3 4 i(β) (g4, g2w1, w2
1) 0

16 5 3 d0h̃1 (g2, gw1) (D1)

18 4 5 i(h2β) (g, w1) 0

21 6 4 d0h̃2
2 (g2) (E)

24 6 5 i(α2) (g2) (B1)

25 5 7 i(γ) (g5, g2w1, gw2
1) 0

26 5 8 γ̃ − (F)

26 6 6 i(h1γ) (g) 0

26 7 5 i(αd0) (g2, gw1) (C1)

27 6 8 h1γ̃ (g) 0

28 7 6 h2
1γ̃ (g) 0

30 6 9 i(β2) (g4, g2w1) (E)

31 8 6 i(d0e0) (g2) (B2)

32 7 8 + 9 i(δ′) (g2, w1) 0

32 7 9 i(δ) (g) 0

33 7 10 δ̃′ (g2) (B3)

33 8 8 i(h1δ) (g, w1) 0

33 9 7 h1d̃0e0 (g) (D1)

34 8 10 h1δ̃′ (g, w1) 0

37 8 11 i(e0g) (g2) (A)

39 9 11 e0gh̃1 − 0

40 9 12 d0γ̃ (g2) (B4)

47 11 14 d0δ̃′ (g2) (G)

50 10 18 i(h2
1w2) (g) (E)

50 11 16 d0β̃g (g2) (B3)

51 9 19 i(h2w2) − 0

51 10 19 + 20 γγ̃ (g5, gw1) 0

52 11 18 h2
1w2h̃1 (g) 0

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



630 B. CALCULATION OF Er(tmf/2) FOR r = 3, 4, 5

Table B.5: Summands in (E4(tmf/2), d4) (cont.)

t − s s g x Ann(x) Type(x)

54 10 21 i(h2
2w2) (g, w1) 0

56 11 21 β2γ̃ − (G)

56 11 22 i(c0w2) (g) 0

57 12 20 + 21 γ2h̃2
2 (g, w1) 0

57 13 18 d0e0γ̃ (g2) (B4)

58 12 22 + 23 δ′γ̃ (g) (H1)

58 12 23 δγ̃ (g) 0

63 13 25 e0gγ̃ (g2) (F)

65 14 25 d0gβ̃2 (g) (I1)

66 12 28 i(h2βw2) (g, w1) 0

69 13 30 i(h1gw2) (g, w1) 0

72 16 28 g2d̃0e0 (g, w1) 0

74 14 33 i(h1γw2) (g) (I1)

75 16 31 α2gβ̃2 (g) (H1)

76 15 35 h2
1w2γ̃ (g) (G)

80 15 38 i(δw2) (g) 0

81 16 38 + 39 γ2β̃2 (g2, w1) 0

81 16 39 i(h1δw2) (g) 0

82 16 41 h1w2δ̃′ (g) 0

82 18 34 g2α̃2e0 (g) (I1)

97 17 50 i(h1w2
2) (g2, gw1) 0

98 17 51 w2
2h̃1 − (F)

98 18 53 i(h2
1w

2
2) (g) 0

99 17 52 i(h2w2
2) (g, w1) 0

99 18 55 h1w2
2h̃1 (g) 0

100 19 55 h2
1w

2
2h̃1 (g) 0

102 18 56 i(h2
2w

2
2) (g, w1) 0

103 18 57 w2
2h̃

2
2 (g2) (B5)

104 19 59 i(c0w2
2) (g, w1) 0

104 20 58 i(w1w2
2) (g2) (J1)

105 19 60 w2
2 c̃0 (g2, gw1) (C2)

105 20 60 i(h1c0w2
2) (g, w1) 0
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Table B.5: Summands in (E4(tmf/2), d4) (cont.)

t − s s g x Ann(x) Type(x)

106 20 62 h1w2
2 c̃0 (g, w1) 0

110 20 65 i(d0w2
2) (g2) (B6)

112 21 67 d0w2
2h̃1 (g2, gw1) (D2)

114 20 67 i(h2βw2
2) (g, w1) 0

117 22 72 d0w2
2h̃

2
2 (g2) (K1)

119 23 74 i(βw1w2
2) (g2, w1) 0

120 22 75 i(α2w2
2) (g2) (B5)

122 22 76 i(h1γw2
2) (g) 0

122 23 77 i(αd0w2
2) (g2, gw1) (C2)

123 22 78 h1w2
2γ̃ (g) 0

124 23 80 h2
1w

2
2γ̃ (g) 0

127 24 82 i(d0e0w2
2) (g2) (B6)

128 23 82 + 83 i(δ′w2
2) − (G)

128 23 83 i(δw2
2) (g) 0

129 23 84 w2
2 δ̃

′ (g2) (B7)

129 24 86 i(h1δw2
2) (g, w1) 0

129 25 84 + 85 i(γw1w2
2) (g2, gw1) 0

129 25 85 h1w2
2d̃0e0 (g) (D2)

130 24 88 h1w2
2 δ̃

′ (g, w1) 0

130 25 87 w1w2
2γ̃ (g2) (J2)

133 24 89 i(e0gw2
2) (g2) (J1)

134 26 91 i(β2w1w2
2) (g2) (K1)

135 25 93 e0gw2
2h̃1 − 0

136 25 94 d0w2
2γ̃ (g2) (B8)

143 27 103 d0w2
2 δ̃

′ (g2) (K2)

146 26 104 i(h2
1w

3
2) (g) (K1)

146 27 106 d0w2
2β̃g (g2) (B7)

147 25 101 i(h2w3
2) − 0

148 27 108 h2
1w

3
2h̃1 (g) 0

150 26 107 i(h2
2w

3
2) (g, w1) 0

152 27 112 i(c0w3
2) (g) 0

153 28 114 + 115 γ2w2
2h̃

2
2 (g, w1) 0
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Table B.5: Summands in (E4(tmf/2), d4) (cont.)

t − s s g x Ann(x) Type(x)

153 29 115 d0e0w2
2γ̃ (g2) (B8)

154 28 116 + 117 δ′w2
2γ̃ (g) (H2)

154 28 117 δw2
2γ̃ (g) 0

155 30 118 + 119 γw1w2
2γ̃ (g) 0

159 29 123 e0gw2
2γ̃ (g2) (J2)

160 31 124 β2w1w2
2γ̃ (g2) (K2)

161 30 127 d0gw2
2β̃

2 (g) (I2)

162 28 122 i(h2βw3
2) (g, w1) 0

165 29 128 i(h1gw3
2) (g, w1) 0

168 32 137 g2w2
2d̃0e0 (g, w1) 0

170 30 135 i(h1γw3
2) (g) (I2)

171 32 141 α2gw2
2β̃

2 (g) (H2)

172 31 141 h2
1w

3
2γ̃ (g) (K2)

176 31 144 i(δw3
2) (g) 0

177 32 149 i(h1δw3
2) (g) 0

178 32 151 h1w3
2 δ̃

′ (g) 0

178 34 151 g2w2
2α̃

2e0 (g) (I2)

The complex of type (A) is

〈i(e0g)〉
gw2

1 !! 〈i(1)〉

R2/(g2) R2/(g6, g2w1)

The class i(e0g) is replaced by i(e0g2), leaving

〈i(1)〉 ∼= R2/(g6, g2w1, gw2
1)

〈i(e0g
2)〉 ∼= R2/(g)

at E5. Type (B) complexes have the form

〈x〉
w2

1 !! 〈y〉

R2/(g2) R2/(g2)

There are eight such summands in (E4(tmf/2), d4), with x and y as in Table B.6,
each leaving

〈y〉 ∼= R2/(g2, w2
1)

at E5.
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Table B.6: Summands of type (B)

Type x y

(B1) i(α2) h̃2
2

(B2) i(d0e0) i(d0)

(B3) d0β̃g δ̃′

(B4) d0e0γ̃ d0γ̃

(B5) i(α2w2
2) w2

2h̃
2
2

(B6) i(d0e0w2
2) i(d0w2

2)

(B7) d0w2
2β̃g w2

2 δ̃
′

(B8) d0e0w2
2γ̃ d0w2

2γ̃

The type (C) complexes are

〈i(αd0)〉
w2

1 !! 〈c̃0〉

R2/(g2, gw1) R2/(g2, gw1)

and its w2
2-multiple, leaving

〈c̃0〉 ∼= R2/(g2, gw1, w
2
1)

〈i(αd0g)〉 ∼= R2/(g, w1)

〈w2
2 c̃0〉 ∼= R2/(g2, gw1, w

2
1)

〈i(αd0gw2
2)〉 ∼= R2/(g, w1)

at E5. The type (D) complexes are

〈h1d̃0e0〉
w2

1 !! 〈d0h̃1〉

R2/(g) R2/(g2, gw1)

and its w2
2-multiple, leaving

〈d0h̃1〉 ∼= R2/(g2, gw1, w
2
1)

〈d0w
2
2h̃1〉 ∼= R2/(g2, gw1, w

2
1) .

The complex of type (E) is

〈i(β2)〉 ⊕ 〈i(h2
1w2)〉

( w1 gw1 )
!! 〈d0h̃2

2〉

R2/(g4, g2w1) ⊕ R2/(g) R2/(g2)
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The classes i(β2) and i(h2
1w2) are replaced by g · i(β2) + i(h2

1w2) = 1017 + 1018 =
i(γ2). We choose the latter name for this class, leaving

〈d0h̃2
2〉 ∼= R2/(g2, w1)

〈i(γ2)〉 ∼= R2/(g3, gw1) .

The complex of type (F) is

〈e0gγ̃〉

(
gw2

1
0

)

!! 〈γ̃, w2
2h̃1〉

R2/(g2)
R2 ⊕ R2

〈(g2w1, 0), (g5, gw1), (0, g3), (0, g2w1)〉

The class e0gγ̃ is replaced by e0g2γ̃ leaving

〈γ̃, w2
2h̃1〉 ∼=

R2 ⊕ R2

〈(g2w1, 0), (gw2
1, 0), (g5, gw1), (0, g3), (0, g2w1)〉

and
〈e0g

2γ̃〉 ∼= R2/(g) .

The complex of type (G) is

〈β2γ̃, i(δ′w2
2)〉 ⊕ 〈h2

1w2γ̃〉
( w1 0 gw1 )

!! 〈d0δ̃′〉

R2 ⊕ R2

〈(g2w1, 0), (g4, w1), (0, g2)〉 ⊕ R2/(g) R2/(g2)

The classes β2γ̃ and h2
1w2γ̃ are replaced by g · β2γ̃ + h2

1w2γ̃ = 1534 + 1535 = γ2γ̃.
We choose the shorter name for this class, leaving

〈d0δ̃′〉 ∼= R2/(g2, w1)

and

〈γ2γ̃, i(δ′w2
2)〉 ∼=

R2 ⊕ R2

〈(gw1, 0), (g3, w1), (0, g2)〉 .

The complexes of type (H) are

〈α2gβ̃2〉
w2

1 !! 〈δ′γ̃〉

R2/(g) R2/(g)

and its w2
2-multiple, leaving

〈δ′γ̃〉 ∼= R2/(g, w2
1)

〈δ′w2
2γ̃〉 ∼= R2/(g, w2

1)

at E5. The complexes of type (I) are

〈i(h1γw2)〉 ⊕ 〈g2α̃2e0〉
(w1 w2

1 )
!! 〈d0gβ̃2〉

R2/(g) ⊕ R2/(g) R2/(g)
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and its w2
2-multiple. The individual classes i(h1γw2) and g2α̃2e0 are replaced by

the sum w1 · i(h1γw2)+ g2α̃2e0 = 1834 +1835 = γ2d̃0e0. We use the latter, shorter,
name for this class, leaving

〈d0gβ̃2〉 ∼= R2/(g, w1)

〈γ2d̃0e0〉 ∼= R2/(g)

〈d0gw2
2β̃

2〉 ∼= R2/(g, w1)

〈γ2w2
2d̃0e0〉 ∼= R2/(g) .

The complexes of type (J) are i applied to

〈e0gw2
2〉

gw1
!! 〈w1w2

2〉

R2/(g2) R2/(g2)

and its product with γ̃, leaving

〈i(w1w
2
2)〉 ∼= R2/(g2, gw1)

〈i(e0g
2w2

2)〉 ∼= R2/(g)

〈w1w
2
2γ̃〉 ∼= R2/(g2, gw1)

〈e0g
2w2

2γ̃〉 ∼= R2/(g) .

There are two complexes of type (K). They have the form

〈x〉 ⊕ 〈y〉
(w2

1 gw1 )
!! 〈z〉

R2/(g2) ⊕ R2/(g) R2/(g2)

with homology

〈z〉 ∼= R2/(g2, gw1, w
2
1)

〈gx + w1y〉 ∼= R2/(g)

at E5. These are shown in Table B.7 together with shorter descriptions of the
homology class gx+w1y in each case, stemming from the relation γ2 = β2g+h2

1w2.

Table B.7: Summands of type (K)

Type x y z gx + w1y

(K1) i(β2w1w2
2) i(h2

1w
3
2) d0w2

2h̃
2
2 i(γ2w1w2

2) = 30115 + 30116

(K2) β2w1w2
2γ̃ h2

1w
3
2γ̃ d0w2

2 δ̃
′ γ2w1w2

2γ̃ = 35153 + 35154
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APPENDIX C

Calculation of Er(tmf/η) for r = 3, 4

Recall from Definition 5.1 that R0 = F2[g, w1, w2], R1 = F2[g, w1, w2
2] and

R2 = F2[g, w1, w4
2]. Our calculations show that E2(tmf/η) is a complex of R1-

modules, and E3(tmf/η) is a complex of R2-modules.

C.1. Calculation of E3(tmf/η) = H(E2(tmf/η), d2)

When regarded as a complex of R1-modules, the (E2, d2)-term of the Adams
spectral sequence for tmf/η splits as a direct sum of twelve complexes of the form

R1 −→ R1 ⊕ R1 −→ R1 ,

labeled (A1)–(A12), twenty-eight other complexes labeled (B1) to (I4), and a sum-
mand with trivial differential. Table C.1 gives, for each R0-module generator x of
E2(tmf/η), the summands to which x and xw2 belong. Tables C.2 and C.3 describe
the complexes (A1) to (A12) and their homology, respectively. The remaining com-
plexes and their homology are described following this.

Table C.1: Summands in (E2(tmf/η), d2)

t − s s g x Ann(x) Type(x) Type(xw2)

0 0 0 i(1) (0) (A1) (A2)

0 1 0 i(h0) (g2) (B1) (B2)

0 2 0 i(h2
0) (g2) (B3) (B4)

0 3 + i 0 i(h3+i
0 ) (g) 0 0

2 1 1 ĥ0 (0) (C) (A3)

2 2 1 h0ĥ0 (g2) (B5) (B6)

2 3 + i 1 h2+i
0 ĥ0 (g) 0 0

3 1 2 i(h2) (g) (D) (E)

3 2 2 i(h0h2) (g) (F1) (F2)

5 1 3 ĥ2 (0) (A4) (D)

5 2 3 h0ĥ2 (g) (F3) (F4)

5 3 2 h2
0ĥ2 (g) (F5) (F6)

6 2 4 i(h2
2) (g) (G1) (G2)

8 2 5 h2ĥ2 (g) (G3) (G4)

8 3 3 i(c0) (g) (G5) (G6)

637
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Table C.1: Summands in (E2(tmf/η), d2) (cont.)

t − s s g x Ann(x) Type(x) Type(xw2)

11 4 3 ĥ1c0 (0) (A5) (A6)

12 3 4 i(α) (0) (D) (E)

12 4 4 i(h0α) (g2) (F1) (F2)

12 5 + i 5 i(h2+i
0 α) (g) 0 0

14 3 5 α̂ (0) (A4) (D)

14 4 5 i(d0) (0) (A7) (A8)

14 4 6 h0α̂ (g2) (F3) (F4)

14 5 7 i(h0d0) (g) (H) (C)

14 5 8 h2
0α̂ (g2) (F5) (F6)

14 6 + i 8 h3+i
0 α̂ (g) 0 0

15 3 6 i(β) (0) (H) (C)

15 4 7 i(h0β) (g) (G1) (G2)

16 5 9 d0ĥ0 (0) (A9) (H)

17 3 7 β̂ (0) (A9) (H)

17 4 8 + 9 i(e0) (0) (A10) (A11)

17 4 9 h0β̂ (g) (G3) (G4)

17 5 10 + 11 i(h0e0) (g) (G7) (G8)

17 5 11 h2
0β̂ (g) (G5) (G6)

17 6 10 i(h2
0e0) (g) (I1) (I2)

18 4 10 i(h2β) (g) (I1) (I2)

19 5 12 d0ĥ2 (0) (E) (A12)

19 6 11 h0d0ĥ2 (g) (I3) (I4)

20 4 12 h2β̂ (g) (I3) (I4)

20 5 14 h0h2β̂ (g) 0 0

23 5 16 h2
2β̂ (g) 0 0

24 6 14 i(α2) (0) (A11) (A5)

24 7 + i 11 i(h1+i
0 α2) (g) 0 0

26 6 15 αα̂ (0) (A10) (A11)

26 7 13 α2ĥ0 (0) (A12) (A4)

26 7 14 h0αα̂ (g) (G7) (G8)

26 8 + i 15 h1+i
0 α2ĥ0 (g) 0 0

27 6 16 i(αβ) (0) (A2) (A7)
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Table C.1: Summands in (E2(tmf/η), d2) (cont.)

t − s s g x Ann(x) Type(x) Type(xw2)

28 7 15 d0α̂ (0) (E) (A12)

29 6 17 αβ̂ (0) (A1) (A2)

29 7 16 αβĥ0 (0) (A3) (A9)

29 7 17 h0αβ̂ (g) (B1) (B2)

29 8 19 h2
0αβ̂ (g) (B3) (B4)

30 6 18 i(β2) (0) (A6) (A10)

31 7 18 d0β̂ (0) (C) (A3)

31 8 21 h0d0β̂ (g) (B5) (B6)

32 6 19 ββ̂ (0) (A5) (A6)

32 7 20 i(δ) (g) (D) (E)

36 8 25 d̂0g (0) (A2) (A7)

36 9 + i 26 h1+i
0 d̂0g (g) 0 0

38 9 27 α2α̂ (0) (A3) (A9)

38 10 + i 26 h1+i
0 α2α̂ (g) 0 0

39 8 27 γα̂ (0) (A6) (A10)

41 9 29 α2β̂ (0) (D) (E)

41 10 28 i(α2e0) (0) (A8) (A1)

42 8 29 γβ̂ (0) (A8) (A1)

43 10 29 αd0β̂ (0) (A7) (A8)

44 9 31 αββ̂ (0) (H) (C)

47 9 33 β2β̂ (0) (A12) (A4)

53 12 41 d0γα̂ (0) (A11) (A5)

The complexes (A1) to (A12) have the form

R1{z}

(
b0
b1

)

!! R1{y0} ⊕ R1{y1}
( a0 a1 )

!! R1{x}

with the ai and bi being monomials in g and w1. If we write ai = d · a′
i, with d the

greatest common divisor of a0 and a1, then we must have
(

b0

b1

)
= c

(
a′
1

a′
0

)

for some c ∈ R1. The homology of the complex is then the sum of

R1

(a0, a1)
{x}
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640 C. CALCULATION OF Er(tmf/η) FOR r = 3, 4

and
R1

(c)
{a′

1y0 + a′
0y1} .

Of course, this second summand is 0 when c = 1. When this occurs, the
generator x remains at the E3-term and the generators y0, y1 and z disappear.
When c 0= 1, the generator x remains at E3, the generators y0 and y1 are replaced
by a′

1y0 + a′
0y1, and z disappears. In Table C.3, the superfluous entry a′

1y0 + a′
0y1

and its annihilator ideal (1) are replaced by dashes when c = 1. Similarly, in cases

(A8) and (A9), the superfluous generators x = i(α2e0) and d0ĥ0, with annihilator
ideal (1), are replaced by dashes. Note also that Ann(x) = (a0, a1) often has a
simpler description, which we give in Table C.3.

Table C.2: Complexes (A1)–(A12) in E2(tmf/η)

z
(

b0
b1

)
y0 y1 (a0 a1) x

(A1) γw2β̂
(

g3

1

)
αβ̂ i(α2e0w2) (gw1 g4w1) i(1)

(A2) αw2β̂
(

g2

gw1

)
d̂0g i(w2) (w1 g) i(αβ)

(A3) d0w2β̂
(

g2

gw1

)
α2α̂ w2ĥ0 (w1 g) αβĥ0

(A4) β2w2β̂
(

g4

g

)
α̂ α2w2ĥ0 (w1 g3w1) ĥ2

(A5) d0γw2α̂
(

g3w1
gw1

)
ββ̂ i(α2w2) (g g3) ĥ1c0

(A6) βw2β̂
(

g2

g

)
γα̂ w2ĥ1c0 (w1 gw1) i(β2)

(A7) w2d̂0g
(

g2

w1

)
αd0β̂ i(αβw2) (gw1 g3) i(d0)

(A8) αd0w2β̂
(

g2w1
gw1

)
γβ̂ i(d0w2) (1 g) i(α2e0)

(A9) α2w2α̂
(

g3w1
w1

)
β̂ αβw2ĥ0 (1 g3) d0ĥ0

(A10) γw2α̂
(

g3

w1

)
αα̂ i(β2w2) (w1 g3) i(e0)

(A11) αw2α̂ ( g
w1 ) d0γα̂ i(e0w2) (gw1 g2) i(α2)

(A12) d0w2α̂ ( gw1
w1 ) β2β̂ d0w2ĥ2 (g g2) α2ĥ0

Table C.3: Nonzero homology of the complexes (A1)–(A12) in
E2(tmf/η)

x Ann(x) y = a′
1y0 + a′

0y1 Ann(y)

(A1) i(1) (gw1) − −
(A2) i(αβ) (g, w1) gd̂0g + i(w1w2) (g)

(A3) αβĥ0 (g, w1) α2gα̂ + w1w2ĥ0 (g)

(A4) ĥ2 (w1) g3α̂ + α2w2ĥ0 (g)

(A5) ĥ1c0 (g) βg2β̂ + i(α2w2) (gw1)

(A6) i(β2) (w1) γgα̂ + w2ĥ1c0 (g)
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Table C.3: Nonzero homology of the complexes (A1)–(A12) in
E2(tmf/η) (cont.)

x Ann(x) y = a′
1y0 + a′

0y1 Ann(y)

(A7) i(d0) (g3, gw1) − −
(A8) − − γgβ̂ + i(d0w2) (gw1)

(A9) − − g3β̂ + αβw2ĥ0 (w1)

(A10) i(e0) (g3, w1) − −
(A11) i(α2) (g2, gw1) − −
(A12) α2ĥ0 (g) β2gβ̂ + d0w2ĥ2 (w1)

Complexes (B1)–(B6) have the form

〈x〉 gw1
!! 〈y〉

R1/(g) R1/(g2)

for the x and y in Table C.4.

Table C.4: Complexes (B1)–(B6) in E2(tmf/η)

x y

(B1) h0αβ̂ i(h0)

(B2) h0αw2β̂ i(h0w2)

(B3) h2
0αβ̂ i(h2

0)

(B4) h2
0αw2β̂ i(h2

0w2)

(B5) h0d0β̂ h0ĥ0

(B6) h0d0w2β̂ h0w2ĥ0

The classes x do not survive to E3, while the classes y remain, leaving

〈i(h0)〉 ∼= R1/(g2, gw1)

〈i(h0w2)〉 ∼= R1/(g2, gw1)

〈i(h2
0)〉 ∼= R1/(g2, gw1)

〈i(h2
0w2)〉 ∼= R1/(g2, gw1)

〈h0ĥ0〉 ∼= R1/(g2, gw1)

〈h0w2ĥ0〉 ∼= R1/(g2, gw1)
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at E3. Complex (C) is

〈αβw2β̂〉

(
g3

gw1

)

!! 〈d0β̂〉 ⊕ 〈i(βw2)〉

(
gw1 g3

0 1

)

!! 〈ĥ0〉 ⊕ 〈i(h0d0w2)〉

R1 R1 ⊕ R1 R1 ⊕ R1/(g)

This is exact except at the right hand end, so that the classes αβw2β̂, d0β̂ and
i(βw2) do not survive to E3, leaving

〈ĥ0〉 ∼= R1/(g4, gw1)

at E3, together with a new relation i(h0d0w2) = g3ĥ0. Complex (D) is

〈w2α̂〉
( g

w1 )
!! 〈α2β̂〉 ⊕ 〈w2ĥ2〉

(
gw1 g2

w1 0

)

!! 〈i(α)〉 ⊕ 〈i(δ)〉
( w1 0 )

!! 〈i(h2)〉

R1 R1 ⊕ R1 R1 ⊕ R1/(g) R1/(g)

The complex is exact at the left two modules, so that the classes w2α̂, α2β̂ and
w2ĥ2 do not survive to E3, while i(α) is replaced by i(αg), leaving

〈i(h2)〉 ∼= R1/(g, w1)

〈i(αg)〉 ∼= R1/(g)

〈i(δ′)〉 ∼= R1/(g, w1)

at E3. Here δ′ = αg + δ, as in E3(tmf). Complex (E) is

〈α2w2β̂〉

(
g3

gw1
w1

)

!! 〈d0α̂〉 ⊕ 〈i(αw2)〉 ⊕ 〈i(δw2)〉

(
w1 g2 0
0 w1 0

)

!! 〈d0ĥ2〉 ⊕ 〈i(h2w2)〉

R1 R1 ⊕ R1 ⊕ R1/(g) R1 ⊕ R1/(g)

The classes α2w2β̂, d0α̂ and i(αw2) do not survive to E3, leaving a non-cyclic
summand and a cyclic summand

〈d0ĥ2, i(h2w2)〉 ∼=
R1 ⊕ R1

〈(w1, 0), (g2, w1), (0, g)〉
〈i(δw2)〉 ∼= R1/(g)

at E3. Complexes (F1)–(F6) have the form

〈x〉 w1 !! 〈y〉

R1/(g2) R1/(g)

for the x and y in Table C.5. The classes x are replaced by gx at E3, while the
classes y remain, leaving summands

〈y〉 ∼= R1/(g, w1)

〈gx〉 ∼= R1/(g)

for the classes shown in Table C.6 at E3.
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Table C.5: Complexes (F1)–(F6) in E2(tmf/η)

x y

(F1) i(h0α) i(h0h2)

(F2) i(h0αw2) i(h0h2w2)

(F3) h0α̂ h0ĥ2

(F4) h0w2α̂ h0w2ĥ2

(F5) h2
0α̂ h2

0ĥ2

(F6) h2
0w2α̂ h2

0w2ĥ2

Table C.6: Generators of the homology of the complexes (F1)–(F6)
in E2(tmf/η)

gx y

(F1) i(h0αg) i(h0h2)

(F2) i(h0αgw2) i(h0h2w2)

(F3) h0gα̂ h0ĥ2

(F4) h0gw2α̂ h0w2ĥ2

(F5) h2
0gα̂ h2

0ĥ2

(F6) h2
0gw2α̂ h2

0w2ĥ2

Complexes (G1)–(G8) have the form

〈x〉 w1 !! 〈y〉

R1/(g) R1/(g)

for the x and y in Table C.7. The classes x do not survive to E3, while the classes
y remain, leaving summands

〈y〉 ∼= R1/(g, w1)

for each y in Table C.7 at E3.

Table C.7: Complexes (G1)–(G8) in E2(tmf/η)

x y

(G1) i(h0β) i(h2
2)

(G2) i(h0βw2) i(h2
2w2)

(G3) h0β̂ h2ĥ2

(G4) h0w2β̂ h2w2ĥ2
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Table C.7: Complexes (G1)–(G8) in E2(tmf/η) (cont.)

x y

(G5) h2
0β̂ i(c0)

(G6) h2
0w2β̂ i(c0w2)

(G7) h0αα̂ i(h0e0)

(G8) h0αw2α̂ i(h0e0w2)

Complex (H) is

〈w2β̂〉
( g
1 )

!! 〈αββ̂〉 ⊕ 〈d0w2ĥ0〉
( gw1 g2w1 )

!! 〈i(β)〉
( 1 )

!! 〈i(h0d0)〉

R1 R1 ⊕ R1 R1 R1/(g)

The classes w2β̂, αββ̂ and d0w2ĥ0 do not survive to E3, while i(β) is replaced by
i(βg), leaving

〈i(βg)〉 ∼= R1/(w1)

at E3. The acyclic complexes (I1) to (I4) are

〈i(h2β)〉 1 !! 〈i(h2
0e0)〉

R1/(g) R1/(g)

and

〈h2β̂〉
1 !! 〈h0d0ĥ2〉

R1/(g) R1/(g)

and their isomorphic images under multiplication by w2. The classes i(h2β),

i(h2βw2), h2β̂ and h2w2β̂ do not survive to E3, while the classes i(h2
0e0), i(h2

0e0w2),

h0d0ĥ2 and h0d0w2ĥ2 become 0, leaving no terms contributing to E3.

C.2. Calculation of E4(tmf/η) = H(E3(tmf/η), d3)

The E3-term for tmf/η is the direct sum of a large complex with trivial dif-
ferential together with fourteen complexes of seven types, which we label (A1) to
(G).

Table C.8: Summands in (E3(tmf/η), d3)

t − s s g x Ann(x) Type(x) Type(xw2
2)

0 0 0 i(1) (gw1) (A1) (E1)

0 1 0 i(h0) (g2, gw1) 0 0

0 2 0 i(h2
0) (g2, gw1) 0 0
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Table C.8: Summands in (E3(tmf/η), d3) (cont.)

t − s s g x Ann(x) Type(x) Type(xw2
2)

0 3 + i 0 i(h3+i
0 ) (g) 0 0

2 1 1 ĥ0 (g4, gw1) 0 0

2 2 1 h0ĥ0 (g2, gw1) 0 0

2 3 + i 1 h2+i
0 ĥ0 (g) 0 0

3 1 2 i(h2) (g, w1) 0 0

3 2 2 i(h0h2) (g, w1) 0 0

5 1 3 ĥ2 (w1) (B1) (A1)

5 2 3 h0ĥ2 (g, w1) 0 0

5 3 2 h2
0ĥ2 (g, w1) 0 0

6 2 4 i(h2
2) (g, w1) 0 0

8 2 5 h2ĥ2 (g, w1) 0 0

8 3 3 i(c0) (g, w1) 0 0

11 4 3 ĥ1c0 (g) (C1) (C3)

12 5 + i 5 i(h2+i
0 α) (g) 0 0

14 4 5 i(d0) (g3, gw1) (D1) (D2)

14 6 + i 8 h3+i
0 α̂ (g) 0 0

17 4 8 + 9 i(e0) (g3, w1) 0 0

17 5 10 + 11 i(h0e0) (g, w1) 0 0

19 5 12 d0ĥ2 − 0 0

20 5 14 h0h2β̂ (g) (C1) (C3)

23 5 16 h2
2β̂ (g) (D1) (D2)

24 6 14 i(α2) (g2, gw1) 0 0

24 7 + i 11 i(h1+i
0 α2) (g) 0 0

26 7 + i 13 hi
0α

2ĥ0 (g) 0 0

27 6 16 i(αβ) (g, w1) 0 0

29 7 16 αβĥ0 (g, w1) 0 0

30 6 18 i(β2) (w1) (B2) (B1)

32 7 19 + 20 i(αg) (g) 0 0

32 7 19 i(δ′) (g, w1) 0 0

32 8 22 i(h0αg) (g) 0 0

34 8 24 h0gα̂ (g) 0 0

34 9 24 h2
0gα̂ (g) 0 0
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Table C.8: Summands in (E3(tmf/η), d3) (cont.)

t − s s g x Ann(x) Type(x) Type(xw2
2)

35 7 22 i(βg) (w1) (E1) (B2)

36 9 + i 26 h1+i
0 d̂0g (g) 0 0

38 10 + i 26 h1+i
0 α2α̂ (g) 0 0

48 9 34 i(h0w2) (g2, gw1) 0 0

48 10 33 i(h2
0w2) (g2, gw1) 0 0

48 11 + i 34 i(h3+i
0 w2) (g) 0 0

50 10 36 h0w2ĥ0 (g2, gw1) 0 0

50 11 + i 36 h2+i
0 w2ĥ0 (g) 0 0

51 9 36 i(h2w2) − 0 0

51 10 37 i(h0h2w2) (g, w1) 0 0

53 10 39 h0w2ĥ2 (g, w1) 0 0

53 11 39 h2
0w2ĥ2 (g, w1) 0 0

54 10 40 i(h2
2w2) (g, w1) 0 0

56 10 41 h2w2ĥ2 (g, w1) 0 0

56 11 42 i(c0w2) (g, w1) 0 0

56 12 43 + 44 gd̂0g + i(w1w2) (g) 0 0

58 13 46 + 47 α2gα̂ + w1w2ĥ0 (g) 0 0

59 12 46 + 47 γgα̂ + w2ĥ1c0 (g) (C2) (C4)

60 13 + i 50 i(h2+i
0 αw2) (g) 0 0

62 12 50 + 51 γgβ̂ + i(d0w2) (gw1) (F) (G)

62 14 + i 53 h3+i
0 w2α̂ (g) 0 0

65 13 59 + 60 i(h0e0w2) (g, w1) 0 0

67 13 61 + 62 β2gβ̂ + d0w2ĥ2 (w1) (E2) (F)

68 13 64 h0h2w2β̂ (g) (C2) (C4)

71 13 66 h2
2w2β̂ (g) (F) (G)

72 14 65 + 66 βg2β̂ + i(α2w2) (gw1) (A2) (E2)

72 15 + i 64 i(h1+i
0 α2w2) (g) 0 0

74 15 66 + 67 g3α̂ + α2w2ĥ0 (g) 0 0

74 16 + i 72 h1+i
0 α2w2ĥ0 (g) 0 0

77 15 71 + 72 g3β̂ + αβw2ĥ0 (w1) (G) (A2)

80 15 76 i(δw2) (g) 0 0

80 16 83 i(h0αgw2) (g) 0 0
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Table C.8: Summands in (E3(tmf/η), d3) (cont.)

t − s s g x Ann(x) Type(x) Type(xw2
2)

82 16 86 h0gw2α̂ (g) 0 0

82 17 87 h2
0gw2α̂ (g) 0 0

84 17 + i 90 h1+i
0 w2d̂0g (g) 0 0

86 18 + i 90 h1+i
0 α2w2α̂ (g) 0 0

Complexes (A1) and (A2) are

〈w2
2ĥ2〉

g5

!! 〈i(1)〉

R2/(w1) R2/(gw1)

and

〈g3w2
2β̂ + αβw3

2ĥ0〉
g5

!! 〈βg2β̂ + i(α2w2)〉

R2/(w1) R2/(gw1)

The domain classes do not survive to E4, while the targets persist, leaving

〈i(1)〉 ∼= R2/(g5, gw1)

〈βg2β̂ + i(α2w2)〉 ∼= R2/(g5, gw1)

at E4. Complexes (B1) and (B2) are

〈i(β2w2
2)〉

g6

!! 〈ĥ2〉

R2/(w1) R2/(w1)

and

〈i(βgw2
2)〉

g5

!! 〈i(β2)〉

R2/(w1) R2/(w1)

The domain classes do not survive to E4, while the targets persist, leaving

〈ĥ2〉 ∼= R2/(g6, w1)

〈i(β2)〉 ∼= R2/(g5, w1)

at E4. Complexes (C1)–(C4) have the form

〈x〉 w1 !! 〈y〉

R2/(g) R2/(g)
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for the x and y in Table C.9.

Table C.9: Complexes (C1)–(C4) in E3(tmf/η)

x y

(C1) h0h2β̂ ĥ1c0

(C2) h0h2w2β̂ γgα̂ + w2ĥ1c0

(C3) h0h2w2
2β̂ w2

2ĥ1c0

(C4) h0h2w3
2β̂ γgw2

2α̂ + w3
2ĥ1c0

The classes x do not survive to E4, while the classes y remain, leaving

〈ĥ1c0〉 ∼= R2/(g, w1)

〈γgα̂ + w2ĥ1c0〉 ∼= R2/(g, w1)

〈w2
2ĥ1c0〉 ∼= R2/(g, w1)

〈γgw2
2α̂ + w3

2ĥ1c0〉 ∼= R2/(g, w1)

at E4. Complexes (D1) and (D2) are

〈h2
2β̂〉

w1 !! 〈i(d0)〉

R2/(g) R2/(g3, gw1)

and its w2
2-multiple. The domain classes do not survive to E4, while the targets

persist, leaving

〈i(d0)〉 ∼= R2/(g3, w1)

〈i(d0w
2
2)〉 ∼= R2/(g3, w1)

at E4. Complexes (E1) and (E2) are

〈i(w2
2)〉

g3

!! 〈i(βg)〉

R2/(gw1) R2/(w1)

and

〈βg2w2
2β̂ + i(α2w3

2)〉
g5

!! 〈β2gβ̂ + d0w2ĥ2〉

R2/(gw1) R2/(w1)

The domain generators x are replaced by w1x while the targets persist, leaving

〈i(βg)〉 ∼= R2/(g3, w1)

〈i(w1w
2
2)〉 ∼= R2/(g)

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



C.2. CALCULATION OF E4(tmf/η) = H(E3(tmf/η), d3) 649

〈β2gβ̂ + d0w2ĥ2〉 ∼= R2/(g5, w1)

〈βg2w1w
2
2β̂ + i(α2w1w

3
2)〉 ∼= R2/(g)

at E4. Complex (F) is

〈β2gw2
2β̂ + d0w3

2ĥ2〉 ⊕ 〈h2
2w2β̂〉

( g5 w1 )
!! 〈γgβ̂ + i(d0w2)〉

R2/(w1) ⊕ R2/(g) R2/(gw1)

The classes β2gw2
2β̂ + d0w3

2ĥ2 and h2
2w2β̂ do not survive to E4, leaving

〈γgβ̂ + i(d0w2)〉 ∼= R2/(g5, w1)

at E4. Complex (G) is

〈h2
2w

3
2β̂〉

w1 !! 〈γgw2
2β̂ + i(d0w3

2)〉
g4

!! 〈g3β̂ + αβw2ĥ0〉

R2/(g) R2/(gw1) R2/(w1)

The classes h2
2w

3
2β̂ and γgw2

2β̂ + i(d0w3
2) do not survive to E4, leaving

〈g3β̂ + αβw2ĥ0〉 ∼= R2/(g4, w1)

at E4.
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APPENDIX D

Calculation of Er(tmf/ν) for r = 3, 4, 5

Recall from Definition 5.1 that R0 = F2[g, w1, w2], R1 = F2[g, w1, w2
2] and

R2 = F2[g, w1, w4
2]. Our calculations show that E2(tmf/ν) is a complex of R1-

modules, while E3(tmf/ν) and E4(tmf/ν) are complexes of R2-modules.

D.1. Calculation of E3(tmf/ν) = H(E2(tmf/ν), d2)

The (E2, d2)-term of the Adams spectral sequence for tmf/ν splits as a direct
sum of 32 R1-module complexes of length two or three, labeled (A1-4), (B1-18) and
(C) to (L), plus a large summand with trivial differential. The Type-columns in
Table D.1 give the labels of the complexes containing the R1-module generators x
and xw2. For each complex we discuss the passage to homology with respect to the
d2-differential, giving the transition from the E2-term to the E3-term.

Table D.1: Summands in (E2(tmf/ν), d2)

t − s s g x Ann(x) Type(x) Type(xw2)

0 0 0 i(1) (0) (A1) (B1)

0 1 + i 0 i(h1+i
0 ) (g) 0 0

1 1 1 i(h1) (g) 0 0

2 2 1 i(h2
1) (g) 0 0

4 3 + i 1 hi
0h

3
0 (g) 0 0

5 1 2 h1 (0) (A2) (B2)

6 2 2 h1h1 (g) 0 0

7 2 3 h0h2 (0) (B1) (B3)

7 3 2 h0h0h2 (g) (C) (E)

8 3 3 i(c0) (g) 0 0

9 4 3 i(h1c0) (g) (D) (F)

10 2 4 h2
2 (0) (D) (F)

12 3 4 c0 (g) 0 0

12 3 4 + 5 i(α) (0) (B2) (B4)

12 4 + i 4 i(h1+i
0 α) (g) 0 0

13 4 5 h1c0 (g) 0 0

14 4 6 i(d0) (0) (B3) (B5)

651

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



652 D. CALCULATION OF Er(tmf/ν) FOR r = 3, 4, 5

Table D.1: Summands in (E2(tmf/ν), d2) (cont.)

t − s s g x Ann(x) Type(x) Type(xw2)

14 5 6 i(h0d0) (g) (E) (G)

15 3 6 i(β) (0) (E) (G)

16 5 7 h2
0α (0) (C) (E)

16 6 + i 7 h1+i
0 h2

0α (g) 0 0

17 4 7 i(e0) (0) (F) (B6)

19 5 8 d0h1 (0) (B4) (B7)

21 6 9 d0h0h2 (0) (B5) (A1)

22 5 9 e0h1 (0) (G) (B8)

24 4 9 g (0) (A3) (B9)

24 5 10 h0g (g) 0 0

24 6 10 + 11 i(α2) (0) (B6) (B10)

24 6 11 h2
0g (g) 0 0

24 7 + i 11 i(h1+i
0 α2) (g) 0 0

25 5 12 h1g (g) 0 0

26 6 12 i(h1γ) (g) 0 0

26 7 12 i(αd0) (0) (B7) (A2)

28 7 + i 13 hi
0h0α2 (g) 0 0

29 5 13 γ (0) (A4) (B11)

29 7 14 i(αe0) (0) (B8) (C)

30 6 15 h1γ (g) 0 0

31 6 16 αβ (0) (B9) (B12)

31 7 15 h0αβ (g) (H) (J)

31 8 15 i(d0e0) (0) (B10) (D)

32 7 17 i(δ) (g) 0 0

33 8 17 i(h1δ) (g) (I) (K)

34 6 17 β2 (0) (I) (K)

36 7 19 δ (g) 0 0

36 7 19 + 20 αg (0) (B11) (B13)

36 8 19 h0δ (g) 0 0

36 9 20 h2
0δ (g) 0 0

36 10 + i 20 i(h1+i
0 α3) (g) 0 0

37 8 21 h1δ (g) 0 0
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Table D.1: Summands in (E2(tmf/ν), d2) (cont.)

t − s s g x Ann(x) Type(x) Type(xw2)

38 8 22 d0g (0) (B12) (B14)

38 9 22 h0d0g (g) (J) (L)

39 7 21 βg (0) (J) (L)

40 9 24 α3 (0) (H) (J)

40 10 + i 24 h1+i
0 α3 (g) 0 0

41 8 24 e0g (0) (K) (B15)

43 9 26 d0γ (0) (B13) (B16)

45 10 28 d0αβ (0) (B14) (A3)

46 9 28 e0γ (0) (L) (B17)

48 10 30 + 31 α2g (0) (B15) (B18)

50 11 33 αd0g (0) (B16) (A4)

53 11 36 α2γ (0) (B17) (H)

55 12 38 d0e0g (0) (B18) (I)

Type (A) complexes have the form

〈x〉 g3w1
!! 〈y〉

R1 R1

There are four such summands in (E2(tmf/ν), d2), with x and y as in Table D.2.
The class x does not survive, leaving the cyclic module

〈y〉 ∼= R1/(g3w1)

at E3.

Table D.2: Summands of type (A)

n x y

1 d0w2h0h2 i(1)

2 i(αd0w2) h1

3 d0w2αβ g

4 αd0w2g γ
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Type (B) complexes have the form

〈x〉 g2

!! 〈y〉

R1 R1

There are 18 such summands in (E2(tmf/ν), d2), with x and y as in Table D.3.
The class x does not survive, leaving the cyclic module

〈y〉 ∼= R1/(g2)

at E3.

Table D.3: Summands of type (B)

n x y

1 i(w2) h0h2

2 w2h1 i(α)

3 w2h0h2 i(d0)

4 i(αw2) d0h1

5 i(d0w2) d0h0h2

6 i(e0w2) i(α2)

7 d0w2h1 i(αd0)

8 e0w2h1 i(αe0)

9 w2g αβ

10 i(α2w2) i(d0e0)

11 w2γ αg

12 w2αβ d0g

13 αw2g d0γ

14 d0w2g d0αβ

15 e0w2g α2g

16 d0w2γ αd0g

17 e0w2γ α2γ

18 α2w2g d0e0g

Complex (C) is

〈i(αe0w2)〉
g3

!! 〈h2
0α〉

w1 !! 〈h0h0h2〉

R1 R1 R1/(g)
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The class i(αe0w2) does not survive, and h2
0α is replaced by gh2

0α, leaving

〈h0h0h2〉 ∼= R1/(g, w1)

〈gh2
0α〉 ∼= R1/(g2) .

Complex (D) is

〈i(d0e0w2)〉
g3w1

!! 〈h2
2〉

1 !! 〈i(h1c0)〉

R1 R1 R1/(g)

The classes i(h1c0) and i(d0e0w2) do not survive, and h2
2 is replaced by gh2

2, leaving

〈gh2
2〉 ∼= R1/(g2w1) .

Complex (E) is

〈w2h2
0α〉

(
g2w1
w1

)

!! 〈i(β)〉 ⊕ 〈h0w2h0h2〉
( 1 0 )

!! 〈i(h0d0)〉

R1 R1 ⊕ R1/(g) R1/(g)

The classes i(h0d0) and w2h2
0α do not survive, and i(β) is replaced by i(βg), leaving

the non-cyclic module

〈i(βg), h0w2h0h2〉 ∼=
R1 ⊕ R1

〈(gw1, w1), (0, g)〉 .

Complex (F) is

〈w2h2
2〉

(
g2

1

)

!! 〈i(e0)〉 ⊕ 〈i(h1c0w2)〉

R1 R1 ⊕ R1/(g)

The class w2h2
2 does not survive, and i(h1c0w2) becomes equal to g2 · i(e0), leaving

〈i(e0)〉 ∼= R1/(g3) .

Complex (G) is

〈i(βw2)〉

(
g2

1

)

!! 〈e0h1〉 ⊕ 〈i(h0d0w2)〉

R1 R1 ⊕ R1/(g)

The class i(βw2) does not survive, and i(h0d0w2) becomes equal to g2 ·e0h1, leaving

〈e0h1〉 ∼= R1/(g3) .

Complex (H) is

〈α2w2γ〉
g3

!! 〈α3〉 w1 !! 〈h0αβ〉

R1 R1 R1/(g)
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The class α2w2γ does not survive, and α3 is replaced by gα3, leaving

〈h0αβ〉 ∼= R1/(g, w1)

〈gα3〉 ∼= R1/(g2) .

Complex (I) is

〈d0e0w2g〉
g3w1

!! 〈β2〉 1 !! 〈i(h1δ)〉

R1 R1 R1/(g)

The classes i(h1δ) and d0e0w2g do not survive, and β2 is replaced by gβ2, leaving

〈gβ2〉 ∼= R1/(g2w1) .

Complex (J) is

〈w2α3〉

(
g2w1
w1

)

!! 〈βg〉 ⊕ 〈h0w2αβ〉
( 1 0 )

!! 〈h0d0g〉

R1 R1 ⊕ R1/(g) R1/(g)

The classes h0d0g and w2α3 do not survive, and βg is replaced by βgg, leaving the
non-cyclic module

〈βgg, h0w2αβ〉 ∼=
R1 ⊕ R1

〈(gw1, w1), (0, g)〉 .

Complex (K) is

〈w2β2〉

(
g2

1

)

!! 〈e0g〉 ⊕ 〈i(h1δw2)〉

R1 R1 ⊕ R1/(g)

The class w2β2 does not survive, and i(h1δw2) becomes equal to g2 · e0g, leaving

〈e0g〉 ∼= R1/(g3) .

Complex (L) is

〈βw2g〉

(
g2

1

)

!! 〈e0γ〉 ⊕ 〈h0d0w2g〉

R1 R1 ⊕ R1/(g)

The class βw2g does not survive, and h0d0w2g becomes equal to g2 · e0γ, leaving

〈e0γ〉 ∼= R1/(g3) .

D.2. Calculation of E4(tmf/ν) = H(E3(tmf/ν), d3)

The (E3, d3)-term of the Adams spectral sequence for tmf/ν splits as a direct
sum of 20 R2-module complexes of length two, three or four, labeled (A) to (H),
plus a large summand with trivial differential. The Type-columns in Table D.4 give
the labels of the complexes containing the R2-module generators x and xw2

2.
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Table D.4: Summands in (E3(tmf/ν), d3)

t − s s g x Ann(x) Type(x) Type(xw2
2)

0 0 0 i(1) (g3w1) (A) (F)

0 1 + i 0 i(h1+i
0 ) (g) 0 0

1 1 1 i(h1) (g) 0 0

2 2 1 i(h2
1) (g) 0 0

4 3 + i 1 hi
0h

3
0 (g) 0 0

5 1 2 h1 (g3w1) (B) (A)

6 2 2 h1h1 (g) 0 0

7 2 3 h0h2 (g2) (C1) (C6)

7 3 2 h0h0h2 (g, w1) 0 0

8 3 3 i(c0) (g) (D) (H)

12 3 4 c0 (g) 0 0

12 3 4 + 5 i(α) (g2) 0 0

12 4 + i 4 i(h1+i
0 α) (g) 0 0

13 4 5 h1c0 (g) (E1) (E3)

14 4 6 i(d0) (g2) (C2) (C7)

16 6 + i 7 h1+i
0 h2

0α (g) 0 0

17 4 7 i(e0) (g3) (D) (H)

19 5 8 d0h1 (g2) 0 0

21 6 9 d0h0h2 (g2) (C3) (C8)

22 5 9 e0h1 (g3) (E1) (E3)

24 4 9 g (g3w1) (F) (G)

24 5 10 h0g (g) 0 0

24 6 10 + 11 i(α2) (g2) (C4) (C9)

24 6 11 h2
0g (g) 0 0

24 7 + i 11 i(h1+i
0 α2) (g) 0 0

25 5 12 h1g (g) 0 0

26 6 12 i(h1γ) (g) 0 0

26 7 12 i(αd0) (g2) 0 0

28 7 + i 13 hi
0h0α2 (g) 0 0

29 5 13 γ (g3w1) (A) (F)

29 7 14 i(αe0) (g2) 0 0

30 6 14 gh2
2 (g2w1) (G) (B)

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



658 D. CALCULATION OF Er(tmf/ν) FOR r = 3, 4, 5

Table D.4: Summands in (E3(tmf/ν), d3) (cont.)

t − s s g x Ann(x) Type(x) Type(xw2
2)

30 6 15 h1γ (g) 0 0

31 6 16 αβ (g2) 0 0

31 7 15 h0αβ (g, w1) 0 0

31 8 15 i(d0e0) (g2) (C5) (C10)

32 7 17 i(δ) (g) (E2) (E4)

35 7 18 i(βg) − (F) (G)

36 7 19 δ (g) 0 0

36 7 19 + 20 αg (g2) (C1) (C6)

36 8 19 h0δ (g) 0 0

36 9 19 gh2
0α (g2) 0 0

36 9 20 h2
0δ (g) 0 0

36 10 + i 20 i(h1+i
0 α3) (g) 0 0

37 8 21 h1δ (g) (D) (H)

38 8 22 d0g (g2) 0 0

40 10 + i 24 h1+i
0 α3 (g) 0 0

41 8 24 e0g (g3) (E2) (E4)

43 9 26 d0γ (g2) (C2) (C7)

45 10 28 d0αβ (g2) 0 0

46 9 28 e0γ (g3) (D) (H)

48 9 + i 29 i(h1+i
0 w2) (g) 0 0

48 10 30 + 31 α2g (g2) 0 0

49 9 31 i(h1w2) (g) (A) (F)

50 10 33 i(h2
1w2) (g) 0 0

50 11 33 αd0g (g2) (C3) (C8)

52 11 + i 35 hi
0w2h3

0 (g) 0 0

53 11 36 α2γ (g2) (C4) (C9)

54 10 35 gβ2 (g2w1) (B) (A)

54 10 36 h1w2h1 (g) (B) (A)

55 11 38 h0w2h0h2 − (F) (G)

55 12 38 d0e0g (g2) 0 0

56 11 40 i(c0w2) (g) 0 0

59 11 41 βgg − (G) (B)
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Table D.4: Summands in (E3(tmf/ν), d3) (cont.)

t − s s g x Ann(x) Type(x) Type(xw2
2)

60 11 42 w2c0 (g) 0 0

60 12 + i 44 i(h1+i
0 αw2) (g) 0 0

60 13 44 gα3 (g2) (C5) (C10)

61 12 46 h1w2c0 (g) 0 0

64 14 + i 51 h1+i
0 w2h2

0α (g) 0 0

72 13 56 h0w2g (g) 0 0

72 14 60 h2
0w2g (g) 0 0

72 15 + i 61 i(h1+i
0 α2w2) (g) 0 0

73 13 58 h1w2g (g) (F) (G)

74 14 62 i(h1γw2) (g) 0 0

76 15 + i 66 hi
0w2h0α2 (g) 0 0

78 14 65 h1w2γ (g) (A) (F)

79 15 69 h0w2αβ − (G) (B)

80 15 71 i(δw2) (g) 0 0

84 15 73 w2δ (g) 0 0

84 16 77 h0w2δ (g) 0 0

84 17 79 h2
0w2δ (g) 0 0

84 18 + i 80 i(h1+i
0 α3w2) (g) 0 0

85 16 79 h1w2δ (g) 0 0

88 18 + i 87 h1+i
0 w2α3 (g) 0 0

Complex (A) is

〈h1w2γ, gw2
2β

2, h1w3
2h1〉

(
g2w1 g6 0

0 0 0
0 0 g2w1

)

!! 〈γ, i(h1w2), w2
2h1〉

( gw1 g2w1 g5 )
!! 〈i(1)〉

R2

(g)
⊕ R2

(g2w1)
⊕ R2

(g)

R2

(g3w1)
⊕ R2

(g)
⊕ R2

(g3w1)

R2

(g3w1)

(For typographical reasons we write 〈h1w2γ, gw2
2β

2, h1w3
2h1〉 and 〈γ, i(h1w2), w2

2h1〉
in place of 〈h1w2γ〉⊕〈gw2

2β
2〉⊕〈h1w3

2h1〉 and 〈γ〉⊕〈i(h1w2)〉⊕〈w2
2h1〉, respectively.)

The classes h1w2γ and h1w3
2h1 do not survive, gw2

2β
2 is replaced by gw1w2

2β
2, w2

2h1

is replaced by w1w2
2h1, and the two classes γ and i(h1w2) are replaced by the single

class

γg = 930 + 931 = gγ + i(h1w2) ,
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leaving the direct sum of the four cyclic modules

〈i(1)〉 ∼= R2/(g5, gw1)

〈γg〉 ∼= R2/(g5, gw1)

〈w1w
2
2h1〉 ∼= R2/(g2)

〈gw1w
2
2β

2〉 ∼= R2/(g2)

at E4. Complex (B) is

〈βgw2
2g, h0w3

2αβ〉

(
g5 0
0 0

gw1 0

)

!! 〈gβ2〉 ⊕ 〈h1w2h1〉 ⊕ 〈gw2
2h

2
2〉

( 0 g2w1 g6 )
!! 〈h1〉

R2 ⊕ R2

〈(gw1, w1), (0, g)〉 R2/(g2w1) ⊕ R2/(g) ⊕ R2/(g2w1) R2/(g3w1)

The classes βgw2
2g and h1w2h1 do not survive, and gw2

2h
2
2 is replaced by g5β2 +

gw1w2
2h

2
2, leaving

〈h1〉 ∼= R2/(g6, g2w1)

〈gβ2〉 ∼= R2/(g6, g2w1)

〈g5β2 + gw1w
2
2h

2
2〉 ∼= R2/(g)

〈h0w
3
2αβ〉 ∼= R2/(g) .

Type (C) complexes have the form

〈x〉 gw1
!! 〈y〉

R2/(g2) R2/(g2)

There are ten such summands in (E3(tmf/ν), d3), with x and y as in Table D.5,
leaving

〈y〉 ∼= R2/(g2, gw1)

〈gx〉 ∼= R2/(g)

at E4.

Table D.5: Summands of type (C)

n x y

1 αg h0h2

2 d0γ i(d0)

3 αd0g d0h0h2

4 α2γ i(α2)

5 gα3 i(d0e0)

6 αw2
2g w2

2h0h2
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Table D.5: Summands of type (C) (cont.)

n x y

7 d0w2
2γ i(d0w2

2)

8 αd0w2
2g d0w2

2h0h2

9 α2w2
2γ i(α2w2

2)

10 gw2
2α

3 i(d0e0w2
2)

Complex (D) is

〈e0γ〉
( gw1

w1 )
!! 〈i(e0)〉 ⊕ 〈h1δ〉

( w1 0 )
!! 〈i(c0)〉

R2/(g3) R2/(g3) ⊕ R2/(g) R2/(g)

The class i(e0) is replaced by

δ′h1 = 820 + 821 = i(e0g) + h1δ ,

and the class e0γ is replaced by e0g2γ, leaving

〈i(c0)〉 ∼= R2/(g, w1)

〈δ′h1〉 ∼= R2/(g2, w1)

〈h1δ〉 ∼= R2/(g)

〈e0g
2γ〉 ∼= R2/(g) .

Type (E) complexes have the form

〈x〉 w1 !! 〈y〉

R2/(g3) R2/(g)

There are four such summands in (E3(tmf/ν), d3), with x and y as in Table D.6,
leaving

〈y〉 ∼= R2/(g, w1)

〈gx〉 ∼= R2/(g2)

at E4.

Table D.6: Summands of type (E)

n x y

1 e0h1 h1c0

2 e0g i(δ)

3 e0w2
2h1 h1w2

2c0

4 e0w2
2g i(δw2

2)
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Complex (F) is

〈h1w3
2γ〉

(
0

g2w1
0

)

""

R2/(g)

〈h1w2g〉 ⊕ 〈w2
2γ〉 ⊕ 〈i(h1w3

2)〉
(

g2w1 g5 0
0 gw1 g2w1

)

""

R2/(g) ⊕ R2/(g3w1) ⊕ R2/(g)

〈g〉 ⊕ 〈i(w2
2)〉

(
0 g3

0 0

)

""

R2/(g3w1) ⊕ R2/(g3w1)

〈i(βg), h0w2h0h2〉
R2 ⊕ R2

〈(gw1, w1), (0, g)〉

The classes h1w3
2γ and h1w2g do not survive, the two classes w2

2γ and i(h1w3
2) are

replaced by
γw1w

2
2g = 29227 + 29228 = gw1w

2
2γ + i(h1w1w

3
2) ,

and i(w2
2) is replaced by g4g + i(w1w2

2). This leaves

〈g〉 ∼= R2/(g6, g2w1)

〈g4g + i(w1w
2
2)〉 ∼= R2/(g)

〈γw1w
2
2g〉 ∼= R2/(g)

and the non-cyclic summand

〈i(βg), h0w2h0h2〉 ∼=
R2 ⊕ R2

〈(g3, 0), (gw1, w1), (0, g)〉 .

Complex (G) is

〈h1w3
2g〉

g2w1

""

R2/(g)

〈w2
2g〉




g3

0
0
0





""

R2/(g3w1)

〈βgg, h0w2αβ〉⊕〈i(βgw2
2), h0w3

2h0h2〉

( gw1 0 g5 0 )

""

R2 ⊕ R2

〈(gw1, w1), (0, g)〉⊕
R2 ⊕ R2

〈(gw1, w1), (0, g)〉

〈gh2
2〉 R2/(g2w1)

The class h1w3
2g does not survive, the class w2

2g is replaced by w1w2
2g, the class

βgg is replaced by

γ2γ = 1568 + 1569 = βg2g + h0w2αβ ,

and the class i(βgw2
2) is replaced by i(βgw1w2

2). This leaves

〈gh2
2〉 ∼= R2/(g5, gw1)

〈γ2γ〉 ∼= R2/(g2, w1)
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〈h0w2αβ〉 ∼= R2/(g)

〈w1w
2
2g〉 ∼= R2/(g2)

and

〈i(βgw1w
2
2), h0w

3
2h0h2〉 ∼=

R2 ⊕ R2

〈(g, w1), (0, g)〉 .

Complex (H) is w2
2 times complex (D). The class i(e0w2

2) is replaced by

δ′w2
2h1 = 24168 + 24169 = i(e0gw2

2) + h1w
2
2δ ,

and the class e0w2
2γ is replaced by e0g2w2

2γ, leaving

〈i(c0w
2
2)〉 ∼= R2/(g, w1)

〈δ′w2
2h1〉 ∼= R2/(g2, w1)

〈h1w
2
2δ〉 ∼= R2/(g)

〈e0g
2w2

2γ〉 ∼= R2/(g) .

D.3. Calculation of E5(tmf/ν) = H(E4(tmf/ν), d4)

The (E4, d4)-term of the Adams spectral sequence for tmf/ν splits as a direct
sum of 28 R2-module complexes of length two, plus 19 complexes of types labeled
(A) to (S) and (B2) to (N2) (with some gaps), plus a large summand with trivial
differential. The Type-column in Table D.7 gives the label of the complex containing
the R2-module generator x.

Table D.7: Summands in (E4(tmf/ν), d4)

t − s s g x Ann(x) Type(x)

0 0 0 i(1) (g5, gw1) 0

0 1 + i 0 i(h1+i
0 ) (g) 0

1 1 1 i(h1) (g) 0

2 2 1 i(h2
1) (g) 0

4 3 + i 1 hi
0h

3
0 (g) 0

5 1 2 h1 (g6, g2w1) (A)

6 2 2 h1h1 (g) 0

7 2 3 h0h2 (g2, gw1) (B)

7 3 2 h0h0h2 (g, w1) 0

8 3 3 i(c0) (g, w1) 0

12 3 4 c0 (g) (C)

12 3 4 + 5 i(α) (g2) (C)

12 4 + i 4 i(h1+i
0 α) (g) 0

13 4 5 h1c0 (g, w1) 0

14 4 6 i(d0) (g2, gw1) (D)
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Table D.7: Summands in (E4(tmf/ν), d4) (cont.)

t − s s g x Ann(x) Type(x)

16 6 + i 7 h1+i
0 h2

0α (g) 0

19 5 8 d0h1 (g2) (E)

21 6 9 d0h0h2 (g2, gw1) (F)

24 4 9 g (g6, g2w1) (G)

24 5 10 h0g (g) 0

24 6 10 + 11 i(α2) (g2, gw1) (B)

24 6 11 h2
0g (g) 0

24 7 + i 11 i(h1+i
0 α2) (g) 0

25 5 12 h1g (g) 0

26 6 12 i(h1γ) (g) 0

26 7 12 i(αd0) (g2) (H)

28 7 + i 13 hi
0h0α2 (g) 0

29 7 14 i(αe0) (g2) (C)

30 6 14 gh2
2 (g5, gw1) (F)

30 6 15 h1γ (g) (F)

31 6 16 αβ (g2) (I)

31 7 15 h0αβ (g, w1) 0

31 8 15 i(d0e0) (g2, gw1) (D)

32 7 17 i(δ) (g, w1) 0

35 7 18 i(βg) − (H)

36 7 19 δ (g) 0

36 8 19 h0δ (g) 0

36 9 19 gh2
0α (g2) (E)

36 9 20 h2
0δ (g) 0

36 10 + i 20 i(h1+i
0 α3) (g) 0

37 8 20 + 21 δ′h1 (g2, w1) 0

37 8 21 h1δ (g) 0

38 8 22 d0g (g2) (J)

40 10 + i 24 h1+i
0 α3 (g) 0

42 9 25 e0gh1 (g2) (A)

45 10 28 d0αβ (g2) (K)

48 9 29 i(h0w2) (g) (E)
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Table D.7: Summands in (E4(tmf/ν), d4) (cont.)

t − s s g x Ann(x) Type(x)

48 10 30 + 31 α2g (g2) (I)

48 10 + i 31 i(h2+i
0 w2) (g) 0

49 9 30 + 31 γg (g5, gw1) 0

50 10 33 i(h2
1w2) (g) 0

52 11 + i 35 hi
0w2h3

0 (g) 0

54 10 35 gβ2 (g6, g2w1) (K)

55 11 38 h0w2h0h2 − (H)

55 12 38 d0e0g (g2) (J)

56 11 39 αgg (g) (L)

56 11 40 i(c0w2) (g) (L)

60 11 42 w2c0 (g) 0

60 12 + i 44 i(h1+i
0 αw2) (g) 0

61 12 45 e0gg (g2) (G)

61 12 46 h1w2c0 (g) 0

63 13 49 d0gγ (g) (M)

64 14 + i 51 h1+i
0 w2h2

0α (g) 0

70 15 58 αd0gg (g) (N)

72 13 56 h0w2g (g) (M)

72 14 60 h2
0w2g (g) 0

72 15 + i 61 i(h1+i
0 α2w2) (g) 0

73 15 62 α2gγ (g) (L)

74 14 62 i(h1γw2) (g) (K)

76 15 + i 66 hi
0w2h0α2 (g) 0

79 15 68 + 69 γ2γ (g2, w1) 0

79 15 69 h0w2αβ (g) (N)

80 15 71 i(δw2) (g) 0

80 17 72 g2α3 (g) (M)

84 15 73 w2δ (g) 0

84 16 77 h0w2δ (g) 0

84 17 79 h2
0w2δ (g) 0

84 18 + i 80 i(h1+i
0 α3w2) (g) 0

85 16 79 h1w2δ (g) 0
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Table D.7: Summands in (E4(tmf/ν), d4) (cont.)

t − s s g x Ann(x) Type(x)

86 17 82 e0g2γ (g) 0

88 18 + i 87 h1+i
0 w2α3 (g) 0

96 17 + i 91 i(h1+i
0 w2

2) (g) 0

97 17 93 i(h1w2
2) (g) 0

98 18 99 i(h2
1w

2
2) (g) 0

100 19 + i 105 hi
0w

2
2h

3
0 (g) 0

102 18 102 h1w2
2h1 (g) 0

103 18 103 w2
2h0h2 (g2, gw1) (B2)

103 19 108 h0w2
2h0h2 (g, w1) 0

104 19 110 i(c0w2
2) (g, w1) 0

104 20 112 + 113 g4g + i(w1w2
2) (g) 0

108 19 112 w2
2c0 (g) (C2)

108 19 112 + 113 i(αw2
2) (g2) (C2)

108 20 + i 118 i(h1+i
0 αw2

2) (g) 0

109 20 120 h1w2
2c0 (g, w1) 0

109 21 124 w1w2
2h1 (g2) (O)

110 20 121 i(d0w2
2) (g2, gw1) (D2)

112 22 + i 132 h1+i
0 w2

2h
2
0α (g) 0

115 21 131 d0w2
2h1 (g2) (E2)

117 22 138 d0w2
2h0h2 (g2, gw1) (P)

120 21 134 h0w2
2g (g) 0

120 22 141 + 142 i(α2w2
2) (g2, gw1) (B2)

120 22 142 h2
0w

2
2g (g) 0

120 23 + i 147 i(h1+i
0 α2w2

2) (g) 0

121 21 136 h1w2
2g (g) 0

122 22 144 i(h1γw2
2) (g) 0

122 23 149 i(αd0w2
2) (g2) (Q)

124 23 + i 152 hi
0w

2
2h0α2 (g) 0

125 23 153 i(αe0w2
2) (g2) (C2)

126 22 147 h1w2
2γ (g) (P)

127 22 148 w2
2αβ (g2) (I2)

127 23 155 h0w2
2αβ (g, w1) 0
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Table D.7: Summands in (E4(tmf/ν), d4) (cont.)

t − s s g x Ann(x) Type(x)

127 24 160 i(d0e0w2
2) (g2, gw1) (D2)

128 23 157 i(δw2
2) (g, w1) 0

128 24 162 w1w2
2g (g2) (R)

132 23 159 w2
2δ (g) 0

132 24 167 h0w2
2δ (g) 0

132 25 172 gw2
2h

2
0α (g2) (E2)

132 25 173 h2
0w

2
2δ (g) 0

132 26 + i 177 i(h1+i
0 α3w2

2) (g) 0

133 24 168 + 169 δ′w2
2h1 (g2, w1) 0

133 24 169 h1w2
2δ (g) 0

134 24 170 d0w2
2g (g2) (J2)

134 26 179 + 180 g5β2 + gw1w2
2h

2
2 (g) (P)

136 26 + i 185 h1+i
0 w2

2α
3 (g) 0

138 25 181 e0gw2
2h1 (g2) (O)

139 27 193 i(βgw1w2
2) − (Q)

141 26 191 d0w2
2αβ (g2) (S)

144 25 185 i(h0w3
2) (g) (E2)

144 26 194 + 195 α2w2
2g (g2) (I2)

144 26 + i 195 i(h2+i
0 w3

2) (g) 0

146 26 197 i(h2
1w

3
2) (g) 0

148 27 + i 207 hi
0w

3
2h

3
0 (g) 0

151 27 210 h0w3
2h0h2 − (Q)

151 28 217 d0e0w2
2g (g2) (J2)

152 27 211 αgw2
2g (g) (L2)

152 27 212 i(c0w3
2) (g) (L2)

153 29 227 + 228 γw1w2
2g (g) 0

156 27 214 w3
2c0 (g) 0

156 28 + i 224 i(h1+i
0 αw3

2) (g) 0

157 28 225 e0gw2
2g (g2) (R)

157 28 226 h1w3
2c0 (g) 0

158 30 241 gw1w2
2β

2 (g2) (S)

159 29 237 d0gw2
2γ (g) (M2)
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Table D.7: Summands in (E4(tmf/ν), d4) (cont.)

t − s s g x Ann(x) Type(x)

160 30 + i 246 h1+i
0 w3

2h
2
0α (g) 0

166 31 261 αd0gw2
2g (g) (N2)

168 29 244 h0w3
2g (g) (M2)

168 30 256 h2
0w

3
2g (g) 0

168 31 + i 265 i(h1+i
0 α2w3

2) (g) 0

169 31 266 α2gw2
2γ (g) (L2)

170 30 258 i(h1γw3
2) (g) (S)

172 31 + i 270 hi
0w

3
2h0α2 (g) 0

175 31 273 h0w3
2αβ (g) (N2)

176 31 275 i(δw3
2) (g) 0

176 33 291 g2w2
2α

3 (g) (M2)

180 31 277 w3
2δ (g) 0

180 32 289 h0w3
2δ (g) 0

180 33 299 h2
0w

3
2δ (g) 0

180 34 + i 307 i(h1+i
0 α3w3

2) (g) 0

181 32 291 h1w3
2δ (g) 0

182 33 302 e0g2w2
2γ (g) 0

184 34 + i 315 h1+i
0 w3

2α
3 (g) 0

Complex (A) is

〈e0gh1〉
gw2

1 !! 〈h1〉

R2/(g2) R2/(g6, g2w1)

The class e0gh1 is replaced by e0g2h1, leaving

〈h1〉 ∼= R2/(g6, g2w1, gw2
1)

〈e0g
2h1〉 ∼= R2/(g)

at E5. Complex (B) is

〈i(α2)〉
w2

1 !! 〈h0h2〉

R2/(g2, gw1) R2/(g2, gw1)

The class i(α2) is replaced by i(α2g), leaving

〈h0h2〉 ∼= R2/(g2, gw1, w
2
1)
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〈i(α2g)〉 ∼= R2/(g, w1)

at E5. Complex (B2) is w2
2 times complex (B). The class i(α2w2

2) is replaced by
i(α2gw2

2), leaving

〈w2
2h0h2〉 ∼= R2/(g2, gw1, w

2
1)

〈i(α2gw2
2)〉 ∼= R2/(g, w1)

at E5. Complex (C) is

〈i(αe0)〉

(
w2

1

w2
1

)

!! 〈c0〉 ⊕ 〈i(α)〉

R2/(g2) R2/(g) ⊕ R2/(g2)

The class i(αe0) does not survive, and i(α) is replaced by c0 + i(α) = 35. This
leaves

〈c0〉 ∼= R2/(g)

〈c0 + i(α)〉 ∼= R2/(g2, w2
1)

at E5. Complex (C2) is w2
2 times complex (C). The class i(αe0w2

2) does not survive,
and i(αw2

2) is replaced by w2
2c0 + i(αw2

2). This leaves

〈w2
2c0〉 ∼= R2/(g)

〈w2
2c0 + i(αw2

2)〉 ∼= R2/(g2, w2
1)

at E5. Complex (D) is

〈i(d0e0)〉
w2

1 !! 〈i(d0)〉

R2/(g2, gw1) R2/(g2, gw1)

The class i(d0e0) is replaced by i(d0e0g), leaving

〈i(d0)〉 ∼= R2/(g2, gw1, w
2
1)

〈i(d0e0g)〉 ∼= R2/(g, w1) .

Complex (D2) is w2
2 times complex (D). Here i(d0e0w2

2) is replaced by i(d0e0gw2
2),

leaving

〈i(d0w
2
2)〉 ∼= R2/(g2, gw1, w

2
1)

〈i(d0e0gw2
2)〉 ∼= R2/(g, w1) .

Complex (E) is

〈gh2
0α〉 ⊕ 〈i(h0w2)〉

(w2
1 gw1 )

!! 〈d0h1〉

R2/(g2) ⊕ R2/(g) R2/(g2)

The classes gh2
0α and i(h0w2) are replaced by

i(α3g + h0w1w2) = 1339 + 1340 = g2h2
0α + i(h0w1w2) ,
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leaving

〈d0h1〉 ∼= R2/(g2, gw1, w
2
1)

〈i(α3g + h0w1w2)〉 ∼= R2/(g) .

Complex (E2) is w2
2 times complex (E). The classes gw2

2h
2
0α and i(h0w3

2) are re-
placed by i(α3gw2

2 + h0w1w3
2), leaving

〈d0w
2
2h1〉 ∼= R2/(g2, gw1, w

2
1)

〈i(α3gw2
2 + h0w1w

3
2)〉 ∼= R2/(g) .

Complex (F) is

〈gh2
2〉 ⊕ 〈h1γ〉

( w1 w1 )
!! 〈d0h0h2〉

R2/(g5, gw1) ⊕ R2/(g) R2/(g2, gw1)

The classes gh2
2 and h1γ are replaced by

γh1 = 614 + 615 = gh2
2 + h1γ ,

leaving

〈d0h0h2〉 ∼= R2/(g2, w1)

〈γh1〉 ∼= R2/(g5, gw1) .

Complex (G) is

〈e0gg〉
gw2

1 !! 〈g〉

R2/(g2) R2/(g6, g2w1)

The class e0gg is replaced by e0g2g, leaving

〈g〉 ∼= R2/(g6, g2w1, gw2
1)

〈e0g
2g〉 ∼= R2/(g) .

Complex (H) is

〈i(βg), h0w2h0h2〉
( w1 gw1 )

!! 〈i(αd0)〉

R2 ⊕ R2

〈(g3, 0), (gw1, w1), (0, g)〉 R2/(g2)

The classes i(βg) and h0w2h0h2 are replaced by

γ2h1 = 1137 + 1138 = i(βg2) + h0w2h0h2 ,

leaving

〈i(αd0)〉 ∼= R2/(g2, w1)

〈γ2h1〉 ∼= R2/(g2, w1) .
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Complex (I) is

〈α2g〉
w2

1 !! 〈αβ〉

R2/(g2) R2/(g2)

The class α2g does not survive, leaving

〈αβ〉 ∼= R2/(g2, w2
1) .

Complex (I2) is w2
2 times complex (I). The class α2w2

2g does not survive, leaving

〈w2
2αβ〉 ∼= R2/(g2, w2

1) .

Complex (J) is

〈d0e0g〉
w2

1 !! 〈d0g〉

R2/(g2) R2/(g2)

The class d0e0g does not survive, leaving

〈d0g〉 ∼= R2/(g2, w2
1) .

Complex (J2) is w2
2 times complex (J). The class d0e0w2

2g does not survive, leaving

〈d0w
2
2g〉 ∼= R2/(g2, w2

1) .

Complex (K) is

〈gβ2〉 ⊕ 〈i(h1γw2)〉
( w1 gw1 )

!! 〈d0αβ〉

R2/(g6, g2w1) ⊕ R2/(g) R2/(g2)

The classes gβ2 and i(h1γw2) are replaced by

γ2g = 1461 + 1462 = g2β2 + i(h1γw2) .

leaving

〈d0αβ〉 ∼= R2/(g2, w1)

〈γ2g〉 ∼= R2/(g5, gw1) .

Complex (L) is

〈α2gγ〉

(
w2

1

w2
1

)

!! 〈αgg〉 ⊕ 〈i(c0w2)〉

R2/(g) R2/(g) ⊕ R2/(g)

The class α2gγ does not survive, and αgg is replaced by

δ′g = 1139 + 1140 = αgg + i(c0w2) .

This leaves

〈δ′g〉 ∼= R2/(g, w2
1)

〈i(c0w2)〉 ∼= R2/(g) .
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Complex (L2) is w2
2 times complex (L). The class α2gw2

2γ does not survive, and
αgw2

2g is replaced by δ′w2
2g. This leaves

〈δ′w2
2g〉 ∼= R2/(g, w2

1)

〈i(c0w
3
2)〉 ∼= R2/(g) .

Complex (M) is

〈h0w2g〉 ⊕ 〈g2α3〉
(w1 w2

1 )
!! 〈d0gγ〉

R2/(g) ⊕ R2/(g) R2/(g)

The classes h0w2g and g2α3 are replaced by

(α3g + h0w1w2)g = 1772 + 1773 = g2α3 + h0w1w2g ,

leaving

〈d0gγ〉 ∼= R2/(g, w1)

〈(α3g + h0w1w2)g〉 ∼= R2/(g) .

Complex (M2) is w2
2 times complex (M). The classes h0w3

2g and g2w2
2α

3 are replaced
by (α3gw2

2 + h0w1w3
2)g, leaving

〈d0gw2
2γ〉 ∼= R2/(g, w1)

〈(α3gw2
2 + h0w1w

3
2)g〉 ∼= R2/(g) .

Complex (N) is

〈h0w2αβ〉
w1 !! 〈αd0gg〉

R2/(g) R2/(g)

The class h0w2αβ does not survive, leaving

〈αd0gg〉 ∼= R2/(g, w1) .

Complex (N2) is w2
2 times complex (N). The class h0w3

2αβ does not survive, leaving

〈αd0gw2
2g〉 ∼= R2/(g, w1) .

Complex (O) is

〈e0gw2
2h1〉

gw1
!! 〈w1w2

2h1〉

R2/(g2) R2/(g2)

The class e0gw2
2h1 is replaced by e0g2w2

2h1, leaving

〈w1w
2
2h1〉 ∼= R2/(g2, gw1)

〈e0g
2w2

2h1〉 ∼= R2/(g) .
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Complex (P) is

〈h1w2
2γ〉 ⊕ 〈g5β2 + gw1w2

2h
2
2〉

(w1 w2
1 )

!! 〈d0w2
2h0h2〉

R2/(g) ⊕ R2/(g) R2/(g2, gw1)

The classes h1w2
2γ and g5β2 + gw1w2

2h
2
2 are replaced by

γ2g3g + γw1w
2
2h1 = 26179 + 26180 + 26181 = g5β2 + gw1w

2
2h

2
2 + h1w1w

2
2γ .

This leaves

〈d0w
2
2h0h2〉 ∼= R2/(g2, w1)

〈γ2g3g + γw1w
2
2h1〉 ∼= R2/(g) .

Complex (Q) is

〈i(βgw1w2
2), h0w3

2h0h2〉
(w2

1 gw1 )
!! 〈i(αd0w2

2)〉

R2 ⊕ R2

〈(g, w1), (0, g)〉 R2/(g2)

The classes i(βgw1w2
2) and h0w3

2h0h2 do not survive, leaving

〈i(αd0w
2
2)〉 ∼= R2/(g2, gw1, w

2
1) .

Complex (R) is

〈e0gw2
2g〉

gw1
!! 〈w1w2

2g〉

R2/(g2) R2/(g2)

The class e0gw2
2g is replaced by e0g2w2

2g, leaving

〈w1w
2
2g〉 ∼= R2/(g2, gw1)

〈e0g
2w2

2g〉 ∼= R2/(g) .

Complex (S) is

〈gw1w2
2β

2〉 ⊕ 〈i(h1γw3
2)〉

(w2
1 gw1 )

!! 〈d0w2
2αβ〉

R2/(g2) ⊕ R2/(g) R2/(g2)

The classes gw1w2
2β

2 and i(h1γw3
2) are replaced by

γ2w1w
2
2g = 34302 + 34303 = g2w1w

2
2β

2 + i(h1γw1w
3
2) ,

leaving

〈d0w
2
2αβ〉 ∼= R2/(g2, gw1, w

2
1)

〈γ2w1w
2
2g〉 ∼= R2/(g)

at E5.
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[34] L. E. J. Brouwer, Über Abbildung von Mannigfaltigkeiten (German), Math. Ann. 71 (1911),
no. 1, 97–115, DOI 10.1007/BF01456931. MR1511644

[35] William Browder, The Kervaire invariant of framed manifolds and its generalization, Ann.
of Math. (2) 90 (1969), 157–186, DOI 10.2307/1970686. MR251736

[36] Edgar H. Brown Jr. and Michael Comenetz, Pontrjagin duality for generalized homology
and cohomology theories, Amer. J. Math. 98 (1976), no. 1, 1–27, DOI 10.2307/2373610.
MR405403

[37] Robert Ray Bruner, The Adams spectral sequence of H∞ ring spectra, ProQuest LLC, Ann
Arbor, MI, 1977. Thesis (Ph.D.)–The University of Chicago. MR2611760

[38] R. Bruner, Algebraic and geometric connecting homomorphisms in the Adams spectral se-
quence, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II,
Lecture Notes in Math., vol. 658, Springer, Berlin, 1978, pp. 131–133. MR513570

[39] Robert R. Bruner, Two generalizations of the Adams spectral sequence, Current trends in
algebraic topology, Part 1 (London, Ont., 1981), CMS Conf. Proc., vol. 2, Amer. Math. Soc.,
Providence, R.I., 1982, pp. 275–287. MR686121

[40] Robert Bruner, A new differential in the Adams spectral sequence, Topology 23 (1984),
no. 3, 271–276, DOI 10.1016/0040-9383(84)90010-7. MR770563

[41] Robert R. Bruner, Ext in the nineties, Algebraic topology (Oaxtepec, 1991), Con-
temp. Math., vol. 146, Amer. Math. Soc., Providence, RI, 1993, pp. 71–90, DOI
10.1090/conm/146/01216. MR1224908

[42] Robert R. Bruner, Extended powers of manifolds and the Adams spectral sequence, Homo-
topy methods in algebraic topology (Boulder, CO, 1999), Contemp. Math., vol. 271, Amer.
Math. Soc., Providence, RI, 2001, pp. 41–51, DOI 10.1090/conm/271/04349. MR1831346

[43] R. R. Bruner, J. P. C. Greenlees, and J. Rognes, The local cohomology theorems for tmf
and H∗,∗(A(2)). In preparation.

[44] R. R. Bruner and J. Rognes, The Adams spectral sequence for the image-of-J spectrum. In
preparation.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



BIBLIOGRAPHY 677

[45] R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, H∞ ring spectra and their
applications, Lecture Notes in Mathematics, vol. 1176, Springer-Verlag, Berlin, 1986, DOI
10.1007/BFb0075405. MR836132

[46] Robert Bruner, Christian Nassau, and Sean Tilson, Steenrod operations and A-module ex-
tensions, arXiv:1909.03117v3.

[47] Robert Burklund, An extension in the Adams spectral sequence in dimension 54,
arXiv:2005.08910.
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1932, pp. 203.

[49] Dominic Culver, The Adams spectral sequence for 3-local tmf , arXiv:1902.04230.
[50] Donald M. Davis, The cohomology of the spectrum bJ , Bol. Soc. Mat. Mexicana (2) 20

(1975), no. 1, 6–11. MR467749
[51] Donald M. Davis and Mark Mahowald, v1- and v2-periodicity in stable homotopy theory,

Amer. J. Math. 103 (1981), no. 4, 615–659, DOI 10.2307/2374044. MR623131
[52] Donald M. Davis and Mark Mahowald, Ext over the subalgebra A2 of the Steenrod algebra

for stunted projective spaces, Current trends in algebraic topology, Part 1 (London, Ont.,
1981), CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 1982, pp. 297–342, DOI
10.2307/2374058. MR686123

[53] Donald M. Davis and Mark Mahowald, The image of the stable J-homomorphism, Topology
28 (1989), no. 1, 39–58, DOI 10.1016/0040-9383(89)90031-1. MR991098

[54] Christopher L. Douglas, John Francis, André G. Henriques, and Michael A. Hill (eds.),
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A∞ ring spectrum, 23
ak,s, 129
Alexander–Whitney chain map, 107
algebraic Steenrod square

683

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



684 INDEX

Sqi, 79
in E2(tmf), 10

all, 59
α ∈ E2(tmf), 65, 148
α∗, 404

α̃2e0 ∈ E2(tmf/2), 83

α3 ∈ E2(tmf/ν), 84
αβ ∈ E2(tmf/ν), 84
α̂ ∈ E2(tmf/η), 84
αn ∈ πn(S) for n ∈ {34, 37, 38, 39, 40}, 479
Anderson dual IZ(X), 20, 385, 533, 591
Anderson self-duality, 386, 591
Anderson, Donald, 97, 385
Angeltveit, Vigleik, 437
antisymmetry, 346
Araki generator vn, 330, 578
asterisk (*), 437
Atiyah, Michael, 407
Atiyah–Hirzebruch spectral sequence, 8,

464, 579
Aubry, Marc, 464
Ausoni, Christian, xix

B ∈ π8(tmf), 334
B(2, 2, 1), 86
b0 ∈ E2(tmf), 583
B1 " B2, 189, 417
B1 ∈ E2(S), 56
B2 ∈ E2(S), 56, 58
Baker, Andrew, 575
bar complex, 103
bar construction, 103, 580
Barratt, Michael, 7, 448, 459, 479
Bauer, Tilman, 2, 5, 17, 306, 329, 336, 481,

576
Becker, James, 436
Behrens, Mark, 22, 23, 497, 499, 559, 577,

596
β ∈ A, 4
β ∈ E2(tmf), 65, 148
β ∈ π10(tmf), 583

β̃2 ∈ E2(tmf/2), 83

β2 ∈ E2(tmf/ν), 84

β̃g ∈ E2(tmf/2), 83

β̂ ∈ E2(tmf/η), 84
bifiltration Z!,!, 407
bipermutative category, 114, 120, 433
Bk ∈ π8+24k(tmf), 334, 336, 583

B̃k ∈ π8+24k(tmf), 336, 366
blue, 139
bo, 116, 117
Boardman, Michael, 412
Bockstein operation β, 4
Borel, Armand, 580
Bott element B, 16, 334, 583
Bousfield, A.K., 498, 593
brackets.sym, 310

Brouwer, L.E.J., 463
Browder, William, 7
Brown, Edgar, 72, 97, 382
Brown–Comenetz dual I(X), 20, 382, 548,

590
bso, 116, 117
bspin, 116, 117
bstring, 114
bu, 121
Burklund, Robert, 500
Bökstedt, Marcel, xix

C ∈ E2(S), 420
C ∈ π12(tmf), 334
C(2σ), 453, 454
c0 ∈ E2(S), 54
c0 ∈ E2(tmf), 65, 148
c̃0 ∈ E2(tmf/2), 83
c0 ∈ E2(tmf/ν), 84
c1 ∈ E2(S), 54
C2 = S/2, 81
c2 ∈ E2(S), 55
c4, 1, 329
c4 ∈ E2(tmf), 583
c6, 1, 329
c6 ∈ E2(tmf), 583
canonical resolution, 104, 557
Cartan formula, 76, 88, 508, 521
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ĥ1c0 ∈ E2(tmf/η), 84

h̃1 ∈ E2(tmf/2), 83
h1 ∈ E2(tmf/ν), 84
h2 ∈ E2(S), 54
h2 ∈ E2(tmf), 65, 148

h̃2
2 ∈ E2(tmf/2), 83

h2
2 ∈ E2(tmf/ν), 84
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Henriques, André, 2, 5, 70, 148, 336, 376,

580
hidden

2-extension, 23, 315, 414, 468, 475, 480,
508, 520, 528, 535, 548

α-extension from b to c, 314
ε-extension, 477
η-extension, 23, 325, 466–468, 470, 474,

475, 477, 480, 481, 509, 521, 528, 538,
550

ν-extension, 23, 323, 449, 459, 468, 471,
472, 477, 480, 512, 521, 540, 552

σ-extension, 455, 468
Hill, Michael, 3, 5, 7, 23, 330, 464, 559, 575,

577, 578, 580, 594
himults, 46
H∞ ring spectrum, 402
homotopy fixed point spectral sequence, 23,

376, 594
homotopy operation α∗, 404
Hopf algebra

cocommutative, 3, 10, 76, 111, 123, 403
commutative, 109, 110, 123, 582
conjugation χ, 4, 97
connected, 97, 101
quotient, 101, 109, 110, 582
sub, 97, 111

Hopf algebroid, 403
Weierstrass curve, 2, 5, 595

Hopf invariant one, 2, 6, 81, 336, 465
Hopf, Heinz, 463, 479
Hopkins, Michael, xix, 1, 2, 7, 17, 23, 87,

89, 306, 329, 386, 464, 498, 559, 575,
577, 586, 594

Hopkins–Miller element H, 586
horizontal homotopy Hk,s, 408
Hurewicz, Witold, 463
Husemoller, Dale, 104
hyper-Ext, 561

i ∈ E2(S), 54
I(X) = IQ/Z(X), 382
image-of-J

Adams filtration, 501, 595
spectrum j, 434, 593

injective comodule, 99
internal degree t, 45
internal product in Ext, 108
ι : E2(S) → E2(tmf), 54–56, 70
ι : π∗(S) → π∗(tmf), 462, 463, 493
ι′ : E2(tmf) → E2(tmf1(3)), 65, 72
ι′ : π∗(tmf) → π∗(tmf1(3)), 330, 331
IQ(X), 385
Isaksen, Daniel, 7, 8, 309, 314, 451, 459,

464, 473, 478, 481, 499, 500
Iwai, Akira, 9, 148, 152, 156
IZ(X), 385

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



INDEX 687

j, 434, 593
j ∈ E2(S), 55
jn ∈ πn(j), 435
joker, 117, 118
Jones, John, 7, 459

k ∈ E2(S), 55
K-theory spectrum, 114
Kahn, Daniel, 188, 404
κ ∈ π14(S), 461, 466, 478
κ ∈ π14(tmf), 334
κ1 ∈ π32(S), 478
κ4 ∈ π110(tmf), 335
κ̄ ∈ π20(S), 336, 461, 467, 478
κ̄ ∈ π20(tmf), 334
κ̄2 ∈ π44(S), 479
˜̄κ4 ∈ π81(tmf/2), 514
κ̃ ∈ π15(tmf/2), 514
Kervaire invariant one, 7, 428, 464, 469
Kervaire, Michel, 479
ko, 114, 116
ko∗,∗, 114
ko[k], 337
ko[k]/B∞, 388
Kochman, Stanley, 8, 336, 456, 464

kohψ3
, 434

Konter, Johan, 2, 329
Koszul resolution, 112
Koszul spectral sequence, 112
Kriz, Igor, 402
ksp, 117, 119
ksp∗,∗, 119
ku, 120
ku∗,∗, 120
ku〈σ〉, 129
ku〈σ〉∗,∗, 130

. ∈ E2(S), 55
Lawson, Tyler, 3, 16, 72, 330, 382, 577, 578
Lazarev, Andrej, 575
leading term, 150
Lewis, Gaunce, 402
Lewis–May spectrum, 402
Lin, Wen-Hsiung, 7, 101
lines, 46
Liulevicius, Arunas, 76, 407, 580
local cohomology, 381, 385, 397, 591
Lurie, Jacob, 1, 386

m ∈ E2(S), 55
M ∈ π192(tmf), 334
M(n), 3
M(n), 3
M/x, 380
M/x∞, 380
M1, 81
M1(3), 330
M1(3), 331

M2, 81
M4, 81
M [1/x], 380
M0(2), 577
M0(2), 578
MacLane, Saunders, 103
Madsen, Ib, xix
MAGMA, 150, 486
Mahowald element M , 334
Mahowald’s dictum, 306, 372
Mahowald’s trick, 562, 563, 569
Mahowald, Mark, xix, 2, 3, 6, 7, 23, 87, 89,

97, 101, 107, 112, 142, 255, 305, 306,
330, 336, 426, 436, 444, 448, 454, 459,
464, 479, 481, 497–499, 559, 575, 577,
594

Mahowald–Tangora wedge, 156, 158
Mandell, Michael, 114, 402
maps, 59
Margolis homology, 429, 430
Margolis, Harvey, 86, 430
Massey product, 57, 168, 309, 310, 532, 582
Mathew, Akhil, 4, 5, 87, 577, 578
Maunder’s theorem, 429, 446, 448, 457
Maunder, Richard, 7, 429
MAXFILT, 46
maximal compression, 189, 416
May spectral sequence, 57, 309, 479, 575
May, Peter, 7, 9, 57, 76, 103, 114, 168, 169,

381, 402, 407, 433, 464, 479, 582
Mell, 1
Mell, 1
MF∗/2, 1
mf∗/2, 2, 329
MF0(2)∗/2, 578
mf0(2)∗/2, 578
MF1(3)∗/2, 330
mf1(3)∗/2, 330
microscope, 413
Milgram, James, 188, 404, 413, 422, 436,

444, 464
Miller, Haynes, 1, 23, 104, 108, 386, 575,

586, 593, 595
Milnor basis, 45, 47, 420, 563
Milnor generator ξi, 4
Milnor primitive Qi, 4, 72, 120, 126, 577
Milnor, John, 3, 97, 99, 101, 479
Mimura, Mamoru, 7, 15, 255, 336, 349, 353,

464, 472, 479, 481
Mitchell, Stephen, 498, 593
modular forms, 2, 329, 330, 578
modular functions, 1, 330, 578
moduli stack, 1, 3, 330, 577
Moore spectrum, 81, 414, 415

generalized, 22, 503, 577
Moore, John, 97, 99, 101, 104
Moss’ theorem, 7, 451, 459, 469, 471–473,

477, 478, 532

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



688 INDEX

Moss, Michael, 7
µ ∈ π9(S), 478
µ8k+1 ∈ π8k+1(S), 432, 478
µ̄ ∈ π17(S), 478
Mukohda, Shunji, 421, 422
multiplicative relation, 306, 328, 461, 463
multiplicative section σ : im(e) → π∗(tmf),

367, 376, 576, 588
mustard, 139
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